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EXPLAINING INVESTMENT DYNAMICS IN U.S.
Ž .MANUFACTURING: A GENERALIZED S, s APPROACH

BY RICARDO J. CABALLERO AND EDUARDO M. R. A. ENGEL1

In this paper we derive a model of aggregate investment that builds from the lumpy
microeconomic behavior of firms facing stochastic fixed adjustment costs. Instead of the

Ž .standard sharp S, s bands, firms’ adjustment policies take the form of a probability of
Ž .adjustment adjustment hazard that responds smoothly to changes in firms’ capacity gap.

The model has appealing aggregation properties, and yields nonlinear aggregate time
series processes. The passivity of normal times is, occasionally, more than offset by the
brisk response to large accumulated shocks. Using within and out-of-sample criteria, we
find that the model performs substantially better than the standard linear models of
investment for postwar sectoral U.S. manufacturing equipment and structures investment
data.

KEYWORDS: Investment, adjustment costs, adjustment hazard, aggregation, heterogene-
ity, lumpiness, nonlinear time series.

1. INTRODUCTION

Minor upgrades and repairs aside, investment projects at the plant level are
intermittent and lumpy rather than smooth. This is starkly documented in Doms

Ž .and Dunne 1993 . They use the Longitudinal Research Datafile to study the
Ž .investment behavior of 12,000 continuing and large U.S. manufacturing estab-

Ž .lishments for the seventeen year period from 1972�1988, and find that: i more
than half of the establishments exhibit capital growth close to 50 percent in a

Ž .single year, and ii over 25 percent, and perhaps as much as 40 percent, of an
average plant’s gross investment over the seventeen year period is concentrated
in a single year�project.2, 3

Since this basic feature of microeconomic data is seldom considered in
empirical investment equations, it perhaps should come as no surprise that
success in estimating and testing investment equations is so rare.4 At a broad
level, our goal in this paper is to develop and test a framework to study the
dynamic behavior of aggregate investment, subject to the constraint that it

1 We are grateful to Olivier Blanchard, Whitney Newey, James Stock, an editor, three anonymous
referees, and seminar participants at Brown, CEPR-Champoussin, Chicago, Columbia, Econometric

Ž .Society Meetings Caracas and Tokyo , EFCC, Harvard, IMPA, LSE, NBER, Princeton, Rochester,
Ž .SITE, Toronto, U. de Chile, and Yale for their comments. Financial support to Caballero from the

Ž . Ž .National Science and Sloan Foundations and to Engel from FONDECYT Grant 195-510 and the
Ž .Mellon Foundation Grant 9608 is gratefully acknowledged.

2 Since plants’ entry is excluded from their sample, these statistics are likely to represent lower
bounds on the degree of lumpiness in plants’ investment patterns.

3 We use the word ‘‘project’’ to emphasize the fact that the actual implementation of a project
may cover more than a year-observation; realistic time-to-build aspects of investment are not in
contradiction with the view that investment episodes are lumpy in nature.

4 Ž .See Chirinko 1994 for a survey of the empirical investment literature.
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builds up from microeconomic units generating the lumpy and intermittent
pattern observed in microeconomic data.

Ž .Achieving such a goal requires three methodological ingredients: i a micro-
Ž . Ž .economic model of lumpy adjustment; ii an aggregation procedure; and iii an

Ž . Ž .estimation and testing method that is not only consistent with i and ii , but
also able to highlight the impact of the proposed microeconomic model on
aggregate dynamics.

Ž .As in the standard S, s literature, our microeconomic model generates
lumpy behavior through the presence of a fixed cost of adjusting the firm’s
capital stock. Unlike this literature, the fixed cost is random so the ‘‘inaction

Ž .range’’ is no longer fixed over time and across firms . The optimal policy still
takes a simple form under standard assumptions about the stochastic process of
exogenous variables: let z denote the log-difference between a firm’s actual and

Ž .frictionless i.e., in the absence of adjustment cost stock of capital, and let � be
a random variable indexing the adjustment cost faced by the firm at some point

Ž .in time, with distribution G � . The solution to the firm’s problem yields a
Ž .function � z that represents the maximum realization of � for which a firm

with imbalance z chooses not to adjust. For any smaller �, firms adjust fully.
Removing conditioning on �, on the other hand, yields an adjustment hazard

Ž .function � z that describes the probability that a firm with imbalance z adjusts.
Ž .Since it varies smoothly with z, this probabilistic S, s -type rule is more
Ž .amenable to aggregation than the standard fixed-bands S, s model and, more

importantly, has the virtue of nesting a wide variety of models. At the extremes,
Ž . Ž .when G � degenerates into a spike we recover the S, s model, while when it

becomes a distribution with plenty of mass at very low values of � and the
remaining mass at very high adjustment costs, we approximately recover a model

Ž .with linear aggregate dynamics the standard partial adjustment model .
Firms’ actions are not perfectly synchronized. On one hand, at any point in

time adjustment costs differ across firms. On the other, differences in initial
conditions, idiosyncratic shocks, and previous actions, yield a nondegenerate

Ž .cross-sectional density of capital imbalances, f z, t , at all times. Aggregation
proceeds in two steps, both under the assumption of a large number of firms:
First, within each z, the microeconomic adjustment hazard now represents the
fraction of units with that imbalance that choose to adjust at any given moment
in time. Second, to obtain aggregate investment we integrate these adjustments
across z, using as measure the current cross-sectional density. In order to
describe the dynamic path of aggregate investment we characterize the path of
Ž .f z, t which, under our assumptions, is Markovian with a transition operator

that depends on the realization of aggregate shocks.
Ž .We make fairly flexible distributional assumptions about aggregate shocks

Ž .and estimate the model by Maximum Likelihood using aggregate two-digit U.S.
manufacturing investment�capital ratios for the period 1948�1992. We find

Ž .clear evidence in favor of our generalized S, s model, both in terms of within
sample criteria and out-of-sample predictive power. Our structural interpreta-
tion of these nonlinearities indicates that fixed adjustment costs faced by firms
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are large. Although important for both, these features are more pronounced for
structures than equipment. When compared with standard linear models, the
forecasting accuracy of the model we postulate is substantially improved.

One of the main mechanisms by which aggregate dynamics generated by the
Ž .S, s type model differ from their linear counterparts, is that the number of
active firms changes over the cycle�a point emphasized by Bar-Ilan and

Ž . Ž .Blinder 1992 . Doms and Dunne 1993 confirm the importance of this mecha-
nism by showing that the number of plants going through their primary invest-
ment spikes, rather than the average size of these spikes, tracks closely aggre-
gate manufacturing investment over time. Consistently, and depending on the
specific sequence of preceding events, the nonlinear model we estimate has the
potential to generate brisker expansions than its linear counterparts. It is also
this feature that largely explains its enhanced forecasting properties.

Beyond the empirical findings on investment and its integrative nature, this
paper has two specific methodological contributions to the new literature on
nonconvex adjustment costs and lumpy actions.

On the microeconomic side, there have been several developments on models
Ž Ž . . 5of lumpy and intermittent adjustment the S, s literature . As we discussed

above, here we extend these models so the adjustment trigger barriers vary
randomly across firms and for a firm over time. This modification is a first step
toward introducing the realistic and empirically important feature that units do
not always wait for the same stock disequilibrium to adjust, and that adjustments
are not always of the same size across firms and for the same firm over time,
while preserving a fairly parsimonious aggregation setup.

More recently, there have also been developments of empirical models of
aggregate dynamics with heterogeneous microeconomic units adjusting intermit-
tently.6 Econometric implementation of these models, however, has required

Ž .observing or estimating separately in an often debatable first stage a measure
of the exogenous component of the aggregate driving force. Our nonlinear time
series procedure does not require the first stage; it only requires information on
the aggregate investment series itself and on the generating process of the

Ž .driving force but not its realization . Somewhat analogously with the standard

5 Ž .See Harrison, Selke, and Taylor 1983 for a technical discussion of impulse control problems.
For a good survey of the economics literature�although with an emphasis on models where

Ž .investment is infrequent but not lumpy�see Dixit and Pindyck 1994 . More closely related to a
Ž .special case of ours is Grossman and Laroque’s 1990 model of consumer durable purchases.

6 Ž . Ž . Ž . ŽBlinder 1981 , Bar-Ilan and Blinder 1992 , and Lam 1991 look at data on inventories the
. Ž . Ž .first one and consumer durables the other two under the organizing principles of S, s models.

Ž . Ž .Bertola and Caballero 1990 and Caballero 1993 provide a structural empirical framework and
Ž . Ž .estimate S, s models for consumer durable goods. Bertola and Caballero 1994 implement

empirically an irreversible investment model where microeconomic investment is intermittent but
Ž .not lumpy. Caballero and Engel 1992a, 1993a, 1993b estimate aggregate models of employment

Ž .and price adjustments when microeconomic units follow more general probabilistic microeconomic
adjustment rules but, contrary to the current paper, they do not derive these rules from a micro-
economic optimization problem.
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Žprocedure of estimating convex adjustment cost parameters from the first or
.higher order serial correlation of investment, we learn about more complex

lumpy adjustment cost functions from the structure of aggregate investment lags
and their changes over time.

The next section presents the basic model. It is followed by Section 3, which
describes the econometric method and presents our main empirical results.
Conclusions and extensions are discussed in Section 4. Several technical appen-
dices follow.

2. THE BASIC MODEL

2.1. O�er�iew

We model a sector composed of a large but fixed number of monopolistically
competitive firms. Each firm faces an isoelastic demand for its differentiated
product, which is produced with a Cobb-Douglas constant returns technology in
labor and capital. Both demand and technology are affected by multiplicative
shocks described by a joint geometric random walk. These shocks have firm

Ž .specific and sectoral aggregate components that we specify later. We work in
discrete time.

The sector faces infinitely elastic supplies of labor and capital. We choose the
Ž .price of the latter as numeraire and let the wage relative to the price of capital

follow a geometric random walk process, possibly correlated with demand and
technology shocks. Firms can adjust their labor input at will but suffer a loss
when resizing their stock of capital. Since our aim is to capture firms’ infrequent
and lumpy investment, we assume this loss takes the form of a fixed cost, which
can be interpreted either as an index of the degree of specificity of firms’ capital,
or as a secondary market imperfection if machines or structures are replaced, or
as a reorganization cost associated with putting new capital to work. In order to
capture some of the time series and cross-sectional heterogeneity in these fixed
costs, we let the extent of the loss due to adjustment vary randomly over time as
firms may, for example, find better or worse matches or uses for their old
machines, or may face reorganizations of different degrees of difficulty.

Ž .As in standard S, s models, the resulting microeconomic policy is one of
inaction interspersed with periods of large investment or disinvestment. As in
standard search models, at each point in time the firm decides whether to
‘‘accept’’ the currently offered fixed adjustment cost or to postpone adjustment
and draw a new adjustment cost next period. The interaction between these two

Ž .mechanisms implies that, more realistically than in standard S, s models, the
size of adjustments varies both across firms and over time for the same firm.
During a given time period, firms with identical shortages or excesses of capital
act differently. Over time, the same firm reacts differently to similar disequilib-
ria in its stock of capital.
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Intuitively, the largest adjustment cost a firm is prepared to tolerate without
adjusting its capital stock decreases with the extent of its capital stock imbal-
ance. If the distribution of adjustment costs is nondegenerate, this implies that
the probability that a firm adjusts for a given disequilibrium�a concept we
describe as the firm’s adjustment hazard�increases smoothly and monotonically
with the firm’s disequilibrium in its stock of capital.7

Since we assume the number of firms is large and adjustment costs are
independent across firms, the adjustment hazard described above characterizes
actual sectoral investment at each point in time. Given firms’ capital imbalances
at the beginning of a period, the fraction of units resizing their stock of capital is
determined by the adjustment hazard. Sectoral investment is the sum of the
products of the adjustment hazard and the size of the investment undertaken by
those firms that decide to adjust. Equivalently, it is the sum of the expected
investment by firms, conditional on their capital stock imbalances before adjust-
ing their capital stock.

Sectoral investment depends critically on the number of firms at each position
in the space of capital imbalances, thereby motivating our focus on the cross-sec-
tional density of disequilibria. The dynamics of sectoral investment are deter-
mined by the evolution of this density. The path of this density is driven by
the interaction of sectoral, firm specific, and adjustment cost shocks with the
history of shocks and actions contained in previous cross-sectional densities of
disequilibria.

2.2. The Firm

Net Profits

When the firm is not investing, its flow of net profits is

Ž . Ž . � Ž .1 � K , � �K �� r�	 K ,

where K is the firm’s stock of capital, � is a geometric random walk shock to the
profit function that combines demand, productivity, and wage shocks, r and 	
are the discount and depreciation rates, and � is a parameter that is less than
one, capturing our assumption of decreasing marginal profitability of capital,
either due to decreasing returns in the technology or the presence of some
degree of monopoly power.8 For mathematical convenience, we have written the

7 Ž .This should be contrasted with its two limiting cases: the standard S, s model, where the
probability of a firm adjusting jumps from zero to one at the trigger points, and the standard linear
partial adjustment models, where this probability is independent of the size of the firm’s disequilib-
rium.

