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A B S T R A C T

Context: Accurately relating code authorship to commit frequency over multiple software revisions is a complex
task. Most of the navigation tools found in common source code versioning clients are often too rigid to for-
mulate specific queries and adequately present results of such queries. Questions related to evolution asked by
software engineers are therefore challenging at answering using common Git clients.
Objective: This paper explores the use of stacked adjacency matrices and a domain specific language to produce
tailored interactive visualizations for software evolution exploration. We are able to support some classical
software evolution tasks using short and concise scripts using our language.
Method: We propose a domain-specific language to stack adjacency matrices and produce scalable and inter-
active visualizations. Our language and visualizations are evaluated using two independent controlled experi-
ments and closely observing participants.
Results: We made the following findings: (i) participants are able to express sophisticated queries using our
domain-specific language and visualizations, (ii) participants perform better than GitHub’s visualizations to
answer a set of questions.
Conclusion: Our visual and scripting environment performs better than GitHub’s visualizations at extracting
software evolution information.

1. Introduction

Programming activities often require historical information from
source code. Consider the following two software evolution tasks [1]:
“Identify the two classes someone changed the most in the past days” and
“Identify the methods that someone else has also changed”. Both tasks are
likely to be asked by a developer in order to become familiar with
someone else’s work or to become aware of a team activity. It has been
shown that completing these particular two tasks requires dedicated
tooling and traditional code versioning systems are suboptimal in that
respect [1].

This paper presents and evaluates a visualization framework to
explore the evolution of a source code repository. Our approach is
based on two main ingredients: (i) a domain-specific language that
focuses on the notion of time, Git commit, and metric, and (ii) a visual
way to stack adjacency matrices. The language we have designed aims
to tailor visualizations in order to address particular questions related
to software evolution.

Executing a script in our domain-specific language produces an in-
teractive visualization. As a visual support, we employ MultiPile [2] as
a compact way to summarize and navigate through a set of matrices.

MultiPile was proposed as a visualization to explore temporal patterns
in dynamic graphs. It employs a natural and intuitive analogy of piling
adjacency matrices, each matrix representing a temporal snapshot.
MultiPile was designed to help neuroscientists. Our article is about
assessing MultiPile to solve software evolution problems.

Contributions. This paper makes the following contributions:

• We present GitMultipile, a domain-specific language coupled with
stacked adjacency matrices to produce interactive visualizations.

• We evaluate GitMultipile using two experiments: (i) a first con-
trolled experiment focusing on the expressiveness of our domain-
specific language, (ii) a second controlled experiment to compare
visualizations of GitMultipile against the ones of GitHub. For both
experiments, we observed and monitored the participant activities.

Findings. We made the following findings:

• The language offered by GitMultipile is more efficient than Excel at
retrieving data from a simple CSV sheet.

• Participants are more efficient at defining and using visualizations
with GitMultipile than using GitHub to answer a set of software
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evolution questions.

• By observing participants during our experiments, we identified
some obvious limitations of the navigation tools offered by GitHub.

Paper outline. Our paper is structured as follows:
Section 2 describes Multipile, the visual foundation used in our

work. Section 3 presents GitMultipile, our approach to assess Git-based
repositories using a domain-specific language and Multipile. Section 4
illustrates the use of GitMultipile on two large Git repositories.
Section 5 discusses the methodology we use to evaluate GitMultipile.
Section 6 evaluates the expressiveness of our language by using a
controlled experiment. Section 7 compares the visualization produced
by some participants against the visualizations of GitHub. Section 8 lists
some observations of our participants during their activity. Section 9
lists the threats to validity our work may be subject to. Section 10
presents the work related to this paper. Section 11 concludes and out-
lines our future work.

2. Background: stacking adjacency matrices

Matrix pile. Adjacency matrices are often used to visualize edges
between software related components [3–5]. Each element of a matrix
indicates whether two elements are related. A matrix is made of edge
weights. Fig. 1 gives three adjacency matrices. On this contrived ex-
ample, each matrix is squared and has a size of 4. Matrix 1, located on
the left, indicates that element B is connected to element D, while D is
connected to A and C to A. We assume that the three matrices represent
the evolution in time of the graph composed of the nodes A, B, C, and D.

