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Abstract

In several countries(Chile, Bolivia, Argentina and Peru, among others), power plants are
dispatched according to merit order, i.e. based on the marginal operating costs of the plants.
In this scheme, the operating plant with the highest marginal cost sets the spot price at which
firms trade the energy required to fulfill their contracts. The underlying peak-load pricing
model assumes that plants can operate at any level up to capacity, whereas real power plants
have minimum operating levels. This implies that a low cost plant might have to reduce its
supply in order to accommodate the minimum operating level of a more expensive power
plant. This paper derives the welfare maximizing price rules in this case and shows that the
standard peak-load pricing rules no longer apply.
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Early deregulators of electric industries such as Chile, Bolivia and Peru adopted
the dispatch and pricing system developed byElectricite de France (EDF). In this1´
approach demand is assumed to be unresponsive to price, hence the role of the
system operator is to accommodate power supply to the fixed demand. Plants are
dispatched according to themerit order, i.e. they are ranked according to their
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marginal operating costs and dispatched in ascending order until demand is satisfied.
The pricing system has two components. First, plants are paid the price of energy
for their production, which is given by the marginal cost of the most expensive
plant in operation. In addition, each plant receives a capacity payment equal to the2

power it delivers at peak demand times a capacity charge which equals the cost of
the least expensive means of expanding capacity. Assuming inelastic demand,3

divisible plants and no uncertainty, it can be shown that this system of rewards,
known as peak-load pricing, satisfies the following three desirable properties(Turvey,
1968).

● Any plant that is dispatched by the system operator obeys willingly.
● Each plant pays for its operation and investment costs.
● The rules of dispatch minimize the long and short term cost of providing

electricity.

These conditions imply that the system can be decentralized, i.e. given these rules
of operation, the market will provide the optimal investment mix that replicates the
planner’s solution. There have been many extensions of peak-load pricing in order
to adapt these results to the real world. Most researchers have explored the
consequences of eliminating the assumption of no uncertainty. Less work has been4

done on the effects of incorporating operating constraints such as minimum operating
levels, minimum run time, spinning reserves and maximum ramp time. These
constraints, which are known in the engineering–economics literature of electric
power systems under the heading of ‘unit commitment constraints’ have a significant
effect on how units are dispatched.
System operators are used to deal with the problem of determining a schedule of

units that achieve the minimum operational cost while meeting the forecasted
demand and operational constraints. This is a mixed-integer programming problem,5

and is in the class of the NP-hard problems(Tseng et al., 2000). Hence, there is a
vast literature dealing with heuristic methods to find an adequate solution. However,
there have been no theoretical analysis of the pricing system that provides the
welfare maximizing short and long-run signals to generating companies. A possible
explanation is that in state owned monopolies the assignment of revenues to specific

To be precise, the marginal cost of energy is normally used only for transactions between generating2

companies so that they can satisfy their energy contracts with clients.
In the bidding approach(developed first in the UK, and used in many European countries, Colombia,3

and some states in the US) generating firms make bids on the amounts and the prices of electricity
they are willing to provide the system. The system operator uses these bids to construct the energy
supply function and sets the dispatch order.

Under conditions of supply uncertainty, it is necessary to include an outage cost. For an extension4

with uncertainty in demand and supply, see Chao(1983) and for a survey of peak-load pricing literature
readers are referred to the paper by Crew et al.(1995).

Most of the literature, however, focuses on the economic optimization problem of a power utility5

that decides the day-ahead which units will commit given uncertain electricity prices, electricity
demanded by its customers and operating constraints. This problem is commonly referred to as the UC
problem. See for instance Allen and Ilic(1997) and Valenzuela and Mazumdar(2001). Other papers
center on the valuation of generation assets with UC constraints under uncertain fuel and electricity
prices(Skantze et al., 2000).
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plants is not an issue, but the most probable explanation is the difficulty in finding
an analytical solution.
Johnson et al.(1997) examine the effects of competition and decentralized