8 For concreteness, let the production function be Cobb-Douglas and homogeneous of degree one
with respect to capital and labor, with capital share 
�1. Let the demand faced by the firm
be isoelastic, with price elasticity minus �, 1����. It follows from these assumptions that ��
Ž . Ž Ž ..
 ��1 � 1�
 ��1 �1.
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FIGURE 1

Ž .profit function net of flow payment on capital, r�	 K, where the latter
represents the irrevocable commitments associated to purchases of capital.9

It is useful to replace � in the profit function by a variable with more
economic content. We do this by defining the frictionless stock of capital of the

� Ž .firm, K , as the solution of the maximization of 1 with respect to capital, so
that

�� K� Ž1�� . ,

Ž . Ž .where � r�	 ��. Substituting this expression into 1 , and defining the
disequilibrium variable

Ž � .z� ln K�K ,

allows us to rewrite the profit function as

Ž . Ž � . Ž . � Ž � z z . �2 � z , K �� z K � e ��e K .

Ž .Figure 1 illustrates, and equation 2 implicitly defines, profits per unit of
Ž . 10frictionless capital, � z .

9 Since there are neither borrowing constraints nor bankruptcy options, the solution to the firm’s
problem is unchanged by replacing flow payments for a lump sum payment at the time of purchase.
That is, conditional on buying new capital, all that matters to the firm is the present discounted
value of payments, not when these payments take place.

10 The parameters used to generate this figure are ��0.4, r�0.06, and 	�0.1.
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Adjustment Costs

When investing, a firm not only commits to pay for the capital acquired, but
also incurs adjustment costs. Since we wish to capture the intermittent and
lumpy nature of firms’ investments, we require these costs to exhibit some form
of increasing returns. There are many ways to do so. One possibility is to follow

Ž .Grossman and Laroque 1990 , and assume the firm sells its old stock of capital
at a discount when replacing it by a new one. An alternative, with similar
implications for our purposes, is to assume firms must shut down operations for
a fixed period of time when replacing capital. In the latter case, which is the one
we pursue, the firm incurs an adjustment cost proportional to foregone profits
due to reorganization:11

� Ž . Ž . 4 �Adjustment Cost�� � K , � � r�	 K �� K � ,

where � represents the fraction of profits foregone due to the capital stock
Ž .adjustment. A derivation similar to the one that led to 2 allows us to rewrite

the adjustment cost in terms of z and K� :

Adjustment Cost�� e � z�
K � ,

where z� denotes the capital imbalance immediately before adjustment.
Ž .Rather than treating � as fixed�as in standard S, s type models�we let it

Ž .be a random variable with a distribution function, G � , independent across
firms and over time, whose realization is observed at the beginning of each
period. With this slight generalization of the standard fixed cost framework we
capture�in an admittedly stylized form�two realistic features: heterogeneity
in adjustment costs at any point in time, and time variation in these costs for any
given firm.12 More importantly, it will be apparent in Section 3 that this
extension gives us an important degree of flexibility when estimating aggregate
investment equations.

Microeconomic Adjustment

Given the increasing returns nature of the adjustment cost technology, the
optimal policy is obviously not one of continuous and small investments but
rather one of periods of inaction followed by occasional lumpy investment.
Therefore, the firm’s problem can be characterized in terms of two regimes:
action and inaction. Finding a solution to the firm’s problem is equivalent to

Ž .characterizing the partition of �, z -space into these two regions and specifying
firms’ actions when located in the region where they act. In what follows we

11 Ž .See, e.g., Cooper and Haltiwanger 1993 for a model where the main cost of reorganization is
its opportunity cost.

12 A more realistic formulation would let adjustment costs exhibit some persistence at the
individual level. It would also allow for a distribution of adjustment costs that depends on aggregate
conditions. We do not incorporate these features into our model because they complicate substan-
tially both the microeconomic and aggregation problems.
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present the basic steps involved in finding this solution. In Appendix A we
discuss the technical aspects and intermediate steps of the solution in more
detail.

Inheriting the stochastic properties of � , K� follows a geometric random walk
Ž .with drift :

K� �K� e � t ,t t�1

where � is i.i.d. and, throughout most of the paper, Normal. This implies thatt
Žwhen there is no adjustment, z follows a random walk with drift and Normalt

.innovations . Together with the i.i.d. nature of �, this assumption ensures that
the firm’s decision on whether to adjust its capital stock in period t, and if so by

Ž � .how much, is fully determined by the vector z , K , � , which we refer to ast t t
the ‘‘state of the firm.’’ The value of a firm with before-adjustment-disequi-

� Ž .librium z, frictionless stock of capital K , and current adjustment cost
� Ž � .parameter ��which we denote by V z, K , � �is the maximum of the value
Ž � .of the firm if it does not adjust, V z, K , and the value if it does adjust,

Ž � . � z � ŽV c, K �� e K , where c is the optimally determined return point see
.below . In short:

Ž . � Ž � . � Ž � . Ž � . � z t � 43 V z , K , � �max V z , K , V c, K ��  e K .t t t t t t t t

The evolution of the value of a firm that does not adjust in the current period is
described by

�1� � � �Ž . Ž . Ž . Ž . � Ž .�4 V z , K �� z K � 1� r E V z , K , � .t t t t t t�1 t�1 t�1

Since the profit and adjustment cost functions are homogeneous of degree one
� Ž � .with respect to K , given z, so are the value functions V z, K and

� Ž � .V z, K , � . This allows us to reduce the number of state variables by relating
Ž .the problem in terms of the value per unit of frictionless capital. Let � z �

Ž � . � � Ž . � Ž � . �V z, K �K and � z, � �V z, K , � �K . Dividing both sides of equa-
Ž . Ž . �tions 3 and 4 by K , and noting that

K�
t�1 �� z t� 1Ž .� 1�	 e ,�Kt

yields

Ž . � Ž . � Ž . Ž . � z t 45 � z , � �max � z , � c ��  e ,t t t t

� �� z t� 1Ž . Ž . Ž . Ž .6 � z �� z �� E � z , � e ,t t t t�1 t�1

Ž . Ž .with �� 1�	 � 1� r . Figure 2 depicts in an example the basic setup devel-
13 Ž . Ž . � z � Ž .oped up to now. This figure shows how � z , � c �� e , and � z, �

13 Parameters: ��0.4, r�0.06, 	�0.1; the mean and standard deviation of the logarithm of K�
i

are 0 and 0.1; the distribution of adjustment costs is Gamma with mean 0.17 and coefficient of
variation 0.16. All the numbers are broadly consistent with our estimates and assumptions in the
empirical part of the paper.
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FIGURE 2

determine the trigger points, given a particular realization of the adjustment
cost. The solid line illustrates the value of a firm that does not adjust in the
current period. The dashed line represents the value of a firm that decides to
adjust, given a realization of �. The maximum between both lines describes

� Ž .� z, � , and the inaction range�for a given ��corresponds to the interval
between the intersection of the two lines.

It follows directly from maximization of the value of a firm that decides to
Ž . � zadjust, � c �� e , with respect to the return point c, that the maximum of

Ž . � Ž .� z and � z, � is obtained at z�c and that this return point is independent
of the initial disequilibrium.14

Ž .The solution also can be characterized by the policy function, � z , defined
as the largest adjustment cost factor for which the firm finds it advantageous to
adjust given a capital imbalance z. From the value matching condition that

Ž .equates the two terms on the right-hand side of equation 5 , it follows that

Ž . Ž . �1 �� z Ž Ž . Ž ..7 � z � e � c �� z ,

14 Ž .Proposition A1 in Appendix A shows that the Bellman equation obtained by substituting � zt
Ž . Ž .from 6 into 5 has a unique solution, which is continuous and bounded. Even though the functions

Ž .� z we obtained via value iteration when performing estimation always had a unique maximum, we
have been unable to show this generally. It follows that, strictly speaking, the return point c should

Ž .be interpreted as one of the points where � z attains its maximum, say the smallest value. In
Proposition A5 we show that the set of maxima, and hence of possible return points, is finite.
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FIGURE 3A

Ž . Ž .which implies � c �0. Differentiating 7 with respect to z, evaluating the
�Ž .result at z�c, and using the first order condition � c �0, yields the additional

�Ž .‘‘smooth pasting’’ condition � c �0.
Ž .Figure 3a illustrates the function � z for the example in Figure 2, where the

Ž .distribution of adjustment costs is a Gamma. As follows from equation 7 , if the
firm’s disequilibrium is close enough to z�c, it will only adjust for arbitrarily

Ž . � �small adjustment costs. From then on, � z increases with z�c .
Ž . Ž . Ž .Figure 3b depicts the inverse of the function � z . We label L � and U �

the segments of the curve below and above c, respectively. These functions
correspond to the maximum shortage and excess of capital tolerated by the firm
for any given realization of the adjustment cost factor �. That is, for any fixed

Ž . 15�, they describe a standard L, c, U policy. The area enclosed by the two
curves corresponds to the combinations of disequilibria and adjustment cost
factors for which the firm chooses not to adjust.16

Ž . Ž Ž . Ž ..The shape and location of the function � z and its inverse, L � , c, U � ,
Ž .depend on the entire distribution of adjustment cost factors, G � . A given

realization of the adjustment cost factor will not generate the same inaction

15 Ž . Ž .An L, c, U policy corresponds to a two-sided S, s model. The notation L, U, and c stands for
Ž .lower bound, upper bound, and ‘‘center,’’ respectively. See Harrison et al. 1983 .

16 Ž .Proposition A2 in Appendix A derives formally the existence of � z , and Proposition A3
shows that it is an analytic function, and therefore has derivatives of all orders. Proposition A4

Ž . � �shows that � z tends to infinity as z tends to infinity. Yet we have not been able to show that
Ž .� z is unimodal, and therefore have no formal proof that, conditional on �, the optimal policy is

Ž .of the L, c, U type. It should be noted, though, that all the policies obtained numerically when
estimating the parameters in Section 3 were unimodal.
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FIGURE 3B

Ž .range for different distribution functions G � . In particular, a low value of �
is more likely to lead to action when it comes from a distribution of adjustment
cost factors with a high rather than a low average value.

Adjustment Hazard, Expected In�estment, and Ergodic Density

Adjustment Hazard: Above we showed that for any given � the firm follows a
simple deterministic policy with respect to z: actions are taken only when z lies

Ž Ž . Ž ..outside the L � , U � interval, in which case investment occurs so as to bring
z back to c. With aggregation in mind, here we reduce the amount of informa-
tion contained in the policy. Rather than conditioning on �, we only use
information on its distribution and ask the question: what is the probability that
a firm with disequilibrium z adjusts?

The answer to this question is contained in what we call the adjustment
hazard. Let x�z�c denote a firm’s imbalance with respect to its target point.
A firm with deviation x adjusts only if the current adjustment cost is small

Ž Ž ..enough to make adjusting profitable i.e., if ��� x�c , which means that the
probability of a firm adjusting, conditional on its disequilibrium being equal to x
Ž .the adjustment hazard , is given by

Ž . Ž . Ž Ž ..8 � x �G � x�c ,

Ž .where G � denotes the cumulative distribution function for the adjustment
Ž .cost factor �. For example, if G � is a Gamma distribution with mean p� and
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variance p� 2, the adjustment hazard is
1 Ž .� x�c p�1 �� ��Ž .� x � � e d� .Hp Ž .� � p 0

Figure 4a shows the adjustment hazard function for three different gamma
distributions of adjustment cost factors. These distributions differ in their mean
and variances: the solid line corresponds to an exponential distribution
Ž .mean and standard deviation of 0.1 ; the long dashes correspond to a high

Ž .variance and mean distribution mean: 80; standard deviation: 282 , while
Žthe short dashes describe a low variance and mean distribution mean: 0.14;

.standard deviation: 0.044 . These examples illustrate the range of cases covered
by our setup. Figure 4a shows that when the variance of adjustment costs is low,

Ž .there is a range of adjustment costs where the firm almost never adjusts since
Ž . Ž .adjustment costs are almost never small enough to justify it; the standard S, s

Ž .�or L, c, U �case is an extreme version of this. Conversely, when the vari-
ance of adjustment costs is high, and so is their mean, the decision of adjust-
ment is largely motivated by the adjustment cost draw rather than by the firm’s
disequilibrium; in the limit, adjustment costs are independent of the firm’s
disequilibrium, yielding the standard linear partial adjustment model.

Ž .In Proposition B2 in Appendix B we show that � x is differentiable, with
Ž . Ž .� 0 �0 and lim � x �1.� x � ��

Ž .Expected In�estment: A firm with disequilibrium x has a probability � x of
adjusting its stock of capital and, if it does so, it invests

Ž c z . � Ž �x . z � Ž �x . Ž .e �e K � e �1 e K � e �1 K x .t t t

FIGURE 4A
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Thus the average investment of firms with disequilibrium x immediately before
adjusting their capital stock in period t is

Ž . � Ž . � � Ž .Ž �x . Ž .9 E I x x �� x e �1 K x .� t t

Figure 4b depicts expected investment corresponding to the hazards in Figure 4a
Ž Ž . .with K x �1 . The nonlinear-convex nature of expected investment is ant
important feature of the model, playing a key role in shaping aggregate invest-
ment dynamics. It says that incentives to invest rise more than proportionally
with a firm’s disequilibrium.17

Ergodic density: We conclude our characterization of microeconomic behavior
by stating that the disequilibria through which a firm goes over its lifetime, have
an invariant density. The formal proof, which also shows that convergence takes
place at an exponential rate, is given in Appendix B. The nonlinear nature of
microeconomic adjustment, with relatively small adjustment for small imbal-
ances, imprints the opposite pattern on the ergodic density: steeper hazards
translate into relatively less mass in the tails of the corresponding invariant
density in exchange for more mass in the regions of low values of the adjustment

Ž . 18hazard i.e., relatively platokurtic .

