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ABSTRACT 

A model and simulation based methodology is used to implement a multi-layer 

model predictive control (MPC) strategy for a rougher row of mechanical flotation cells. 

Pilot-scale tests are done to calibrate and validate both the process simulation models 

and the predictive simulation models. The hierarchical control strategy considers three 

layers: orchestrator, advanced control and basic control; is deployed, in a commercial 

control system and, tested in a pilot row. 

The orchestrator is divided in two: the row supervisor and the row optimizer. The 

row supervisor monitors and manages all the other components of the control 

structure.  The optimizer is a MPC-based controller which optimal criterion is 

separation efficiency (SE) and; according to recent developments, that happens with a 

balanced mass-pull profile along the row. The advanced control layer includes 

individual cell MPC in coordination with a symbolic MPC for all pulp levels along the 

row. The basic control layer consists of single loop proportional and integral (PI) 

controllers and their corresponding valves and instruments. After simulation, the 

control layers are successively downloaded in an industrial controller, starting from the 

basic control layer and ending with orchestrator’s algorithms. Then, the control 

structure provides good disturbance rejection against feed variabilities. Regarding the 

orchestrator, it supports smooth and logical transitions between control modes as well 

as good abnormal situation management. 

This work shows promising results of the power of integrated process control 

design and model based methodologies; allowing earlier and better selection and 

validation of: flotation machine technology, cutting edge instrumentation and, 

advanced control structure and strategies. Given pre-defined economic assumptions, 

estimated results are obtained for the simulated industrial scenario: almost 40 percent 

reduction of capital expenditure (Capex), with almost the same operational expenditure 

(Opex). From the total Capex reduction, almost 80% is due to integrated process and 

control design (IPCD), being the other 20% a consequence of advanced process control 

and optimization structure and strategies. MPC-based control algorithms show their 

potential to have a main role in mineral processing processes’ feasibility and optimality. 

Keywords: control strategy, flotation, MPC, simulations.  
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RESUMEN 
 

Se utiliza una metodología basada en modelos y simulaciones para implementar 

una estrategia de control predictivo basado en modelos (MPC) de varias capas para una 

fila de celdas de flotación mecánica Rougher. Las pruebas a escala piloto se realizan 

para calibrar y validar los modelos de simulación tanto de procesos como de 

predicciones. La estrategia de control jerárquico considera tres capas: orquestador, 

control avanzado y control básico; se implementa, en un sistema de control comercial y 

se prueba en una fila de piloto. 

El orquestador se divide en supervisor y optimizador de fila. El supervisor de fila 

supervisa y administra todos los demás componentes de la estructura de control. El 

optimizador está basado en MPC y su criterio óptimo es la eficiencia de separación (SE) 

con un perfil de recuperación en peso equilibrado a lo largo de la fila. La capa de control 

avanzado incluye un MPC de celda individual en coordinación con un MPC simbólico 

para todos los niveles de pulpa a lo largo de la fila. La capa de control básica consiste en 

controladores proporcionales e integrales (PI) y sus válvulas e instrumentos 

correspondientes. Después de la simulación, las capas de control se descargan 

sucesivamente en un controlador industrial, desde la capa de control básica hasta el 

orquestador. La estructura de control logra un buen rechazo de perturbaciones de 

alimentación. En cuanto al orquestador, admite transiciones suaves y lógicas entre los 

modos de control, así como una buena gestión de situación anormal. 

Este trabajo muestra resultados prometedores del poder del diseño de control de 

procesos integrado y de las metodologías basadas en modelos; permitiendo una mejor y 

más temprana selección y validación de: tecnología de máquina de flotación, 

instrumentación y estructura de control avanzada. Dados los supuestos económicos 

predefinidos, se obtienen resultados estimados para el escenario industrial simulado: 

casi 40 por ciento de reducción del gasto de capital (Capex), con casi el mismo gasto 

operacional (Opex). De la reducción total de Capex, casi el 80% se debe al diseño 

integrado de procesos y control (IPCD), siendo el otro 20% una consecuencia del 

control avanzado del proceso y la estructura y estrategias de optimización. Los 

algoritmos de control basados en MPC muestran su gran potencial. 

Palabras clave: estrategia de control, flotación, MPC, simulaciones. 
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1. INTRODUCTION 

This chapter is a concise presentation on the “why”, “what”, and “how” on the 

subject. They are presented in the context, relevance and outline sections. 

1.1. CONTEXT AND WIDE PERSPECTIVE 

Minerals are valuable natural resources being finite and non-renewable. The 

mining cluster is by no doubt the most important sector of Chilean economy. But, 

mineral yields that have fed Chilean society for a long time are decreasing both in 

quantity and quality. Further use of intelligence is needed in order to mitigate the 

exhaustion of natural resources. Intelligence, whether natural or synthetic, derives from 

a model of the world in which the system operates. Greater intelligence arises from 

powerful and “fit for purpose” models, capable of strike a balance between accuracy and 

interpretability of predictions. The software implementation of models is known as 

simulator or simulation framework. A specific realization of a certain scenario in the 

simulator is known as simulation. Model based design is well recognized as a systematic 

approach to design and implement industrial plants. 

1.2. RELEVANCE 

Modern metallurgical plants shall be high efficient and that implies operation 

near constraints with stronger attention to process dynamics and controls. In other 

words, to optimize, processes shall be under control which needs good measurements. 

Therefore, the role of process control systems has to be considered as an integrated 

element of business planning in order to simultaneously ensure feasibility and 

optimality of process operation. Model predictive control is a particular branch of 

model-based design: a dynamical model of the open-loop process is explicitly used to 

construct an optimization problem aimed at achieving prescribed system's performance 

under specified restrictions on input/output variables. 
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Many attempts have been made to improve the flotation process itself. An 

excellent review on the major developments up to the mid-1970 is compiled by Trahar 

and Warren (1976). Some of them are still being used or revisited. Two main lines have 

been followed; being the first one by reagents with the aim to enhance the 

agglomeration of fine particles, increasing the probability of collision. The second line is 

developing new cell machines with the aim to create more favorable hydrodynamic 

conditions for flotation (i.e. Gorain et al., 2000). For nearly a century mechanical cells 

have dominated the market. Faced with increasing demands to improve the processing 

of fine particles, cell suppliers have shown their resilience by increased cell size; the use 

of adjustable froth launders and; new agitation mechanisms (Yianatos, 2007a). 

1.3. THESIS OUTLINE 

Chapter 2 presents the literature review. As this work is related to more than one 

field of knowledge, a Venn methodology is considered appropriate as starting point. 

Then, references related to optimization, control design, modelling and MPC are shown. 

In chapter 3, objectives and scope of this thesis are set. Chapter 4 is related to an 

important part of the experimental work of this thesis; starting with the industrial 

context with its given definitions and assumptions and followed by exploratory and 

variability campaigns. Both campaigns are described and used to evaluate a non-

conventional flotation machine. In addition to its intrinsic value, the work in chapter 4 

is used afterwards to implement, calibrate and validate an important fraction of both 

process and prediction models; starting with the metallurgical modelling work at the 

end of the chapter and; following by the process simulation framework described in 

chapter 5. Chapter 6 explains the main specific application of this work: a hierarchical 

model predictive control of a row of rougher flotation cells. Chapter 7 is the ending 

chapter, where the discussion and conclusions of this thesis are presented. 
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2. LITERATURE REVIEW 

2.1. REVIEW METHODOLOGY AND SIMILAR WORKS 

Fit for purpose + self-explained: this review follows a fit for purpose approach and 

then is focused on this thesis’ perspective. Nevertheless, appropriate context is given in 

order to be self-explained. 

Literature review methodology: this work is related to more than one field of 

knowledge and therefore a Venn methodology is used and shown in figure 2.1. The 

universe is the subject which in this case is rougher froth flotation using rows of 

mechanical cells. Then, one set is the problem (optimization), the second set is 

methodology (modelling) and the third set is the focus (control). Following Venn 

methodology, the primary attention should be on similar works. 

 

Figure 2.1: Literature review using Venn approach. 

Optimization in mining, metal and mineral processing (Goodwin et al., 

2008): Every decision making problem involves some form of optimization, often 

implicit rather than explicit. They state that making optimization explicit has many 

advantages including the integration between technical and commercial information, as 

a balanced approach to decision-making. Matching cost reporting areas to process areas 

greatly assist management. A reasonably close match makes it much easier to estimate 

the potential costs and benefits of process changes. 
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Goodwin et al. note that optimization can play a role at many levels in an 

enterprise including: data reconciliation; single feedback loops; coordination of 

feedback loops; interconnection of unit operations through the value chain(s); supply 

chain management and; long-term corporate investment strategies. By the exception of 

last two, all the other optimizations are under this thesis’ scope. The role of process 

control has to be considered as an integrated element of business planning in order to 

support feasibility and optimality of process operation. Process control systems shall 

support asset management decision making through: dynamic optimization, abnormal 

situation support systems and asset integrated information at central control room. 

Dynamic optimization and abnormal situations are under the scope. 

Optimization of a concentration operation According to Wills (2006), the 

purpose of mineral processing is to increase the economic value of the ore. Mineral 

processes move along a recovery-grade curve, with a trade-off between grade and 

recovery. The usage of concentrate grade and recovery is the most widely accepted 

method of assessing metallurgical performance. Then, any concentration operation can 

be expressed by figure 2.2. Regarding economic efficiency, the aim is to determine the 

best economic combination of recovery and grade. However, this combination may not 

promote the highest return if those conditions change. 

 

Figure 2.2: Typical grade versus recovery curve 
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Regarding technical efficiency, Schulze (1984) defines separation efficiency as 

the difference between the recoveries of valuable and gangue minerals. According to 

Wills (2006): “although the value of separation efficiency can be useful in comparing 

the performance of different operating conditions on selectivity, it takes no account of 

economic factors, and a high value of separation efficiency does not necessarily lead to 

the most economic return”. Therefore, neither economics nor technical approaches can 

define the optimum by themselves alone. This thesis considers separation efficiency 

(SE) as optimal criterion, but the simulation framework has the flexibility to 

incorporate and/or biases the optimal criterion based on economics. 

Optimal control: Maldonado et al. (2007) study the optimal control of rougher 

flotation rows. The row optimization objective is the minimization of the Cu tailing 

grade given a desired final Cu concentrate grade. They conclude that their simulation 

results show good correlations between their optimization strategy and actual operating 

practices at the rougher flotation plant under study. 

Profiling has been proposed as row dynamic optimizer (i.e. Seguel et al., 2015; Sing 

and Finch, 2014 and; Hadler & Cilliers, 2010). Maldonado et al. (2011) find that, if 

entrainment is neglected, the maximum SE is obtained when each of the cells along the 

row has the same recovery. Singh and Finch (2014) confirm that with simulations and 

industrial data and then, they use math and simulations to propose that, considering 

entrainment, a balanced mass-pull profile is optimum. Seguel et al. (2015) revisit row 

optimization through froth depth profiling and the following formulation of the 

optimization problem: maximization of copper Cu recovery while satisfying a minimum 

concentrate grade. Their conclusion is that optimal profile also provides a balanced 

mass-pull profile. A balanced mass-pull profile is considered as base scenario herein, 

but the simulation framework allows a balanced recovery profile. 
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In terms of control theory, profiling schemes are related to setpoint tracking. 

Traditional model predictive controllers are tuning around a particular operating point, 

fitting fairly well for fixed set-points but not necessarily for moving set-points. 

Asymptotic tracking performance and stability is crucial for profiling based optimizing 

applications and adaptive model predictive control (AMPC) family of algorithms is 

capable to ensure system asymptotic tracking performance and stability under large 

parametric, structural and parametric disturbance uncertainties (Tao, 2014). AMPC is 

considered in this thesis for advanced profiling controllers. 

Model predictive control applied to froth flotation: Rojas and Cipriano (2011) 

use simulations to compare three control strategies, one conventional and two MPC-

based ones. Their assumption is that the optimum is achieved maximizing the recovery 

and keeping the concentrate grade over a minimum. The first MPC strategy considers 

row tailings and concentrates grades and the other MPC strategy includes estimation of 

concentrate grade in intermediate cells. They conclude that even though both MPC 

strategies deliver high performance regardless disturbances, the economic benefits 

obtained with the second MPC strategy are greater, noting the importance of 

intermediate measurements. Consequently, in this thesis: virtual sensors are developed 

to estimate individual mass pulls and concentrate grades, including the intermediate 

cells; the row instrumentation is used incrementally for further characterization and; in 

other words, the instrumentation planned for the row is used for 1, 2, 3 and four cells. 

Putz & Cipriano (2015) propose and simulate a hybrid model predictive control 

(H-MPC) for rougher flotation. They define three operating modes for each rougher 

flotation cell: no concentrate (sunken cell), normal operation and presence of pulp in 

overflow of concentrate (pulping cell). Their approach emphasizes the relevance of MPC 

algorithms, the modal nature of industrial froth flotation systems and the lack of 

abnormal situation integration to control strategies. In this thesis, virtual sensors are 

used for sunken and pulping cells. 
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Air recovery (Hadler & Cilliers, 2010): they add another component to mass pull 

and recovery profiles, stating that air flowrate and froth depth could affect froth 

structure and stability, which in turn could affect mass pull. They propose air recovery, 

or the fraction of air entering a cell that overflows the lip, as measure of froth stability. 

Air recovery, α, is determined using the over flowing froth velocity, Vf; the overflowing 

froth height above the cell lip, h, the over flowing length, w, and the inlet air flowrate, 

Q
a
, as shown in equation (2.1). A high air recovery, therefore, indicates a more stable 

froth. The complement to the air recovery (1– 𝛼) gives the fraction of air that leaves 

through bursting. They mention that “when operating a cell at the air rate that yields 

the peak air recovery (PAR), an improvement in flotation performance, particularly 

mineral recovery, can be obtained”. an increase in mass pull by means of a higher air 

flow, increase mineral recovery as far as air rate peak is still not achieved. 

α= 
Vf∙h∙w

Qa

  (2.1) 

 

Figure 2.3: Air recovery optimization, from Hadler & Cilliers, 2010 

Brief of profiling methods: As a main conclusion, the technical optimum is 

obtained by means of a balanced mass pull along the row. Then, a simple and practical 

criterion for row optimization is given: balanced mass pull profile along the row. In this 

thesis, air recovery is one of two froth stability indices. In addition, in almost all the 

articles two variables are considered for profiling but only one at a time; in process 

control words, setpoint tracking is needed for the “profiled variable” while setpoint 

regulation is needed for the others. 

  



8 

2.2. MODELING ESSENTIALS 

As this thesis is model-based, models are its pillars. In its essence, process 

modelling is an exercise of translation of knowledge about the process into an abstract 

mathematical representation (Cameron & Hangos, 2001). The nature of knowledge is 

diverse and thus modelling methods can naturally be segmented accordingly: white box 

models represent a broad class of models based on physical or chemical laws; black box 

models represent a modelling framework based exclusively on process data and; grey 

box parametric models where the model structure is first-principle-based, but the 

model fitting is data driven. Here, both process and control simulation sub systems are 

built upon a selection and synthesis of white, black and grey box models. 

As part of the modelling’s synthesis work of this thesis; the following golden rules 

are almost everywhere a good modelling work has been done: 

Golden Rule 1: Simple. According to Brooks (1991), there is little point in creating a 

model if it has all the complexity of the object it is modelled after. The best model of 

every system is itself.  The single key component of a model is simplification. 

Golden Rule 2: Incremental. According to Luyben (1990), the first design should be 

based on simple models with low number of estimated parameters and globally 

convergent and then further details should be incorporated as available and needed.  

Golden Rule 3: Modular. A set of comprehensive models is better than single mega 

models. According to Brooks (1991), general purpose models that try to in incorporate 

practically everything shall be avoided. Such models are difficult to validate, to 

interpret, to calibrate statistically and, most importantly, to explain. 

Golden Rule 4: Fit for purpose. Matzopoulos (2011) states that unneeded details 

increase calculation times and reduce model robustness. He also recommends to 

implement fit-for-purpose models that could be “parameterized” in order to easily 

include or exclude phenomena. In other words, the model has to be useful or otherwise 

there would be little point in creating the model. 
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Flotation modeling (Yianatos, 2007a): flotation is a solid–solid separation, where 

fine solid particles, suspended in water contact an air bubble in well-mixed air–pulp 

dispersion. Flotation separation is based on different mineral surface properties: 

hydrophobic particles can attach to air bubbles, while hydrophilic particles do not. Then, 

hydrophobic particles can be selectively separated by levitation against gravity in the 

aqueous medium. A generic flotation machine can be observed as a sequence of two 

operations, ‘reaction’ and ‘separation’, as shown in figure 2.4. The reactor is fed with: the 

pulp containing the solids to be separated; chemical reagents to produce selective 

aggregation of particles with air bubbles and; energy to keep the solids in suspension 

and to disperse the air into fine bubbles”. 

 

Figure 2.4: Generic flotation machine (from Yianatos, 2007a) 

The collection process has been represented similar to a chemical reaction; being 

the ‘reactants’ hydrophobic mineral particles that collide with and adhere to air bubbles. 

The reaction ‘product’ is a particle-bubble aggregate that is less dense than the medium 

and moves upwards against gravity while hydrophilic particles are reported down to the 

tails. A necessary condition for mineral separation in a flotation process is the existence 

of a froth zone with a distinctive pulp-froth interface. The critical boundary conditions 

for industrial flotation equipment in terms of bubble size and superficial gas rate, 

regarding the loss of the pulp–froth interface, froth stability and limiting carrying 

capacity has been reported by Yianatos and Henrıquez (2007b). 
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Compartmental models: the compartmental approach to model flotation involves 

the division of the flotation cell contents into two or more zones that combine to form a 

coherent system. The subprocesses occurring in each phase are collectively represented 

by an equivalent macroprocess. 

For mechanical cells, Arbiter and Harris ( 1962) are among the first to take the 

froth phase into account. Their two-phase model of the flotation process is based on the 

assumption that both pulp and froth are well-mixed. Harris et al. (1963) and Harris & 

Rimmer (1966), carry out extensive testing of the two-phase model under steady state 

and transient conditions. As a theoretical improvement of the well-mixed hypothesis 

some authors describe froth behavior by applying plug-flow models as Cutting & 

Divinish (1975). 

The first three compartment model for mechanical cells is proposed by 

Hanumanth and Williams (1992); including drainage of solids in the froth layer, and its 

dependence on froth height. They also outline procedures to estimate the parameters of 

the model, and validate the model comparing its predictions with experimental results.  