ownership on resource scheduling in a pool-based electric power system with unit
commitment restrictions. They show that decentralized scheduling of multi-owned
resources under imperfect information faces serious difficulties. In fact, they
demonstrate resorting to an heuristic algorithm that variations in near-optimal
schedules that have negligible effect on total system cost can have significant
consequences on the total payments by customers to generators and on the
distribution of profits among the generators. Thus a system operator charged with
making efficient central unit commitments decisions is in the delicate position of
making distributional decisions among customers and resource owners with no
economic rationale to back its choices. These findings are not surprising: UC
restrictions result in non-convexities, and decentralization does not work in non-
convex economies.
In this paper, we focus on the effects of one type of UC restrictions: minimum

operational levels(MOLs) below which some plants cannot operate. This raises the
possibility that within certain demand ranges it might be necessary to reduce the
supply of a low operating cost plant, which is replaced by the output from a higher
operating cost plant pinned at its MOL, in order to adjust supply to demand in real
time. We analyze the properties of standard peak-load pricing in the presence of6

MOLs, as we are interested in finding the reward structure that will provide the
welfare maximizing short and long term signals to generating firms. Hence, in our
context, the rationale for making short term distributional decisions is long-run
welfare maximization(we omit transitional effects).7

We model a simple case with two types of plants, in order to highlight our
results. The first type of plant has a high investment cost but a low operating cost
as compared to the second type of plant. We examine the case in which a high
operating cost plant operating at its MOL displaces part of the production of a low
operating cost plant. Hence, the marginal cost of the system corresponds to that of
the displaced low operating cost plant, as this is the one that absorbs small demand
fluctuations. The problem is that if we set price equal to this marginal cost, the
high operating cost plant makes losses, violating the first optimal property of peak-
load pricing. We show that keeping marginal cost pricing requires capacity charges
above the cost of expansion, because MOLs increase the total cost of the system.
Moreover, we show that plants with no MOL restrictions should receive higher

Other cases in which plants with higher operating costs displace plants with lower operating costs6

occur when the former have long ramp up periods so it is not economical to make them run only at
peak time or when the former are forced to operate in order to maintain the integrity of the system.

Valenzuela and Mazumdar(2001) solve the UC problem for a power utility in a model where the7

electricity price is set by open competition. A stochastic model of the market takes into account the
uncertainty on demand and the generating unit availabilities. However, their price model ignores the
UC constraints and assumes that a strict predetermined merit order of loading prevails. Not surprisingly,
the market-clearing price is shown to be the variable cost or bid of the last unit used to meet the
aggregate load prevailing at a particular hour.



306 R. Fischer, P. Serra / Energy Economics 25 (2002) 303–314

capacity payments. MOL constraints have a significant effect on how units are
dispatched, and therefore on operating costs. ‘By ignoring the MOL constraints, one
is likely to undervalue plants with significant flexibility while overvaluing inflexible
plants.’8

Note that with MOLs the simplicity of the peak-loading pricing rule is lost. First,
on occasion the high operating cost plant must be compelled to operate, violating
the condition that anyplant that is dispatched by the system operator obeys
willingly. Second, when capacity charges exceed the cost of expansion, there are
incentives for an entrant to supply all demand at peak-load using a high operating
cost plant, since it receives the cost of capacity plus the cost of power and an
additional amount that allows it to earn rents. However, this means that there is no
supply in low demand periods(or supply is provided only with high cost plants)
since low operating cost plants would exit. Hence, implementation of peak-load
pricing in the presence of MOLs requires that the system operator pay capacity
payments only to those plants that generate whenever it is requested. In addition, a
major problem with MOLs lies in the complexity of the solution, since the system
operator must perform the computations needed to derive the optimal rewards,
which lacks the transparency of the rewards in the idealized peak-load pricing
model.
In the remainder of this paper we formalize these results in a simple model. In

particular, we find the power payments that lead to the correct short and long term
operation when there are indivisibilities.9