A matrix pile, as proposed by Bach et al. [2], is a structure that
stacks adjacency matrices. A matrix pile is the superposition of stacked
adjacency matrices. All the matrices that belong to a same pile have the
same dimension and same object values for both axes.

Fig. 2 represents a piled matrix obtained from the three matrices
given in Fig. 1. A piled matrix is made of three distinct parts. Part 1 is a
matrix showing the superposition of the three matrices. This super-
position is called the “coverage matrix” and the weight of element Cij is
the average weight of the same cell in all the matrices:
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where Mn is a stacked matrix and T the number of stacked matrices.
Part 2 and Part 3, called top-preview and left-preview, respectively,

are a small visual summary of the piled matrices. The previews sum-
marize the content of the pile, each thin bar corresponding to a matrix.
The top-preview is made of three thin horizontal bars, each re-
presenting a piled matrix. The order of piled matrices goes from bottom
to top. Each horizontal bar has n parts, each summarizing a column and
n is the number of columns of the coverage matrix. The summary of a
part is obtained from the number of the weights greater than 0.
Similarly, the left preview summarizes each row of the piled matrices.

A preview is also a navigation widget: locating the mouse above a
stacked matrix summary (i.e., thin bar), has the effect to replace the
coverage matrix by the actual pointed matrix. Fig. 3 illustrates this
point: locating the mouse cursor on the top line in the preview replaces
the coverage matrix with Matrix 3, given in Fig. 2.

Two or more matrices can be piled to produce a pile matrix. Note
that the original definition of pile matrix [2] considers the coverage
matrix and the top preview (Part 1 and 2 of Fig. 2). We extended this
original definition with a left preview (Part 3).

Timeline. A visualization may be composed of several stacks of
matrices and some non-stacked matrices. A timeline represents a sum-
mary of the whole visualization and is also a way to navigate through
the different parts by highlighting parts related to the element in the
timeline pointed by the mouse.

Fig. 4 contains a timeline summarizing the three non-stacked ma-
trices. Each stacked and non-stacked matrix has an identifier, and this
identifier is used in the timeline to indicate the represented matrix.

Each vertical box of the timeline summarizes a matrix. The first
column, with the id 1, represents Matrix 1 given in Fig. 1. In that ma-
trix, the element A has two incoming edges (C and D), and D receives an

Fig. 1. Three adjacency matrices.

Fig. 2. A piled stack of matrices, obtained from the three matrices given in Fig. 1.

Fig. 3. The previews support navigation in a matrix stack.

Fig. 4. Timeline for the three non-stacked matrices given in Fig. 1.
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incoming edge from B. The intensity of the green color in (A,1), Fig. 4,
represents the value 2 (since A receives connections from 2 elements),
and the intensity of (D, 1) represents the value 1. In Matrix 1, both B
and C are not connected, thus producing cells in the timeline with no
weight.

In the timeline, a vertical cell group corresponds to one time period
(i.e., one adjacency matrix) and is separated from other matrices. Piled
matrices are represented in the timeline as joined vertical cells. Fig. 4
represents the three matrices of Fig. 1, kept separately, while the
timeline of Fig. 5 indicates that two piles are formed.

Multipile was presented at EuroVis 2015. Multipile has several
benefits, such as topological states, which are quickly spotted and
compared in a scalable fashion. This paper reconsiders this work under
the scope of software engineering by extending and using it in ad-
dressing some software evolution tasks.

3. GitMultiPile matrix

This section gives an overview of GitMultiPile, our combination of
Multipile and a domain-specific language. First a brief and informal
description is given (Section 3.1). A running example is used to illus-
trate various aspects of our approach (Section 3.2). Each of the sub-
sequent sections covers a particular problem addressed in analyzing
software history and uses GitMultipile to define a visual support, useful
to address that problem.

3.1. In a nutshell

The GitMultipile approach is centered around Git commits and
stackable adjacency matrices. GitMultipile features the following:

• Expressing relations – The domain and codomain of the relation (e.g.,
authors, files, time) are mapped to the X and Y axes of the adjacency
matrices.