Gorain & Franzidis & Manlapig (2000), describe mechanical cells as having three 

distinctive hydrodynamic zones. According to them, a mechanical flotation cell needs 

three hydrodynamic zones for effective flotation. They define the collection zone as the 

region close to the impeller that gives the turbulence needed for: solids suspension; gas 

dispersion and; bubble-particle interaction for minerals’ collection. According to them, 

the quiescent zone is a relatively less turbulent region above the collection zone where 

the bubble-particle aggregates rise up. They note that the quiescent zone reduce the 

number of gangue minerals which may have been entrained mechanically or entrapped 

between bubbles for upgrading of valuable minerals. They remark that the froth zone 

above the quiescent zone serves as an additional cleaning step and improves the grade 

of the concentrate product. The three hydrodynamic zones in mechanical flotation cells 

are shown in next figure 2.5. 
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Figure 2.5: Hydrodynamic zones in mechanical cells (from Gorain et al., 2000) 

2.3. STARTUP MODELS 

Three models are considered herein as starting points in terms of froth flotation 

modeling synthesis: Savassi’s (2005) compartmental model; Kämpjärvi & Jämsä-

Jounela (2003) dynamic model and; Polat & Chandler (2000) collection zone model. In 

this sub-chapter, these three models are described using – almost - authors’ own words. 

Savassi´s model description (from Savassi, 2005): figure 2.6 shows Savassi’s 

model for water (left) and suspended particles (right) in terms of the following 

flowrates: F, feed throughput; Y, suspension due to impeller action; I, influx to the 

froth; D, drainage from the froth; X, re-circulation by both impeller action and particle 

settling; C, concentrate; T, tail. The subscript “s” when applied to the pulp indicates 

suspended particles, but the same subscript when applied to the froth indicates 

particles that crossed the pulp–froth interface by entrainment (whether or not those 

particles remain suspended in water all the way to the concentrate launder). 

The transfer of a target particle class by true flotation mechanism is illustrated in 

Fig. 2.7. The flowrate D represents the drop-back of attached particles from the froth 

due to detachment followed by drainage. Note that the subscript A when applied to the 

pulp indicates particles attached to air bubbles, but the same subscript when applied to 

the froth indicates particles originally attached to bubbles before entering the froth”. 
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Figure 2.6: Transfer of water and suspended particles, from Savassi (2005) 

 

Figure 2.7: Transfer by true flotation mechanism, from Savassi (2005) 

Then, for a particular valuable particle class, the total recovery by means of true 

flotation is given by: 

Rtot=
Rc∙Rf

1-Rc∙(1-Rf)
  (2.2) 

Next figure 2.8 shows the mass transfer by true flotation and entrainment. Any 

particle suspended in the quiescent zone has three possible recent origins: rejection 

from the froth due to water drainage, DS; rejection from the froth due to detachment 

followed by water drainage, DA; and suspension from the bottom of the cell due to 

impeller action, YS. 
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Figure 2.8: Mass transfer by true flotation and entrainment (Savassi, 2005) 

Any particle suspended in the quiescent zone can be either transferred to the 

froth by entrainment, IS, or to the collection zone for a chance of collision against an air 

bubble, XS. If in addition to already stated assumptions, a single, non-distributed rate 

constant for the whole ore sample is considered, the overall steady state recovery is: 

R = 
kc∙τc∙Rf∙(1 - Rw) + ENT∙Rw

(1 + kc∙τc∙Rf)∙(1 - Rw) + ENT∙Rw
  (2.3) 

kc : flotation rate exclusive for the collection zone 

τc : residence time in the collection zone 

Rf : froth recovery of attached particles 

Rw : water recovery from the feed to the concentrate streams 

ENT : degree of entrainment 

Equation (2.3) is known as “the compartment model equation”. Since this model 

is semi-empirical, its parameters need to be determined through calibration tests, either 

by direct measurement or indirect methods. In turn, the parameters of the specific 

models that represent these phenomena should also be defined from the measurements 

performed. Once all parameters have been set, the model can be used for other 

conditions, within inherent limitations and extrapolation possibilities. Thus, the 

methodology for conducting the calibration tests depends on the requirements to 

determine each of the flotation phenomena according to each specific model to be used 

(Alves dos Santos et al, 2014). 
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Kämpjärvi & Jämsä-Jounela dynamic model: the simulation kernel for levels is a 

symbolic implementation based on the model for pulp-level published by Kämpjärvi & 

Jämsä-Jounela (2003) and represented by Figure 2.9 and equations (2.4) to (2.5) and 

(2.6): 

 

Figure 2.9: Diagram of flotation cells, Kämpjärvi & Jämsä-Jounela (2003) 

Where y1, y2, y3 and, y4; are the pulp cell levels. u1, u2, u3 and, u4; are the 

valves’ positions and; q is the volumetric feed to first cell. Then, for each cell along the 

row, the corresponding volumetric balance is done:  

dVi

dt
= Q

F,i- Q
C,i - Q

T,i  (2.4) 

QFi, QCi and QTi are the corresponding volumetric flows at feed, concentrate and, 

tailings. In addition, Vi is the pulp volume of cell i. Then, assuming that concentrate 

volumetric flows could be neglected, for four cells: 

dV1

dt
= q- Q

T,1   (2.5) 

dV2

dt
= Q

T,1-  Q
T,2  (2.6) 

dV3

dt
= QT,2-  Q

T,3  (2.7) 

dV4

dt
= Q

T,3
-  Q

T,4  (2.8) 

Then, a constant transversal area “S” is assumed, together with a constant 

physical difference in height between the cells “a”. In addition the same valves are 

assumed for all cell discharges and therefore, the valve coefficient “Cv“depends only on 

the control variable “u”. Also, atmospheric discharge for cell 4 is assumed. 
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Using Bernoulli’s equation: 

S∙
dY1

dt
=q- k∙CV(u1)∙√δ1∙g∙y

1
-δ2∙g∙(y

2
-a)   (2.9) 

S∙
dY2

dt
=k∙CV(u1)∙√δ1∙g∙y

1
-δ2∙g∙(y

2
-a)- k∙CV(u2)∙√δ2∙g∙y

2
-δ3∙g∙(y

3
-a)   (2.10) 

S∙
dY3

dt
=k∙CV(u2)∙√δ2∙g∙y

2
-δ3∙g∙(y

3
-a)- k∙CV(u3)∙√δ3∙g∙y

3
-δ4∙g∙(y

4
-a)   (2.11) 

S∙
dY4

dt
=k∙CV(u3)∙√δ3∙g∙y

3
-δ4∙g∙(y

4
-a)- k∙CV(u4)∙√δ4∙g∙y

4
   (2.12) 

Also, Jämsä-Jounela assumes constant densities along the row: δ1=δ2=δ3=δ4 

and, extracts and group terms into K. Also, he doesn’t differentiate among real pulp 

densities and apparent pulp densities (with gas holdup). Also, each level derivative 

could be considered as space state component: 

dY1

dt
=(q S⁄ )- K∙CV(u1)∙√y

1
-y

2
+a =f1(Y,U)  (2.13) 

dY2

dt
=k∙CV(u1)∙√y

1
-y

2
+a- k∙CV(u2)∙√y

2
-y

3
+a=f2(Y,U)  (2.14) 

dY3

dt
=k∙CV(u2)∙√y

2
-y

3
+a- k∙CV(u3)∙√y

3
-y

4
+a=f3(Y,U)   (2.15) 

dY4

dt
=k∙CV(u3)∙√y

3
-y

4
+a- k∙CV(u4)∙√y

4
=f4(Y,U)   (2.16) 

Y and U are the vectors of pulp levels and, control actions; q is a measured 

disturbance of low frequency and; Ẏ = F(Y, U) is the vector of derivatives. Then: 

Ẏ = F(Y, U, Q) = [f1; f2; f3; f4]  (2.17) 

Linearizing around a symbolic operating point, (Yo, Uo) ⇒ 

Ẏ = F(Y, U, Q) ≅ F (Yo, Uo) + 
∂F

∂Y
(Yo, Uo)∙∆Y+

∂F

∂Y
(Yo, Uo)∙∆U  (2.18) 

For pulp levels, the type of state space model being looked is the one expresses in 

equation 2.19, it can be noticed that A and B are the discretized version of Jacobian of F 

respect to Y and U, evaluated in the operating point (Yo, Uo). Qk is derived from the 

volumetric flow q and IWW. Further details are found in the process simulation chapter  

kQBuAyy kk1k 
  (2.19) 
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Polat & Chandler (2000) collection zone recovery model: The general first 

order recovery equation is: 

R(t)=R∞∙[∬ (1-e-kt)∙F(k)∙E(t) dk dt
∞

0
]  (2.20) 

In which, 

R(t)  : Recovery at time t 

R∞  : Maximum recovery (for t = ∞) 

k  : First order flotation rate constant, given in 1/s 

(1-e-kt) : Recovery of floatable mineral according to a first order process 

F (k)  : Kinetic distributions function for mineral species 

E (t)  : Residence time distributions function 

E (t): for batch flotation tests, residence time is not distributed and then E (𝑡) = δ (𝑡), 

where δ (𝑡) represents delta Dirac function. For continuous operations, equations (2.21) 

to (2.24) are correspondingly used for: a piston flow (2.21); a perfect mixer (2.22), a real 

mixer (2.23) and; a conventional mechanical cell according to Yianatos et al. (2007c).  

E(t)=δ(t-θ)  (2.21) 

E(t)=( 1
τ⁄ )∙e-t/τ  (2.22) 

E(t)=u(t-θ)∙
e-

(t-θ)
τ⁄

τ
  (2.23) 

E(t)=
e

-t
τG⁄

-e
-t)

τP
⁄

τG-τP
  (2.24) 

ϴ : Time delay  

τ : mean residence time  

𝜏𝐺 : mean residence time of the big perfect mixer, τG > τP 

𝜏𝑃  : mean residence time of the small perfect mixer, τG > τP 
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F(k): Different simplifications are used for F(k). In this thesis, two kinetics distribution 

are used: a single, non-distributed rate constant for the whole ore sample as shown in 

equation (2.25) and; a rectangular distribution as shown in equation (2.26): 

F(k)=δ(k)  (2.25) 

F(k)= {
1 km⁄ ,  0 ≤ k ≤ km 

0,  k > km,   𝑘 < 0
  (2.26) 

Resulting collection recoveries: As can be seen for above equations, several 

combinations of E (t) and F (k) are possible, but only some of them are herein used. For 

batch testing, (2.25) and (2.26) are used and the following recoveries are obtained, 

being (2.27) García-Zúñiga’s (G-Z) (1935) equation and, (2.28) Klimplel’s batch model 

(K)(1980): 

R(t)= (1-e-kt)   (2.27) 

R=R∞ [1-
1

Km∙t
∙(1-e-Km∙t)]  (2.28) 

For continuous operations, Garcia-Zúñiga kinetic distribution is used in 

conjunction with (2.24) and (2.25). Then, for a conventional cell: 

RCONV= R∞ ∫ [
e

-t
τG⁄

-e
-t

τP⁄

τG-τP
] ∙ [1-e-Kgzt]

t=∞

t=0
dt  (2.29) 

Therefore, the continuous recovery for the collection zone is:  

RCONV =  
R∞

τG−τP
∙ (τG − τP−τG ∙ e−𝑡

τG⁄ + τP ∙ e−t
τP⁄ )  (2.30) 

2.3. PROCESS CONTROL 

Conceptual process control design includes the following definitions: 

optimization philosophy, control objectives, degree of centralization, control hierarchy, 

control structure, set-point policy and, control algorithms. 

Optimization philosophy: The role of process control has to be considered as an 

integrated element of business planning in order to support feasibility and optimality of 

process operation (Goodwin et al., 2008). From a wider perspective, process control 

systems shall support asset management decision making through: dynamic 

optimization support systems, abnormal situation support systems and asset integrated 

information at central control room.  
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As stated by Edgar (2004), the control system formerly was a simple tool to 

achieve the predetermined goals of production, which had been set in the process 

design stage considering only the regulatory function of control systems. As such, 

associated measurements and controls are essential to manage and optimize. 

Furthermore, the ultimate aim of process control is to optimize the process 

performance and hence increase the economic efficiency (McKee, 1991). 

Nowadays, business planning of process industries has become online and much 

less limited by the early decisions at the design stage. As such, new control systems have 

also inputs in terms of economic parameters and translate them into operational 

decisions. This has encouraged designers to consider the highest priority to process 

profitability and the roles of other control tasks are to realize the targeted economic 

objectives. Figure 2.8 shows the optimizing contextual scheme considered for a rougher 

flotation row within the concentration optimization context: 

 

Figure 2.10: Optimization contextual scheme 

Control Objectives (McKee, 1991): In any process control systems’ design of, 

control objectives must be set as an essential prerequisite. Regarding flotation control 

system, he expresses that: “In the broadest sense, the objective of a flotation control 

system can usually be stated as optimizing the metallurgical performance”. For him, the 

control objectives shall be: (i) to stabilize performance by minimizing the frequency and 

severity of erratic operation, (ii) to achieve nominated grade and/or recovery set points 

and, (iii) to maximize the economic performance. Then, the control objective should be 

to improve the metallurgical efficiency producing the best possible grade-recovery 

curve, and to stabilize the process at the concentrate grade which will produce the most 

economic return from the throughput (figure 2.11), despite disturbances in the circuit. 



19 

 

Figure 2.11: Flotation control objective, from Wills (2006) 

Degree of centralization (Rawlings & Stewart, 2007): Level of independency of 

controls within a control structure, classified in: centralized control structures with a 

single objective function and a single model for decision-making; decentralized control 

structures in which the controllers are distributed and the interactions are ignored; 

communicated control structures in which each controller has his own objective 

function but employs an interaction model for communicating and; cooperative control 

structures that employ an objective function for the whole system, and the prediction of 

the last iteration of each controller is available to the others. 

Control hierarchy: According to Downs and Skogestad (2011), industrial needs for 

simplicity discourage the application of highly complex control systems. The process 

control design problem needs to be resolved and decomposed into more manageable 

sub problems. Many authors suggested a hierarchical approach as a decomposition 

technique to reduce the flotation process problem complexities. A comprehensive 

review of hierarchical decompositions that are used for froth flotation process control 

design is done by Jovanović and Miljanović (2015). Qin and Badgwell (2003) state that 

the control hierarchy shall reflect the processing times related to decision making 

process for both people and controls. As Buckley (1964) recognizes, control structures 

has higher frequency control layers for stability and lower frequency control layers for 

quality control (specifications, recovery, grades). Furthermore, it is well-known that in 

multi-loop control systems, interactive loops with a significant difference in their time 

constants may demonstrate a decoupled performance, and can operate separately, 

(Ogunnaike and Ray, 1994). 
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Liu and MacGregor (2008) suggest a functional hierarchy, depending on the 

flotation control objectives as follows: (i) process stabilization by minimizing the 

frequency of variations and the intensity of disturbances, (ii) achieving nominal values 

of the concentrate grade and recovery. Then, regulatory layer(s) handle fast 

disturbances with a zero expected value in long-term and longstanding disturbances 

with significant economic effects are treated by the optimizing layers. 

Control Structures (Skogestad, 2004): He develops an iterative top-down / 

bottom-up methodology for control structures’ selection. The design approach in the 

top-down direction starts with meeting the operational objectives, optimizing the 

process variables for important disturbances and determining active constraints with 

emphasize on throughput/efficiency constraints. The bottom-up design starts with the 

most dynamic issues such as designing the control loops including instrumentation, 

basic controllers and valves and actuators supervisory control layer. The main elements 

of a control structure are manipulated variables (MVs) and controlled variables (CVs). 

Manipulated Variables (Skogestad, 2004) are those degrees of freedom which are 

used for inserting the control action to the system. The desired properties of 

manipulated variables are to be consistent with each other, reliable, and able to affect 

controlled variables with reasonable dynamics. Two manipulated variables may be 

inconsistent when they cannot be adjusted simultaneously. Reliability is defined as the 

probability of failure to perform the desired action. Reliability of manipulated variables 

is important because it is not desirable to select a manipulated variable which is likely 

to fail. Also, the available degrees of freedom shall be sufficient to meet the 

controllability requirements. In addition, different operational modes may require 

different control structures. 

Controlled variables (Qin and Badgwell, 2003): Selection of controlled variables 

is more complicated compared to manipulated variables. This is because controlled 

variables can be categorized based on two different tasks. Firstly, these variables are 

responsible for detection of disturbances and stabilizing processes within their feasible 

operational boundaries. Secondly, selection of controlled variables and their set points 

provide the opportunities to optimize profitability. The first category of controlled 

variables is selected for treatment of instability modes. The second category should be 

selected by technical and economic optimum criteria.  
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As both feasibility and optimality are related to process profitability, it can be 

said that controlled variables are those which set points are strongly related to process 

profitability. 

Manipulated variables versus controlled variables (Froisy, 1994): to compare 

the quantity of manipulated and controlled variables provides insights about the control 

problem. At design stage, the manipulated variables often exceed the controlled 

variables and the control problem is intentionally over-determined. If this case remains 

in the operation phase, extra variables are available for economic optimization. 

However, the number of manipulated variables may decrease during operation because 

constraints activation, control valves saturation or control signals failures. 

MPC-based control structures (Aske, 2009) are subject to dynamic changes in 

the dimension of the control problem during control execution. The reason is that the 

manipulated and controlled variables may disappear due to valve saturations, signal 

failures, or operator interventions in each control execution and return on the next one. 

These changes can make the control configuration under-determined and perfect 

control (maintaining controlled variables at their desired values) would be infeasible. 

However, it is still desirable to have the best possible control action. Unfortunately, 

these changes have a combinatorial nature and it is not possible to evaluate all of the 

alternative subspaces of a control problem at the design stage. Therefore, MPC systems 

have an online monitoring agent that is responsible for sub problem conditioning. The 

strategy is to meet the control objectives based on their priorities. In order to avoid 

saturation of manipulated variables in MPC-based systems, their nominal values are 

treated as additional controlled variables with lower priorities. In addition, when a 

manipulated variable disappears from the control structure (e.g. because the operator 

turns it into manual mode), it may be treated as a measured disturbance. Similarly, 

saturated valves are treated as one-directional manipulated variables. For instance, 

when a controlled variable is lost because of signal failure or delay in measurements, 

the practical approach is to use the predicted value for it. But, if the faulty situation 

persists for a too large number of execution steps, the contribution of the missing 

controlled variable will be omitted from the objective function. 

  



22 

Optimal selection of controlled variables (Skogestad, 2004): He states that the 

main purpose shall be to translate the economic objective into process control 

objectives. In other words, the main idea is to find a function of the process variables 

which, when held constant, leads automatically to the optimal adjustment of the 

manipulated variables, and with it, the optimal operating conditions. He shows that the 

costs associated with disturbances are not the same for two different controlled 

variables; the cost associated with maintaining one controlled variable at its set point 

could be significantly lower than to maintain other controller variable in its set point. 