2. The model

In order to simplify the exposition we assume that there are two types of plants.
Type 1 plants have lower operating costs but higher investment costs than type 2
plants. Hence, in general the former operate as base load plants while the second
type operates at peak time. Operating costs arec -c and the unit costs of capacity1 2

are given byf )f . The generating capacities of the two types of plants are given1 2

by and We assume the existence of a minimum size for type 2 plants, and¯ ¯q q .1 2

that demand justifies the installation of one plant. This plant has a minimum
operating level of with 0(a(1.¯aq ,2
Consider the case in which the existence of the minimum operating level in type

2 plant alters the merit order of dispatch within some range of demand. For example,
in order to satisfy an increase in demand, the system operator may be forced to

A similar result is found in a bidding context by Skantze et al.(2000) when analyzing the market8

based valuation of generation assets. They state that operational constraints have a significant effect on
how units are bid into, and dispatched by, a spot market operator, and therefore on the owners’ cash
flow. By ignoring the UC constraints, one is likely to undervalue plants with significant flexibility
while overvaluing large inflexible fossil plants.

The indivisibilities discussed in this paper are different from those studied in the early paper by9

Williamson (1966). In that paper, indivisibility meant that plants had a fixed minimum size, but it
could produce at any power level. In the type of indivisibility considered in this paper, the plant cannot
operate below a certain power level
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Fig. 1. The problem of minimum operating levels.

dispatch the type 2 plant. Because it has a MOL, its entry displaces part of the
capacity supplied by a lower cost type 1 plant. Fig. 1 shows the change in the
dispatch order when demand increases fromD to D . Suppose that at pricec ,1 2 2

demand is less than but higher than When demand is given by curve¯ ¯ ¯q qaq , q .1 2 1

D , the type 2 plant must enter in order to supply the market, but the MOL displaces2

some of the capacity of the type 1 plant, which produces at a level̄q -q .1 1

The load duration curve described in Fig. 2 orders the 8,760 hours of the year
according to the demand for energy, which is assumed inelastic. LetD denote the
maximum demand,q(t) the demand in thet-th hour with highest demand, andt(q)
its inverse. For simplicity, we assume that functiont is differentiable, hencet9(q)(0.
In what follows we use the following notation:Ts8760, ¯ ¯ ¯q sq qaq , T s0 1 2 0

In the figure, during the(TyT ) hours of low demand only¯ ¯t(q ) andT st(q ).0 1 1 1

the type 1 plants operate and spot price equalsc . At T , these plants are operating1 1

at full capacity and the type 2 plant must begin to provide energy. Given that the
type 2 plant is pinned by its MOL, the type 1 plants must cut back their supply.
This inversion of the normal merit order occurs in the range AtT , demandT T .0 1 0

is such that the type 1 plants are operating at full capacity and the type 2 plant
needs to generate above its MOL, so the spot price is given by the cost of the type
2 plant.

Result 1 A MOL leads to an inversion of the merit order of dispatch.

2.1. The case with no MOLs

When there are no indivisibilitiesas0, i.e. T sT , then the total cost of plants0 1

(investment plus operational cost) are:10

See Boiteux(1960) for the earliest analysis of the peak-load problem.10
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Fig. 2. A load duration curve with indivisibilities.

T T1
¯ ¯C sc q(t)dtqc q dtqf q1 1 1 1 1 1| |

T 01

T1
¯ ¯µ ∂C sc q(t)yq dtqf q2 2 1 2 2|

0

We consider a classical peak-load pricing system. Hence, plants receive a payment
per unit of energy equal to the marginal cost of energy. They also receive a capacity
payment equal to the marginal investment cost in type 2 plantsf . The revenues2

accruing to each type(including the capacity charges) are:

T T1
¯ ¯R sc q(t)dtqc q dtqf q1 1 2 1 2 1| |

T 01

T1
¯ ¯µ ∂R sc q(t)yq dtqf q2 2 1 2 2|

0

Clearly, the type 2 plants are in a zero-profit equilibrium in all assignments. The
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type 1 plants are in equilibrium whenR sC , which implies that1 1

f yf1 2T s1 c yc2 1

The assignment of capacity to type 1 plants is determined using the load duration
curve. If T (T, then otherwise Boiteux(1960) shows that this¯ ¯q sq(T ), q s0.1 1 1 1

decentralized equilibrium is optimal as it minimizes the total cost of the system.