• Computing cell weight – The weight of a matrix cell is computed as the
number of Git commits that match a particular condition.

• Stacking matrices – Matrices can be stacked using particular time

ranges and conditions. Time range may be deduced by using binary
relations, i.e., all the consecutive months in which a particular au-
thor is active.

• Filtering data – Rows and columns of the matrices may be filtered out
using manually set thresholds or defined conditions, i.e., removing
all the authors with less than a particular number of commits.

• Adjusting visual properties – The overall layout involves the location
of matrices over an infinite two-dimensional space. Customizable
layouts may be used to accommodate the overall visualization.

• Highlighting data – Predicates may be formulated to highlight parti-
cular pieces of data, e.g., a particular author or particular relations.
Information on demand may also be adjusted to reflect the meaning
of each cell.

Projection and transformation metrics may be used when defining
the matrices. Transformation may be useful in treating some particular
outliers, which would hide particular patterns if not adequately con-
sidered.

We have designed a domain-specific language that combines the
aspects listed above. Programs written in our DSL are usually short,
usually less than 20 lines of code, and are supposed to support a par-
ticular analysis of a Git repository evolution. The complete GitMultiple
language is described in Appendix.

3.2. Running example

We take as example a repository of Microsoft named mwt-ds-ex-
plore-java1. This repository contains 55 commits and 5 authors.

This example is relatively small to comfortably illustrate different
aspects of our language, presented in the subsequent sections. Section 4
discusses the scalability of GitMultipile.

3.3. Frequency of commit within a range of time

The frequency of code commits during a particular time range may
provide a valuable insight on the effort distribution during that period.
This subsection details a short script (14 LOC) that presents the activity
at the end of 2015 with the beginning of 2016 of our running example.
The result of the script is shown in Fig. 5.

Script. The variable git refers to a particular Git repository and
exposes the domain-specific language (DLS) through commands sent
within this context. The first necessary step to initialize a visualization
is to indicate the mapping of the Git model to the two matrix axes:

The lines above indicate that the adjacency matrices represent au-
thors and commit days of Git commits. Authors are represented on the
Y-axis and month-days on the X-axis. The timeMonth keyword sets the
time range represented by a matrix: each matrix represents the activity
of a month. All matrices have the same dimensions: vertically the
number of authors of the whole project, and the day number of the
month, horizontally. As all matrices have the same size, the matrices
have 31 cells horizontally, to accommodate with the maximum number
of days a month can have. In case, a month has less than 31 days, cells
of the missing days have a value weight of 0.

The weight of each cell (author, day) is determined using the in-
struction:

The weight of a cell is the number of commits matching the con-
dition provided with from:... to:.... Each cell of a matrix re-
presents all the commits made by a particular author on a particular
day of the month. The weight of the cell is the number of commits
authored by a particular author on a given day. Visually, a cell with a
dark color represents a high number of commits while a light color
intensity indicates few commits.

We will distinguish the commits made in the project according to

Fig. 5. Comparing the activity at the end of 2015 with beginning of 2016 (Author names
are anonymized).

1 https://github.com/Microsoft/mwt-ds-explore-java.
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the year. We will compare the period of Jun-Dec 2015 against Jan-Mar
2016 by using two matrix piles. The following two instructions achieve
this:

A complete API for manipulating time range and forming date is
available, however briefly presented in the Appendix. Each invocation
of the command pileFrom: ... to: ... declares a new pile, com-
posed of matrices fulfilling the provided time range.

Some parameters may be set to accommodate the visual re-
presentation.

Lines 12 and 13 define a textual description of the cell. This de-
scription is useful when the mouse cursor pointer is above a cell to give
some contextual information. Line 14 defines the layout of the matrices.
A vertical layout is selected which means that the first pile is physically
located above the second pile. The result of the script execution is given
in Fig. 5.

Analysis. The script above contrasts the activity of two periods of
time for our running example and Fig. 5 shows the visualization pro-
duced from its execution. The visualization shows a number of inter-
esting facts. In particular the timeline indicates:

• Four developers (author2, author3, author4, and author5) partici-
pated in the development in 2015 while only two developers (au-
thor1 and author2) in 2016.