FIGURE 4B

17 This is a feature not shared by the standard quadratic adjustment cost model but it is certainly
not exclusive of models with fixed, or even nonconvex, adjustment costs.

18 Ž .The U.S. manufacturing plant level data studied in Caballero, Engel, and Haltiwanger 1995
revealed that the average observed distribution of disequilibria is considerably more platokurtic than
the average distribution of shocks affecting these plants.
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2.3. Sectoral In�estment

Sectoral In�estment and the Cross-Sectional Density
A A Ž . Ž . Ž .Let K , I , K x , and I x denote the aggregate sectoral stock of capitalt t t t

and gross investment, and the stock of capital and gross investment held by firms
Ž .with disequilibrium x at time t before adjustment .

Ž .Since adjustment cost shocks are i.i.d. across firms, it follows directly from 9
that

�xŽ . Ž . Ž . Ž . Ž .10 I x � e �1 � x K x ,t t

Ž .where K x denotes the average stock of capital of firms with imbalance x.t
Ž̃ .Letting f x, t denote the cross-sectional density of disequilibria just before

adjustments take place, we can obtain an expression for aggregate investment:

A �x ˜Ž . Ž . Ž . Ž .I � e �1 � x K x f x , t dx.Ht t

Dividing through by K A and rearranging terms, we obtain an expression fort
the aggregate investment�capital ratio:

I A
t �x ˜Ž . Ž . Ž . Ž .11 � e �1 � x f x , t dxHAKt

Ž .K xt�x ˜Ž . Ž . Ž .� e �1 � x �1 f x , t dx.H Až /Kt

AŽ . Ž Ž . .The second term on the right-hand side of 11 drops out if K x �K andt t
Ž �x . Ž .e �1 � x are uncorrelated. Since such an assumption simplifies computa-
tions substantially, we make it and obtain an approximate expression for the
aggregate investment�capital ratio:

I A
t �x ˜Ž . Ž . Ž . Ž .12 � e �1 � x f x , t dx.HAKt

In Appendix C we describe in detail the additional computational burden of
Ž . Ž .using 11 instead of 12 , and present the results of Monte Carlo simulations

showing that the cost of the approximation is only minor.19

Ž . Ž �x . Ž .It is apparent from 12 that since e �1 � x is generally nonlinear in x,
aggregate investment depends not only on the first but also on higher moments
of the cross-sectional distribution of disequilibria.

19 Ž .The results in Caballero, Engel, and Haltiwanger 1995 are reassuring on this respect. There
we used comprehensive establishment level data for U.S. manufacturing during the 70s and 80s, and
documented a very close empirical fit between the actual and approximate series during that period.
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The Linear�Partial Adjustment Extreme

An exception to the statement in the previous paragraph occurs when the
˜adjustment hazard does not depend on x, and f has most of its mass near x�0,

so that e�x �1��x. In that case

I A
t ˜Ž .13 ��� X ,0 tAKt

˜where � denotes the constant hazard, and X denotes the average disequilib-0 t
Ž .rium before adjustment. Equation 13 corresponds to the well known partial

Ž .adjustment model PAM , and also coincides with the standard linear equation
arising from the quadratic adjustment costs model. This is the only adjustment
hazard that does not require cross-sectional information on the right-hand side
of the aggregate investment equation. Indeed, a few steps of algebra allow us to

Ž . 20go from equation 13 to the standard expression:

I A I A
t t�1Ž . Ž . Ž .14 �� 	�� � 1�� ,0 t 0A AK Kt t�1

where � represents an aggregate shock, to be defined in the next paragraph.t

Sectoral Equilibrium and Cross-sectional Dynamics

Shocks to wages, demand, and productivity drive the dynamics of frictionless
capital. We decompose these shocks into sectoral shocks, � , and firm specifict
Ž .idiosyncratic shocks, � :t

K� �K� e� t�� t ,t t�1

which implies that when the firm does not adjust, the disequilibrium measure x
evolves according to

Ž .�x �� 	�� �� ,t t t

where capital depreciates at a rate 	 from one period to the next. We assume
these shocks are exogenous to the firm and the sector.

Between two consecutive periods, the cross-sectional distribution of disequi-
libria changes as a result of firms’ adjustments, depreciation, sectoral, and
idiosyncratic shocks. Since we are working in discrete time, it is important to
describe the timing convention we adopt for events within each period. We

20 Let k and k� denote the average of the logarithm of the pre-adjustment stock of capital andt t
� Ž A A .the frictionless stock of capital, respectively. We define � ��k , and note that �k � I �Kt t t t�1 t�1

�	 . Combining these two expressions with the fact that

˜ � � ˜X �k �k ��k ��k �Xt t t t t t�1

Ž .yields 14 .
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Ž .denote the cross-section density at the end of period t�1 by f x, t�1 .
Depreciation and the aggregate shock corresponding to period t follow, result-

Ž̃ .ing in the density f x, t . Next come adjustments, as determined by the hazard
Ž .function � x . Period t concludes with the idiosyncratic shocks. The final
Ž .density is f x, t , and the cycle starts again. Recalling that a positive shock leads

to a decrease in x, we can summarize this chain of events as follows:

˜Ž . Ž . Ž .15 f x , t � f x�	�� , t�1 ,t

˜Ž . Ž . Ž . Ž . Ž .16 f x , t � � y f y , t dy g �xH �

˜� Ž .� Ž . Ž .� 1�� x�� f x�� , t g �� d� ,H �

Ž .where g � is the probability density for the idiosyncratic shocks. The integro-�

difference equation describing the evolution of the cross-sectional distribution
Ž . Ž .from one period to the next follows directly from equations 15 and 16 :

Ž . Ž . Ž . Ž . Ž .17 f x , t � � y f y�	�� , t�1 dy g �xH t �

� Ž .� Ž . Ž .� 1�� x�� f x���	�� , t�1 g �� d� .H t �

Ž . Ž .From equations 12 and 15 we obtain the following aggregate investment
equation:

I A
t �xŽ . Ž . Ž . Ž .18 � e �1 � x f x�	�� , t�1 dx.H tAKt

Ž . Ž .Combining equations 18 and 17 we can determine the sequence of aggregate
Ž .investment determined by an initial cross-section distribution, f x, 0 , and a

� 4sequence of aggregate shocks, � . For details see Appendix C. We turn tot
estimation issues next.

3. EMPIRICAL EVIDENCE: U.S. MANUFACTURING INVESTMENT

3.1. Data

Our data are constructed from annual gross investment and capital series for
21 two-digit manufacturing industries from 1947 to 1992.21 All series are in 1987
dollars, and the stocks of capital correspond to the series used by the Bureau of
Labor Statistics for their productivity studies.22 Since capital stocks are end-of-
year, our measures of the investment�capital ratio used in estimation start in

21 We have 21 rather than 20 sectors because Motor Vehicles is separated from Transportation
equipment.

22 This is one of the three capital stock series reported by the Bureau of Economic Activity.
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1948. We report separate results for equipment and structures panels; each has
945 observations.

3.2. Econometrics

The econometric problem consists of estimating the parameters that charac-
Ž . Ž .terize a firms’ profit functions, b the initial distribution of disequilibria,

Ž . Ž .c the distribution of adjustment costs, d the distribution of idiosyncratic
Ž .shocks, and e the process generating aggregate shocks. In this subsection we

outline the main features of the estimation procedure; a detailed description is
presented in Appendix C.

For tractability, we limit the number of parameters being estimated to those
characterizing the distribution of adjustment costs or, equivalently, the hazard

Žfunction. As far as the remaining parameters, we either fix them profit function
.and distribution of idiosyncratic shocks , show that their role is limited within a

Ž .reasonable range initial distribution of disequilibria , or concentrate them out
Žof the likelihood function process generating sectoral shocks: individual effects

.and cross-sectoral variance-covariance matrix . Since identifying nonlinearities
Ž .from a purely time series as opposed to regressions dimension requires a large

number of observations, we impose a hazard function or a distribution of
Žadjustment costs that is common across sectors depending on whether we

.estimate a semi-structural or structural model�see below .
The sources of randomness in our estimation procedure are the sectoral

shocks, which we assume are multivariate Normal and independent over time,
for most of our empirical analysis.

We approximate the initial sectoral cross-sections by the invariant cross-sec-
tion of an individual plant, and proceed to use the Markovian nature of the
process generating cross-sectional distributions to generate these distributions.
For each sector, and at each date, the cross-sectional distribution is updated as a
function of the sectoral shock, using an implicit law of large numbers at the

Ž .microeconomic firm level. The observed sectoral investment rate is a nonlinear
function of the current shock and the distribution prior to this shock�this
function is one-to-one in the shock. Conditional on the initial distribution, the
sequence of sectoral shocks and the cross-section distributions can be recovered
from the time series of sectoral investment rates. The likelihood is calculated
using these sectoral shocks. We also need to calculate the corresponding
Jacobian terms, which correspond to the elasticities of sectoral investment rates
with respect to sectoral shocks. These elasticities are a byproduct of the
calculation of sectoral shocks.

3.3. Semi-Structural and Structural Models

Ž .We estimate two basic models. In the first one semi-structural , we estimate
directly the parameters of an ad-hoc adjustment hazard. While in the second

Ž .one structural , we estimate the adjustment cost parameters and obtain the
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implied hazard via dynamic programming. Both of these models yield increasing
hazards,23 but include a constant hazard as a limit case.

Semi-structural: Although our main goal in the paper is to estimate and assess
the structural model, there are good reasons to start by estimating a less
structured version. It allows us to search and test for the presence of an
increasing hazard more directly, and it facilitates comparisons with standard
linear models. Furthermore, by assuming that the adjustment hazard is an
inverted Normal:

Ž . Ž . �� 0�� 2 x 2
19 � x �1�e ,

with � 	0 and � 	0, we are able to obtain accurate computations and to0 2
Ž .reduce estimation time significantly by a factor of 12 by keeping the cross-sec-

Ž .tion distributions within a closed family of mixture of Normals see Appendix C .
Structural: Rather than estimating the adjustment hazard directly, in this case

we estimate the parameters of the adjustment cost function and obtain the
hazard from the solution of the dynamic optimization problem presented in
Section 2. Adjustment costs are drawn from a Gamma distribution:

�1
p�1 ����Ž .G � � � e d� ,Hp Ž .� � p 0

'which has mean � �p� and a coefficient of variation cv �1� p . We esti-� �

mate � and cv .� �

As for the other structural parameters, we assume an interest rate, share of
each type of capital, and markup of 6, 15, and 20 percent, respectively,24 as well
as depreciation rates for equipment and structures of 10 and 5 percent per year,
respectively.25 We estimated the standard deviation of idiosyncratic shocks, � ,�

obtaining estimates in the range of 5 to 15 percent. Since these were not
estimated very precisely, and comparisons across models are easier if idiosyn-
cratic variances are similar, we only report results where we have imposed

Ž .� �0.1 both, in semi-structural as well as structural estimation .�

23 � �By increasing hazard we mean a hazard that increases with x , i.e., that is decreasing for x�0
and increasing for x�0.

24 These parameters imply a value of � around 0.45 if the production function is constant returns
Ž .and all other factors of production including the other type of capital are fully flexible, around 0.3

if all factors but the other form of capital are flexible, and around 0.15 if all other factors are fixed.
Our conclusions are robust to reasonable variations of � , but we do not have enough power to
identify this parameter in conjunction with those that we estimate. The results we report assume
��0.4.

25 Although there is a slight upward trend in the sample, these depreciation rates are consistent
with the average depreciation rate computed from the ratio of actual depreciation to net capital
stocks reported in Fixed Reproducible Tangible Wealth in the United States, 1925�89. In any event,
it follows from our description in Appendix C that, conditional on the initial cross-section, the
depreciation rate is confounded with the mean of aggregate shocks. Thus our choice of depreciation
rate only affects the initial cross-section. And since we discard the first three periods when
calculating the likelihood, this effect is minor.
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3.4. Main Results

Table I contains our main results. The first two columns present semi-struct-
ural and structural results for equipment investment, while the last two do the
same for investment in structures. All estimated models allow for individual
effects on the sectoral shocks, and include a free additive constant that is
common across sectors.

Semi-structural: The semi-structural results allow us to reject the constant
hazard model, in favor of an increasing hazard one. The increasing hazard
parameter, � , is significant at the one percent level in both cases. The2
estimated hazard function suggests that the probability that a firm adjusts its
capital stock of equipment increases from about 14% for small imbalances to
45% when its imbalance is 40%, while it goes from close to zero for small
imbalances to about 32% for a 40% imbalance, in the case of structures. The
sharp nonlinearity can also be captured through the expected investment�capital

Ž .ratio conditional on the imbalance ; for equipment, it goes from close to 0.05 at
a 20 percent imbalance to 0.23 at a 40 percent imbalance, while for structures it
goes from 0.02 to 0.16, for the same imbalances.