This suggests that selection of controlled variables can be employed as a method for off-

line optimization of process profitability. 

Set point policy (Chachuat et al., 2009): When a control structure is selected for a 

process, the objectives for controlling that process such as stabilizing, safety concerns, 

environmental criteria, and profitability will be translated to maintaining a specific set 

of controlled variables at their set points. However, some of the targets of the above 

mentioned objectives may need to be updated time to time due to disturbances. The 

ability of the control structure to keep pace with these changes is crucial for feasibility 

and profitability of process operation. Two strategies are possible for ensuring process 

feasibility and profitability. They are: static set point policy - off-line optimization – 

and, dynamic set point policy - online optimization. 

The motivation for the static set point policy is that, while the costs of 

development and maintenance of a model-based online optimizer are relatively high, 

selection of the controlled variables which guarantee a feasible and near optimal 

operation is by no means trivial. Static set point policy has a direct relation to the 

optimal selection of controlled variables. In this approach, online optimization of set 

points is substituted by maintaining optimal controlled variables constant. This is also 

consistent with the culture of industrial practitioners who would like to counteract the 

model mismatches and the effects of disturbances by feedback control. 

Two approaches for dynamic set point policy may apply: model parameter 

adaptation, where on-line measurements are used to update the model and; model 

modifier adaptation where on-line measurements are used to update modifier terms in 

the objective function of the online optimizer. 
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Regarding feasibility and optimality criteria; the results of variability analysis 

have confirmed that feasibility is of a higher priority than optimality. The main 

challenge is to develop accurate and reliable models with a manageable degree of 

complexity and uncertainty. Online optimization using an inaccurate model may result 

in a sub-optimal or even infeasible operation. 

Control algorithms currently in use in flotation plants: (i) conventional single-input 

single-output (SISO) proportional and integral (PI) algorithm, still the most used 

algorithm for basic SISO control loops; (ii) conventional multiple-input multiple output 

(MIMO), PI-based multi-loop controllers with additional non-integrated blocks for 

delays, non-linearity and constraint handling such as feedforward or smith predictor 

blocks; (iii) MPC family of control algorithms, as the “cutting edge” choice for 

multivariable control due to its embedded capacities to fully integrates: constraints 

handling, decoupling, delays, nonlinearities, disturbance rejection, dead time and lag 

management, among others; (iv) adaptive algorithms as the preferred choice for set 

point tracking and/or time variant systems and/or highly nonlinear loops and, (v) 

expert rule-based in conjunction with machine learning systems are the first choice for 

abnormal situation management and entire flotation plants optimization. In terms of 

control theory, while regulatory control schemes are related to fixed set points; profiling 

schemes are related to set point tracking. 

Conventional SISO and MIMO algorithms are proved efficient in controlling 

flotation processes, because they have reliable operation and are understandable to 

plant people. However, conventional multi-loop controllers have a significant drawback 

leaving set points at constant values because disturbances and the changes in economic 

parameters can change the optimal set points and in extreme, require control structure 

reconfiguration, as worked by Downs and Skogestad (2011) together with economic 

losses due to constant-set point policy. Other drawbacks of multi-loop controllers are 

the required convoluted override logics for constraint handling, and interactions among 

control loops, (Stephanopoulos and Reklaitis, 2011). 
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2.4. MODEL PREDICTIVE CONTROL 

Predictive control technique is very widely implemented within industry and 

hence it’s both a standard topic in most controls curricula and a common practice for 

engineers in charge of advanced process control design and implementation. As such, 

main references for the synthesis done in this sub-chapter are books: Rossiter (2004), 

Camacho & Bordons (2004), Rawlings & Mayne (2015) and Bemporad et al. (2016). 

According to Rossiter (2004), model predictive control describes an ‘approach’ to 

control design, not a specific algorithm. Therefore, a user would ideally interpret the 

approach to define an algorithm suitable for his needs. Rossiter adds that many 

effective control strategies have their origins in human behaviour. Moreover, humans 

are very good at control so a good start point for automation techniques. For example: 

proportional, integral and derivative (PID) controllers can be deconstructed as a 

simplification of a human technique for controlling simple systems. Similarly, the use of 

predictions of expected behaviour in determining a control strategy is intuitively 

obvious. It is clear that humans use anticipation, effectively prediction, in order to 

consider the impacts of different control strategies. They choose the strategy they expect 

to give the most desirable future outcome. Prediction underpins practical human 

control strategies and thus seems a logical concept to incorporate into automated 

strategies. The use of prediction seems logical, but many other advantages of predictive 

control can be listed, such as: (i) intuitive concept, easy to understand and implement 

for a variety of systems; (ii) systematic handling of constraints; (iii) handles MIMO 

systems and dead-time without any modification, (iv) feed forward to make good use of 

future target information is included implicitly and, (v) handles challenging dynamics. 

Why popular in industry? A simple answer is that it has been proven to improve 

profits by giving superior control compared to conventional techniques. A typical 

argument is that, if one is confident that the variance of the output can be reduced, one 

can then safely operate closer to a constraint and therefore increase output quantity or 

quality. The ability to incorporate constraints explicitly enables ‘optimum’ constrained 

performance as opposed to the consequences of ad hoc fixes. 
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A more precise definition is that MPC is a particular branch of model-based 

design: a dynamical model of the open-loop process is explicitly used to construct an 

optimization problem aimed at achieving the prescribed system's performance under 

specified restrictions on input and output variables. 

Similarly, Qin & Badgwell (2003) mention that MPC is a class of computer 

control algorithms that use an explicit process model to predict the future response of a 

plant. They add that at each control interval, the MPC algorithm optimize future plant 

behavior computing future manipulated variable adjustments. Then, the first input in 

the optimal sequence is sent to the plant, and the entire calculation is repeated at 

subsequent control intervals. According to Camacho & Bordons (2004), MPC is a 

closed-loop control where the current value of the manipulated variables is determined 

on line as the solution of an optimal control problem over a horizon of given length. 

Bemporad et al. (2016) explain MPC’s structure using a figure similar to figure 2.10. He 

explains that as in every traditional closed-loop control problem, there is a process 

system to be controlled and a controller that manipulates the process input variables in 

order to obtain desired outputs of the plant. 

 

Figure 2.12: Basic MPC structure block diagram (from Bemporad et al., 2016) 

The peculiarity of model predictive control approach is that it uses an explicit 

dynamical model of the process to predict its future evolution and choose the optimal 

control action. Then, the optimal control action is determined by a real time 

minimization of a cost function that considers both the error and the control effort. The 

canonical optimization problem is the minimization of the following cost function 

(Bemporad et al., 2016): 
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min ∑ {‖Wy(y
k
-r(t))‖

2
+‖Wu(uk-uref(t))‖

2
}

N-1

k=0   (2.31) 

Subject to: xk+1=f(xk, y
k
,t) ; y

k
= g(xk, uk,t);  constraints on uk, y

k
 and; + x0=x0(t) 

Where xk , uk and y
k are state, input and output vectors at sampling time k; r(t) 

and x0(t) are set point and receding initial state at time t;  Wy and Wu are output and 

input weight matrices. As can be seen, the cost function to be minimized is a tradeoff 

between the tracking error (y
k
-r(t)) and the actuation error  (uk-uref(t)). The tradeoff is 

expressed with weight matrices. One interesting feature of the canonical MPC formula 

is that constraints on uk and y
k
 can be included in the minimization algorithm. 

The optimization at time t is done over a period of N steps in the future and 

hence an N step optimal uk sequence is obtained: {uo, u1 …uN}. But, only the first 

optimal move is applied, 𝑢𝑜 and the rest of the sequence is thrown away. At time t+1, 

new measurements are obtained and the optimization is repeated under a shifted 

horizon between t+1 and t+N+1. As result, a new optimal uk+1 sequence are got: {u1, 

u2 …uN+1} and so on…the controller keeps doing this repeated optimization at every 

single sampling step…that’s because MPC is also called receding horizon control. 

The main reason underlying this repeated optimization is that a feedback control 

law is needed. Therefore, in spite that open loop predictions are been used, the output 

shall always be a function of current states. A way to explain receding horizon feature is 

through an analogy with chess, where a chess player decide his next move based on a 

mental optimization with a sequence of inputs (his own moves) subject to a sequence of 

predicted outputs (his opponent’s moves), but he usually repeat the optimization 

algorithm after his opponent move. 

Among the advantages of the above approach, MPC is an extremely flexible 

control design approach. With almost the same formulation different type of processes 

can be addressed: (i) with wide number of input, output and state variables, (ii) either 

time variant or invariant systems and (iii) with substantial delays and disturbances. 
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Also, MPC has the ability to embed information about future if a disturbance 

and/or set point change is knowledge in advance. Then, available preview on future 

references and measured disturbances can be exploited and integrated. 

The main components of a MPC-based control strategy are: modelling, 

prediction, receding horizon, performance index, degrees of freedom, constraint 

handling and multivariable approach. 

While humans are very good at predicting outcomes, these predictions are based 

on a lot of experience which could be difficult to untangle and automate. In order to 

automate predictions, a model of system behaviour is required. However, what is not 

immediately obvious is defining or determining an appropriate prediction models. 

As stated in sub-chapter 2.3 of this thesis, model should be as simple as possible, 

modular, incremental and fit for purpose. Additionally, it is mentioned that the most 

important purpose of the models implemented for process simulation is to represent 

fairly enough the relationships between the manipulated variables, controlled variables 

and measured variables. These features imply that a model for control purposes shall be 

dynamic, macroscopic, controllable and observable. A system is controllable if it has the 

ability to achieve stability of the outputs with the available manipulated variables. A 

system is observable if it has the ability to obtain the relevant output variables either 

directly or from measured variables. In the specific case of a model-based design of a 

model predictive control strategy, there are two types of models: models for process 

simulation and models for predictions. Prediction models almost always are built upon 

process simulation models and have the particular characteristics of being discrete, 

state space and linear. As prediction models summary, the simplest model that gives 

accurate enough predictions is usually the best. Accurate enough is ill-defined, but in 

practice predictions can often be 10% out in steady-state and still be highly effective as 

long as they also capture the key dynamic changes during transients. It is rarely 

beneficial to spend excessive effort improving accuracy as this is expensive, can give 

high order models but may have little impact on behaviour. Feedback will correct for 

small modelling errors as far as the model has the ability to give good long range 

prediction (Rossiter, 2004). 
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2.5. MPC STARTUP ALGORITHMS 

Regarding the code implementation of the control simulation framework of this 

thesis; instead of using “out of the box” packaged coded MPC algorithms; they are 

developed “starting from scratch”. In this sub-chapter, the basis of developed code is 

presented. Main references for the synthesis done in this sub-chapter are the following 

books: Rossiter (2004), Camacho & Bordons (2004) and Rawlings & Mayne (2015). In 

addition, Tao (2014) is used a specific reference for adaptive model predictive control. 

As already stated, MPC has two main components, an embedded predictive model 

and an optimization algorithm given the cost function to optimize. 

Regarding the predictive models, all of them are herein linear, state space and 

discrete. Linearity is always wished since it requires simple manipulation and algebra 

because superposition can be used. Then MPC deploys linear models whenever they are 

good enough and that’s assumed to be the case of this work. 

Discrete or continuous: all the predictive models are discrete. While processes 

operate in continuous time and indeed so do classical control laws such as PI, decision 

making tends to be more of a discrete process. Decision making requires processing time 

and thus cannot be instantaneous, especially where one is considering interacting 

inputs/outputs/constraints and performance. Also, common predictive control laws are 

implemented in discrete time as almost all commercial MPC applications. 

State space models: in spite there are some variants, they are all very similar and at 

lastly, equivalents. In this thesis, the following formulation is used: 

xk+1=A∙xk+B∙uk  (2.32) 

y
k+1

=C∙xk+dk  (2.33) 

Where x: states; u=inputs; y: outputs; d: disturbances. 

State space predictions: discrete models are one step-ahead prediction models, that 

is, given data at sample k, data at sample ‘k+1’ is determined as can be seen in equation 

(2.35). Then, for data at example k+2 is given by: 
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xk+2=A∙xk+1+B∙uk+1  (2.34) 

xk+2=A∙(A∙xk+B∙uk)+B∙uk+1=A2∙xk+A∙B∙uk+B∙uk  (2.35) 

xk+3=A3∙xk+A2B∙uk+A∙B∙uk+1+B∙uk  (2.36) 

xk+4=A4∙xk+A3B∙uk+A2∙B∙uk+1+A∙B∙uk+2+A∙B∙uk+1+B∙uk(2.37) 

Using the following nomenclature: 

x→k+1= [

xk+1

xk+2…
xk+n

]  (2.38) 

The pattern is trivial: 

x→k+1= [

A
A2

…
An

]  xk+ [

B 0
AB B

0 0
0 0

… …

An-1B An-2B

… …
… B

]  uk  (2.39) 

Compacting: 

x→k+1=Px∙xk+Hx∙uk  (2.40) 

Similarly, assuming dk+1 ≅ dk (fairly certain for the measured disturbances 

considered in this thesis): 

y
→k+1

= [

CA
CA

2

…
CAn

]  xk+ [

CB 0
CAB CB

0 0
0 0

… …

CA
n-1

B CA
n-2

B

… …
… CB

]  uk+ [

dk

dk

…
dk

]   (2.41) 

y
→k+1

=Pxk+H∙uk+Ld  (2.42) 
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The output prediction equations (one step ahead) must be the same as the 

current steady-state. As such, the aim is to estimate the expected steady-state values for 

the states and inputs to meet a given steady-state output and then; in effect, use 

deviation variables. Consistency can be ensured between predictions and the actual 

process if the estimated steady-state is simultaneously consistent with the process and 

model. A disturbance estimate is required to estimate the steady-state states and inputs 

for a given steady output. Typically, desired steady-state output can be selected as the 

target. The expected steady-state obeys the following: 

y
ss

=C∙xss+d; xss=A∙xss+B  (2.43) 

[y
ss

-d

0
] = [

C 0

A-I B
] ∙ [

xss

uss
]  (2.44) 

[
xss

uss
] = [

C 0

A-I B
]

-1

[yss-d
0

]  (2.45) 

Predict relative to the steady-state and deviation variables: a state space model is 

linear and thus superposition holds. Hence, defining the deviation variables as: 

xk=xk-xss; uk=uk-uss; y
k
=y

k
-y

ss
;  (2.46) 

y
k
=C∙xk; xk+1=A∙xk+B∙uk  (2.47) 

Critically, the model in terms of the deviation variable no longer needs the 

disturbance term as this has been absorbed in the estimation of the correct steady-state. 

As summary, in order to obtain unbiased predictions deviation variables are 

used. Then, the steps for developing the control simulation framework are: 

(i) Estimate the steady-state values of disturbance/states/inputs to ensure 

consistency between the model and process. 

(ii) Define the deviation variables. 

(iii) Do predictions about the estimated steady-state using nominal process 

parameters. 
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Adaptive MPC (Tao, 2014): adaptive control systems are capable to ensure desired 

system asymptotic tracking performance and system stability under large parametric, 

structural and parametric disturbance uncertainties. Asymptotic tracking performance 

and stability are crucial for many tracking applications such as flotation profiling along 

the row. Adaptive MPC (AMPC) is capable to ensure them under large parametric, 

structural and parametric disturbance uncertainties. According to him, the most 

important principle of adaptive control is the certainty equivalence principle: for a plant 

with uncertain parameters, the adaptive estimated parameters are used in the feedback 

control design as if they were the true parameters. Two important technical foundations 

to implement the certainty equivalence principle are maximal plant uncertainty 

parametrization and stable controller parameter adaptation, making adaptive control a 

powerful and desirable methodology to deal with uncertainties. In figure 2.11, a schema 

of adaptive control is shown, where the control law and the online parameter estimator 

are the main components of an adaptive control strategy. The control law is MPC-based 

and the parameter estimator processes the data as it becomes available, unlike offline 

estimation where the data is processed after its gathering: 

 

Figure 2.13: Adaptive Control Scheme, adapted from Tao (2014) 
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3. OBJECTIVES AND SCOPE 

Objectives shall be functional to a work of thesis that seeks to displace 

knowledge’s border. That border, together with the scope of the thesis, are known now, 

once the bibliographic review has been done. 

3.1. OBJECTIVES 

The main objective of this thesis is to understand, model and control the flotation 

process of a non-conventional flotation machine under different operating 

configurations and conditions. 

As first particular objective, arises the characterization of pilot-scale non-

conventional cells, studying phenomena such as the effect of wash water and feed 

composition. The second particular objective is to compare the performance of this 

equipment with that of conventional mechanical cells. The last particular objective of 

this thesis consists on implementing a hierarchical MPC advanced control strategy to 

support the solution to the challenges of flotation process control and optimization. 

3.2. SCOPE 

This thesis is focused on the characterization and controls of a row of rougher 

non-conventional mechanical cells. The test work is done with a relatively coarse 

grained porphyry copper ore (40-50 µm). 

In order to achieve the objectives, a fit for purpose appropriate selection and 

comprehensive synthesis of existing first principle and/or semi-empiric models are 

done. Appropriate selection means that the models used should achieve the accuracy 

required by the application with minimal complexity. 

Four successive experimental campaigns are considered in this thesis: industrial 

context, exploratory, variability and, continuous campaign. The main purpose of the 

experimental work is to implement, calibrate and simulate at pilot scale. Later on, the 

simulation framework is used to: (i) flotation machines technology selection and, (ii) 

MPC-based advanced control strategy. 
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4. FLOTATION MACHINES SELECTION 

One of the specific applications of this thesis is flotation machines technology 

selection. In addition to the intrinsic value of the application itself, the experimental 

work herein done is also used afterwards for process simulation framework calibration 

and validation. Experiments are still indispensable for designing. They are not in 

competition with simulation methods; both approaches are ideal complements to each 

other. Experimental work is the main tool for the technology selection herein done. 

Selection of a particular type of flotation machine is of great importance in 

designing a flotation plant and usually the subject of great debate (Araujo et al., 2005). 

According to them, the main criteria in assessing cell performance are: (i) metallurgical 

performance, i.e. product recovery and grade; (ii) capacity in tons treated per unit 

volume and; (iii) economics, e.g. initial costs, operating and maintenance costs. 

Additionally, less tangible factors, such as the ease of operation and previous 

experience of personnel with the equipment, may contribute. Then, direct comparison of 

cells is by no means a simple matter. Even testing the same pulp in parallel streams, it’s 

not trivial to ensure that a fair comparison is done. 

Therefore, instead of a comparison criterion, the following selection criterion is 

herein considered as given: “The non-conventional flotation machine will be selected if 

its pilot prototype overcomes the metallurgical performance of a standard laboratory 

cell, under certain conditions”. 