• Author2 is the only developer who has a relatively constant activity
over the analyzed period. Other developers contributed for a short
period of time.

The two piled matrices provide additional information about the
overall activity. In particular they reveal:

• During 2015, author2 made several commits on the fifth day of the
months. The left preview indicates that commits were realized in 3
of the 4 months composing the 2015 period.

• During 2015, author5’s contributions are concentrated on only three
days, 16, 17, 18.

3.4. Stacking matrices to reflect author changes

Section 3.3 shows that author2 made the most commits in our
running example. In this section, we will focus on his activity by
highlighting commits made on Java files.

Script. The script we will describe produces the visualization given
in Fig. 6.

Similarly as in Section 3.3, each matrix maps authors to days (Line
1) and each matrix represents a month (Line 2). The weight function for
each matrix cell is slightly more complex than earlier. In this case, the
weight is defined as the number of commits that modified at least one
.java file, made on a day and by an author.

A stack of matrices superposes the activity of several months. A
condition may be provided to highlight a portion of author2’s work:

Lines 7 and 8 create piles for consecutive months in which the au-
thor has committed. Fig. 6 shows that only one pile is formed, between
January and March 2016.

Particular authors may be highlighted:
Commits made by a particular author are colored in blue. Colors

may be mixed in case more than one highlightAuthorName: ...
using: ... clauses are defined.

Analysis. The script given above produces a visualization re-
presenting the consecutive periods of activity on Java files by a parti-
cular author. In particular, author2 committed during the periods:
August 2015 and January 2016–March 2016.

3.5. Activity on files

As we have previously seen (Section 3.3), the participation of au-
thor5 is punctual in the project since he worked only in June 2015. This

section delves into author5’s activity during that period of time. The
result is presented in Fig. 7.

Script. We focus on the activity per file per authors during a month-
time period. The matrix dimensions are defined as:

Each matrix represents a month, as in the previous examples. The Y-
Axis represents authors while files are located on the X-axis. Each cell
represents therefore the activity of an author on a particular file, during
a month period.

The weight of each cell is computed as the number of commits made
by author and that involve file:

Since we know that author5 has contributed in June 2015 only, we
isolate this month from all the others by stacking all the remaining
months (i.e., the months that do not contain author5’s activity):

We highlight author5’s activity in green:
Analysis. Fig. 7 shows the result of the script execution. The time on

top of the figure indicates two piles: the first made with a unique matrix
corresponding to June 2015 and the second pile to the months August
2015–March 2016. The timeline shows that author5 made the most
contributions in June 2015. The green line in the matrix June 2015
indicates that author5 committed some changes over a large number of
files. By contrasting this matrix with the stacked matrices, author5 is
the only contributor who committed over so many files. Actually, since
our running example project was created in June 2015, we deduce that

Fig. 6. Highlighting a particular author and his activity.
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author5 created all the green files, and later did not touch them any-
more.

4. Case study on large repositories

This section uses GitMultiple to represent history of large software
systems.

4.1. Author’s commits per day

The repository elastic/elasticsearch is one of the most
popular Java projects kept on GitHub. The project2 has 769 different
contributors, totaling 26,220 commits. According to gittrends.io [6],
elasticsearch has a truck factor of 7 people, which is pretty high com-
pared to other Git repositories.

We used GitMultipile to highlight the truck factors over a period of
time from August 2016 to January 2017, as depicted in Fig. 8. The
figure is produced by the following script:

In order to preserve author anonymity, we replaced the real author
name by a generic term to designate a truck factor. The variable au-
thors contains the authors listed by gittrends.io3. Fig. 8 clearly in-
dicates in blue the contribution of the truck factors over the considered
period of time. The script filters out authors that have less than 2
commits.

4.2. Author’s commits per hour

Brackets is an open source code editor for the web, written in
JavaScript, HTML, and CSS. Brackets is a popular application, with over
27K stars and 340 contributors. Brackets has a truck factor of 5.4

The development of Brackets began in 2012 and it is still under a
sustained development. We use GitMultiple to perform two tasks: (i) see
the distribution of commits along a day’s hour, and (ii) contrasts two
time periods, January–September in 20125 and in 2017.6 The truck

factor is highlighted.
We generated a visualization using the script:
The script produced the visualization Fig. 9, which is composed of

two large matrix piles. The left matrix covers the months January until
September in 2012 and the right pile covers the same months in 2017.
Each line in a preview (i.e., a matrix) represents a month time period.
We have anonymized contributor names.