Structural: The results of the structural models confirm the semi-structural
increasing hazard findings. Moreover, the likelihoods rise, especially so for
structures.

Ž .The estimates of the mean of the distribution of adjustment costs the � s�

indicate that the average adjustment cost drawn is the equivalent of 16.7 percent
of a year’s operational profits for equipment and 22.8 percent for structures.
Since firms can ‘‘search’’ for a low realization of adjustment costs, these are
upper bounds for the average costs effectively paid by firms when going through
a major adjustment episode. Indeed, the average costs paid are 11.1 percent for

TABLE I

MAIN RESULTS

Equipment Structures

Parameters Semi-structural Structural Semi-structural Structural

� 0.155 0.0000
Ž . Ž .0.067 0.054

� 2.804 2.4372
Ž . Ž .1.165 0.878

constant 0.057 �0.006 0.013 0.019
Ž . Ž . Ž . Ž .0.013 0.016 0.006 0.002

� 0.166 0.228�

Ž . Ž .0.029 0.046
cv 0.327 0.066�

Ž . Ž .0.109 0.009
LLK 2430.2 2431.4 2612.4 2637.2
LLK-NADJ 2315.2 2315.2 2497.0 2497.0

Notes: Standard deviations in parenthesis. LLK: log-likelihood. LLK-NADJ: log-likelihood without
adjustment costs�dynamics.
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equipment and 21.4 percent for structures. The difference between the uncondi-
Ž .tional and conditional on adjustment means rises with the coefficient of

variation of these costs, which explains why adjustment costs actually paid for
Žequipment are one third less than the mean adjustment cost faced by firms see

.cv while in the case of structures both means are very similar.�

Comparing the last two rows of Table I illustrates the goodness-of-fit of the
model. LLK represents the log-likelihood of the model while LLK-NADJ
represents the log-likelihood of a model with no adjustment costs or dynamics
Ž .i.e., only a constant . The likelihood ratio test statistics for both equipment and
structures are over 200.

3.5. Simple Alternati�es

We view the microeconomic foundation of our approach as one of its main
virtues; however in this section we look purely at the statistical advantage of our
structural models over simple linear counterparts. We do not intend to conduct
‘‘horse races’’ against alternative investment models but want to provide a
simple metric to assess the contribution of the nonlinearities we estimated to
the time series properties of aggregate investment.

The first obvious step is to compare our model with the ‘‘almost’’ nested
Ž .PAM. As we argued above, the constant hazard model � �0 , together with2

the approximation e�x �1��x, yields the standard PAM, which corresponds
Ž .to estimating an AR 1 for each sector’s aggregate investment series. For

comparability with the structural model, we constrain the correlation coefficient
to be the same across sectors:26

I A I A
it i t�1�a �� �� .i i tA AK Kit i t�1

Ž .More generally, we also run an AR 2 with unconstrained autoregressive coef-
ficients for each sector:

I A I A I A
it i t�1 i t�2�a �� �� �� .i 1 i 2 i i tA A AK K Kit i t�1 i t�2

In both cases we preserve the assumption of jointly Normal aggregate shocks,
and allow for individual effects. We look at within and out-of-sample criteria,
and find widespread evidence supporting the structural nonlinear model over
the linear representation for both equipment and structures.

Within Sample Criteria

The likelihoods of the linear models are uniformly lower than those of the
Ž .corresponding structural models, even for the AR 2 s�which have 39 parame-

26 Recall that the structural model has the same distribution of adjustment costs across sectors.
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Žters more than the nonlinear structural models the likelihoods for the linear
.models are shown in Table II . But comparing the likelihoods is not strictly
Ž Ž . .correct, since the linear models especially the AR 2 s are not nested in our

structural models. Instead, we use the test for nonnested models developed by
Ž . Ž .Vuong 1989 and Rivers and Vuong 1991 .

Let l and l denote the maximum value attained by the log-likelihood for1 2
models 1 and 2, T denote the number of periods considered when calculating

Ž .the likelihood 42, in our case , n and n denote the number of parameters for1 2
ˆmodels 1 and 2, respectively, and S denote the Newey-West estimate for the

variance of the time series of likelihood differences. The null hypothesis is that
27'both models are T -asymptotically equivalent; should this be the case the test

statistic

1 Ž . Ž .l � l � n �n log T1 2 1 22Ž .20 V � ,1, 2 'ŜT

has a Standard Normal distribution. Positive values of V indicate evidence in1, 2
favor of model 1; negative values evidence in favor of model 2.28

Table II presents Vuong’s statistics and the p-values for the test that both
Ž .models linear and nonlinear are equally close to the ‘‘true’’ model, against the

Ž .alternative that the nonlinear structural model is closer. It is apparent that the
null hypothesis is rejected in favor of the alternative even at very low signifi-
cance levels.

TABLE II

NONNESTED MODELS TEST: NORMAL SHOCKS

Equipment Structures

Ž . Ž .PAM AR 2 -UNC PAM AR 2 -UNC

Vuong statistic 2.61 4.25 2.92 4.07
p-value 0.0045 �0.0001 0.0018 �0.0001
Log-Lik. 2387.2 2419.0 2533.2 2578.5

Ž .Notes: Vuong statistic calculated as in 20 . All test statistics compare the structural model
estimated in Table I with the model in the table. If both models are ‘‘equally good,’’ the asymptotic
distribution of the statistic is Standard Normal. Large positive values provide evidence in favor of
the structural model.

27 ' Ž .I.e., lim T l � l �0.T �� 1 2
28 Ž .Note that: First, the numerator of 20 contains a penalty term�the Bayesian Information

Criterion, BIC�that corrects for differences in degrees of freedom between both models. Second,
denoting the sum of sectoral likelihoods for model i at time t by l , i�1, 2, and d � l � l , wei, t t 1 t 2 t

ˆhave that S in the denominator of V is1, 2

q j
Ž̂ .S T , q �� �2 1� � ,Ý0 jq�1j�1

where � denotes the sample autocorrelation of order j of the d time series. Since in all casesj t
ˆ ˆŽ . Ž .S T , q does not vary much for values of q larger than 7, we choose q�8 when calculating S in 20 .
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One possible reason for the bad relative performance of linear models is that
we have assumed that aggregate shocks are Normally distributed. Sectoral
investment rates, on the other hand, are clearly not Normal; the skewness and
Ž . Ž .excess kurtosis coefficient of standardized, for every sector investment rates
are 0.61 and 0.74 for equipment and 0.76 and 0.87 for structures. Obviously,
linear models with Normal errors cannot account for these departures from
Normality. The innovations generated by the best partial adjustment model and
best second-order autoregressive models also depart from Normal, as can be
seen in Table III: Their skewness and kurtosis coefficients are 0.49 and 1.15 for
equipment and 0.95 and 1.88 for structures in the partial adjustment case, and

Ž .0.38 and 1.00 for equipment, and 0.86 and 1.65 for structures in the AR 2 case.
Ž .All these numbers are significantly different from zero the Normal case at the

Ž .0.001 level estimated via bootstrap . The last two rows show that the increasing
hazard model generates innovations that are closer to Normal than its linear
and constant hazard counterparts. The estimated skewness and kurtosis coeffi-
cients are considerably smaller, and both skewness coefficients do not depart

Ž .significantly at the 0.05 level from their values under the Normality assump-
tion. The increasing hazard model does not need to introduce nearly as much
skewness and kurtosis in aggregate shocks to account for investment behavior.

Normality is the natural assumption when aggregate shocks are conceived as
Žthe sum of a wide variety of small shocks with limited dependence by the

.Central Limit Theorem . In spite of this, we momentarily relax this assumption
in order to consider shocks that admit skewness and kurtosis properties similar
to those observed in sectoral investment�capital ratios. For this purpose, we
generalize the distribution of the residual to consider convex combinations of
Normal and log-Normal distributions. The log-Normal component does not add
significantly to the structural model, while the linear models assign most of the
weight to the log-Normal component. For this reason we compare the structural
models with Normal shocks versus the linear models with log-Normal shocks in
Table IV. Although the likelihood in the linear model improves substantially
with this modification, Table IV shows that the test for nonnested models still

Ž .favors the nonlinear structural models by a wide margin. In fact, the reduction

TABLE III

SKEWNESS AND KURTOSIS FOR INNOVATIONS

Equipment Structures

Model Skewness Kurtosis Skewness Kurtosis

Part. Adj. 0.49 1.15 0.95 1.88
Ž . Ž . Ž . Ž .0.13 0.36 0.15 0.65

Ž .AR 2 0.38 1.00 0.86 1.65
Ž . Ž . Ž . Ž .0.12 0.31 0.14 0.60

Structural �0.04 0.65 0.17 0.79
Ž . Ž . Ž . Ž .0.11 0.20 0.13 0.34

Note: Standard deviations, obtained via bootstrap, shown in parentheses.
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TABLE IV

NONNESTED MODELS TEST: LOG-NORMAL�NORMAL SHOCKS

Equipment Structures

Ž . Ž .PAM AR 2 -UNC PAM AR 2 -UNC

Ž .test Normal 2.42 7.97 3.57 4.53
p-value 0.0078 �0.0001 0.0002 �0.0001
Log-Lik. 2409.3 2453.8 2611.3 2678.6

Ž .Notes: Vuong statistic calculated as in 20 . All test statistics compare the structural model
estimated in Table I with the model in the table. If both models are ‘‘equally good,’’ the
asymptotic distribution of the statistic is Standard Normal. Large positive values provide evi-
dence in favor of the structural model.

Žin the denominator due to the increased precision of the test the likelihoods
.become more correlated across models more than outweighs the increase in the

likelihood of the linear model.

Out-of-Sample Criteria

Next, we evaluate the out-of-sample forecasting performance of our model.
Ž .For this purpose we reestimate the nonlinear structural and AR 2 models

Ždropping ten percent of our observations the last five years for each of our 21
.sectors , and generate the one-step-ahead forecast distributions, for each sector

and year out of the sample. We only evaluate the model’s performance relative
Ž .to that of an AR 2 using a standard Mean-Square-Error criterion, although this

reduces the potential forecasting edge of nonlinear models.29 We postpone
further discussion of forecasts’ higher moments until the conclusion.

Ž .Table V reports, for each investment type, the average across sectors MSE
Ž .for each year first two columns , and the percentage increase in MSE generated

Ž . Ž .by the AR 2 model over the nonlinear one third column . Except for 1988, the
Ž .structural nonlinear model systematically outperforms the AR 2 representation.

This is particularly true for structures, where the gain is over 35 percent during
four out of the five years for which we generated out-of-sample forecasts.

TABLE V

AVERAGE MSE FOR 1-STEP-AHEAD FORECASTS: 1988�92

Equipment Structures

Ž . ŽŽ . .. Ž . ŽŽ . Ž ..Year AR 2 MODEL ln 1 �2 AR 2 MODEL ln 1 � 2

88 0.591 0.640 �0.075 0.306 0.340 �0.092
89 0.240 0.230 0.038 0.371 0.220 0.502
90 0.308 0.270 0.131 0.207 0.150 0.359
91 0.566 0.540 0.044 0.507 0.350 0.371
92 0.399 0.330 0.194 0.518 0.340 0.425

Note: The parameters were estimated using data up to 1987. MSEs are multiplied by 10 3.

29 Ž .See Ramsey 1996 for arguments on the bias against nonlinear models inherent in MSE
comparisons.
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This favorable evidence for the nonlinear model is reinforced by Table VI. It
Ž .reports, for each investment type, the average across years MSE for each

Ž . Ž .sector for the AR 2 and nonlinear models first two columns , and the percent-
Ž .age increase in MSE generated by the AR 2 model over the nonlinear one

Ž .third column . At the bottom of the table, we report the percentage increase in
Ž . Ž .average across sectors and time MSE generated by the AR 2 model over the

Ž .nonlinear one, as well as the median across sectors increase. The sectoral
dimension is one along which we would have expected the nonlinear model to
do relatively poorly, since in order to gain statistical power for the nonlinearities
we were forced to impose the same distribution of adjustment costs across

Ž .sectors, which is not likely to hold too closely in the data. The AR 2 , on the
other hand, has no constraints across sectors. Table VI shows that even under
this unfavorable metric the structural model outperforms the unconstrained

Ž .AR 2 representation. Again, this is particularly true for structures, where the
gain in terms of MSE is over 15 percent for the median sector, and above 30
percent for the average MSE.