2.2. The general case with MOLs

When a/0, we have thatT -T . In the interval type 1 plants do notT T ,0 1 0 1

operate at full capacity. Hence, assuming that the total cost of each plant¯ ¯q 0aq1 2

is:

T T T0 1

¯ ¯ ¯µ ∂C sc q dtqc q(t)yaq dtqc q(t)dtqf q1 1 1 1 2 1 1 1| | |
0 T T0 1

T T0 1

¯ ¯ ¯µ ∂C sc q(t)yq dtqc aq dtqf q2 2 1 2 2 2 2| |
0 T0

The total cost of the system is:

w zT T0 1T

¯ ¯ ¯ ¯CsC qC sc q(t)dtq c yc q(t)yq dtq aq dt qf q qf q (1)Ž . Ž .x |1 2 1 2 1 1 2 1 1 2 2| | |
0 y ~0 T0

Next we derive the capacities and that minimize the total cost of the system¯ ¯q q1 2

and satisfy demand. Hence, we need to impose the restriction that is¯ ¯q qq 0D,1 2

total capacity must exceed peak demandD. In the previous analysis we implicitly
imposed the condition that the planner does not operate plant 2 unless necessary,
but this was not introduced as a constraint in the maximization problem. We
generalize the presentation and assume that the central planner also decides the time
T , at which it begins operating the type 2 plant. Thus, we need to impose the1

constraint that is, at the time at which a type 1 plant has to reduce its¯q(T )(q ,1 1

load in order to accommodate the entry of plant 2, demand must be lower or equal
to the capacity of the type 1 plants. Lettingl andm be the Lagrange multipliers
associated to the first and second restriction, respectively, the Lagrange function
equals:

w zT T0 1T

¯ ¯ ¯ ¯øsc q(t)dtq c yc q(t)yq dtq aq dt qf q qf qŽ . Ž .x |1 2 1 1 2 1 1 2 2| | |
0 y ~0 T0

¯ ¯ ¯ql Dyq yq qm q T yq (2)Ž . Ž Ž . .1 2 1 1
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The resulting Kuhn–Tucker conditions are:

w z≠ø dT ≠ø0¯ ¯ ¯s c yc yT q q T yq yaq qf ylym00, q s0 (3)x |Ž . Ž Ž . .2 1 0 0 1 2 1 1¯ ¯ ¯≠q dq ≠qy ~1 1 1

w z≠ø dT ≠ø0¯ ¯ ¯s c yc q T yq yaq qa T yT qf yl00, q s0 (4)x |Ž . Ž Ž . . Ž .2 1 0 1 2 1 0 2 2¯ ¯ ¯≠q dq ≠qy ~2 2 2

w z≠ø dT ≠ø0¯ ¯ ¯s c yc aq q q T yq yaq qmq9 T 00, T s0 (5)x |Ž . Ž Ž . . Ž .2 1 2 0 1 2 1 1
≠T dT ≠Ty ~1 1 1

≠ø ≠ø
¯ ¯sDyq yq (0, l s0 (6)1 2

≠l ≠l

≠ø ≠ø
¯sq T yq (0, m s0 (7)Ž .1 1

≠m ≠m

The first three inequalities can be written as:

≠ø ≠ø
¯sy c yc T qf ylymG0, q s0 (8)Ž .2 1 0 1 1¯ ¯≠q ≠q1 1

≠ø ≠ø
¯s c yc a T yT qf ylG0, q s0 (9)Ž . Ž .2 1 1 0 2 2¯ ¯≠q ≠q2 2

≠ø ≠ø
¯s c yc aq qmq9 T 00, T s0 (10)Ž . Ž .2 1 2 1 1

≠T ≠T1 1

Assuming the first two inequalities become equalities. From Eq.(9)¯ ¯q ,q )0,1 2

follows that l)0 and from Eq.(6), we have that and therefore¯ ¯Dsq qq Ds1 2

Therefore, from Eq.(7) we haveT )0. Thus, Eq.(10) implies m)0,¯q(0))q .1 1

from which Eq. (7) is an equality and Finally, Eq.(10) can be¯T st(q ).1 1

rewritten:11

≠ø
¯ ¯ ¯t9 q s c yc aq t9 q qms0 (11)Ž . Ž . Ž .1 2 1 2 1

≠T1

Sincel)0, Eq. (6) is also an equality, i.e. it is optimal not to have more capacity than required11