We draw the following conclusions:

• Most commits happen after 8:00 am, as the top preview indicate.
Commits made before may indicate contributor living in a different
time-zone.

• The activity in 2017 is considerably reduced when compared with
the same time period in 2012.

• The truck factor is composed of 5 developers,7 colored in blue in the
piled matrices. In the period January–September 2012, only 4 de-
velopers belong to the truck factor, thus indicating that the fifth one
became active later on. We also see that the truck factor was very
active during the 2012 period, and did very little in 2017.

• The left preview indicates many developers were constant in their
effort. However, not all of these authors belong to the truck factor.

5. Evaluation methodology

GitMultipile combines a domain-specific language, a visualization
framework, and an environment in which scripts may be interpreted.
These three facets therefore structure our methodology to evaluate
GitMultipile.

5.1. Three pillars

DLS expressiveness. The linguistic constructions given in Section 3
are the basic blocks in formulating queries over a dataset – a Git re-
pository in our case. GitMultipile offers several constructs to filter and
query the history of a repository. The first research question we will
evaluate is

Q1 – “How expressive are the querying facilities offered by GitMultipile’s

Fig. 7. The green horizontal line indicates a commit affecting many files. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

2 https://github.com/elastic/elasticsearch.
3 http://gittrends.io/#/repos/elastic/elasticsearch.
4 http://gittrends.io/#/repos/adobe/brackets.
5 https://github.com/adobe/brackets/graphs/contributors?from=2011-12-07&to=

2012-09-10&type=c.
6 https://github.com/adobe/brackets/graphs/contributors?from=2016-12-07&to=

(footnote continued)
2017-09-10&type=c.

7 http://gittrends.io/#/repos/adobe/brackets.
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domain-specific language?”
More specifically, we will assess the expressiveness of the offered

language constructions to formulate queries.
Visualization. Visualizations play a major role when navigating and

retrieving data from the history of a Git repository. The second research
question we will assess is

Q2 – “How effective is the GitMultipile visualization?”
In particular, whether the produced visualizations reduce the search

time and increase the accuracy of the participant answers.
Usage. We built a simple but effective environment to edit and run

GitMultipile scripts, built on top of GTInspector [7]. Fig. 10 illustrates
the GitMultipile execution environment. Scripts are typed in the textual
panel located on the left-hand side. The script is then executed by
clicking on the green triangle button, above the text pane, to produce
the visualization on the right hand side.

Observing user activities and identifying questions that are raised
during our experiments is proven to be effective. We will apply the
methodology formulated by Sillito et al. [8]: we will identify the
questions that a user is answering based on the activity being carried
out. We will then classify these questions and measure their frequency.

5.2. Controlled experiments

We will conduct two controlled experiments [9] in which the
measured and tested dependent variables are the productivity of a
particular task and the independent variable reflects the treatment (the
used tool, GitMultipile, Excel, GitHub, in our case) used to carry out the

Fig. 8. Portion of the ElasticSearch history.

Fig. 9. Two time periods of Adobe’s brackets.

Fig. 10. The GitMultiple environment in action. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)
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task.
Experimental design decisions.We will consider the following: (i) each

experiment will use a distinct set of participants to avoid learning ef-
fects, (ii) we will use a within-subject design (i.e., all participants are
exposed to every condition), (iii) only experienced professional devel-
opers will be used as participants, (iv) task assignment to subjects is
randomized.

Baseline for the first experiment. A baseline is a treatment that is used
as a standard of comparison. In order to have meaningful results, it is
important to use a fair (i.e., impartially selected to not favor our results)
and representative (i.e., match current practices) baselines in our ex-
periments.