TABLE VI

SECTORAL AVERAGE MSE FOR 1-STEP-AHEAD FORECASTS: 1988�92

Equipment Structures

Ž . ŽŽ . Ž .. Ž . ŽŽ . Ž ..Sector AR 2 MODEL ln 1 � 2 AR 2 MODEL ln 1 � 2

20 0.591 0.780 �0.425 0.742 0.150 1.571
21 0.085 0.084 0.003 0.117 0.150 �0.233
22 0.343 0.310 0.091 0.221 0.120 0.612
23 0.243 0.110 0.781 0.278 0.094 1.088
24 0.160 0.240 �0.405 0.342 0.250 0.333
25 0.083 0.092 �0.105 0.560 0.260 0.760
26 0.034 0.068 �0.707 0.633 0.400 0.456
27 1.620 1.710 �0.055 0.386 0.720 �0.619
28 0.129 0.180 �0.341 0.313 0.400 �0.247
29 0.098 0.100 �0.036 0.628 0.570 0.097
30 0.272 0.260 0.035 0.417 0.088 1.560
31 0.082 0.089 �0.097 0.063 0.054 0.159
32 1.433 1.000 0.357 1.483 1.000 0.392
33 0.078 0.076 0.023 0.017 0.024 �0.352
34 1.739 1.410 0.211 0.201 0.270 �0.288
35 0.551 0.730 �0.276 0.353 0.400 �0.127
36 0.506 0.420 0.181 0.328 0.390 �0.170

37-1 0.310 0.220 0.338 0.099 0.150 �0.411
37 0.241 0.270 �0.124 0.494 0.075 1.888
38 0.221 0.200 0.120 0.184 0.210 �0.124
39 0.099 0.072 0.319 0.162 0.100 0.467

Ž Ž . Ž ..ln Ý 1 �Ý 2 � � 0.047 � � 0.312i i
Median 0.241 0.220 0.003 0.328 0.210 0.159

Note: The parameters were estimated using data up to 1987. MSEs are multiplied by 10 3.
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3.6. Dynamic Implications of Increasing Hazard Models

Perhaps the main distinctive feature for the model we have estimated,
compared with its linear counterparts or a constant hazard model, is that not
only average investment by those that are investing but also the number of firms
that choose to invest at any point in time fluctuates over the business cycle. This
is a realistic feature according to the establishment-level evidence in Doms and

Ž .Dunne 1993 . Among many interesting facts, they show that the number of
Žplants going through their primary investment spikes i.e., the single year with

.the largest investment for the establishment , rather than the average size of
these spikes, tracks closely aggregate manufacturing investment over time.

In terms of our model, this flexibility in the number of firms investing implies
that the extent of the response of aggregate investment to aggregate shocks
fluctuates over the business cycle. Figure 5 depicts the paths of the median
Ž .across sectors derivatives of aggregate investment with respect to aggregate
shocks for equipment and structures.30 It is apparent that this ‘‘index of
responsiveness’’ fluctuates widely over the sample. Moreover, it is strongly
procyclical: Its correlations with aggregate shocks and aggregate investment are,
respectively, 0.79 and 0.89 for equipment, and 0.72 and 0.39 for structures.31

There are traces of the cyclical features of our nonlinear model in our
out-of-sample forecasts as well. The MSE gains of our model over the linear

Ž .AR 2 are particularly pronounced during periods of high activity. To show this,
we proceed in three steps: First, we construct, for each sector, a standardized

Ž .series of the difference of the absolute values of the forecast error of the AR 2
� f �and the structural model, � � :

� far � � f n l �� � �i t i tf� �� � � ,i t
f�i , ��

30 Ž . Ž .If we define y � as the right-hand side of 18 evaluated at � instead of � , then this index ist
equal to the derivative of y evaluated at � . Making the change of variable u�x�� in the integralt

Ž .that defines y � and differentiating under the integral leads to

� Ž . � � t�u Ž . Ž � t�u . � Ž .� Ž .y � � e � u�� � e �1 � u�� f u�	 , t�1 du.Ht t t

Ž . Ž .Adding and subtracting � u�� to the first term in the integral, using 18 and changing variablest
gives

� Ž . Ž . Ž . Ž . Ž �x . � Ž . Ž .y � �y � � � x f x�	�� , t�1 dx� e �1 � x f x�	�� , t�1 dx.H Ht t t t

Ž �x .Alternatively, making the approximation e �1 
�x before differentiating, we obtain an index
�Ž . Ž . Žof responsiveness equal to y � �y � , which is constant for the constant hazard case PAM, int t

.that case . The figure obtained with this alternative index is qualitatively identical to Figure 5,
although the standard deviation of the index is about 30 percent less than that of the index reported.

31 The correlations with lagged investment�capital ratios are 0.60 and 0.13, for equipment and
structures, respectively.
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FIGURE 5

f Ž Ž .where � denotes the forecast errors ar and nl stand for AR 2 and nonlinear
. fmodel, respectively , and � denotes the standard deviation of the difference��

in the absolute value of the forecast errors. Second, for each sector, we sort
these standardized series by one of the following indicators of activity: the
sectoral aggregate shock, � , the level of the sectoral investment�capital ratio, y,
and the sectoral index of responsiveness, dy�d� . And third, we average across
sectors the sorted standardized series.

Table VII reports these averages for times when the sorting variable was
below and above its median. With only one exception, all the entries suggest
that a substantial fraction of the better performance of the nonlinear model

Žcomes from periods when the sectoral indicators of activity shock, investment,
.and sensitivity index are high. For example, we find that periods when aggregate

shocks are below their median, achieve a forecasting-performance improvement
which is 0.286 standard deviations lower than the average MSE gain for
equipment, while it is 0.056 standard deviations lower for structures. Conversely,

TABLE VII
Ž .STANDARDIZED DIFFERENCE IN ABSOLUTE VALUE OF FORECAST ERRORS AR2-MODEL

Equipment Structures

Sort by � Sort by y Sort by dy�d� Sort by � Sort by y Sort by dy�d�

Below median �0.286 �0.189 �0.043 �0.056 0.100 �0.013
Above median 0.255 0.185 0.155 0.158 �0.033 0.092
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when aggregate shocks are above their median, the forecasting-performance
improvement is 0.255 standard deviations higher than the average MSE gain for
equipment, while it is 0.158 standard deviations higher for structures.

4. FINAL REMARKS

In this paper we derived and estimated a time series model of sectoral
investment that builds from the realistic observation that lumpy adjustments
play an important role in firms’ investment behavior, but that allows for the
empirically appealing feature that adjustments do not need to be of the same
size across adjusting firms and for a firm over time.

Using a nonlinear aggregate time series procedure, we estimated the distribu-
tions of fixed adjustment costs faced by firms. The adjustment hazards implied
by our estimates are nonconstant: they leave a significant range of inaction, and
increase sharply thereafter. Depending upon the history of shocks, the estimated
hazards have the potential to magnify or dampen the response of investment to
aggregate shocks. The passivity of normal times is, occasionally, more than offset
by the brisk response to large�current or accumulated�shocks. These nonlin-
earities clearly improve the aggregate performance of dynamic investment
equations.

Both the microeconomic as well as the aggregate implications of the esti-
mated model are largely consistent with the establishment level evidence pre-

Ž . Žsented by Caballero, Engel, and Haltiwanger 1995 for U.S. manufacturing for
.the 1972�88 period . They found evidence of an increasing hazard for the range

of disequilibria where establishments spent most of their time. More impor-
tantly, they also found an important role for the cross-sectional density of
capital imbalances in explaining changes in the marginal response of aggregate
investment to aggregate shocks.

In the process of assessing the contribution of the model, we found an
important forecasting gain over simple linear models. In almost every year and
sector, and particularly so for structures, the nonlinear model reduced the
mean-squared-error by a substantial amount.

Beyond the current paper, there are three extensions and robustness issues
worth mentioning at closing: First, the nonlinear model has nontrivial implica-
tions for forecasts’ higher moments. Our preliminary exploration of this issue
reveals that the standard deviation, skewness, and excess kurtosis of invest-
ment�capital ratios’ forecasts, are highly correlated with the business cycle.
These relations hint at a promising structural avenue to explore movements in
forecasts’ higher moments.32

ŽSecond, in the working paper version of this paper Caballero and Engel
Ž ..1994 we allowed for serial correlation in the rate of growth of aggregate

Ž .frictionless capital the � ’s and found very little of it, which provides supporti t
Ž .for our i.i.d. assumption in the theory section. Interestingly, the linear PAM

32 A good complement for nonstructural ARCH models, for example.
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model we estimated left plenty of unexplained serial correlation, especially for
equipment investment.

Ž .Finally, and also reported in Caballero and Engel 1994 , we extended the
theory and empirical sections to acknowledge the existence of continuous
‘‘maintenance’’ investment, which does not require paying sizeable adjustment
costs. We found that while such an allowance was important to obtain a more
realistic distribution of observed changes in capital and average investment rates
Žin particular, small changes account for a significant fraction of microeconomic

.investment changes , it did not diminish the role of microeconomic lumpiness in
accounting for the dynamic aspects of aggregate investment.
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APPENDIX A.: DYNAMIC OPTIMIZATION

In this appendix we study the firm’s stochastic dynamic optimization problem. In Section 1 we
show existence and uniqueness of the solution to the firm’s Bellman equation. In Section 2 we study
the main properties of the optimal policy function.

1. EXISTENCE AND UNIQUENESS

From the main text it follows that the Bellman equation�for the firm’s value function normal-
ized by frictionless capital�is given by

� Ž . Ž . � z� 4� z , � � max � z� i �� e i�0½
i

�� z � Ž � . Ž . Ž � .�� e � z� i��z , � dF �z dG � ,HH 5
� 4with i�0 denoting an indicator function that takes the value 1 when the firm adjusts its capital

stock and zero otherwise.33

The operator associated with the above equation is not bounded from below. For this reason we
� Ž .add a term to � z, � that does not depend on the choice variable and therefore does not affect

the firm’s optimal choice, but does bound the corresponding operator:

Ž . Ž . � Ž . � z21 � z , � �� z , � �� e .˜

Ž . Ž .Substituting 21 into the expression above, using the expression for � z derived in Section 2 of
Ž .the main text, and performing some straightforward but tedious calculations, leads to the Bellman

33 All terms that are not explicitly defined in what follows were defined in Section 2 of the main
text.
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Ž .equation for � z, � :˜

Ž . Ž . Ž . � z z �� z Ž � . Ž . Ž � .22 � z , � �max c � e �c e �� e � z��z , � dF �z dG � ,˜ ˜HH1 2½
� �� u u �� z Ž . Ž . Ž .max c e �c e �� e � u��z , � dF �z dG � ,˜HHu 3 2 5

with

Ž . Ž � �� z � .c � � 1���� E e � ,1 �

c �� ,2

Ž � �� z � .c � 1�� E e � ,3 �

Ž .where � denotes the mean of the distribution of the adjustment cost factor G � .�

Ž .To show that 22 has a unique solution we make the following three assumptions and prove the
following two lemmas. The assumptions hold throughout the remainder of this appendix.

ASSUMPTION 1: The adjustment cost factor, �, is bounded from abo�e by ���� and from below
by 0.

� �� z � �� z Ž . 34ASSUMPTION 2: � E e ��He dF �z �1.

� �� z � �� z Ž .ASSUMPTION 3: �� E e ��� He dF �z �1, where � denotes the mean of the distribu-� � �

tion of �.

Ž . � z z Ž .LEMMA A1: Let f z �k e �k e , with 0���1 and k , k �0. Denote z � log k ��k �1 2 1 2 M 1 2
Ž . Ž .1�� . Then f z is increasing for z�z , decreasing for z�z , and attains its maximum �alue, whichM M

Ž . 1� Ž1�� .Ž . ��Ž1�� .is equal to 1�� k ��k , at z�z .1 2 M

PROOF: Elementary calculus. Q.E.D.

Ž .Ž .LEMMA A2: Consider the operator T defined by posing T� z, � equal to the right-hand side˜
Ž .of 22 . This operator is defined on the set BB of all real-�alued, bounded, continuous functions with

� �domain �� 0, � .
Ž . Ž . Ž .Then T : i preser�es boundedness; ii preser�es continuity; and iii satisfies Blackwell’s conditions.

Ž . Ž .Ž .PROOF: i Consider u�BB, bounded from below by u and from above by u. Then Tu z, � is
bounded from above, since

�� z � z z � w wŽ .Ž . � � Ž . � �Tu z , � �� E e u�max c � e �c e , max c e �c e1 2 3 2½ 5
w

�� z � w w� � � Ž . ��� E e u� max c � e �c e1 2
w

Ž .1� 1���� z �� z� � Ž .Ž � � .�� E e u� 1�� 1���� E e � ,�

Ž .where the second inequality follows from the fact that, for all �	0, c �c � , and the last3 1
inequality follows from Lemma A1.

34 In the main text we assume that �z follows a Normal distribution, with mean � and variance
12 2 Ž .� . Then this condition is equivalent to �� � � log � , which for r�	�1 corresponds2

1 2approximately to �� � � r�	 . Thus, for the set of parameters we use in the empirical section, a2

sufficient condition is that ���0.15 for equipment and ���0.10 for structures. Both conditions
can be expected to hold.
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Ž .Ž .That Tu z, � is bounded from below follows from

Ž .Ž . � �� z � Ž . � z z � � w w �Tu z , � 	� E e u�max c � e �c e , max c e �c e1 2 3 2½ 5
w

� �� z � � � w w �	� E e u� max c e �c e3 2
w

Ž .1� 1���� z �� z� � Ž .Ž � � .�� E e u� 1�� 1�� E e � ,�

where we used Lemma A1 in the last step.
Ž . Ž . Ž .ii To show that the function Tu is continuous for u�BB, we note that from 22 it follows that

Ž .Ž . Ž .Tu z, � is the maximum of two functions; the first inherits continuity from u z, � and the second
Ž .is constant. It follows that Tu is continuous.