at peak demand. Eq.(7) states that it is optimal not to start operations in plant 2 unless demand
exceeds the capacity of plant 1.
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Using equalities Eqs.(8), (9) and(11), we obtain the optimality condition:

dø ≠ø ≠ø w z
x |¯ ¯s y sf yf y c yc T qa T yT yaq t9 q s0. (12)Ž . Ž . Ž .1 2 2 1 0 1 0 2 1y ~¯ ¯ ¯dq ≠q ≠q1 1 2

As a final result, consider the effects of an increase in the MOL of type 2 plants
(an increase ina) on the optimal mix of investment in the two types of plants.
Total differentiation of Eq.(12) with respect toa leads to:

¯ ¯ ¯ ¯(1ya)q t9 q yq t9 q q T yTŽ . Ž . Ž .2 0 2 1 1 0

¯dq12w z
x |¯ ¯ ¯ ¯q (1ya) t9 q q2at9 q yaq t0 q s0 (13)Ž . Ž . Ž .0 1 2 1y ~ da

Note that unless functiont(q) is strongly concave, an increase ina, the minimum
operating level of type 2 plant, leads to an increase in the optimal investment in
type 1 plants. The intuition is quite simple. An increase in the MOL implies that12

the system will be operating farther away from the optimal equilibrium without the
MOL, and therefore type 2 plants have a higher cost, so that type 1 plants become
relatively more attractive.

2.3. Peak-load pricing

2.3.1. A theoretical solution
Next we extend peak-load pricing to the situation in which MOLs are binding.

We begin by setting the price of energy equal to the marginal cost, which isc in2

the interval andc in the interval . Next we determine the capacity charge.0T T T0 1 0

Since thel multiplier represents the cost of a marginal increase in peak demand,
from Eq. (9) it follows that the capacity charge should be set equal to:

Uf sf q c yc a T yT (14)Ž . Ž .2 2 2 1 1 0

The MOL raises the price of the system by more than the price of additional
capacity. The revenues of the two types of plants can be written as:

T T T0 1
U¯ ¯ ¯µ ∂R sc q dtqc q(t)yaq dtqc q(t)dtqf q1 2 1 1 2 1 2 1| | |

0 T T0 1

T T0 1
U¯ ¯ ¯µ ∂R sc q(t)yq dtqc aq dtqf q2 2 1 1 2 2 2| |

0 T0

which is sufficient for the type 2 firm to break even and recover the losses it makes
by operating betweenT andT , while being paidc per unit of energy delivered.0 1 1

Alternatively, the condition can be based on the concavity ofq(t).12
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In long-run equilibrium, type 1 plants need to break even. Hence,

T T0 0
U¯ ¯ ¯ ¯c q dtqf q sc q dtqf q1 1 1 1 2 1 2 1| |

0 0

Rearranging terms, we can rewrite this equality as

w z
x |f yf y c yc T qa T yT s0 (15)Ž . Ž .1 2 2 1 0 1 0y ~

However, this solution is not optimal, as it differs from the optimality condition
Eq. (12). The reason is quite intuitive. Observe that at any time different fromT1

and 0 (peak demand), the only effect of a marginal increase in demand is to
increase operational costs. AtT , however, a marginal increase in demand lengthens1

the period in which plant 2 operates at its technical minimum by and this¯t9(q ),1

leads to an increase in on total costs of Formally, since the¯ ¯y(c yc )aq t9(q ))0.2 1 2 1

m multiplier represents the cost of a marginal increase in demand atT , from Eq.1

(12) it follows it is necessary to impose a capacity charge equal to:

¯ ¯msy c yc aq t9 q , (16)Ž . Ž .2 1 2 1

which should be paid only to the type 1 plants as these are the only plants operating
at T . As we can see by comparing Eqs.(12) and (15) this amount is sufficient to1

provide the right investment signals for type 1 plants.