The economics that supports the selection criterion are out of this thesis’ scope. 

But, it’s worth to emphasize that the technology selection herein done considers the 

specific characteristic of the feed mineral under consideration as well as specific 

previous definitions such as the circuit layout and assumptions regarding economics. 
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4.1. INDUSTRIAL CONTEXT 

From an industrial perspective, this thesis is a reference for the integrated 

control and process design of a rougher collective flotation plant of project “N” in its 

feasibility study phase. Project “N” is a potential new 100 000 t/d concentrator, which 

flotation circuit is shown in figure 4.1, where [F], [C] and [T] are, correspondingly, the 

Cu contents in feed, concentrate and tailings. R, C1, C2, S are the corresponding 

metallurgical recoveries of rougher, first cleaner, second cleaner and scavenger stages. 

 

 

Figure 4.1: Collective flotation circuit 

Geometallurgical background: the pre-feasibility work included the laboratory 

flotation tests of 200 samples from a 70x70 drill screen. With those samples, the main 

flotation geometallurgical units (FGU) were defined. Big trench samples are loaded in 

trucks from each one of main FGUs and considered as feed material for the 

experimental campaigns of this thesis. FGU’s definitions, yearly distributions and, 

compositions are presented in next tables 4.1, 4.2, 4.3 and 4.4. 

Table 4.1: Main FGUs and corresponding trench samples and trucks 

Description FGU Trench Trucks 

Hypogene / Intrusive / All Alterations NO IND HYPF01 1, 2, 3, 5, 

Hypogene / Wall Rock / Non‐Potassic IND NK HYPF02 4, 6, 8 

Hypogene / Wall Rock / Potassic INDK HYPF03 7, 9 
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Table 4.2: FGU’s proportions according to mining plan 

Year No IND IND NK IND K 

P1 12 87 1 

P2 15 82 2 

P3 22 69 9 

P4 24 64 12 

P5 48 36 17 

P6 51 34 15 

P7 7 81 12 

P8 14 63 23 

P9 24 48 28 

P10 3 70 27 

P11 8 66 27 

Table 4.3: Main FGUs’ mineralogical characteristics 

Mineral Name HYPF01 HYPF02 HYPF03 

Cu Minerals 1.74 1.46 1.51 

Pyrite 2.79 6.33 4.66 

Quartz 42.81 32.68 28.94 

Orthoclase 4.97 14.19 9.84 

Muscovite/Sericite 28.91 32.81 32.75 

Kaolinite 18.4 11.81 21.64 

Others 0.38 0.72 0.66 

Total 100 100 100 

Table 4.4: Copper distribution in representative trench samples 

 
Specie HYPF01 HYPF02 HYPF03 

Sulphides 

Cu2S - Cu1.2S 3.9 4.4 4.6 

Cu1.2S – CuS 2.5 4.2 2.8 

CuFeS2 93.5 91.4 92.5 

Oxides Cu2Cl(OH)3 0.1 0.1 0.1 

Total    100 100 100 
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Data from laboratory flotation tests was used as input for simulation 

considering: given flotation circuit, conventional technologies and, standard 

operating conditions. Then, a yearly-based mining plan was generated for the 

time period from year 1 to year 11. Figures 4.2 and 4.3 show the simulation 

results in terms of copper and molybdenum grades and recoveries: 

 

Figure 4.2: Simulated copper and molybdenum grades 

 

Figure 4.3: Simulated copper and molybdenum recoveries 

Finally, project “N” went into feasibility phase and the thesis project “T” starts its 

experimental work. Project “T” is the “thesis project”, a pilot plant consisting of four 

cells in series, called herein TA regarding row “A”.  
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4.2. FLOTATION MACHINES 

From a conceptual point of view, a generic flotation machine can be observed as a 

sequence of two operations, ‘reaction’ and ‘separation’ (Yianatos, 2007a). As reaction 

and separation are different operations, it makes sense to physically separate them in 

order to optimize each one. The subjacent concept of operational units’ separation has 

been applied across all the chemical industry. One emblematic example is the mixer-

settler. In the context of this work, “reactor-separator” machine is defined as having two 

separated vessels for each one of the operations; “conventional” machine is a single 

vessel machine where both operations occur. A necessary condition for mineral 

separation in a flotation process is the existence of a froth zone with a distinctive pulp-

froth interface. The critical boundary conditions for industrial flotation equipment in 

terms of bubble size and superficial gas rate, regarding the loss of the pulp–froth 

interface, froth stability and limiting carrying capacity has been reported by Yianatos 

and Henrıquez (2007b). 

According to Gorain et al. (2000), mechanical cells are good mixers because the 

zone close to the impeller causes the needed turbulence for solids suspension, gas 

dispersion and, bubble-particle interaction for collection of minerals on the surface of 

the bubbles. On the other hand, with their lower turbulence, column machines are good 

displacement – separators. Gorain et al. (2000) also state that the conflicting functional 

requirements in different zones are a challenge in terms of cell design. 

Regarding steady state metallurgical validation, the three compartment model 

reaches its maturity with Savassi’s one (2005). Savassi’s compartment model is one of 

the bases of the process simulation framework implemented herein. Nevertheless, it has 

to be mentioned that Savassi’s model is a two compartment model regarding true 

flotation. The article titled “Modelling flotation with a flexible approach – integrating 

different models to the compartment model” (Alves dos Santos et al., 2014) is one of the 

bases for the methodology to integrate other models to the compartment model. 
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Savassi’s model analysis: The flotation rate distribution in the collection zone is 

represented by the same rate constant distribution obtained from the batch test 

standardized as MFT (MinnovEX flotation test) from Savassi’s work (2005). The test is 

designed to minimize the impact of the froth layer in lab results. Four concentrates are 

collected at specific times, with samples of the feed, tail, and combined concentrate 

being analyzed for size-by-size assays. The froth is removed at a speed of one crape 

every two seconds. Three parameters are used to characterize the cell performance: the 

effective collection volume Vc to represent the effective collection zone residence time, 

the entrainment factor ENT to describe the solid entrainment, and the froth recovery Rf 

to quantify the froth zone performance. According to Yianatos et al. (2010), the use of 

linear relationships and three empirical parameters constrain the model prediction for 

other conditions different than those observed during the model calibration. 

An important Savassi’s (2005) confirmed assumption is that true flotation and 

entrainment originate at different places: true flotation at the collection zone and 

entrainment at the quiescent one. Then, if technical optimization in the origin is 

wished, true flotation should be increased in the collection zone and entrainment 

should be decreased in the quiescent zone. 

Reactor-separator (RS) machine is herein considered as a flotation machine which 

two main processes are physically separated in two vessels. The sketch of pilot RS 

machine used for experiments is shown in figure 4.4: 

 

Figure 4.4: Reactor Separator (RS) Machine 
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The reactor unit (RU) includes a container, an impeller for breaking the air into 

fine bubbles and, means for introducing pulp and air; to produce an aqueous mixture 

containing gas bubbles carrying hydrophobic particles. The separator unit (SU) consists 

in a vessel and an adjustable ring sparser for introducing either froth wash water 

(FWW) or interface wash water (IWW), depending on the height of adjustment. The SU 

receives the bubble-particle aggregates from the reactor unit and permits the 

hydrophobic particle-carrying bubbles in the mixture to reach the surface. A 

concentrate fraction containing hydrophobic particles is discharged from the upper 

portion and a tailing fraction containing hydrophilic particles is discharged from the 

lower portion. 

Reactor separator experimental setup: The single RS pilot setup provides the 

equipment for exploratory and variability phases. The RS rig operates at approximate 15 

l/min of slurry feed. The tailings stream, after each pass through the RS, is collected and 

re-processed to emulate continuous multi-stage performance. The test work 

configuration, as illustrated in Figure 4.5, includes a complete RS unit as well as 

peripheral tanks, pumps, piping and instrumentation to provide an integrated rig for test 

work purposes. 

.  

Figure 4.5: Mini-RS configuration schematic 

  



40 

4.3. EXPLORATORY ROUGHER CAMPAIGN 

This experimental phase consists on both laboratory and pilot batch testing in 

parallel and its main purpose is to identify and define the variables that could already be 

frozen as design parameters and which have to remain as variables for the following 

phase. Other specific purpose is to select among FWW, IWW or not water at all. The 

rougher exploratory campaign covers 60 tests, shown in table 4.5: 

Table 4.5: Summary of exploratory rougher tests 

Test 

Number 

Average Grade 
Variable under exploration 

%Cu %Mo %Py 

01-20 0.55 0.039 3.7 Interface wash water (IWW) 

21-30 0.59 0.040 4.5 Reagents Exploration 

31-40 0.53 0.037 4.2 Froth wash water (FWW) 

41-50 0.61 0.042 5.3 Slurry density  

51-60 0.53 0.032 3.2 Reagents optimization 

Experimental measurements: for each pilot run, the following information is 

generated and used for the grade/recovery calculations: (i) starting volume of feed slurry 

for each run, Vi [m3]; (ii) feed’s fractional solids content CPF at the start of each test using 

a Marcy scale; (iii) feed assays, from a dedicated feed sample taken at the beginning of 

each test, (iv) concentrate and tails assays for each stage over the duration of the test 

and; (v) the mass of concentrate collected for each stage. 

Calculation methods for data analysis: the main purpose of above information is 

to provide the grade and recovery over the whole test, and at any stage during the test. 

There are well-known relationships for the experimental measurements previously 

mentioned, based on mass or volumetric balances. Among them, the total starting 

volume corresponds to the addition of starting solids volume and starting liquid 

volume, thus obtaining: 

Vi=
HSF

WSF
+

(1-CPF)

CPF
∙

HSF

WLF
  (4.1) 

And, by definition: 

HSF=CPF∙Vi∙WPF  (4.2) 

Where: 
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HSF  : feed solids, in [kg]. 

CPF  : feed’s fractional solids content.  

WSF  : feed sample dry weight. 

WPF  : feed sample wet weight. 

WLF  : feed water weight (water density ~ 1000 [kg/m3]. 

Therefore, feed solids HSF [kg] is calculated from the measured volume of feed 

slurry at the start of each run; the measured feed fractional solids content (from feed 

sample wet and dry weights) and; assuming normal conditions for water density. 

At steady state, solids shall be balanced: 

HSF=HSC+HST  (4.3) 

As well as volumes shall be balanced at steady state: 

HSF

δSF
=

HSC

δSC
+

HST

δST
  (4.4) 

Concentrate solids over the duration of the run is calculated as follows: 

HSC= ∑ HSC,i
N
1    (4.5) 

Where: 

HSC, i  : mass of concentrate solids at stage i, in [kg]. 

HSC  : concentrate solids collected over the duration of the run, in [kg]. 

N  : number of concentrate samples within a run, twelve (12) in this case. 

The Marcy value of CPF is cross-checked against the wet/dry masses of RS feed 

sample and it is also back-calculated with the laboratory’s sample dry mass and total 

volume. Then, for each stage, several cuts of the tails are taken over the duration of each 

stage, and submitted for solids contents and chemical analyses. The overall tails grade 

after 12 stages is as recorded from the chemical analysis of the tails sample. Afterwards, 

the weight distribution is calculated from the masses of concentrate collected at each one 

of the twelve stages of a run, HSC, i. All the concentrate weights are summed, and each 

weight is divided by the total weight to give the fractional weight distribution per stage. 

WC,i= HSC.i HSC⁄   (4.6) 

The chemical assay of the feed sample taken at the beginning of each run is used 

as the feed grade of copper and molybdenum. The measured feed grade is compared 

with a back-calculated feed grade, just for data verification purposes. The back-

calculated feed grade is calculated as follows: 
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LCu,F,b= (HSC∙LCu,C+HST∙LCu,T) HSF⁄   (4.7) 

Where: 

LCu, F, b  : back-calculated feed grade in %. 

LCu, C   : combined concentrate assay in %. 

LCu, T   : tails assay in %. 

HSC  : concentrate solids collected over the duration of the run, in [kg]. 

HST  : tails solids, in [kg]. 

HSF  : feed solids, in [kg]. 

Mineral Balance: For each test, the following elemental assays are reported per 

sample: Cu; Mo; S and Fe. In addition, CuS is reported per sample as an indication of the 

presence of oxide copper species and acid-soluble secondary copper species. Based on 

these assays, the following mineral species are accounted for: (i) copper sulphides: the 

simplifying assumption is that all copper reports as chalcopyrite (CuFeS2) and calculated 

as (Cu ÷ 0.346); (ii) non-sulphide gangue (NSG) is calculated as all mass remaining after 

subtracting Cu, Mo, S and Fe. This is based on the assumption that all Cu, Mo, S and Fe 

are associated with sulphide species; (iii) Pyrite is accounted for as the remaining mass, 

after subtracting sulphide copper and NSG from total mass and; (iv) the following 

species (as defined above) are reported in all tables and figures: Cu, Mo, pyrite and NSG. 

Non-conventional flotation machines with interface wash water (IWW): The 

potential advantage inherent in pulp washing of the high clay feed material is very 

important in rougher piloting. The results of four comparisons on the effect of IWW are 

shown in figures 4.6 & 4.7. Graphs of copper concentrate grade versus recovery are 

provided for Truck 6 (IND-NK), Truck 4 (IND-NK), Truck 1 (NO-IND) and Truck 1 (NO-

IND) samples. As can be seen in figure 4.6, application of IWW is very beneficial for all 

comparisons, except the higher grade Truck 1. The application of IWW provided a higher 

concentrate grade, but also resulted in higher copper recovery. The increase in 

concentrate grade on the rougher is a direct result of increased gangue rejection. Figure 

4.7 illustrates this, showing NSG recovery versus copper recovery for the four 

comparisons of Figure 4.6. The Truck 1 sample does not show a difference in 

performance with the addition of IWW. This suggests that some of the material could 

not benefit from wash water. However, it is clear that SE for any of the material with 

reasonably high clay levels will be enhanced through the application of IWW. 
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Figure 4.6: Copper grade versus recovery with and without IWW 

 

Figure 4.7: NSG versus copper recoveries with and without IWW 
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In next figure 4.8, RS froth at the first stage can be seen. In the left, before 

interface wash water addition; froth appears wet, slimy and dirty. In the right – after 

under-froth water addition; froth has rapidly become clean and heavily mineralized. 

 

Figure 4.8: Effect of IWW - left with - right without 

Non-conventional flotation machines with froth wash water (FWW): 

Adjusting the ring sparser over the froth, FWW is used with Truck 6 and Truck 4 

samples. These samples are selected because they have an excellent performance with 

IWW. Nevertheless, the results do not show differences in metallurgical performances 

with the usage of FWW as can be seen in figure 4.9: 

 

Figure 4.9: Effect of FWW for trucks 4 & 6 (FGU=IND-NK) 
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Slurry density: Truck 6 results at 26-27 % solids are shown in figure 4.10, together 

with three additional tests at 31-34 % solids. Concentrate grade is significantly reduced 

at higher slurry density, even when IWW is applied. For the Truck 6 material, feed 

density needs to be maintained below 30 % solids. 

 

Figure 4.10: Impact of slurry density on copper grade versus recovery for Truck 6  

4.4. ROUGHER VARIABILITY CAMPAIGN 

This phase of work includes 100 pilot runs for the hypogene ores (tests 6-PP-401 

to 500). Materials consisted on 100 variability ore samples, classified into three different 

categories: No IND, IND NK and, IND-K. The tests are summarized in Table 4.6.  

Table 4.6: Summary of variability campaign ore types 

Geologic Group Ore Type # of Tests 

HYPOGENE 

No IND 43 

IND NK 33 

IND K 24 

The primary objective of this phase is to obtain a significant quantity of 

metallurgical data, including RS machine performance on drill core samples; that 

represents the hypogene resource, to be applied toward the geometallurgical mine plan. 

In parallel with each pilot run, each variability sample is subject to partial extraction 

analysis, full ICP analysis, sample characterization test work, QEMScan mineralogy 

and a standard Denver bench float test (Denver Seca). As per standard operating 

protocol, a Denver float test is performed on the RS feed pulp (Denver Pulp). 
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Samples and initial characterization for variability test work: Prior to the 

running of each test in the pilot plant, assay and mineralogical data are given. Having 

this information prior to each test is vital to help the team to better read and understand 

the flotation performance of each variability sample, and guide for the test operation 

accordingly. These responses included adjustments to mass pull, and in few cases, 

adjustments to reagent addition. A summary for variability phase test work is shown in 

Table 4.7. To gain a clear understanding of the ore body numerous tests are completed 

including flotation performance, hardness, density and mineralogy. 

Table 4.7: Testing done on variability campaign 

Category Test Total 

RS and 

Denver 

RS Pilot Test 100 

Pulp Denver Laboratory Test 100 

Pulp Denver Laboratory Test with NaHS 8 

Dry Denver Laboratory Test 100 

Standard 

Flotation 

MFT 96 

Chemical Assays 96 

PMA at P80 150 um 96 

Parameter Extraction 96 

Chemical 
Assays 

Partial Extraction 100 

ICP 100 

Hardness 

SPI 81 

Modified BWI 81 

Standard BWI 17 

Abrasion Test 53 

Mineralogy 

QEMScan 100 

NIR 100 

XRD 75 

XRD Clay Speciation 25 

CEC 25 

Density Density 100 
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Procedures and Observations: Each variability sample is delivered as two grounds 

and slurred feed charges; each charge of 20.6 kg ground solids as slurry in two buckets, 

together with two additional buckets containing process water. The solids plus the 

combined water in the four buckets add up to the required solids content for each charge. 

The same fixed mass of lime is added to the feed before grinding. Grinding takes 

place in a 10kg rod mill. A grind-time is established for each of the variability samples, to 

achieve the grind target P80 of 150 µm, based on milling kinetics. The water comes from 

a desalination plant, including interface wash water (IWW) and water added to the 

laboratory flotation tests over the duration of the tests. In addition, IWW is prepared to 

a pH of 10, so as to not cause any significant deviation in the slurry pH over the 

duration of a run. Likewise, the water added in lab float tests is also adjusted to pH 10. 

Although the pyrite content of all variability samples varies heavily, there is no 

protocol to adjust the collector additions into the grinding mill, according to the pyrite 

content. Each one of the four buckets per run (two buckets of slurry and two buckets of 

water) are weighted before the start of each run, to confirm the feed pulp density. The 

actual feed solids content; known at the start of the test by knowing the masses of water 

and solids added; and also cross-checked and confirmed through the wet and dry mass 

of the feed sub-sample; are the numbers that are reported in this document. All solids 

contents arise from wet and dry masses of the samples. Because of the importance of 

consistent wet and dry masses for all samples, the tare weights on the sample buckets 

are checked and confirmed regularly over the course of this program. 