Ž .iii To show that T satisfies Blackwell’s conditions, we first note that if u , u �BB, and1 2
Ž . Ž .u z, � �u z, � for all z and �, then the expected value of any positive random variable, in1 2

particular e�� z, preserves the above inequality. Thus

Ž .Ž . Ž .Ž .Tu z , � � Tu z , � .1 2

A straightforward calculation shows that, for any u�BB and any constant a:

Ž � �.Ž . Ž .Ž . � �� z �T u�a z , � � Tu z , � �� E e a.

The second Blackwell condition follows from Assumption 2. Q.E.D.

Ž . Ž .PROPOSITION A1: Equation 22 has exactly one solution and this solution belongs to BB .

PROOF: It follows from Lemma A2 that T defines a contraction mapping on the metric space BB

Ž . � �� z �normed with the sup-norm . The modulus of the contraction mapping is � E e . Existence and
Ž . Žuniqueness of a solution to 22 now follows from the Continuous Mapping Theorem see, e.g.,

Ž ..Theorem 3.2 in Stokey, Lucas, and Prescott 1989 . Q.E.D.

2. PROPERTIES OF THE OPTIMAL POLICY

Ž .We define the following functions related to the solution of the Bellman equation, � z, � ,˜
considered in the preceding section:

Ž . Ž . �� z Ž . Ž . Ž .23 I z �� e � z��z , � dF �z dG � ,˜HH
Ž . Ž . � z z Ž .24 J z �c e �c e �I z .3 2

Ž . Ž .LEMMA A3: The function J z is bounded from abo�e, i.e., sup J z is finite. We denote thisz
supremum by J .max

Ž .PROOF: Since � z, � satisfies Bellman’s equation, we have˜

Ž . Ž . � z Ž . Ž .25 � z , � �max � e �J z , max J u .˜ ½ 5
u

Ž . Ž .If max J z were not finite, we would have that � z, � is not bounded, contradicting Proposi-˜z
Ž .tion A1. It follows that sup J z is finite. Q.E.D.z

Ž .LEMMA A4: The function J z satisfies

Ž . Ž . � �� z �26 lim J z �J � E e ,max
z���

Ž . Ž . �z27 lim J z e ��c .2
z���
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Ž .PROOF: From 25 it follows that

Ž .lim � z , � �J ,˜ max
z���

Ž .which, from 23 , implies that

Ž . � �� z �lim I z �J � E e .max
z���

Ž . Ž .Expression 26 now follows from 24 .
Ž . Ž . Ž .Expression 27 holds because of 24 and the fact that I z inherits boundedness from

Ž .� z, � . Q.E.D.˜

Ž .The next result establishes the existence of a curve in z, � -space partitioning this space into two
regions: one where firms adjust their capital stock and another where they remain inactive.

PROPOSITION A2: Define

Ž . Ž . �1 Ž Ž .. �� z28 � z � J �J z e .max

Ž .Then firms adjust when their current adjustment cost factor, �, is smaller than � z , and remain
Ž . 35inacti�e when ��� z .

Ž .PROOF: By equating both terms on the right-hand side of 25 we obtain

Ž . Ž . Ž Ž .. �� z29 � z � J �J z e .max

Ž .The inequalities that hold for � larger and smaller than � z follow trivially. Q.E.D.

Ž .PROPOSITION A3: The function � z is analytic on the real line, and therefore has deri�ati�es of all
order.

Ž . Ž . Ž Ž . Ž ..PROOF: From the definition of � z and J z see 28 and 24 we have that it suffices to show
Ž . Ž .that I z is analytic. To do this, we note that I z may be written as the convolution of a normal

density and a continuous, bounded function:

˜ ˜Ž . Ž . Ž .I z �� K z��z dF �z ,H

with

Ž . Ž . Ž .K z � � z , � dG � ,˜H
˜ � 2 �2����� e ,

˜ 2 2Ž . Ž Ž .and dF �z is a normal density with mean ����� and variance � where dF �z is normal˜
2 .with mean � and variance � .

Ž .That the convolution of a normal density and an integrable in particular, a bounded, continuous
function is analytic, follows from a well known property of the exponential family of distributions
Ž Ž ..see Theorem 9 on p. 59 in Lehmann 1986 . Q.E.D.

35 Ž .When ��� z firms are indifferent between adjusting and not adjusting.
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PROPOSITION A4: As z tends to ��:36

Ž . Ž . � � �� z �4 �� z30 � z 	J 1�� E e e ,max

and as z tends to �:

Ž . Ž . Ž1�� . z31 � z 	c e .2

It follows that

Ž . Ž .32 lim � z ��.
� �z ��

Ž . Ž . Ž . Ž .PROOF: Expression 30 follows from 28 and Lemma A4. Expression 31 follows from 27 .
Ž . Ž . Ž .Then lim � z �� follows from 30 , 31 , Assumption 2 and the fact that ��1. Q.E.D.� z � ��

Ž .PROPOSITION A5: The set CC of z�� such that J z �J is a nonempty set with a finite number ofmax
points.

Ž . Ž .PROOF: Continuity of J z it is analytic; see the proof of Proposition A3 and Lemma A4
Ž .combined with Assumption 2 ensure the existence of a bounded, closed set GG within which J z

Ž .attains its maximum. Continuity of J z on the compact set GG ensures that the maximum is indeed
Ž .attained and therefore CC is nonempty. Finally, since J z is analytic, we have that its maxima are

isolated, thus showing that CC contains a finite number of elements. Q.E.D.

PROPOSITION A6: When adjusting its capital stock, a firm’s optimal choice of z is any element in CC.
Thus its disequilibrium after adjusting does not depend on its disequilibrium before adjusting.

PROOF: The result follows from the fact that when the maximum between both terms in the
Ž .right-hand side expression of 25 is attained at the second term, this expression does not depend

on z. Q.E.D.

Ž .All calculations of � z performed while estimating the distribution of the adjustment cost factor
Ž .see Section 3.3 in the main text and Appendix C led to a set CC with a unique element, c, and a

Ž .function � z that is decreasing to the left of z�c and increasing to the right of z�c, therefore
Ž .implying an optimal policy of the L, c, U type. Yet we have been unable to show formally that CC

Ž .has one element i.e., a unique return point , and also have not shown formally that, conditional
Ž .on �, the firm’s optimal policy is of the L, c, U type. As the following proposition shows, however,

we can prove that the latter holds in a neighborhood of a return point.

Ž . Ž . Ž .PROPOSITION A7: For �, z in a neighborhood of 0, c , the optimal policy is of the L, c, U type.

PROOF: From Proposition A5 it follows that there exists a neighborhood VV of z�c such that
Ž .J z is decreasing to the left of z�c and increasing to the right of z�c. It then follows from

Ž . Ž .equation 28 that � z is decreasing to the left of z�c and increasing to the right of z�c. Thus,
Ž Ž .. �� zfor all ��max J �J z e and z�VV we have that the optimal policy, conditional onz � VV max

Ž .the current adjustment cost factor, is of the L, c, U type. Q.E.D.

APPENDIX B: AGGREGATION

This appendix is divided into three sections. In Section 1 we establish the exact expression for
aggregate investment and present the results of simulations to assess the quality of the approxima-
tion we use. In Section 2 we study the main properties of the adjustment hazard. In Section 3 we
characterize the average cross-section of firm deviations.

36 Ž . Ž . Ž Ž . Ž ..We write a z 	b z as z tends to c if lim a z �b z �1.z � c
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The following operators, defined on the set of probability measures on the real line, are used in
Sections 1 and 3 of this Appendix and in Appendix C.

� Ž . Ž .SECTORAL AGGREGATE SHOCK, AA � : shifts a cross-section by � .
� Ž .ADJUSTMENT SHOCK, HH � : applies adjustments determined by the adjustment function charac-

terized by the parameter vector � .
� 2Ž .IDIOSYNCRATIC SHOCK, II � : convolves the probability measure with a Normal density with

zero mean and variance � 2.
� Ž .FULL CYCLE OF SHOCKS, TT � �	 , � , � : equal to the combination of the three shocks defined

37 Ž . Ž . Ž . Ž .above, i.e., to II � HH � AA � �	 . Equation 17 in the main text gives an explicit expression for
Ž .the cross-section that results from applying TT to f x, t�1 .

� AGGREGATE INVESTMENT FUNCTIONAL, YY : Assigns to a cross-section the average investment
Ž Ž . .rate that results after adjustments take place see equation 12 in the main text .

1. AGGREGATE INVESTMENT

Ž .In this section we derive the exact expression for aggregate investment, of which equation 12 is
an approximation. We also assess the quality of this approximation.

LEMMA B1: We introduce the following notation:
� x : disequilibrium immediately before period t adjustment of firm i;î, t
� 38r : number of periods, as of time t, since firm i last adjusted;i, t
� Ž .l : last time firm i adjusted equal to t� r ;i, t i, t
�

� Ž .k : desired le�el of log capital of firm i immediately before its last adjustment took place;i, l i, t
� Ž .k : firm i’s log capital stock immediately after the last time it adjusted. Note that k �i, l i, li, t i, t

k� �c and that, as changes in capital since time l ha�e only reflected depreciation, this quantityi, l i, ti, t

completely determines the current capital stock.
Then, conditional on l , we ha�e that x and k are independent. That is, conditional on whenˆi, t i, t i, l i, t

the firm last adjusted, its current disequilibrium and current capital stock are independent.

� � Ž .PROOF: We have that, since x �k �k , it depends on shocks aggregate and idiosyncraticî, t i, t i, l i, t

that took place during periods t� l . On the other hand, k depends only on shocks that tooki, t i, l i, t

place at t� l . Since shocks are i.i.d., it follows that, conditional on l , both quantities arei, t i, t
independent. Q.E.D.

PROPOSITION B1: Denote
� Ž .� r : fraction of plants, as of time t, that last adjusted r periods ago;t
� Ž � .K x r : a�erage capital stock of plants with disequilibrium x at time t, that last adjusted r periodst

ago;
� Ž .K r : a�erage capital stock of all firms that last adjusted r periods ago; thust

A Ž . Ž .K � � r K r ;Ýt t t
r

� Ž .I r : a�erage in�estment, at time t, of those that last adjusted r periods ago; thust

A Ž . Ž .I � � r I r ;Ýt t t
r

�
� Ž � .f x r : cross-section, at time t, of plants that adjusted r periods ago; denotingt

Ž . Ž . Ž 2 .TT �HH � AA � �	 II � ,t t �

Ž . Ž 2 .UU�AA � �	 II � ,t �

and a mass point at 0 by 	 , we ha�e that0
� Ž � . Ž .f x r �UUTT ��� TT 	 .t t�1 t�r 0

37 Incorporating depreciation.
38 Possible values are: 1, 2, 3, . . . .
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Then

A �xŽ . Ž . Ž . Ž . Ž � .I � � r K r e �1 � x f x r dx.HÝt t t t
r

PROOF:

A Ž . Ž .I � � r I rÝt t t
r

��xŽ . Ž . Ž . Ž � . Ž � .� � r e �1 � x K x r f x r dxHÝ t t t
r

��xŽ . Ž . Ž . Ž . Ž � .� � r K r e �1 � x f x r dx ,HÝ t t t
r

where we used Lemma B1 in the last step. Q.E.D.

It follows that, to calculate the exact expression for the aggregate investment�capital ratio, we
Ž � .need to keep track of a sufficiently large number of conditional cross-sections, f x r , and the sizet

Ž .distribution of cohorts, � r . Computationally, this is substantially more burdensome than thet
approximation we used. We show numerically, however, that this approximation mostly affects

Ž .nuisance secondary parameters.
We note that if � denotes the estimated values of the main parameters � ,39 then a linearˆ

transformation of the shocks used when calculating the likelihood still leads to the same main
parameters.40 It follows that a good measure of the quality of the approximation we use is to
determine the extent to which the exact expression comes close to our approximation when we allow
for a linear change in the aggregate shocks that determine exact aggregate investment.

To implement this idea we consider 50,000 firms with initial capital stock equal to one and
disequilibrium x equal to zero. All firms belong to the same sector. We simulate the evolution of
these firms during 75 time periods, with parameters given by our estimated structural model. We

Ž .keep track of the aggregate shocks denoted by � and our approximation to aggregate investmentt
Ž A. Ž .denoted by y . Next we rerun the whole process with rescaled aggregate shocks w �a�b� , thist t t

Ž TŽ ..time keeping track of the exact expression for aggregate investment y a, b . We find the values oft
TŽ . Aa and b for which the series y a, b is closest to y . To measure proximity between both series wet t

consider two criteria, both of them applied to the last 45 observations of both series:

Ž T Ž . A .MS y a, b �yt t2R �1� ,1 AŽ .Var yt

Ž T Ž . A .Var y a, b �yt t2R �1� ,AŽ .Var yt

Ž . Ž .where MS y denotes the average of the squares of the corresponding series and var y itst t
variance. These measures capture the fit of a regression of yT on y A, differing in whether they allowt t
or not for an additive constant term.41 Table VIII shows the results of our simulations. It is apparent

Ž .that the excellent quality of the fit we obtained justifies approximating aggregate investment by 12 .

39 There are three of these parameters in both estimation approaches we use. In both cases we
have a free constant. The two remaining parameters characterize the distribution of adjustment
costs in the structural case and the adjustment hazard in the semistructural case.