Result 2 Peak-load pricing with a MOL requires a capacity charge, that is, higher
than without a MOL and an additional capacity charge paid to low cost firms.

Observe that when there is no indivisibility(as0), this second capacity charge
(Eq. (16)) disappears and the capacity charge(Eq. (14)) becomes the standard
capacity charge.

2.3.2. Implementing peak-load pricing
In this section, we show that peak-load pricing is incompatible with a decentralized

system when there are MOLs. To see this point, recall that in the intervalT T0 1

plant 2 operates at a loss. In the previous section, we showed that it was possible
to compensate this plant via a capacity charge higher than the marginal cost of
capacity. Note however, that this requires that plant 2 be compelled to operate,
violating the condition thatany plant that is dispatched by the system operator
obeys willingly, i.e. this is not a decentralized solution. There is an additional
problem: at the time of peak demand, users are required to pay the operational cost
of the high cost plants, plus the cost of capacity(peak demand=investment cost of
the type 2 plant), plus a surcharge to compensate the plant for receiving onlyc1
while operating in Hence, there is an incentive for an entrant to supply allT T .0 1

demand at peak-load with type two plants, receive the cost of capacity plus the cost
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of power, plus the additional surcharge(which would give them rents). The problem,
of course, implies that low cost plants make losses and would exit.

Result 3 Optimal peak-load pricing with a MOL cannot be decentralized.

However, peak-load pricing can be implemented by introducing the rule that
capacity will be paid only to plants that generate whenever they are requested to do
so. Hence, explicit payment rules would solve the problem, but violate the condition
that plants are always willing to generate power when requested. An additional
problem lies in the complexity of the solution, which requires the explicit compu-
tation of capacity charges by the system operator, negating one of the advantages
of the peak-load pricing rule in the absence of MOLs.
Up to now we have imposed that the price of energy be set equal to the marginal

operational cost. We impose this requirement because if demand were elastic, this
would be the requirement of an efficient pricing scheme. In our model, however,
the load duration curve is independent of price, as is usual in this type of analysis,
so the use of marginal cost pricing is not really necessary and is external to the
model. Therefore we might as well have incorporated the additional cost caused by
the MOL into the price of energy and kept the original capacity charge as the
marginal cost of capacity. For instance, we can consider an energy charge equal to
c in In this case an energy charge abovec is required in in order toT T . T T2 0 1 1 1 2

achieve the optimal solution. The required energy charge is:

T1
¯ ¯ ¯w xaDyq(t) dtyaq q t9 qŽ .2 1 1|

T0wsc q c yc . (17)Ž . T1 2 1

q(t)dt|
T1

However, this solution also faces implementation problems. Note that in the
period type 1 plants receive more than their marginal cost(since unlesst(q) isT T0
highly concave,w)c ). This implies that all these plants would like to generate at1

full capacity, and hence supply would exceed demand. Hence, the effective demand
faced by these plants would have to be assigned proportionally to the capacity of
each plant.

3. Conclusions

This paper has shown that when plants have minimum operating levels, the
standard peak-load pricing system must be modified in order to achieve the(long-
run) optimal investment mix between different plants. It has also shown that the
solution cannot be implemented via a decentralized mechanism.
MOLs are important in deregulated marginal cost dispatch systems, where the

use of the standard peak-load pricing formulas can lead to inefficiencies. The fact
that the legislation in the countries that use peak-load pricing does not cover these
and other imperfections means that firms must use informal methods of settling
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these problems. However, this also implies that a new entrant faces unwritten rules,
which might be one of the reasons for the lack of entry into the electric markets in
these countries.
There are other problems that involve similar issues and which could be analyzed

by analogous methods: for example, the long ramp-up times of some plants mean
that high cost plants are sometimes required to operate as base-load plants, creating
inversions in the merit order. We have made a strong simplification in our analysis,
as we have assumed that demand is constant and does not respond to the existence
of an additional power charge. Removing this restriction is another topic for future
research.13
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