The slurry pH is checked at the start of each test, and adjusted to a standard pH 10 

for all tests. In the case of the samples where the ‘as-received’ pH is above 10.25, a small 

amount of H2SO4 is used to bring the pH back to the standard pH of 10. Five hypogene 

samples are received with a pH above 10 and three of those are above pH 10.25. In all 

cases, an initial addition of 25 g/t of frother is added to the pulp prior to extracting the 2L 

sample for the Denver lab flotation test; the 2L sample for the feed size distribution 

analysis; and the RS feed sub-sample. For all the pilot runs and their corresponding 

Denver tests, the frother used is 70:30=X-133: Pine Oil. 
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Analysis: The RS machine performance after 7 stages is compared with Denver Pulp results 

after 20 minutes. Figure 4.11 presents the complete body of data (100 tests – 5 culled 

results = 95 valid test results), as Cu recovery in the RS after 7 stages versus Cu recovery 

in the Denver Pulp test after 20 minutes. 

 

Figure 4.11: Copper Recovery – Denver versus RS 

These data clearly fall into three groups: Group A in blue (98 samples) – Delta 

Recovery average = 0. Group B in green (8 samples) – Delta Recovery average = 6%. 

Group C in red (9 samples) – Delta Recovery average = 26%. Delta Recovery is (Cu 

Recovery Pulp, %) – (Cu Recovery RS, %). The blue unity line clearly indicates that for 

Group A samples, there is a simple 1-to-1 direct comparison between copper recovery in 

the RS (7 stages) and Denver recovery at 20 minutes. Figure 4.12 presents the same data; 

this time, plotting mass recovery from the Denver bench test versus feed percent sulfides 

(pyrite + copper sulfide). 
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Figure 4.12: Denver Cu Recovery as a function of feed % Sulphides 

Group A follows the expected trend, with a slope of about 1.6. Group B shows 

mass recovery that is, in general, significantly above the relationship set by the Group A 

tests, and the Group C mass recovery is dramatically higher. 

The average Denver concentrate grade (for the hypogene samples) for Group A is 

3.8 %Cu, versus only 2.1 %Cu for Groups B and 1.8 %Cu for Group C. In other words, for 

most of the Group B and C samples, the lab tests were pulled much harder than will 

occur in the plant, resulting in very high entrainment levels (average mass recovery for 

Group C is 26.6% versus 20.0 for Group B and 12.8% for Group A). 

Presenting the data set as Delta copper recovery (Denver - RS) against Delta mass 

recovery (Denver - RS), Figure 4.14 confirms that the difference in performance between 

the RS and Denver test in Groups B and C can be wholly attributed to the difference in 

mass recovery between the two systems. 
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Figure 4.13: Delta Mass Recovery versus Delta Cu Recovery 

Should be a key driver towards explaining these divergences in metallurgical 

performance (B and C) from the typical performance (A), Table 4-1 considers the Group 

C sample characteristics. 

Table 4.8: Group C Sample Characteristics 

 

  



51 

As draft analysis, it can be seen that for Group C, the combination of 

mineralogical characteristics results in a higher fines proportion in the feed ore, as 

quantified by the percent -400mesh fraction, and is shown in Figure 4.15. 

 

Figure 4.14: Delta Recovery versus feed -400 mesh fraction 

The specific conclusions from this phase can be summarized as follows: (i) further 

analysis of gangue with a potential clustering of clays in families could be very 

important; (ii) the results’ analysis focuses on the performance of three groups of 

samples, denoted Group A, Group B and Group C; (iii) Group A represents typical 

performance of RS accompanying Denver Pulp test. Groups B and C represent divergent 

performance, as a result of feed sample mineralogical characteristics. 

Regarding the specific application of this chapter, the final conclusion is: “The 

non-conventional flotation machine technology is selected together with 

interface wash water”. 
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5. PROCESS SIMULATION FRAMEWORK 

According to integrated process and control design (IPCD) approach, the process 

simulation framework is built upon modelling, simulation and experiments. The 

unifying methodology is based on systems identification theory. In this chapter the first 

focus is on steady state modelling followed by instrumental setup and ending with 

dynamic modelling and implementation. 

5.1. SYSTEMS IDENTIFICATION STRATEGY 

System identification is a methodology to build dynamic models that has been 

mostly applied for data driven box models but it´s now also referred for grey box 

models. The aim of system identification is to model systems dynamics that can’t be 

easily described using first principles. In next figure 5.1., Ljung’s system identification 

iterative work scheme is shown. Formerly used mainly for black box models; nowadays 

is utilized also for grey box) models. 

 

Figure 5.1.: System identification iterative work, from Ljung, 1990 
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Construct the experiment and collect the data: the experimental work of this 

phase consists mainly on continuous pilot testing. Even though, both laboratory and 

pilot continuous testing are run in parallel. Extensive and intensive usages of both off-

line and on-line measurements are executed. By the exception of third party packaged 

expert system, all the instruments are tested in this phase. In terms of process control, 

the first layer of the control structure is presented in this sub-chapter: instrumentation 

and controls. The upper layers of the control structure are presented in chapter 6.  

Continuous experimental phase: the main purpose of this campaign is to identify 

and implement the process simulation framework and the MPC predictive models for 

the control simulation framework. Other specific purposes are: instrumentation startup 

and testing and; proportional and integrative (PI) controllers’ tuning. The continuous 

campaign covers 122 tests divided in three sub phases as shown in tables 5.1, 5.2 and 5.3: 

Table 5.1: Experimental sub phase I: Instrumentation and Control 

Test Number Tuned loops and/or instruments 

1-8 Cell single loops: level, air flow, wash water flow 

9-10 Concentrate area-velocity volumetric flowmeter 

11 Volumetric flow meters for feed and tailings   

12-15 Feed densitometer 

16 Reagents mass flowmeters 

17-20 Metallurgical analysers 

21-24 Conductivity meters  

Table 5.2: Experimental sub phase II: Single RS Cell Characterization 

Test Number Name of calibrated and validated model 

25-35 Mass and volumetric balance 

36-45 Three compartments 

46-55 Polat and Chandler – RTD 

Table 5.3: Experimental sub phase III: Row Characterization 

Test number Description 

56-62 Mass and volumetric balance - two (2) cells 

63-65 Mass and volumetric balance - three (3) cells 

66-70 Mass and volumetric balance - four (4) cells 

71-84  RS versus SALA pilot plant (SPP) 

85-97 RS versus conventional mini pilot plant (CMPP) 

98-122 Variability Testing with three (3) main FGU's 
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Data processing: both data reconciliation and data filtering are considered within 

data processing. While both exploratory and variability campaigns are subject to partial 

data reconciliation; from here till the end of this thesis, full data reconciliation is done; 

either offline and/or online. Matlab routines for offline and online data reconciliation 

and parameter estimation are implemented for the purposes of this thesis. 

Process model structure selection: the base models, to be adapted and/or 

modified and; synthetized in this chapter are: Savassi’s compartmental model; Jämsä-

Jounela dynamic model for pulp levels; Polat & Chandler for collection zone 

characterization and; Gorain et al. (2000) and, Bergh & Yianatos (2009) for both 

hydrodynamic and kinetic models. In addition to mentioned models, well known mass 

balance relationships among control variables are used together for simulation 

framework build-up. 

Predictive model structure selection: all the predictive models considered in this 

thesis, are linear, state space and discrete. When the MPC’s are in profiling mode, they 

mutate to adaptive MPC in which case, the models are time variant. In all the other 

cases, the models are time invariant. As it is already mentioned in sub chapter 2.5, a 

traditional discrete space model representation is used in this thesis, given by equations 

(2.35) and (2.36). In the case of adaptive model predictive control, matrices A and B are 

time dependant. Regarding the application, three types of MPC’s are developed in this 

thesis: (i) row optimizer MPC, MPCR; (2) individual cells MPC’s, MPCn (where n is the 

cell number) and; row levels MPC, MPCL. While in case of MPCL the matrices A (t) and 

B (t) are symbolic; for MPCR and MPCn, A (t) and B (t) are numerical. 

Model fitting strategy: From a high level point of view, it can be hereupon observed 

that the cells are over-characterized with the instrumentation available at continuous 

experimental phase. The available degrees of freedom are used for parameters’ 

estimation and data reconciliation. According to the specific experiments and models 

under resolution; different parameters are calibrated and validated. As such, the 

proportion between degrees of freedom used for parameters’ estimation and those used 

for data reconciliation varies. The following model fitting stages are successively 

considered: (i) individual cell overall masses and volumes steady state parameters; (ii) 

individual zones steady state recoveries; (iii) collection and froth zones models’ 

parameters; (iv) two, three and four cells rows’ parameters and; (v) “enhanced” Jämsä-

Jounela dynamic model parameters estimations.  
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Model fitting implementation: multiple data sources; including previous 

experimental phases such as variability tests and; the continuous experimental phases 

described in this chapter; are successfully integrated to maximise both the steady state 

and dynamic characterization of the machine-mineral system. Such characterization 

details are further explained later on in this chapter, but a brief follows. 

Single cell model fitting: the proposed three compartment model has three main 

parameters, the corresponding zones recoveries RC, RF and RQ; well determined, 

reconciled and validated by the experimental data as well as the total recoveries RRS or 

RCONV. While collection zone recoveries obtained from three compartmental model 

fitting, are tested and compared against Polat & Chandler model fitting; both froth and 

quiescent recoveries are kept as obtained from three compartmental fitting. 

Collection zone model fitting: the assumption that the collection sub-process 

happens only within the reactor unit is used and tested. While kinetic characterization 

is done using parallel batch tests, residence time distribution parameters are 

experimentally determined for both the reactor unit and the whole RS machine, 

through conductivity testing in both RS’s compartments. For RS machines as well as for 

conventional ones, comparisons are done between results from Polat & Chandler 

parameters’ fitting and three compartmental RC fitting. 

Row model fitting is related to grades and recoveries obtained from both cell-based 

and row-based manipulated variables. Regarding row-based controlled variables 

(reagents), model fitting is based on data driven models. Also, as the startup dynamic 

model (Jämsä-Jounela) is row based, the dynamic model structure and fitting is 

described within the row characterization sub-chapter. 

Dynamic model fitting: Experimental input signals need to be designed with few 

basic properties, to extract informative dynamical response from the process. The main 

idea for performing dynamic model fitting tests is to design input signals which: are 

rich enough to reveal the system dynamics; let the system perform around nominal 

operating points and; are chosen according to the bandwidth of expected dynamics. 

Models’ validation: All the estimated models are validated with independent data 

sets. The validation data set is pre-processed in the same way as the estimated data set. 
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5.2. INSTRUMENTATION AND CONTROL 

Single cell measurements and basic controls: each cell “n” has the following 

basic control loops: pulp level control loop (LIC-n1); air control loop (FIC-n1) and; 

interface wash water control loop (FIC-n2). Next figure 5.2 shows the basic 

instrumentation and controls of each cell using ISA 95 standard. FT-03 is a concentrate 

volumetric flow transmitter. 

Set points (SP) could be either managed independently by the operator or could 

be manage by the levels’ MPC in case of level control loops or; “Cell n” MPCn in case of 

both wash water and air flows. MPC’s are described in chapter 6, as well as all the other 

components of the control structure. 

 

Figure 5.2: Cell n instrumentation and basic control scheme 

Pulp level control loop - LIC-n1 - contains a modulating knife gate valve and a 

magnetostrictive double float / double level measuring unit. The first float sits at the 

froth/slurry interface – “LE-n1” - and the second float sits on top of froth – “LE-n2”.-.  

This loop is managed by a PI controller, but its set point is stablished either by the 

operator or by the MPC that controls all the levels along the row (MPCL). LE-n1 

represents the pulp level and LE-n2 represents froth height over the lip and is 

afterwards used for the supervisory purposes described in chapter 6. 
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The air control loop (FIC-n1) manages the airflow. It contains a pneumatic globe 

air control valve and; a vortex flowmeter, located upstream of the control valve. This 

loop is managed by a PI controller, but its set point is stablished either by the operator 

or by the MPC that controls all the levels along the row (MPCn). In next figure 5.3, the 

air control loop is shown: 

 

Figure 5.3: Cell n, air flow control loop 

The wash water loop (FIC-n2) is used to control and change the interface wash 

water flow (IWW) and shown in figure 5.4. It contains a globe pneumatic water control 

valve and a magnetic flow meter. The magnetic flow meter is located upstream of the 

control valve. This loop is managed by a PI controller, but its set point is stablished 

either by the operator or by the MPC that controls all the levels along the row (MPCn). 

 

Figure 5.4: Cell n, wash water flow control loop 
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Row instrumentation - direct measurements: For each stream (F: feed, C: 

concentrate, T: tailings), there is an on-line XRF metallurgical analyzer that delivers 

copper, molybdenum, iron and arsenical grades, together with solids percentage CP. 

Copper and molybdenum grades (LCu,F, LMo,F, LCu,C, LMo,C, LCu,T, LMo,T) are used by the 

optimization layer after being subject to on-line data reconciliation using iron and 

arsenical grades (LFe,F, LAs,F, LFe,C, LAs,C, LFe,T, LAs,T). In addition, on-line volumetric 

flowmeters deliver the corresponding measurements QF, QC and QT. While the 

volumetric flowmeter for feed is magnetic, the other two ones are area-velocity ones. 

Additionally, the feed pulp density (δPF) is measured by means of an electro-

tomography instrument (non-radioactive). Finally, mass flowmeters (Gi) are available 

for the following reagents: lime, primary and secondary collector and, frother blend. In 

next figure 5.5, row measurements are shown, where X represents Cu, Mo, Fe and 

Arsenic; and i represents lime, primary collector, secondary collector and frother blend. 

 

Figure 5.5: Row instrumentation 
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5.3. SINGLE CELL CHARACTERIZATION 

Compartmental model synthesis: as mentioned in sub chapter 2.3, Savassi’s 

compartmental model has two compartments regarding “true flotation”: collection zone 

and froth zone and, can be represented by figure 5.6 and equation 5.1: 

 

Figure 5.6: Two compartment model (adapted from Savassi, 2005) 

Rtot=
Rc,i∙Rf,i

1 - Rc,i∙(1 - Rf,i)
  (5.1) 

Where, 

Rtot : Total cell recovery due to true flotation 

Rc, i : Collection recovery of specie i 

Rf, i : Froth recovery of specie i 

[Fi] : Feed solids flow 

[Ci] : Concentrate solids flow 

[Ti] : Tailings solids flow 

Specie i could be water, gangue particle, valuable particle or mixed particle. 

Additionally, either dynamic or steady state analysis can be done if dynamic mass 

accumulation is considered for each compartment. 

A full three compartmental approach is proposed in this thesis. With Rq,i 

representing quiescent zone recovery of specie i; the models of both conventional RS 

cells; are correspondingly shown in figures 5.7 and 5.8: 
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Figure 5.7: Full three compartmental model of conventional mechanical cell 

 

Figure 5.8: Full three compartmental model of a RS flotation machine 

Then, the total recoveries for specie “i” in a conventional cell (Rconventional) and in 

a RS machine (RRS); can be expressed by: 

Rconventional=
Rc,i∙Rq,i∙Rf,i

1 - Rc,i∙(1-Rq,i) - Rq,i∙(1 - R
f,i

)
  (5.2) 

 RRS,i=
Rc,i∙Rq,i∙Rf,i

1 - Rq,i∙(1 - R
f,i

)
  (5.3) 

It can be noticed that; if the zone recoveries were the same, the recovery of the 

conventional machine would be bigger. This structural difference is due to the fact that 

in case of RS flotation machine, particles detached in the separator tank report to the 

tailings because they do not have the probability return to the RU to be collected again. 
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Mass balance experimental synthesis: As part of the integrated process and 

control design (IPCD) approach, both cell layer and row layer instrumentation are 

available for pilot cell characterization. All of them are herein successively used for one 

cell, two cells and the entire row of four cells. Next figure 5.9, shows row layer’s 

instrumentation applied to one cell characterization. It represents a model by itself, 

herein called “single cell – row model” (SCRM).  While SCRM is presented here, 

“double cell – row model” (DCRM) and “multiple cell – row model” (MCRM) are 

presented in next sub-chapter. 

 

Figure 5.9: Single cell row direct measurements applied to one cell 

Correspondingly, synthetizing the SCRM with the proposed three compartment 

model, the following figures 5.10 and 5.11 arise for conventional and RS cells: 

 

Figure 5.10: SCRM + conventional cell three compartment model 
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Figure 5.11: Single cell row model + RS three compartment model 

At steady state, the following equations are used for resolving parameters Rq , Rf 

and Rc for each one of both types of cells: one (1) recovery equation (5.4 or 5.5); four (4) 

mass pulls obtained from (5.15); one (1) recovery (Cu) from (5.14) and; the mentioned 

4x4 system given by equations (5.4), (5.5), (5.11) and (5.12). As can be observed, three 

degrees of freedom are needed from six available. Then, three degrees of freedom are 

available for: data reconciliation and; instruments’ validation. While cells’ parameters 

from vendors are shown in table 5.4; three compartmental models fitting results are 

presented in tables 5.5 and 5.6. Number of cells and row residence times are shown only 

for context and for reference afterwards in this thesis. 

Table 5.4: Cells’ operational parameters 

Cell type Cells # Cell Volume Pulp flow τROW min τCELL min 

RS (*) 4 15/45 l ≈15 l/h ≈4/12 ≈1/3 

ERIEZ 3 1.7 l 16.2 l/h 15.5 – 17.0 5.2 - 5.7 

SALA 8 80 l 0.86 m3/h 37.4 - 38.1 4.7 - 4.8 

(*) In the case of RS machines, there are two values for volume, flow and 

residence times: reactor unit parameters and, entire RS machine ones. 
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Table 5.5: RS three compartmental model fitting 

    

RRS 

 

RC RF RQ Experimental R2 Theory 

HYPF-01 0.807 0.577 0.732 0.503 0.922 0.494 

HYPF-02 0.806 0.553 0.701 0.472 0.934 0.455 

HYPF-03 0.794 0.557 0.698 0.463 0.907 0.447 

Average 0.804 0.564 0.717 0.485 - 0.464 

Table 5.6: RS versus conventional three compartmental model fitting 

    

RTOTAL 

 

RC RF RQ Experimental R2 Theory 

SALA 0.709 0.450 0.513 0.444 0.831 0.439 

ERIEZ 0.759 0.406 0.601 0.558 0.844 0.544 

RS 0.804 0.564 0.717 0.485 >0.907 0.464 

As first insight, it can be observed that: (i) the RS model fitting shows better 

fittings (R2) than conventional cells; (ii) even though, RS residence times are 

considerable smaller, total recoveries are not so different; (iii) RS zone recoveries are 

bigger than conventional cells’ zone recoveries but, as an structural effect of direct 

reporting to tailings (figures 5.7 & 5.8, equations 5.2 & 5.3), RS total recoveries are 

smaller; (iv) almost always, experimental total recoveries are greater than theory and; 

(v) among zone recoveries, the collection zone shows better adjustment. 
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Continuous operation – collection zone recovery model: for conventional cells 

there is a synthesis done in the literature as mentioned in sub chapter 2.4. That’s not 

the case for RS machines as far as they are “non-conventional”. Therefore, a synthesis of 

Polat & Chandler (2000) model (2.20) is needed. For a RS machine; (5.4) is herein 

proposed as residence time distribution and both García-Zúñiga (G-Z) (1935, figure 

2.25) and, Klimpel (K) (1980, figure 2.26), are here used as kinetic batch models. 