40 Ž .This follows from the expression derived for the likelihood see Appendix C .
41 It is arguable which criterion is more adequate in our case. On one hand, we allow for an

additive constant term when estimating our models; on the other hand, it did not vary across sectors.
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TABLE VIII

ASSESSING THE APPROXIMATION FOR AGGREGATE INVESTMENT

Equipment Structures

a 0.015 0.003ˆ
b̂ 1.054 1.080

2R 0.980 0.9951

a �0.019 �0.005ˆ
b̂ 1.225 1.145

2R 0.996 0.999

2. ADJUSTMENT HAZARD

In this section we study the properties of the adjustment hazard:

Ž . Ž Ž ..� x �G � x�c ,

Ž .where c is a fixed element say the smallest one in the set CC characterized in Proposition A5.

Ž . � �ASSUMPTION 4: The distribution function G has a continuous density g � with support 0, � ,
���.

PROPOSITION B2: Under Assumptions 1, 2, and 3 made in Appendix A we ha�e that the adjustment
hazard satisfies:

Ž . Ž . � �a lim � x �1. Furthermore, there exists a positi�e constant M such that for x �M we ha�e� x � ��

Ž .� x �1.
Ž . Ž .b � x is differentiable at all x and

� Ž . Ž Ž .. � Ž .� x �g � x�c � x�c .

Ž .PROOF: a This follows immediately from Proposition A4 and Assumption 1.
Ž . Ž .b It follows from the fact that � x is the composition of two differentiable functions and

Ž .therefore differentiable see Proposition A3 . Q.E.D.

3. INVARIANT DISTRIBUTION

Due to the presence of aggregate shocks, the distribution of disequilibria that determines
Ž .aggregate investment see Section 2.3 of the main text has no invariant distribution. In Caballero

Ž .and Engel 1992b we establish that, in a well defined sense, the average over all possible trajectories
of aggregate shocks of the cross-section of deviations is equal to the invariant distribution faced by
an individual firm.42 In this section we show that such a distribution exists and that convergence
toward it takes place at an exponential rate.

The following operators, all of which are defined on the set FF of probability densities on the real
line, will be useful throughout this section.

� 2 2Ž . Ž . Ž . Ž . Ž . Ž .We let TT �AA ��	 II � HH � and TT �HH � AA ��	 II � , where � denotes the1 2
mean of aggregate shocks, 	 the depreciation rate, � 2 the sum of the variance of aggregate and

Ž . Ž Ž ..idiosyncratic shocks, and � the set of parameters characterizing the function � x �G � x�c .
The operators AA, HH, and II were defined earlier in this Appendix. For any integer n�1 we denote
by TT n the n-fold composition of TT , i�1, 2.i i

42 Thus the aggregate shock is constant and equal to � and the idiosyncratic shock is Normal with
zero mean and variance � 2 �� 2 �� 2.A �
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� Ž .We denote by VV f the function that associates to f the fraction of firms that adjust when
applying TT .2

� We denote by GG the operator that associates to an initial density f the cross-section ofn� 1
Ž .firms that have not adjusted after n�1 shocks, normalized to one.

We assume throughout that shocks are Normal. The following lemma is needed to establish the
main result of this section.

nŽ . Ž .LEMMA B2: Gi�en a cross-section f , let f �TT f . Denote by � f the probability that a0 n 2 0 n 0
particular firm adjusts at time n, conditional on not ha�ing adjusted during the first n�1 periods, and

Ž .denote by � f the fraction of firms that do not adjust during the first n periods. Then there exists an 0
Ž .constant 
� 0, 1 , common to all initial cross-sections, such that:

Ž . Ž .33 � f 	1�
 ,n 0

Ž . Ž . n34 � f �
 .n 0

PROOF: Denote by FF the set of all densities that may represent those firms that have notn� 1
Ž . Ž . Ž Ž ..adjusted after n�1 shocks. Since FF FF and � f �� GG f , we have thatn� 1 n 1 n�1

Ž . Ž .inf � f � inf VV gn
f�FF g�GGn� 1 n�1

Ž .	 inf VV f
f�FF

Ž .� inf � f .1
f�FF

Hence a lower bound for � also is a lower bound for � , n�1.1 n
Ž .Next note that it follows from Proposition B2 that there exists a constant M such that � x �1

� � � Ž . � �for x �M. Denote by � x the adjustment hazard that is equal to one when x �M and equal to
Ž . Ž .zero elsewhere. It is easy to see that both � f and 1�� f corresponding to this adjustmentn 0 1 0

hazard are larger than or equal to the corresponding quantities for the original hazard. Thus it
Ž . Ž . � Ž . Ž .suffices to prove 33 and 34 for � x and, in the case of 33 , for n�1.

Applying the operator TT to a mass point at x, 	 , we have that the value of x for which the2 x
fraction of firms that does not adjust is largest, is the value such that the distribution before

2 43 Ž .adjustment is normal with zero mean and variance � , and this fraction is 
�2� M�� �1,
Ž .with 0�
�1 and � denoting the c.d.f. of a standard Normal. It follows that for any density f x

the fraction that does not adjust after applying TT is bounded from above by 
 . Hence � 	1�
 .2 1
Ž . Ž . n Ž Ž ..Finally, given any cross-section f x , we have that � f �Ł 1�� f , which is bounded0 n 0 k�1 k 0

from above by 
 n. Q.E.D.

kŽ .PROPOSITION B3: Gi�en an arbitrary initial cross-section, f , let f �TT f . Also, define the0 k 1 0
Ž o.sequence f as abo�e, but for the particular case where f is a mass point at x�0.k 0

Let � 0 denote the probability that a firm that starts off at x�0 adjusts at time n, conditional on notk
ha�ing adjusted during the first n�1 periods.

Denote

i�1 Ž 0 .Ł 1��l�0 l
p � ,i j�1 0� Ž .�1�Ý Ł 1��j	 1 l�0 l

eŽ . oŽ . eand define f x �Ý p f x . Then f con�erges to f in the �ariation distance and con�ergencei	 0 i i n
takes place at an exponential rate.

43 ŽŽ . . ŽŽ . .Since � M�x �� �� �M�x �� is maximized at x�0.
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PROOF: We consider first the case where f �	 .0 0
At any moment in time, f o can be partitioned into groups of firms that last adjusted the samen

number of periods ago. Hence f o is a convex combination of f o, f o, . . . , f o .n 0 1 n�1
The weights on the above densities can be determined by the one-to-one correspondence with the

� 4Markov process with state space SS� 0, 1, 2, 3, . . . , and transition kernel:

Ž . Ž .P s, � � 1�� 	 �� 	 ,s s , ��1 s s , 0

Ž . Ž .where 	 �1 if i� j and zero otherwise. State s leads to s�1 not adjusting or to 0 adjusting .i, j
The corresponding probabilities are 1�� and � .s s

It follows from Lemma B2 that the above process satisfies Condition M in Stokey, Lucas, and
Ž .Prescott 1989, p. 348 . Indeed, with the notation of these authors we have that there exists N�1

Ž .and ��max 
 , 1�
 �0, with 
 defined in the preceding lemma, such that for all subsets A of S:

Ž Ž . Ž C ..max P s, A , P s, A 	� ,1 1

since

� 4 � 4 C1 if 0, s�1 A or 0, s�1 A ,CŽ Ž . Ž ..max P s, A , P s, A �1 1 ½ Ž .max � , 1�� otherwise,s s

Ž .and from Lemma B2 we have max � , 1�� �� for all s.s s
Ž .Hence Theorem 11.12 in Stokey, Lucas, and Prescott 1989, p. 350 implies that there exists an

e Ž .invariant distribution, f , and a constant G� 1�� �1, such that

Ž . 
 o e 
 n 
 o e 
35 f � f �G f � f .n 0

Furthermore, f e is the unique fixed point of the Markov operator. The latter and a straightforward
calculation show that f e �Ý p f o.i i i

Extending this results to the general case where f can be arbitrary is straightforward. All firms0
Ž .eventually adjust and, once they adjust, the previous case applies since they adjust to x�0 .

Given an arbitrary f we may write0

n Ž . Ž . n �2 Ž � . Ž .TT f � 1�� TT f �� g ,0 n �2 n n �2 n

where f � is a convex combination of f o, f o, . . . , f o , g could be any cross-section, and � isn 0 1 n �2 n n
defined in Lemma B2.

From Lemma B2 and the fact that the variation distance is bounded from above by 1 we have
Ž .that there exists 
� 0, 1 such that


 n e 
 Ž . 
 n �2 Ž . e 
TT f � f � 1�� TT 	 � f ��0 n �2 0 n �2

n �2 
 e 
 n �2�G f � f �
 .0

Convergence follows by letting n tend to infinity; the rate at which convergence takes place is
' 'Ž .geometric, being at least as fast as max G , 
 . Q.E.D.

APPENDIX C.: ECONOMETRICS

This appendix is divided into two sections. In Section 1 we derive the likelihood function and
sketch the general approach used for calculating this function at given parameter values. In Section

Ž . Ž .2 we describe implementation details for the semistructural Section 2.1 and structural Section 2.2
cases.
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1. CALCULATING THE LIKELIHOOD FUNCTION

1.1. An Expression for the Likelihood

Ž . Ž .The sources of randomness ‘‘error terms’’ are the sectoral aggregate shocks, i.e., the � ’s,i t
where i�1, . . . , I and t�1, . . . , T.44 We assume that sectoral shocks are Normal and independent
over time, and denote the mean and variance of these shocks in sector i by � and c , respectively.i i i

Ž .The column vector of sector i’s aggregate shocks is denoted by V ; V denotes the column vectori
� �with V followed by V and so on, and � �E V . We allow for contemporaneous correlation1 2 V

� �among shocks from different sectors; the matrix C� c denotes the corresponding covariancei j
Ž .matrix which does not vary over time .

Standard change of variable calculations lead to the following expression for minus the log
likelihood:

� y T 1i t � �1� � Ž . Ž .Ž .�log. lik.�const� log � log C � V�� C �I V�� ,Ý V T V� � 2 2i ti , t

where A�B denotes the Kronecker product of matrices A and B and y �I �K . Concentratingi t i t i t
the likelihood with respect to C and � leads toV

�Ž .Ž .� y T V�� V��ˆ ˆi t V VŽ .36 � log. lik�const� log � log ,Ý
� � 2 Titi , t

�
where � corresponds to the vector of sample means. That the Jacobian is well defined follows fromV
Proposition B2.

Ž . Ž .Calculating the likelihood in 36 requires calculating the sectoral shocks the � ’s and thei t
Ž .corresponding partial derivatives the � y �� � ’s . Next we show that, conditional on the initiali t i t

cross-section and the set of parameter values, the relation between sectoral shocks and sectoral
investment rates is invertible. Our proof is constructive: it describes how the sectoral shocks are
actually calculated for given parameter values.

1.2. Calculating the Components of the Likelihood

Suppose we know the cross-sections of disequilibria in every sector at time t�0. It follows from
the aggregate dynamics in our model that the observed capital-investment ratio in the ith sector

Ž Ž . Ž .during period t is determined by the aggregate shocks in the first t periods see equations 15 , 16 ,
Ž ..and 18 :

Ž . Ž Ž .. Ž .37 y �y � , � , . . . , � , f �, 0 i�1, . . . , I .i t i t i1 i2 i t i

Furthermore, aggregate investment is a function of only the current aggregate shock and the
cross-section prior to this shock:

Ž . Ž Ž . .38 y �y f �, t�1 , �i t i t i i t

Ž . Ž . Ž . Ž .39 � � � �	�x � x�� �	 f x , t�1 dx ,H i t i t i

44 By working with a continuum of firms we have that, despite the presence of idiosyncratic and
adjustment shocks at the micro level, the only source of sectoral randomness are aggregate shocks.
That is, the cross-section that results after adjustments is uniquely determined by the adjustment
function and the cross-section prior to adjustments. Also, the cross-section that results after the

Ž .idiosyncratic shocks is the convolution of the density common across plants and sectors from which
Ž . Ž .these shocks are drawn with the cross-section prior to the shock. See equations 15 and 16 in the

main text for the corresponding formulas.
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Ž . u Ž .where in our case � u �e �1 but, more generally, in the derivation that follows � u could be
Ž .any smooth and strictly increasing function with � 0 �0. The derivative of the above expression

with respect to � evaluated at � is equal toi t

� yit �Ž Ž . . � Ž . Ž .f �, t�1 , � � � � �	�x � x�� �	Hi� � i t

Ž . � Ž .� Ž .�� � �	�x � x�� �	 f x , t�1 dx.i

Ž̃ . ŽRecalling that f x, t denotes the cross-section immediately after period t ’s sectoral and deprecia-
.tion shocks, we have that

� yit � � ˜Ž . Ž Ž . . � Ž . Ž . Ž . Ž .� Ž .40 f �, t�1 , � � � �x � x �� �x � x f x , t�1 dx.Hi i t i� � i t

Ž .It follows from our assumptions on � and the fact that � x is decreasing for negative x and
Ž .increasing for positive x the ‘‘increasing hazard’’ property that the above derivative is strictly

Ž . Ž .positive when f x, t�1 has support equal to the real line as in our case . Thus � is uniquelyi i t
Ž .determined from 38 :

Ž . Ž Ž ..41 � �� y , f �, t�1i t i t i t i

Ž . Ž Ž ..42 �� y , � , . . . , � , f �, 0 ,i t i t i , t�1 i , 1 i

and proceeding inductively we conclude that

Ž Ž ..� �� y , y , . . . , y , f �, 0 .i t i t i t i , t�1 i1 i

It follows that, conditional on the initial cross-sections, the � ’s are uniquely determined by the y ’s.i t i t

1.3. Initial Cross-sections

The initial cross-section in sector i is set equal to the invariant probability measure of the
unconditional process describing the evolution of disequilibria for an individual plant in that
sector.45 This is the cross-section obtained when averaging over all possible sample paths of
aggregate shocks.46

Although this selection is arbitrary, we checked the robustness of our results by studying the
convergence properties of the cross-sections distribution near our initial distribution. We compared
the sequence of cross-sections used in our likelihood calculations with those obtained when we
perturbed the mean of the invariant-initial distribution by one standard deviation of the average
Ž .across sectors aggregate shocks. The Markov structure of our problem, combined with the
contractionary features derived in Appendix A, ensure that for any given sequence of aggregate
shocks, the distance between both cross-sections tends to zero over time with probability one; the
issue is how fast one distribution converges to the other. Simulations showed that, for the parameter
values considered, the distance between both sequences of cross-sections becomes negligible
Ž .variation distance less than 0.01 sometime between the second and third cross-section after the
initial one.47 For this reason, we discarded the first three observations for all series when calculating
the likelihood.