GitMultipile provides a domain-specific language to formulate
queries. Measuring the expressiveness of our language requires a
baseline to which our language has to be compared. Unfortunately,
there is no obvious choice for such a comparison. We reviewed the
different candidate baselines for our experiment:

• gitql8 is a SQL like query language for a Git repository. Although
appealing at first glance, gitql does not provide a tutorial nor a solid
documentation. Making our experiment fair requires a teaching
material of the system we will compare GitMultpline against.
However, comparing GitMultipile against gitql will be (i) biased
toward GitMultipile if we consider the rather poor documentation of
gitql, or (ii) biased if we designed the gitql documentation ourself
(e.g., we could unintentionally design a sub-optimal documentation
that would naturally favor our system).

• GitHub Developer API9 is an API accessible via network requests,
which return JSON descriptions as results. Both the network query
formulation and the JSON description manipulation require dedi-
cated tools. The choices we may have in picking these tools as the
“glue” between the network and JSON aspect are significant biases.
In addition, this tool chain cannot be considered as a natural solu-
tion that matches current practices to query Git repositories: this API
is designed to build Git clients and not solve particular software
evolution tasks.

• GitPython10 is a full-fledged API to query Git repositories. GitPython
is a complex and large framework in which repository queries are
expressed by creating and combining classes offered by the frame-
work. Most of queries expressed using GitMultipile involve sig-
nificantly more lines of code using GitPython. GitPython is not made
to write short script, instead, it is a solution to perform sophisticated
Git repository manipulations.

We also looked into commercial products. GitPlex,11 developed by
the PMease company, is a sophisticated Git repository management
server. The purpose of GitPlex is to manage Git repositories (including
issue management and build pipeline), and not directly query the his-
tory of a repository.

Microsoft Excel is commonly used to explore structured and un-
structured data. It is also used as a baseline in another controlled ex-
periment around software evolution tasks [10]. In that related work,
Excel is used as a baseline against CodeCity to solve tasks that code
metrics. Moreover, Excel offers a large number of functions to filter and
manipulate data sets.

In our first controlled experiment, we pick Excel as the baseline to
compare GitMultipile against. Excel is well known among practitioners
and frequently employed to manipulate data. Comparing Excel’s
querying and filtering features against GitMultipile is therefore re-
levant. We will provide the data ready to be processed by Excel.

Baseline for the second experiment. In our second controlled experi-
ment, we use GitHub’s visualizations and navigation tools as the
baseline. GitHub offers several visualizations that let one crawl over the
activity of a Git repository. Comparing the visualizations offered by
GitHub against the one produced by GitMultipile is therefore relevant.
The way stacked matrices are defined and structured will be evaluated
against the GitHub visualizations.

Oracle. In order to unequivocally determine if a participant answer
is correct or not, we need an oracle. We have defined the oracle
manually, using all the available treatments participants will be ex-
posed to (Excel, GitHub, GitMultipile). We have determined each an-
swer using one treatment and checked with the other treatments. No
discrepancies were found between the answers obtained from the dif-
ferent treatments. We can therefore conclude that all the correct an-
swers can be found using the treatments we will use in our experiment.
We collected answers for both research questions that way.

Scoring. Each question has to be answered with one or more textual
items (e.g., dates, author names, number of commits). Each answer to a
question provided by a participant can be correct, incorrect, or partially
correct. For each answer, we compute the precision (fraction of items
contained in a participant answer that are correct) and the recall
(fraction of the correct items contained in the answer from all the ex-
pected correct items). We then compute the F-measure that combines
precision and recall (F = +2. precision recall

precision recall
. ). The score of each question

answered by a participant is the F-measure of the answer. A score of 1.0
means that the answer has both the precision and recall equal to 1.0. A
score of 0.0 means that either the precision or the recall is equal to 0.0.
Scoring each participant answer with the F-measure has the benefit of
simplifying the analysis since only one numerical value is associated.
Alternatively, we could have used the precision and recall separately,
however no clear benefit would be gained by doing so.

Work session. Both controlled experiments will follow a work session
as follows:

1) Learning material A – We provide a short description, written in a
mini-tutorial fashion that illustrates how to use treatment A.
Examples used in the description are smaller and different from the
tasks T1 and T2.

2) Task T1 on A – A number of questions (4 or 5, depending on the task)
are asked to a participant. Answers are written on a sheet of paper.