E(t)=   u(t-θ)∙
e

-
(t-θ)

τG
⁄

-e
-
(t-θ)

τP
⁄

τG-τP
   (5.4) 

ϴ : Time delay  

τ : mean residence time  

𝜏𝐺 : mean residence time of the big perfect mixer, τG > τP 

𝜏𝑃  : mean residence time of the small perfect mixer, τG > τP 

Then, the following expressions (5.5) and (5.6) are considered to be further 

developed; being (5.5) from GZ batch kinetic distribution and; (5.6) from K one: 

RRS,GZ= R∞ ∫ u(t-θ)∙ [
e

-
(t-θ)

τG
⁄

-e
-
(t-θ)

τP
⁄

τG-τP
] ∙ [1-e-kgzt]

t=∞

t=0
dt  (5.5) 

RRS,K= R∞ ∫ u(t-θ)∙ [
e

-
(t-θ)

τG
⁄

-e
-
(t-θ)

τP
⁄

τG-τP
] ∙ [1-

1

kmt
∙(1-e-𝑘𝐾t)] [1-e-kmt]

t=∞

t=0
dt  (5.6) 

Integrating, the continuous recovery for the collection zone is: 

R= 
R∞

τG-τP
∙[α(t)-β(t)+γ(t)]   (5.7) 

Where for García-Zúñiga, β=γ=0, and for García-Zúñiga and Klimpel: 

α(t)=u(t-θ)∙ (τG-τP-τ
G

∙e-
(t-θ)

τG
⁄

+τP∙e-
(t-θ)

τP
⁄

)  (5.8) 

For Klimpel: 

β(t)=β
1
(t)-β

2
(t)-β

3
(t); γ(t)=γ

1
(t)-γ

2
(t)  (5.9) 

β
1
(t)=u(t-θ)∙e

θ
τG

⁄ ∙Ei (θ
τG

⁄ )  (5.10) 
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β
2
(t)=u(t-θ)∙ (e

θ
τG

⁄ ∙Ei(t
τG

⁄ )-e
θ

τP
⁄ ∙Ei(t

τP
⁄ ))  (5.11) 

β
3
(t)=u(t-θ)∙e

θ
τP

⁄ ∙Ei (θ
τP

⁄ )  (5.12) 

γ
1
(t)=u(t-θ)∙ [e

θ
τG

⁄ ∙ (Ei (
θ∙(Km∙τG+1)

τG
⁄ ) -Ei (

t∙(Km∙τG+1)
τG

⁄ ))] /Km (5.13) 

γ
2

(t)=u(t-θ)∙ [e
θ

τP
⁄ ∙ (Ei (

θ∙(Km∙τP+1)
τP

⁄ ) -Ei (
t∙(Km∙τP+1)

τP
⁄ ))] /Km (5.14) 

It can be commented that even though above symbolic expressions are 

manageable for a single cell, that’s no appear to be true for a row of RS machines. In 

this thesis, these formulas are not used for a row; but it’s worth the effort to herein 

suggest the usage of numerical methods for that case. 

Collection zone experimental work: while kinetic constants are obtained from 

variability campaign, residence time distributions (RTD) shall be experimentally 

obtained. In following figures 5.12 and 5.13, the experimental schemes are presented: 

 

Figure 5.12: Experimental setup for conventional machine RTD 
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Figure 5.13: Experimental setup for RS machine RTD parameter fitting 

Collection zone residence time experimental procedure: RTD tests are 

performed for RS machines. A brief description of the test follows: 

(i) Installation of conductivity electrodes in the column and subsequent connection of to 

a signal adapter system. Then, the signal adapter system to a data acquisition card 

embedded in a notebook that has data acquisition software. 

(ii) Conditioning of 72 liters of pulp, 2 kg of fine salt and 500 cm3 of 0.2 M hydrochloric 

acid into the "Conductive Pond". 

(iii) Starting the pumping together with data acquisition → export of data generated by 

to Excel → import of data from Excel to MATLAB → reconciliation of experimental data 

→ model fitting through script routines. 

Collection zone residence time results are shown in following tables 5.7 and 5.8. 

All the tests are performed with the same material (truck 4) for the same FGU. In table 

5.7, the LTST (large tank – small tank) model (Yianatos et al., 2007c) is used for 

conventional SALA cells. Then, in table 5.8, the real mixer model is used for fitting the 

residence time distribution of the reactor unit and; the herein proposed model (5.4) is 

used for fitting the residence time distribution of the entire RS machine. The estimator 

R2 is shown as adjustment quality index.  
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Table 5.7: Conventional SALA cells’ RTD model fitting (time in seconds) 

 
Test 48 Test 49 Test 55 τtheory 

  HYPF1 HYPF1 HYPF1 VT/Q 

τG [s] 203.44 209.82 205.32 - 

τP [s] 37.65 43.16 46.55 - 

τ [s] 241.09 252.98 251.87 284.47 

  R2 0.90 0.89 0.88 - 

From table 5.7, it can be noticed that the total fitted time residence is less than 

the “actual” residence time, calculated by the ratio between total volume and flow. That 

result is logical and it’s commonly related to 2 problems: short circuits and/or material 

that remains a lot of time in the reactor occupying the place of fresh feed. Regarding the 

quality of the adjustment, R2 is good enough. 

Table 5.8: RS-RTD model fitting 

 

Test 47 Test 50 Test 53 τtheory 

  T_47a T_47b T_50a T_50b T_53a T_53b VRU/Q VT/Q 

τ [s] 57.89 162.22 57.27 158.70 57.55 160.70 61.20 183.60 

τG [s] - 118.73 - 116.10 - 117.20 - - 

τP [s] - 58.37 - 55.90 - 56.30 - - 

ϴ [s] 2.92 5.21 3.08 6.30 3.17 7.40 - - 

  R2 0.93 0.91 0.94 0.92 0.93 0.92 - - 

From table 5.8, it can be observed that the reactor unit adjustments give smaller, 

but very similar times than the ratio between the reactor unit volume and the flow. Also, 

all the adjustments have good quality indices. 
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Table 5.9: Polat & Chandler (Rcp) and compartmental recoveries 

 
P&C Compartmental recoveries 

   Rcp  Rcc Rf Rq 

T_47a 0.798 0.793 0.571 0.724 

T_47b 0.851 0.812 0.565 0.711 

T_48 0.724 0.690 0.569 0.531 

T_49 0.667 0.638 0.559 0.516 

T_50a 0.805 0.813 0.566 0.715 

T_50b 0.844 0.806 0.561 0.729 

T_53a 0.822 0.791 0.561 0.705 

T_53b 0.855 0.799 0.556 0.723 

T_55 0.654 0.595 0.558 0.533 

 

In table 5.9, zone recoveries are presented. For the collection zone there are two 

models: Polat & Chandler collection recovery (Rcp) and, three compartment’s collection 

recovery (Rcc). It can be observed that Rcp >Rcc in all the cases and, more than 5% 

bigger, in average. As for RS cells the residence times are very similar to the “real” 

residence times, it could be conjectured that the reason is not related to deficiencies as 

short-circuits. 

In next table 5.10, total recoveries are presented. For conventional tests (T_48, 

T_49 and, T_55), equation (5.2) is used; while for RS tests (T_47, T_50 and, T_53), 

equation (5.3) applies. While in the first results’ column, the Polat & Chandler collection 

recoveries are applied correspondingly to formulas (5.2) and (5.3); three 

compartmental model’s collection recoveries are applied in second results’ column. 
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Table 5.10: Total recoveries and errors related to experimental results 

 

Total recoveries Recoveries’ errors % 

 

w/Rcp w/Rcc Experimental w/Rcp w/Rcc 

T_47a 0.479 0.476 0.455 5.32 4.66 

T_47b 0.494 0.472 0.445 10.98 5.90 

T_48 0.507 0.483 0.460 10.17 4.94 

T_49 0.428 0.410 0.404 6.12 1.48 

T_50a 0.472 0.477 0.465 1.44 2.45 

T_50b 0.508 0.485 0.485 4.76 0.05 

T_53a 0.470 0.453 0.451 4.24 0.32 

T_53b 0.506 0.473 0.449 12.66 5.29 

T_55 0.424 0.386 0.380 11.48 1.40 

 

Regarding RS tests, it can be noticed that the collection recoveries obtained from 

the three compartmental models, have considerable smaller errors than the recoveries 

calculated using P&C. Nevertheless, it’s worth to mention that the P&C collection 

recoveries used are the ones from the proposed model, not using the simpler “real 

mixer” model for reactor unit. In that case, the error is smaller and that can be seen 

observing that the residence times of the reactor unit obtained by DTR’s are very similar 

to the “real” ones. In practical terms, conductivity measurements are recommended 

herein in the reactor unit compartment. 

For conventional tests (T_48, T_49 and, T_55), it can also be observed that the 

collection recoveries obtained from the three compartmental models, have considerable 

smaller errors than the recoveries calculated using P&C. But, from table 5.8 it can be 

noticed that the fitted residence times are around ten percent smaller than the “real” 

residence times calculated by means of the ratio between volume and flow.  
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5.4. ROW CHARACTERIZATION 

Next figures 5.13, 5.14 and 5.15 show row layer’s instrumentation applied 

successively to two, three and four cells row characterization. They represent models by 

themselves, related mainly to masses and volumes balances. 

 

Figure 5.13: Double cell row model 

 

Figure 5.14: Triple cell row model 

 

Figure 5.15: Four cell row model 
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Row balance models: there are well-known relationships for volumetric flows, 

fractional solids contents, solids flows and densities. Among them, the total volumetric 

flow of each stream corresponds to the addition of solids volumetric flow and liquid 

volumetric flow, obtaining: 

Q
F
=

GSF

δSF
+

(1-CPF)

CPF
∙

GSF

δLF
  (5.15) 

Q
C

=
GSC

δSC
+

(1-CPC)

CPC
∙

GSC

δLC
  (5.16) 

Q
T
=

GST

δST
+

(1-CPT)

CPT
∙

GST

δLT
  (5.17) 

As feed pulp density is known, solids feed density (δSF) can be obtained from: 

CPF=
δSF∙(δPF-δLF)

δPF∙(δSF-δLF)
  (5.18) 

From equation (5.15) and assuming δLF= δLC= δLT=1[g/cm3]=1000[kg/m3], 

δSF= (δPF∙CPF) [1-δPF∙(1-CPF)]⁄   (5.19) 

In addition, GSF is given by: 

GSF=CPF∙Q
F
∙δPF  (5.20) 

A mass balance for solids flows: 

dG

dt
= GSF- GSC - GST  (5.21) 

The corresponding volumetric balance: 

dV

dt
= QSF- QSC - QST  (5.22) 

Equations (5.21) and (5.22) are used for dynamic systems identification. At 

steady state, both solids mass flows and volumetric flows shall be balanced: 

GSF=GSC+GST  (5.23) 

As well as solids volumetric flows shall be balanced at steady state: 

GSF

δSF
=

GSC

δSC
+

GST

δST
  (5.24) 

Equations (5.4), (5.5), (5.11) and (5.12); conform a 4x4 system regarding to GSC, 

GST, δSC and, δST. Then, for all streams (feed, concentrate and tailings), solids flows and 

solids densities are well defined at steady state. In addition, the row mass pull can be 

obtained in terms of solids mass flows: 

Y=
GSC

GSF
  (5.25) 
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From grades measurements, the following information is obtained: row 

metallurgical recoveries and row mass pulls: 

RX=
LX,C∙(LX,F-LX,T)

LX,F∙(LX,C-LX,T)
=

LX,C∙GSC

LX,F∙GSF
  (5.26) 

YX=
(LX,F-LX,T)

(LX,C-LX,T)
=

GSC

GSF
  (5.27) 

Where sub index “X” can represent Mo, Cu, Fe or As. 

Then, five mass pulls are available, four from equation (5.26) and one from 

equation (5.25). As mass pulls shall be equal, four mass pulls are available for 

additional variables resolution and/or data reconciliation, as it is further explained 

wherever applies. Now, it can be said that degrees of freedom are used in the following 

section for dynamics’ estimation. 

Dynamic models synthesis: as mentioned in sub chapter 2.3, Kämpjärvi & Jämsä-

Jounela dynamic model is selected as “startup model”. In this sub chapter, some 

simplifications of the mentioned model are taken out. Here, there is interface wash water 

(IWW) flow and a concentrate flow. Additionally, pulp densities do vary along the row. 

Also, there is a volumetric air holdup (Εg). Therefore, instead of equation (2.4), the 

following equation (5.28) applies for each cell along the row; considering that: QW,i and 

Εg,i are correspondingly, the interface wash water and the volumetric gas holdup of cell i: 

dVi

dt
= Q

Fi
- Q

Ci
 - Q

Ti
+ Q

Wi
+ Eg,i  (5.28) 

It’s important to mention that herein the air holdup is not in percentage, but it is 

considered as volumetric gas holdup. 

From (5.21) & (5.22) & (5.23), for cell i: 

dGi

dt
= GSFi- GSCi - GSTi  (5.29) 

For dynamic balances of valuable solids contents: 

dGX,i

dt
= GSF,X,i −  GSC,X,i  −  GST,X,i  (5.30) 

Then, considering that Qin is feed flow; S is the area; c is the physical difference 

in height between the cells; K is a constant coefficient; Cv is the valve coefficient, given 

by valves’ vendor and; yi,  ui are respectively, the pulp level and control signal of cell i: 
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dy1

dt
=

QF1

S
- 

QC1

S
 -

K

S
Cv(u1)√𝛿1y1 − 𝛿2 ∙ (y2 − c)+ 

QW1

S
+

Eg1

S
  (5.31) 

dy2

dt
=

K

S
Cv(u1)√𝛿1y1 − 𝛿2 ∙ (y2 − c)-

K

S
Cv(u2)√𝛿2y2 − 𝛿3 ∙ (y3 − c)- 

QC2

S
+

QW2

S
+

Eg2

S
 (5.32) 

dy3

dt
=

K

S
Cv(u2)√𝛿2y2 − 𝛿3 ∙ (y3 − c) −  

K

S
Cv(u3)√𝛿3y3 − 𝛿4 ∙ (y4 − c)- 

QC3

S
+

QW3

S
+

Eg3

S
 (5.33) 

dy4

dt
=

K

S
Cv(u3)√𝛿3y3 − 𝛿4 ∙ (y4 − c) −  

K

S
Cv(u4)√𝛿4y4- 

QC4

S
+

QW4

S
+

Eg4

S
  (5.34) 

A symbolic process simulator is implemented. It’s based on a library of 

configurable functions with symbolic parameters linearized around symbolic operating 

points.  The linearization is the traditional. If state space derivative vector is defined as: 

Ẋ = G(X, U) (5.35) 

If Ŷ and Ŵ, are the operating points column vectors inputs and outputs: 

Ẋ = F(Y, W) − F(Ŷ, Ŵ) (5.36) 

Applying Taylor’s first order approximation: 

Ẋ = ∇F (Y; (Ŷ, Ŵ)) ∙ (Y − Ŷ) + ∇F (W; (Ŷ, Ŵ)) ∙ (W − Ŵ) (5.37) 

Where, Y is the column vector of pulp levels; W is the column vector of control 

signals; F is the column vector of pulp level derivatives, X=Y- Ŷ, U=W-Ŵ, and ∇F(Y ;( Ŷ, 

Ŵ)) and ∇ F (W ;( Ŷ, Ŵ)) are the correspondingly Jacobeans evaluated in the operating 

point. The objective is to obtain state space matrices A, B, C, D and E; for both process 

simulation and for predictive model building. Regarding predictive models, one set of 

state space matrices are needed for each one of the MPC’s. For pulp levels MPC, MPCL 

and, for individual cell MPC, MPCn; matrices A and B are symbolic. Matrices C and D 

are data driven for all the MPC’s. 

Regarding pulp levels process simulation blocks, pulp level control valves used 

for this work are a special type of knife gate valves for control applications with special 

seat plates. The inherent characteristic is a compromise between equal percentage & 

linear flow characteristics. From the vendor technical specifications, Cv (w) relation is 

obtained where Cv is the valve coefficient and w the control signal, both normalized 

from 0 to 1. 

  



74 

Non-zero elements of A, B are shown in equations (5.38) to (5.47). For first row: 

A(1,1) =
−KCv(w1)

2S√c+y1−y2
 , A(1,2) =

KCv(w1)

2S√c+y1−y2
   (5.38) 

For intermediate A components, 1 < i < n and, then: 

A(i, i − 1) =
KCv(wi−1)

2S√c+yi−1−yi
  (5.39) 

A(i, i) = −
KCv(wi−1)

2S√c+yi−1−yi
−

KCv(wi)

2S√c+yi−yi+1
     (5.40) 

A(i, i + 1) =
KCv(wi)

2S√c+yi−yi+1
  (5.41) 

For i=n: 

A(n, n − 1) =
KCv(wn−1)

2S√c+yn−1−yn
   (5.42) 

A(n, n) = −
KCv(wn)

2S√yn
−  

KCv(wn−1)

2S√c+yn−1−yn
  (5.43) 

The first row of B matrix is given by: 

B(1,1) =
−K

d𝐶𝑣
dw

(w1)√c+y1−y2

S
   (5.44) 

While for 1<i <n, then: 

B(i, i − 1) =
K∙

d𝐶𝑣
dw

(wi−1)√c+yi−1−yi

S
  (5.45) 

For i=n: 

B(n, n − 1) =
K

d𝐶𝑣
dw

(wn−1)√c+yn−1−yn

S
  (5.46) 

B(n, n) =
−K

d𝐶𝑣
dw

(wn)√yn

S
  (5.47) 

Other predictive models’ descriptions are done in next chapter. 
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6. ADVANCED CONTROL AND OPTIMIZATION 

6.1. ADVANCED CONTROL PERSPECTIVE 

The problem addressed in this chapter is the need of further approaches that can 

provide both powerful and integrated solutions for advanced process control and 

optimization of flotation plants. The solution proposed in this study is a hierarchical 

and dynamic approach that takes advantage of available powerful techniques in the 

family of model predictive control algorithms together with cutting edge or novel 

instrumentation systems. 