45 By unconditional, we mean that we do not condition on actual sectoral shocks. For this reason
the variance of shocks relevant for this distribution is the sum of the variances of sectoral and
idiosyncratic shocks. In Appendix B.1 we show that if F denotes the probability measure describing0
a particular plant’s deviation at time t�0, and F the corresponding probability measure t periodst
later, then F converges in the variation distance to a distribution F� which does not depend on thet
initial distribution F .0

46 Ž .See Caballero and Engel 1992b for a proof.
47 The parameter on which convergence depends most is the variance of idiosyncratic shocks;

convergence is faster as this parameter becomes larger.
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1.4. Summary

Ž .Given a set of parameter values, we calculate the likelihood in 36 as follows:
Ž1. The initial cross-section of firms’ disequilibria one for each of the 21 two-digit manufacturing

.sectors considered are set equal to the invariant distribution faced by an individual plant. These
Ž .cross-sections are denoted f x, 0 ; i�1, . . . , 21.i

2. For t�1 to T :
Ž . Ž .a Solve 38 to find � , i�1, . . . , 21.i t
Ž . Ž .b Calculate � y �� � from 40 .i t i t
Ž . Ž Ž . . Ž .c Determine the next set of cross-sections of disequilibria the f �, t ’s based upon 15i
Ž .and 16 .

The next section provides the details on exactly how every one of the steps above is conducted in
Ž .both estimation approaches semi-structural and structural .

2. IMPLEMENTATION

2.1. Semi-structural Approach

This approach estimates the adjustment rate function directly. We assume that the adjustment
rate function is common across sectors and of the form:

Ž . Ž . �� 0�� 2 x 2
43 � x �1�e ,

Žwith � 	0 and � 	0. We estimate three parameters besides the mean and variance-covariance0 2
. Ž .matrix of aggregate shocks : � , � , and an additive constant common across sectors .0 2

Estimating the Initial Cross-sections

In what follows, we do not make any assumptions about the mean of the aggregate shock. If we
knew this mean, or could estimate it directly from the observed data, then we could determine the
invariant density by calculating the invariant probability function of a standard-fixed Markov chain
Ž Ž . .see Caballero and Engel 1994 for details .

Ž .To compute the initial cross-section we proceed as follows. For sector i we let g x, 0 denote ai
Normal density with zero mean and variance � 2 �� 2 �c . We set c equal to 0.035 for all0 � i i i i

48 Ž . Ž .sectors. Given g x, ��1 we calculate g x, � by first solving for � ini i

� Ž . Ž .� Ž .YY HH � , � AA � �	 g x , ��1 �y ,0 2 � i i

where y denotes the average capital-investment ratio of sector i. The solution is denoted by � .i i�
Then we set

Ž . Ž . Ž .g x , � �TT � �	 , � , � , � g x , ��1 .i i� 0 2 0 i

Ž .As � grows, g x, � approaches the unconditional invariant density for an individual plant, andi
� approaches a constant consistent with the mean of sectoral investment�capital ratio. We use thisi�
density as the initial cross-section when calculating the likelihood. Simulations showed that using 30

Ž .iterations for each sector was sufficient for all practical purposes.

48 There are two reasons for fixing c : First, it avoids estimating an additional nonlineari i
parameter. Second, since we may expect that the variance of idiosyncratic shocks is significantly
larger than the variance of aggregate shocks, the value of the latter is of little relevance when
determining the adjustment function and the invariant density.
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Calculating the Likelihood

The family of adjustment functions with which we work has the attractive property that the
evolution of the cross-sections can be tracked efficiently using a convex combination of a small
number of Normal densities, thus reducing computational time substantially. To see this, we show

Ž . Ž .next that if we assume that f x, t�1 is a convex combination of N Normal densities, then f x, ti i
is a convex combination of N�1 densities. We also derive simple expressions to update the means,

Ž .variances, and weights assigned to the Normal densities characterizing f x, t .i
Ž . 2Consider first the case N�1 and assume f x, t�1 is Normal, with mean � and variance � .i

Ž .A simple but tedious calculation shows that solving 38 reduces to solving for � ini t

� 2 2cŽ� �	 . �dŽ� �	 .� Ž� �� .cŽ� �	 .it it itŽ .44 y �e �1� e ,i t �

where

� 2
2� � ,21�2� �2

1
2Ž .c � �� ��� � ,

2

� 2
2Ž . Ž .d � �� � � � �� .0 22�

Ž .The partial derivative in 40 is equal to

� y � 3 � 2
i t cŽ� �	 . �dŽ� �	 . cŽ� �	 .it it itŽ . Ž . � �45 �e � e �2� � �	�� e �y �1 .2 i t i t3 2� � � �i t

Ž .It follows from equation 17 in the main text that the cross-section density after the t th period’s
Ž . Ž .sectoral aggregate , hazard and idiosyncratic shocks, f �, t , is a convex combination of two Normali

Ž . Ž 2 . 2 2densities, one of them with mean �� ��� �	 � 1�2� � and variance � �� , and thei t 2 �

other with zero mean and variance � 2. The former corresponds to those firms that did not adjust,�

the latter to those that adjusted their capital stock. The fraction of firms in the group that does not
adjust is

2 2Ž .� ��� �	 �i tŽ .46 �� exp �� � �1 .0 2 2ž /� 2� �

Ž . N kŽ .In the more general case, where f x, t�1 �Ý 
 f x, t�1 is a convex combination of Ni k�1 k
Ž .Normal densities, � is obtained by solving an equation analogous to 44 with a linear combinationi t

of terms like the one on the right-hand side of that equation:

Ž . Ž . k Ž .y � 
 � � �	�x � x�� �	 f x , t�1 dx.HÝi t k i t i t
k

Ž .The partial derivative is equal to a convex combination of terms like those in 45 . We also have that
Ž .f x, t will be a convex combination of N�1 Normal densities. Each of these cross-sectionsi

corresponds to a specific cohort, grouping plants that have not adjusted for the same number of
periods. The ‘‘older’’ cross-sections are more spread out than the ‘‘younger’’ ones and have lost mass
monotonically due to the adjustment of their members. Simulations showed that keeping track of 30
densities is extremely conservative: the impact on aggregate investment of cohorts much older than
30 years is negligible. For this reason, in every period we merge the two oldest cohorts into one
Normal density with mean and variance equal to those of the convex combination of the densities
being merged.
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2.2. Structural Approach

Instead of estimating the adjustment function directly, as in the semistructural case, here we
estimate the parameters of the distribution of adjustment costs and obtain the adjustment function
from the solution of the dynamic optimization problem described in Section 2.

The initial distribution is calculated in a way analogous to the semistructural case. Adjustment
costs are drawn from a Gamma distribution:

1 �
p�1 �� ��Ž .G � � � e d� ,Hp Ž .� � p 0

which has mean � �p� and coefficient of variation cv �1� p . Again, we estimate three'� �

Ž .parameters besides the means and variance-covariance matrix of aggregate shocks : � , cv , and an� �

Ž .additive constant common across sectors .

Adjustment Function

The adjustment function for a given set of parameters is obtained by solving numerically the
stochastic dynamic optimization problem described in Section 2. For this purpose�but not when
evaluating the likelihood from the shocks and Jacobian terms�we disregard sectoral differences in

Ž� and � , and assume the parameters that determine the adjustment function � , cv , � , r, 	 ,A A � � �

.� , in addition to � and � are common across sectors. This allows us to calculate only oneA A
adjustment function and use it for all sectors.

� �We use a grid of 800 equally spaced points on the interval �3.5, 3.5 to determine the value
function via value iteration.49 The corresponding steps, for which extensive simulations showed that
30 iterations were sufficient, are:50

Ž .� z�� zn� 1�� z � Ž z�� z .Ž . Ž . Ž . Ž .� z �� z �� E e � z��z � e G � d� ,Hn n�1½ 5
0

Ž Ž ..c �argmax � z ,n n

Ž . �1 �� z � Ž . Ž .�� z � e � c �� z .n n n n

Ž .The distribution of �z is Normal with mean ln 1�	 and variance equal to the total variance faced
Ž 2 2 2 .by an individual firm � �� �� . When calculating c we interpolate with a quadratic0 � A n

Ž .polynomial the value function � z at the three points on the grid where the function is largest, andn
set c equal to the argument of the maximum value of this polynomial. By doing this maximizationn
over a smoothed function, we avoid having to work with a discontinuous likelihood function.

We set the mean of the aggregate shocks equal to the mean estimated with the semi-structural
approach.51

49 Using 200 points makes no significant difference; we used 800 because the additional time
involved was small. The reason why we need at least 200 points is that we fix the grid of possible

Ž .values of x between �3.5 and 3.5 in advance, so that often a significant part of this interval
Ž .becomes irrelevant the hazard is almost equal to one on it . Also, the finer the grid, the closer we

Ž .can get to the case where the adjustment hazard looks like that of an S, s policy.
50 See Section 2.2 for the derivations.
51 We set this value ex-ante to avoid having to estimate additional nonlinear parameters. Because

Ž . Ž .of the nonlinear adjustment term � � �	�x in equation 38 , there is no simple way to obtain ani t
estimate of this drift from the data. Also note that, as described earlier, when calculating the
invariant density of firm deviations, we allow for a firm-specific mean that is approximately equal to
the observed mean of the corresponding sector.
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Family of Adjustment Functions

The adjustment function estimated via dynamic optimization is evaluated on a grid of 800 points.
This makes it computationally infeasible to solve the 945 nonlinear equations needed to calculate
the � ’s in every evaluation of the likelihood. For this reason we work with a family of adjustmenti t
functions characterized by only a few parameters and such that the derivatives needed for the
Jacobian terms do not need to be calculated numerically.

Experimentation with a variety of distributions of adjustment costs showed that the family of
continuous, piecewise inverted Normal adjustment functions approximates well the adjustment
functions obtained via value iteration. Three pieces suffice for most practical purposes, with the
middle piece equal to zero. A representative member of this four parameter family is of the form

1�e�� �Ž x�x�.2
if x�x�,

� �Ž . Ž .47 � x � 0 if x �x�x ,½ � � 2�� Ž x�x . �1�e if x�x .

Ž . Ž .We approximated the positive x�0 and negative x�0 arms of the adjustment function
obtained via value iteration separately. We determined x� and �� by imposing that the approxima-

Ž .tion matches the function obtained via value iteration at the positive points where the hazard
equals 0.25 and 0.75. We obtained x� and �� imposing an analogous condition for negative values
of x.

Calculating the � ’s and the Corresponding Deri�ati�esit

Ž .When keeping track of the cross-section of deviations, we approximate f �, t�1 by 33 massi
Ž .points on a grid of equally spaced points we discuss why we chose 33 points shortly . We solve for �

in
� Ž � � � �. Ž .� Ž .YY HH � , � , x , x AA � �	 f x , t�1 �y .i i t

Ž . Ž .The partial derivatives are calculated from 40 . Next f x, t is obtained fromi

Ž . Ž � � � � . Ž .f x , t �TT � �	 , � , � , x , x , � f x , t�1 .i i t � i

Ž . Ž .The operator AA � �	 is implemented by shifting the 33 mass points describing f �, t�1 byi t i
Ž� �	 . The adjustment operator, HH, is applied next, leading to 34 mass points one at each pointi t

. Ž .where there was mass before adjustments and a new mass at zero : if x is a point with mass m x on
Ž Ž .. Ž .the pre-shock grid, then after the adjustment shock we have mass 1�� x m x at x and mass

Ž . Ž .� x m x stemming from this point at zero.
Finally the idiosyncratic shock takes place: each of the 34 mass points becomes a Normal density

with mean equal to the point where the mass was located and standard deviation � . The resulting�

� � 2density is computed at 33 equally spaced points on � �4� , � �4� , where � and � denotei t i t i t i t i t i t
the mean and variance of the cross-section obtained after the idiosyncratic shock.52 We work with a
dynamic grid to reduce the number of points needed to track the cross-section. Simulations showed
that 33 points on a grid of width equal to 8 standard deviations, centered around the mean, suffice to
obtain accurate estimates.
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