3) Learning material B – We provide learning material for treatment B.
4) Task T2 on B – Similarly as earlier, questions are asked to the par-

ticipant and answers are written on a sheet of paper.
5) Experiment feedback – Open comments are gathered informally and

orally to not pressure the participant into giving an answer that we
expect.

We will observe and monitor the execution of each work session.
Participants performed the two tasks on a computer, and reported their
answers on paper.

Software evolution questions. It is known that developers often im-
plicitly or explicitly formulate questions when performing a software-
evolution activity [8]. We have produced a set of questions (see our
additional material, Sections 6 and 7) to define a benchmark to measure
the effectiveness of an evolution-related activity. Our questions are
inspired from existing attempts at proposing such a benchmark [1,10]
and are restricted to the notion of time, authors, commits.

Pilot Study. Before carrying out our experiments, we performed for
each experiment a pilot run. In this pilot run, two professional en-
gineers from a local Chilean software company have run the experi-
ments described later. This pilot run led us to make some adjustments in
our experimental design:

• Improved our questionnaire – Our participants had some troubles to
precisely understanding some questions in each of our two

8 https://github.com/cloudson/gitql.
9 https://developer.github.com/v3/search/.
10 http://gitpython.readthedocs.io/en/stable/.
11 https://www.pmease.com/gitplex.
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experiments. We therefore simplified these questions to remove the
ambiguities in their formulation. Note that the questions are for-
mulated in English while our participants are native Spanish
speakers.

• Improved keywords of our DLS – The participants had to often look for
the meaning of some keywords from the teaching material we pro-
vided. This means that our original set of keywords was not in-
tuitive. We therefore improved our DLS by simplifying the set of
keywords defining the language.

The two participants agreed with our improvements of the experi-
ment. Note that the two participants did not participate in the full ex-
periment as the knowledge acquired in the pilot run could be source of
biased measurement.

Additional material. The following sections detail our experiments.
Since we cannot provide every detail of our experimental measure-
ments, we therefore invite the reader to access our additional material,
available online (https://www.dropbox.com/s/ki7uyml24yeq1jd/
Material.zip?dl=0).

5.3. Participants

We have a pool of twenty participants (two women and eighteen
men): eight of them are based in Bolivia, while the remaining twelve
are from a local company in Chile. Participants are all young profes-
sional software engineers (all with less than 8 years of working ex-
perience and the oldest participant is 39 years-old), making their the
largest part of their earning gross from professional software develop-
ment. None of the participants is known to be color blind: we did not
conduct any test and none of the results may cast suspicion about
whether some participants are color blind.

6. Evaluating the expressiveness and usability

When defining a new language syntax, it is important to keep the
right balance between the expressiveness of the language and the
cognitive effort needed to learn it.

By expressiveness, we refer to the ability of the language to express
queries and GitMultiple visualizations about a historical dataset. The
intuition we are building on, is that before solving some software tasks,
we assess whether our domain-specific language is fit to solve those
tasks.

We evaluate the expressiveness and usability of GitMultipile by
studying how users formulate queries for a given set of tasks. We
measure the performance of each participant based on the formulated
queries. As a consequence, we do not identify and characterize all the
possible queries that may be formulated using a particular treatment
(GitMultiple or Excel), which we consider as outside the scope of this
work. Furthermore, we employ a set of tasks that may be solved using
both treatments.

Motivation. In this first evaluation, we will compare our DLS with
Excel. We will use a reduced version of GitMultipile by stripping out the
Git aspect. Users will therefore have to formulate queries using the
construct pileFrom:to:, pileIf:, and sequenceIf: without re-
ferring to Git. By removing the Git aspect, conditions used in the script
are simply formulated as checking the presence or absence of particular
values in the matrices.

We chose to strip the Git aspects when evaluating the expressiveness
since (i) Excel does not natively support queries over a Git history and
(ii) using Git may be a confounding variable (e.g., a negative result may
be due to the complexity of Git and not to the DSL). We use the term
GitMultipileT to refer to GitMultipile trimmed from the Git aspect.