Until nowadays, the attitude at flotation plants has commonly been in the 

comfort zone due to former wealthy period. That unambiguously determines the need 

for more productivity and efficiency in the use of available resources. 

Traditionally, process design and control design are strictly sequential tasks. The 

process is designed first to achieve the design objectives, and then, the operability and 

controllability aspects are considered through control design. This sequential approach 

is often inadequate since many process control challenges arise because of poor design 

of the process and may lead to overdesign of the process, dynamic constraint violations, 

and may not guarantee the required performance (Malcom et al., 2007). 

As discussed by Edgar (2004), the priorities of the objectives have been reversed. 

In the early approaches, the control system was simply a tool to achieve the 

predetermined goals of production, which had been set in the process design stage. The 

operation personnel did not think of the control system as an optimization tool to 

improve profitability of the process. Therefore, economic optimization had the lowest 

priority. However nowadays, business planning of process industries has become online 

and much less limited by the early decisions at the design stage. Consequently, the new 

control systems have also inputs in terms of economic parameters and translate them 

into operational decisions. This has encouraged designers to consider the highest 

priority to process profitability and the roles of other control tasks are to realize the 

targeted economic objectives. In spite of the fact that economics are not under the scope 

of this work, the hierarchical approach based in temporal decomposition, give the 

needed and enough time for management decision making integrating both technical 

and commercial aspects. 
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6.2. ADVANCED CONTROL METHODOLOGY 

Model-base design is the systematic and methodological approach for the whole 

work presented in this chapter. As such, the methodology framework includes specific 

model-base methods for: (i) process control design, (ii) control simulation framework 

implementation (ii) process modelling and,. Process models are the base for both the 

simulation of the process and, the controllers’ implementation. Also, the main objective 

of this chapter is froth flotation control. Then, the model framework shall emulate the 

froth flotation process with needed and enough precision for process control purposes 

In terms of process control, the model framework shall represent the relationship 

between the measured, controlled and manipulated variables in order to achieve the 

control objectives in spite of measured or unmeasured disturbance variables. This 

article is entirely model-based, including the control strategies. As such, both process 

simulator sub system and controller simulator sub-system are built upon an 

appropriate and comprehensive selection and synthesis of existing first principle 

models (white box), data driven models (black box) and/or a combination of both (grey 

box). It’s important to state that both process and prediction models for control 

implementation, are calibrated and validated using pilot and/or industrial data. From a 

process control perspective, while process simulation framework is open loop, control 

simulation framework is closed loop. Then, the process simulator is used for both 

process simulation and controller implementation and; the control simulator is used to 

test control strategies by simulation without full closed loop experimental calibration or 

validation. That´s in the essence of model and simulation based methodologies: there 

could be a simulation framework without full experimental background, as long as the 

thoroughness and rigor, for the moment to arrive at the conclusions, is preserved. 

Regarding simulation framework implementation, the methodology used to 

incrementally and systematically merge and combine first-principle models and 

empirical models in a comprehensive simulation framework is mainly based on Ljung’s 

systems identification book (1990). 
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6.3. CONTROL DESIGN 

Conceptual control design includes the following definitions: degree of 

centralization; control hierarchy; control structure and; set point policy. 

Degree of centralization: An approach between pure decentralized and full 

centralized is used herein. Specifically, a cooperative control structure is selected for 

this thesis because while neither a pure decentralized control structure nor a 

communicated one ensures an optimal operation, there are many concerns reliability 

and maintainability of a large-scale centralized control structure. A cooperative control 

structure employs an objective function for the whole system, and the prediction of the 

last iteration of each controller is available to the others. 

Control Hierarchy: A fit for purpose three layered hierarchy is used in this work. 

Also, the control structure is decentralized vertically (top-down) through different time 

scales, that can varies upon certain states that are later described in this article: (i) a 

daily (24 h) or shift (8h) basis for orchestrator’s changes in given technical optimum 

criterion and constraints; (ii) an hour basis for row orchestrator outputs to lower levels 

(set points or overriding); (iii) a ten minutes’ basis for advanced control and (iv) a one 

to ten seconds of sampling time for basic control. Regarding the dynamic approach of 

the hierarchy, depending on the mode (tracking or regulatory) and/or the variable 

being profiled, the three-layer hierarchy can vary it behavior. Next figures show the 

three layered row control hierarchy, presenting the main components. The technical 

optimum criteria can be biased and/or weighted according to economics. 

 

Figure 6.1: Row control hierarchy 

In next figures (6.2) and (6.3) the advanced control layer is firstly presented in 

the form of schemes, being (6.2) the advanced control for a cell and (6.3) the advanced 

control schema for a row. 
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Figure 6.2: Cell-based advanced control scheme 

 

Figure 6.3: Row based advanced control scheme 
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As can be seen in previous figures, the advanced control layer is composed of 

MPC’s: n cells’ MPCs, MPCn; 1 MPC for all the pulp levels of a row, MPCL; 1 MPC for 

three reagents (Rg1, Rg2, Rg3) and; 1 MPC for ph advanced control with the capability 

to act as a Eh controller in addition to ph. 

The hierarchical control structure considers three layers: orchestrator, advanced 

control and regulatory control. The orchestrator layer plays two main roles: supervision 

and optimization. In previous figure 6.2, the row orchestrator is shown receiving and 

transmitting information with MPCL, MPCn and the third party expert system. 

Control Structure: Skogestad’s (2004) iterative top-down/bottom-up algorithm is 

used as control structures’ selection methodology. Nevertheless, the bottom-up 

approach is used to present the work because both experiments and simulations are 

developed in a bottom-up sequence. 

Regarding measurements, state of the art, cutting edge and new instrumentation 

systems are used at pilot trials. Among them: (i) magnetostrictive multi-level sensor 

that measures both pulp level and top of froth depth level, (ii) concentrate volumetric 

flow by means of area-velocity instruments, (iii) image processing system, (iv) linear 

knife-characterized control valves, (v) mass flow meters, (vi) tomography density 

meters and, (viii) online metallurgical analyzers. Also in the first layer of the control 

structure, the manipulated variables are valves and the controlled variables are flows. 

The control objective of the first layer is to keep the controlled variables closer to the set 

points within a certain actuation effort. In other words, the performance or cost 

function to be minimized is a tradeoff between error and effort.  

The following basic control loops and measurement systems are available for 

each mechanical cell (where n is the cell number): air control loop (FIC-n1), interface 

wash water control loop (FIC-n2) and, pulp level control loop (LIC-n1). These basic 

control loops are described in previous chapter 5. Each of them has their own dynamic 

behaviors, not considered for advanced control and optimization layers applying 

temporal decomposition. This seems right, as far as the time responses from the 

measurements to the valves are at least one order of magnitude faster than the 

advanced control time constants. 
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Row-based control loops are considered for collector, frother and milk of lime. 

These reagents are measured by means of Coriolis mass flowmeters and the 

manipulated variables are positive displacement dossing pumps. 

The following indirect instrumentation is considered for each cell: froth expert 

system (AIC-nm, m variables per cell); froth stability sensors (two per cell); concentrate 

mass pull virtual sensor and; concentrate grade virtual sensor (LCu, C, b; one per cell). 

The second layer of the control structure – advanced control – is where MPC’s 

live (by the exception of row optimizer MPC, MPCO). The manipulated variables 

considered herein are froth depth, wash water, air flow, frother, collectors and milk of 

lime. The controlled variables of the second layer are grades and recoveries. The 

technical optimum is configurable, as well as performance indices or cost functions. 

The orchestrator is composed by two sub systems: optimizer and supervisor. The 

optimizer is MPC-based, called herein MPCO. The orchestrator’s role in the 

optimization of a row performance is to achieve the given requirements. It determines a 

optimum set points for the controllers. Related to the supervisory role, the following 

virtual sensors are developed: (i) froth instability, (ii) sunken or pulping cells and, (iii) 

individual mass pulls and concentrate grades. In addition, the orchestrator monitors, 

maintains and set the mode of lower control layers and instrumentation; enunciating if 

they are not performing to expectations. Once the plant has reached stability, the 

orchestrator turns to be mainly an optimizer while maintaining its supervisory tasks. 

Regarding both supervisor and optimizer, froth stability is a key factor for 

feasibility and optimality. Stable operation of flotation cells and consequent consistent 

metallurgical benefits can only be obtained if pulp levels and froth stability are under 

control. Froth flotation process depends on a carefully controlled and stable froth. In 

this work, two indices for froth stability are used. Next figure 6.4 shows expert system 

scheme together with froth stability observers and associated signals. The froth expert 

system is a packaged image processing system that delivers the following automatic 

measurements: froth velocities, bubble size distribution and concentrate grade 

estimation. 
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Figure 6.4: Cell n froth stability observers 

Row optimizer: from a top-down perspective, Maldonado et al. (2011) find that the 

maximum separation efficiency is obtained when each of the cells along the row has the 

same recovery if entrainment is not considered. Singh and Finch (2014) confirmed that 

with simulations and industrial flotation. In the same article, they used mathematics 

and simulations to propose that, considering gangue entrainment, “a balanced mass-

pull profile would be the optimal policy”. Seguel et al. (2015) revisit row optimization 

through froth depth profiling using a genetic algorithm and the following formulation of 

the optimization problem: maximization of the overall Cu recovery while satisfying a 

minimum concentrate grade. One of their conclusions is that optimal profile also 

provides a balanced mass-pull profile. A balanced mass-pull profile is herein considered 

as base scenario, but the simulation framework allows also a balanced recovery profile 

and/or a biased profile. Optimal MPC (O-MPC) is considered herein as row optimizer. 
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The investigations referenced in previous paragraph provide simple and practical 

row optimization strategies for the state of the art technologies in instrumentation and 

control: balanced mass pull profile along the row or; balanced recovery profile along the 

row. As observed in the literature review, regardless the “nominal optimum”, the 

technical optimum is achieved by means of balanced mass pull along the row and that’s 

accomplished together with a high froth’s stability. In this thesis, the stability index for 

optimization is the average between air recovery and the combined variability of 

velocity and bubble size distribution from one period to the next. In terms of abnormal 

situations, they are considered as redundant froth stability indices. A balanced mass 

pull profile along the row - with maximum froth stability - is used in this work. In next 

figure 6.5, the relationship between the row’s mall pull Y and individual balanced mass 

pull yi, considering a balanced mass pull profile (yi=y, ∀i), is shown: 

 

Figure 6.5: Balanced mass pull profile strategy 

From figure 6.5, the individual mass pull set points are obtained. Then, the 

objective function for each cell is to maximize froth stability, subject to achieve the 

corresponding mass pull set point. Then: (i) an appropriate profiler control strategy 

simulation framework would contribute to support the mentioned achievements, (ii) in 

almost all the articles two variables are considered for profiling but only one at a time, 

(iii) in process control words, set point tracking is needed for the “profiled variable” 

while set point regulation is needed for the others. 
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Based on a Simulink generic adaptive MPC with a LTV Kalman Filter built-in 

state estimator, a set of four types of A-MPC implementations are implemented for 

profiling along the row: successive linearization, linear time variant system, on-line 

lineal parameter identification and on-line nonlinear model identification. 

In next figure the entire control structure block diagram is shown: 

 

Figure 6.6: Control structure blocks diagram 

If the mode of certain MPC variable (level, air flow, IWW, reagents or pH) is 

“profiling” then the respective MPC turns into adaptive mode; else it is “regulating”.  

Row Control Strategy: using the separability curves method, a match between the 

laboratory data of the flotation metallurgical unit block with on-line information from 

the metallurgical analyzers, is done. Then, the metallurgical optimum is obtained and 

shown to the operator by means of grade, recovery, mass pull and target separation 

efficiency. Row mass pull set point is therefore obtained. 

According to Bergh & Yianatos (2009): “if the batch response of a sample of plant 

feed is intended to be used to obtain the separability curve of this material, then the 

operating conditions defining the batch procedure must be chosen to optimize the batch 

recovery”. Then the best variability curve for each of the three main FGU’s are selected 

and their operational parameters (reagents, pulp level, air and IWW flows) are used as 

initial set points. 
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6.4. CONTROL SIMULATION FRAMEWORK 

The model structure used in the control simulation framework appears in the 

following illustration 6.7. The main reference as configurations guide is the book of 

Bemporad et al. (2016). 

 

Figure 6.7: Control simulation framework diagram, from Bemporad et al., 2016 

Plant predictive models: the MPC controllers implemented in this thesis perform all 

estimation and optimization calculations using discrete-time, delay-free, state-space 

systems with dimensionless input and output variables. Therefore, the following steps 

shall be performed: conversion to state space, discretization or resampling, delays 

removal and, conversion to dimensionless input and output variables. When the MPC’s 

are in profiling mode, they mutate to adaptive MPC in which case, the models are time 

variant. In all the other cases, the models are time invariant. Regarding the application, 

three types of MPC’s are developed in this thesis: (i) one row optimizer MPC, MPCO; 

(iii) four individual cells MPC’s, MPCn; one row levels MPC, MPCL; one reagents’ MPC, 

MPCR; and one pH MPC, MPCpH. While in case of MPCL, MPCn and MPCO; matrices A 

(t) and B (t) are symbolic; for MPCR and MPCpH; A (t) and B (t) are numerical. 
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While the predictive plant model must remain when the code is embedded into a 

commercial controller, the other models could be taken out or modified. In other words, 

while the models for disturbances and noise; shall be implemented for simulation 

purposes; predictive plant model is a must for MPC deployment. 

Other difference, herein done, between predictive models and, noise and 

disturbance models is that, while predictive models are constructed from scratch; noise 

and measurements models are implemented using a tool box. 

The input disturbance model is a key factor that influences the following controller 

performance attributes: (i) dynamic response to apparent disturbances; that is, the 

character of the controller response when the measured plant output deviates from its 

predicted trajectory, due to an unknown disturbance or modeling error; (ii) asymptotic 

rejection of sustained disturbances; if the disturbance model predicts a sustained 

disturbance, controller adjustments continue until the plant output returns to its 

desired trajectory, emulating a classical integral feedback controller. The input 

disturbance models are LTI discrete state-space, delay-free object. Then, the same steps 

for convert the process plant model to predictive plant model are used. 

The output disturbance model is a special case of the more general input 

disturbance model. Its output, yod (k), is directly added to the plant output rather than 

affecting the plant states. The output disturbance models specify the signal type and 

characteristics of yod (k). 

The measurement noise model is used to distinguish disturbances, which require a 

response, from measurement noise, which should be ignored. The measurement noise 

model specifies the expected noise type and characteristics. Using the same steps as for 

the plant model, the measurement noise model is herein represented as a discrete-time, 

delay-free, LTI state-space system. 

Simulation framework strategy: For pulp levels, a symbolic model is available and 

therefore a symbolic-adaptive multiple input, multiple output models are implemented. 

For almost all the other variables, parametric models are available and therefore a “grey 

model” calibration approach is applied. Usually, the steady state structure is available 

and the dynamics are calibrated with experimental data. Finally, for reagents, data 

driven models are implemented.  Due to the variety of model types, multiple inputs and 

single output models (MISO) are implemented, calibrated and then merged. 

  



86 

Predictive models’ description: for MPCL, the states are also the outputs and 

consist on pulp levels’ deviations (h). The inputs are the control actions over the level 

valves, indirectly through the set points of individual PI controllers. The perturbations 

are the input flows and the interface wash water flows. Then (6.1) representation 

applies in profiling mode, whereas (6.2) applies in regulating mode. 

hk+1=AL(t)∙hk+BL(t)∙uk+q(t)  (6.1) 

hk+1=AL∙hk+BL∙uk+q(t)  (6.2) 

Where h is the deviations vector of pulp levels, u is the deviations vector of pulp 

control valves position and, q is the volumetric feeds flows. In both cases, AL and BL are 

symbolic matrices which parameters are obtained through the realization into numerical 

values whenever configured. While regulating, canonical MPC is used and when 

profiling, successive symbolic linearization together with AMPC are utilized. 

For MPCn, the states are mass and volume variables and the outputs are 

individual cells’ grades, recoveries and, mass pulls. The inputs are cell-based control 

actions over outputs: air flow and, interface wash water flow; indirectly through the set 

points of individual PI controllers. The perturbations are input variabilities. Then (6.3) 

applies in profiling mode, whereas (6.4) applies in regulating mode. 

gk+1=An(t)∙g
k
+Bn(t)∙vk+D𝑛(t)  (6.3) 

g
k+1

=An∙g
k
+Bn∙vk+D𝑛(t)  (6.4) 

Where g is the deviations vector of masses and volumes, v is the deviations vector 

of cell-based control actions and, D weights the feed variabilities vector. In both cases, 

An and Bn are symbolic matrices which parameters are obtained through the realization 

into numerical values whenever configured. While regulating, canonical MPC is used 

and when profiling, successive symbolic linearization together with AMPC are utilized. 

For row-based MPC’s; MPCR, MPCpH and, MPCO; the same description applies, 

by the exception that A, B, C and D; are all numerical. 
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Simulation framework software implementation: a modular top-down software 

implementation method is used. Particular attention is also paid to causality and as 

such, every model is created in such a way to properly represent the cause-effect 

correlation between inputs and outputs. Another key issue faced is the simulation 

backbone chosen. After assessing some of the most widely known software that looked 

suitable for the scope, the choice has fallen on the Matlab®/Simulink® package. 

Simulink® is appreciated and therefore selected for its modelling, simulation and 

analysis tools in the form of standard or customized blocks that allow great flexibility in 

model designing and are suitable for control purposes. Matlab® is selected and 

therefore exploited for its graphical and data analysis capabilities in addition to the 

capability to write specific functions which can be called during simulation. The 

potentialities in matrix calculation of the Matlab® language are also herein exploited. 

Specifically, a Simulink® simulation project is implemented considering the following 

main sub-systems: utilities, process and control. 

Pulp level control strategy comparison: A comparison between eight different 

strategies for regulatory control of pulp level along a row of rougher mechanical cells.  

At basic cell level regulatory layer, explicit model predictive control (E-MPC) and a 

proportional, integral and derivative control (PID) are tested. At row regulatory control, 

static decoupling matrix (SDM), E-MPC and implicit model predictive control (I-MPC) 

are used. Also, a single layer E-MPC and I-MPC are tested without basic regulatory 

controllers. Regarding pulp levels control along the row, direct MPC based strategies 

with fast sampling (I-MPC, E-MPC), achieve the best performances in Mp, TV, IAE-Qi, 

IAE-SP and τs. About two layered strategies, I-MPC obtains the best performance as 

row regulatory control, followed by E-MPC and ending with dynamic decoupling matrix 

(DM). Also, the MPC based couples (I-MPC + E-MPC’s, E-MPC+ E-MPC’s) show similar 

results than hybrid couples (I-MPC+PID’s, E-MPC over PID’s. 

Nevertheless, PI controllers are finally kept at basic control layer while MPC’s are 

used in layer 2 (advanced control) and as row optimizer in layer 3. The main reason is 

diachronical: metallurgical tests need to be done with certain basic controls and, the 

data driven adjustment needs to be done with the pilot plant on going. 
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7. OVERALL DISCUSSION 

7.1. MODELING 

Three interesting and interconnected achievements related to modelling are 

considered to be done in this thesis. The first one is high level: an integrated process 

and control design allows the validation and implementation of non-conventional 

machines and the adoption of cutting edge instrumentation technologies. The other two 

modeling achievements are related to machine technology comparison: three 

compartmental approach and, non-conventional machines’ models. 

Regarding three compartmental models applied to mechanical cells in general, 

it’s worth noting that, in spite of the fact that the three zones are broadly mentioned in 

the literature, there is not a true three compartmental model working in a simulation 

package. One of the reasons; herein proposed for further discussion; is that, in case of 

conventional machines, three compartmental parameters are not directly obtained 

without the usage of a comprehensive set of instrumentation. 

Related to the differences between conventional and RS machines, it can be 

noticed from (5.2) and (5.3) that; if the zone recoveries were the same, the recovery of 

the conventional machine would be bigger. This structural difference is due to the fact 

that in case of RS flotation machine, particles detached in the separator tank report to 

the tailings because they do not have the probability return to the RU to be collected 

again. Therefore, the respective recoveries are different as shall be expected for a 

machine that optimizes each of its sub-processes because: (i) the collection zone has a 

higher contacting efficiency due to its high energy density and agitation; (ii) the 

interface wash water has an important role in the quiescent zone and the absence of 

agitator improves the flow regime and; (iii) the froth zone has a better recovery due to 

its narrower depth and shorter average distance to the launders. 

It’s important to mention that model-based design methodologies are efficiently 

used in this thesis to support the design of high efficient flotation plants. An integrated 

approach supports the decision towards novel technologies. 

Two future works are herein proposed for discussion: (i) further exploring three 

compartmental models, especially against Savassi’s two compartmental one and; (ii) 

implementing a “commercial like” simulator. 
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Regarding second objective’s achievement, a reactor separator type of flotation 

machine was selected subject to the conditions and restrictions of the referenced 

industrial project. 

7.2. INSTRUMENTATION 

As general comment, all the instrumentation for the entire row arrives at almost 

the same time than the first pilot cell. But, the second cell arrives almost one year later 

than the first one and, the third and fourth cells arrive together six months after the 

arrival of the second cell. This fact additional to the integrated process and control 

design strategy and philosophy, allows an incremental approach for models’ 

implementation, calibration and validation. 

For further contextual discussion, it’s herein commented that a cold market 

increase the availability of instrumentation, control valves and control hardware; 

together with better vendor support; as demonstration packages. In other words, 

vendors are more interested and have more time. This fact represents an opportunity 

for innovation and development. As there are some difficulties regarding non-disclosure 

agreements, a gap of opportunity could be located in a tradeoff between commercial 

protection and academic diffusion together with research and development. 

The main achievements in the instrumentation layer are related to integrated 

process and control design: it has been shown that the potential benefits of early testing 

of instrumentation and basic control loops are considerable. Specifically, the following 

instrumentation adopted and or changed during the experimental phases, proves to be 

more appropriate for the purposes of this work: 

• Magnetostrictive double float sensors for both pulp level and froth level over the lip 

measurements. In case of pulp level and with respect to former technology (ultrasonic 

with float), the repeatability is around 25% greater, the response time is around 50% 

lower and the air gap is almost 100% greater, avoiding maintenance problems. 

• Density electro tomography instrumentation that could eventually replace the almost 

always trouble-makers’ nuclear density transmitters. The performance achieved is 

comparable. The single fact of having an alternative to nuclear technologies is an 

advantage by itself. The tradeoff that have to be made is related to the fact that nuclear 

densitometers are not invasive, but electro tomography ones are pool-pieced and need a 

bypass for maintenance purposes if an operational disruption is not wanted. 
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But, the following instrumentation needs further attention: 

• Concentrate flow area velocity instruments play a good role in terms of mass pull 

control, it’s a promising technology but need further work 

• Density electro tomography instrumentation that could eventually replace the almost 

always trouble-makers’ nuclear density transmitters, also need further work. 

Regarding virtual sensors: 

• Both sunken cell and pulping cell work very well and additionally point out to an 

important abnormal situation that needs to be fixed. 

• Regarding froth stability indices, the multiplication of variabilities shows a strong 

non-linear behavior and seems that more data analytic work is needed. The other one, 

that uses Hadler & Cilliers formula is an excellent index and also behaves fairly well 

regarding cell optimization through peak air recovery method. 

• Concentrate grade and mass pull virtual sensors behaves fairly enough in terms of 

regulatory control but need more work. 

7.3. ADVANCED CONTROL STRATEGY AND OPTIMIZATION 

Both human and artificial intelligence are used in this thesis to support the 

design of high efficient flotation plants. An integrated approach supports the decision 

towards advanced control strategies. 

Related to particular objective 2, the overall control strategy results are 

promising. The control structure and its associated control strategies behave fairly well 

regarding disturbance rejection, especially against mineralogical and hydrodynamic 

variabilities in the feed. A hierarchical MPC-based control structure adds value 

supporting high efficient flotation processes. 

In relation with specific MPC algorithms, the adaptive MPC for levels shows a 

great performance in profiling-tracking. The adaptive MPC using data driven and 

parametric models behave fairly well and better than standard non-adaptive MPC in 

profiling-tracking. For further discussion, the use of symbolic analytic methods as a 

good field for further investigation is proposed herein. 
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Given certain pre-defined economic assumptions, estimated results are obtained 

for the simulated industrial scenario: almost 40 percent reduction of capital 

expenditure (Capex), with almost the same operational expenditure (Opex). Almost 

80% of Capex reduction is attributable to integrated process control design and model 

based methodologies; more than 12% comes from improvements in basic cell controls 

and instrumentation; 5% comes from advanced control and less than 3% comes from 

optimization. Although, it´s fair to note that capital expenditure for each mentioned 

item, are also in detrimental proportion.  

The control structure provides good disturbance rejection against feed 

variabilities. Regarding the orchestrator, it provides smooth and logical transitions 

between control modes as well as good abnormal situation management. 

8. CONCLUSSIONS AND FINAL REMARKS 

In addition to the intrinsic value of the applications themselves, the experimental 

work phases are used afterwards for process simulation framework calibration and 

validation. Experiments are still indispensable for designing. They are not in 

competition with simulation methods; both approaches are ideal complements to each 

other. Experimental work is the main tool for all the applications: flotation cells 

modeling, technology selection and, advanced control and optimization strategy. 

Regarding the usage of row-based instrumentation for less cells than nominal, it 

can be said that: in spite of the fact that currently appears to be non-affordable, this 

study sets the question about the further usage of instrumentation for pilot and for 

industrial phases. There is also a coincidence with the work of Maldonado (2011) 

regarding the usage of intermediate cells’ measurements to increase the metallurgical 

performances. 

The advanced control layer demonstrates an excellent performance of the 

symbolic based model predictive control (MPC) for levels, specifically when it turns into 

profiling mode where the adaptive MPC has to demonstrate its tracking capabilities. 

This shows an example where, having the chance, it’s worth the effort an analytical 

model approach. The individual cells’ MPC’s show modal and performances differences 

between the two types of mechanical cells. Virtual sensors for sunken and pulping cells 

are successfully tested. Regarding virtual sensors for mass pulls and concentrate grades, 

in spite that both behave fairly well for control purposes, further future work is needed. 
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In order to further capture the value of the work herein done, the following 

future works are proposed as discussion bullets: industrial testing; evolution from 

“framework-like” simulator to a “commercial like” simulator; interdisciplinary work 

with mechanical engineers regarding impellers, using, for example, adimensional 

numbers and/or computer fluid dynamics; geometallurgical and geostatistics 

interdisciplinary work related to clays/cells interaction and data mining related to 

FGU’s parameters; statistics interdisciplinary work related to blends’ kinetic parameters 

distribution and, the use of a linear transformation in order to obtain a summative 

space to manage the variability results; software engineering interdisciplinary work to 

develop a user friendly simulator and, also, a license free software platform; economics 

interdisciplinary work in order to match economic versus technical optimality. 

As final comment, it’s worth to mention that together with the end of this 

thesis, “Ministro Hales”, CODELCO’s newest mine, accomplishes around one year 

of full remote operations across all the production chains (Tapia, 2017), from a 

central control room located in Santiago, about 2 thousands of kilometers far away 

from Santiago. This kind of achievement is only possible with an extensive usage of 

MPC, as far as it is almost impossible to manage remotely the huge amount of 

control loops with no slow dynamics, without the support of “cruise control” as they 

call MPCs algorithms. Therefore, industrial expectations for MPC have increased 

from providing superior control for multivariable systems to doing so with 

minimum set-up effort and ease of maintenance. In today’s process industries, MPC 

is often considered a required solution for many applications. 

  



93 

BIBLIOGRAPHY  

Alves dos Santos, N., Savassi, O.N., Clark, A. E., Henriquez, A., 2014: Modelling 

flotation with a flexible approach – integrating different models to the compartment 

model, Minerals Engineering 66–68, 68–76. 

Araujo, A.C., Viana, P.R.M., Peres, A.E.C., 2005: Reagents in iron ores flotation Original 

Research Article Minerals Engineering, Volume 18, Issue 2, Pages 219-224  

Arbiter, N. and Harris, C.C. 1962: Flotation kinetics. In: D.W. Fuerstenau (Editor), 

Froth Flotation. AIME, New York, NY, pp. 215-262. 

Aske, E.M., 2009: Design of plant wide control systems with focus on maximizing 

throughput, Department of chemical engineering, Norwegian university of science and 

technology, PhD Thesis. 

Bemporad, A., Morari, M., Lawrence, N, 2016: “Model Predictive Control Toolbox™ 

Reference Guide”, The Mathworks, Inc.3 Apple Hill Drive Natick, MA 01760-2098 

Bergh, L. and, Yianatos, J.B., 2009: Integrating separability curves to expert control 

systems of flotation plants, In: Proceedings of the VI International Mineral 

Brooks, A., 1991: Intelligence without representation, Artificial Intelligence, 47, 139–

159. 

Buckley, P.S., 1964: Techniques of Process Control, Wiley, New York. 

Camacho, E. F. and Bordons, C., 2004: Model Predictive Control, 2nd edition, New 

York: Springer-Verlag. 

Cameron, I. and Hangos, K., 2001: Process Modelling and Model Analysis, Academic 

Press Dictionary of Science and Technology, Edited by Christopher G. Morris. 

Chachuat B., Srinivasan, B., Bonvin, D., 2009: Adaptation strategies for real-time 

optimization. Computers and Chemical Engineering, 33(10), 1557–1567. 

Cutting G.W. and Devinish, M., 1975: A steady-state model of flotation froth structures, 

Soc. Min. Eng., AIME, Annu. Meeting, New York, Feb. 16-20, 1975. Preprint 75-B.56. 



94 

Downs, J.J., Skogestad, S., 2011: An industrial and academic perspective on plant wide 

control, Annual Reviews in Control 35 (1), 99–110. 

Edgar, T.F., 2004: Control and operations: when does controllability equal 

profitability? Computers and Chemical Engineering, 29 (1), 41–49. 

Froisy, J.B., 1994: Model predictive control: past, present and future, ISA Transactions, 

33, 235–243. 

García-Zúñiga, H., 1935: Flotation recovery is an exponential of its rate, Boletín Minero 

de la Sociedad Nacional de Minería, Chile 47, 83–86. 

Goodwin, G., Seron, M., Mayne, D., 2008: Optimization opportunities in mining, metal 

and mineral processing, Annual Reviews in Control 32, 17–32. 

Gorain, B.K., Franzidis, J.P. and, Manlapig, E.V., 2000: Flotation cell design: 

Application of fundamental principles, in "Encyclopedia of Separation Science, Vol II, 

Academic Press, pp 1502-1512, 2000. 

Hadler, K., Cilliers, J.J., 2010: The relationship between peak in air recovery and 

flotation bank performance, Minerals Engineering 22, 451–455. 

Hanumanth, G.S., and Williams, D.J., 1992: A three-phase model of froth flotation, 

International Journal of Mineral Processing, 34:261-273. 

Harris, C.C., Jowett, A. and, Ghosh, S.K., 1963: Analysis of data from continuous 

flotation testing. Trans. Amer. Inst. Min. Eng., 226: 444-447. 

Harris, C.C. and Rimmer, H.W., 1966: Study of two-phase model of the flotation 

process. Transactions of the Institution of Mining and Metallurgy, 75: C153-162. 

Jovanović, I. and Miljanović, I., 2015: Contemporary advanced control techniques for 

flotation plants with mechanical flotation cells – A review, Minerals Engineering 70, 

228–249. 

Kämpjärvi, P., Jämsä-Jounela, L.J., 2003:  Level control strategies for flotation cells’, 

Minerals Engineering, 16, 1061–1068. 



95 

Klimpel, R. 1980, Selection of chemical reagents for flotation, in Mular, A.L. and 

Bhappu, R. (editors), Mineral Processing Plant Design, 2nd edition 907–934 (SME, 

Littleton, USA). 

Liu, J.J. and MacGregor, J. F., 2008: Froth-based modeling and control of flotation 

processes, Minerals Engineering 21, 642–651. 

Ljung, L., 1990: System Identification: Theory for the User, Prentice Hall, Second 

Edition, ISBN:  9780136566953, Ch. 1 pp. 3-7, Ch. 3 pp. 51-65, Ch. 4 pp. 81-105. 

Luyben, W. L., 1990: Process Modeling, Simulation and Control for Chemical 

Engineers, 2nd Ed., McGraw Hill. 

Malcolm, A., Polan, J., Zhang, L., Ogunnaike, B.A. and, Linninger, A.A., 2007: 

Integrating systems design and control using dynamic flexibility analysis. AIChE J. 53 

(8), 2048–2061. 

Maldonado, M., Sbarbaro, D., Lizama, E., 2007: Optimal control of a rougher flotation 

process based on dynamic programming, Minerals Engineering 20, 221–232. 

Maldonado, M., Araya, R., Finch, J., 2011: Optimizing bank performance by recovery 

profiling, Minerals Engineering 24, 939–943. 

Matzopoulos, M., 2011: Dynamic Process Modeling: Combining Models and 

Experimental Data to Solve Industrial Problems, Process Systems Engineering, 7, 3-20, 

ISBN: 978-3-527-31696-0. 

McKee, D.J., 1991: Automatic flotation control – a review of 20 years of effort, Minerals 

Engineering, 7-11, 228–249. 

Meyer, B., 1997: Object-Oriented Software Construction, Prentice Hall, Second Edition, 

ISBN:  978-0136291558, Ch. 1 pp. 1-5, Ch. 2 pp. 21-24, Ch. 3 pp. 39-41. 

Ogunnaike, B.A., Ray, W.H., 1994: Process Dynamics, Modeling and Control. Oxford 

University Press, New York. 



96 

Polat M., Chandler, S., 2000: First order flotation kinetics models and methods for 

estimation of the true distribution of flotation rate constants, International Journal of 

Mineral Processing 58, 145-166. 

Putz, E., Cipriano, A., 2015: Hybrid model predictive control for flotation plants, 

Minerals Engineering 70 (2015) 26–35. 

Qin, S.J., Badgwell, T.A., 2003: A survey of industrial model predictive control 

technology. Control Engineering Practice, 11 (7), 733–764. 

Rawlings, J. B. and, Mayne, D. Q., 2015: Model Predictive Control: Theory and Design, 

Ed. Nob Hill Pub, ISBN-13: 978-0975937709. 

Rawlings, J.B. & Stewart, B.T., 2007: Coordinating multiple optimization-based 

controllers: new opportunities and challenges. In DYCOPS, Cancun, Mexico, June 

2007. 

Rojas, D., Cipriano, A, 2011: Model based predictive control of a rougher flotation 

circuit considering grade estimation in intermediate cells. Dyna 78 (166), 29–37. 

Rossiter, J. A., 2004: Model-Based Predictive Control: A Practical Approach, CRC 

Press. 

Savassi, O.N., 2005: A compartment model for the mass transfer inside a conventional 

flotation cell, International Journal of Mineral Processing, 77:65–79. 

Seguel, F., Soto, I., Krommenacker, N., Maldonado, M., Becerra, N., 2015: Optimizing 

flotation bank performance through froth depth profiling: Revisited, Minerals 

Engineering 77, 179–184. 

Singh, N., Finch, J.A., 2014: Bank recovery and separation efficiency, Minerals 

Engineering 66–68, 191–196. 

Skogestad, S., 2004: Control structure design for complete chemical plants, Computers 

and Chemical Engineering, 28 (1–2), 219–234. 



97 

Stephanopoulos, G., Reklaitis, G.V., 2011: Process systems engineering: from solvay to 

modern bio- and nanotechnology, a history of development, successes and prospects for 

the future, Chemical Engineering Science, 66, 4272–4306. 

Schulze, H.J. (1984). Physio-chemical Elementary Processes in Flotation, Elsevier 

Science Publishing Co., Amsterdam. 

Tao, G., 2014: Multivariable adaptive control: A survey, Automatica 50, 2737–2764. 

Tapia, J., 2017: Ministro Hales avanza en su operación remota, Revista de Minería 

Chilena, N°428, 35-43. 

Trahar W.J., Warren, L.J., 1976: The floatability of very fine particles—A review, Int. 

Journal of Mineral Processing, Volume 3, Issue 2, June 1976, Pages 103-131. 

Wills, B. A., 2006, Mineral Processing Technology, Elsevier Science & Technology 

Books, 7th edition, ISBN: 0750644508, chapter 4: Particle size analysis, pp. 90-107, 

and chapter 12; Froth Flotation, pp. 267-352. 

Yianatos J.B., 2007a: Fluid flow and kinetic modelling in Flotation related processes 

Columns and Mechanically Agitated Cells - A Review, Chemical Engineering, Vol 85 

(A12) 1591–1603. 

Yianatos, J.B. and Henriquez, F., 2007b: Boundary conditions for gas rate and bubble 

size at the pulp-froth interface in flotation equipment, Minerals Engineering, 20: 625–

628. 

Yianatos, J.B., Bergh, L.G., Tello, K., Dıaz, F and, Villanueva, A., 2007c: Residence time 

distribution in single big industrial flotation cells, Miner. Metal. Process J. 