Datasets. We use two datasets and each dataset is expressed as a tab-
separated values file that relate some identifiers to other identifiers at a
given time. Here is an excerpt of a dataset:

time author class weight
1 aut1 RT1 1
1 aut1 RT2 1
2 aut2 RT20 1
2 aut3 RT5 1
Both datasets are similar in their size. Our first dataset contains 524

data points and the second dataset contains 642, spanned over 19 time
values. The dataset represents an evolving graph for which the edges
and their weights evolve over time.

Questions. We formulated five questions that have to be answered by
identifying values of the time, author, or class columns that match
a particular condition. For example, one question asks about the biggest
number of classes having incoming edges from only one author during
the first four time periods. Another question is about the a class
name that appears in each time. The questions we considered are si-
milar to the ones we used in our previous study [11] and in the second
experiment (Section 7, but without referring to Git).

The maximum score a participant can have is 5 since answering a
question gives a value between 0.0 and 1.0.

Running the experiment. As described earlier, the work sessions are
structured into two tasks: Task T1 on treatment A, and Task T2 on
treatment B. This experiment was run with 8 participants, totaling 8.5
hours. With four participants we have A = Excel, B = GitMultipileT.
Treatments A and B are swapped with the remaining four participants.

With four participants, we have T1 that uses the first dataset and T2
uses the second dataset. The remaining four participants have T1 and
T2 that are swapped.

Results and Analysis. Table 1 contains the score and time taken by
each participant. Fig. 11 represents the distribution of the time and
score using a Tukey boxplot.

We compare both the score and the time to complete the tasks.
Using Excel participants have a median score of 3.5 (average = 3.4,
standard deviation σ = 0.7) and a median score of 4.8 using
GitMultipleT (average = 4.8, σ = 0.1).

We use the non-parametric test Mann–Whitney to measure the
significance between our two data sets. A two-tailed test indicates that
they are significantly different, with P = 0.0003.

Since our time values are normal, we use the classical t-test to es-
timate if the two score values are different. A two-tailed test gives

=P 0.0004, which is lower than 0.05, thus indicating that the score
values are significantly different.

We provided two datasets. We need to verify if these two sets are
comparable in their difficulty to complete. The idea is to discard a bias
that may be due to a dataset significantly more difficult to answer the
questions than when using the other one. We compare the values in-
dicated with bold cells with the white cells, for both the column “EX -
Score” and “GM-score”. The Mann-Whitney test indicates that com-
paring Dataset 1 and Dataset 2 with Excel and GitMultipleT results in
P > 0.9999, U = 8.0. We therefore conclude that both datasets have a
similar difficulty to process.

The effect size is a way to quantify the size of the difference between
two groups. Cohen’s d indicates a standardized difference between two

Table 1
Score and time (in minutes) of Excel (EX) and GitMultipile (GM). Bold cell indicates
Dataset 1, white cell indicates Dataset 2.

Part. EX-score EX-time GM-score GM-time

P1 3.8 36 4.8 23
P3 3.6 37 5 19
P5 2 44 4.8 30
P7 3.3 40 4.8 25
P2 3.5 32 5 28
P4 3.1 33 4.8 23
P6 3.6 35 4.5 30
P8 4.6 53 5 27
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means, obtained from two groups of values. Cohen’s value expresses
this difference in standard deviation units. Cohen’s d = 1.874 for the
score and d= 2.458 for the time. In both cases, Cohen’s d is bigger than
1, which means that the difference between the means for both the
score and time is larger than one standard deviation. We conclude that
the effect size is large (if d is larger than 0.6 then it is usually considered
as a large effect).

Since the difference is significant, the null-hypothesis is rejected, the
effect size is large, we conclude that:

• Participants graded significantly better using a trimmed version of
GitMultipile compared with Excel.

• Participants completed the questionnaire significantly faster when
using a trimmed version of GitMultipile than Excel.

• Both datasets are similar in their difficulty and time to complete for
a given treatment

7. Evaluating the visualization

Motivation. GitHub offers several visualizations and navigation tools
to let one browse and reason about the history of a Git project. Fig. 12
illustrates three GitHub tools, indicated as A, B, and C on the figure.

Part A offers an overview of the contribution to the master branch
over time. A graph indicates the activity over a period of time. One can
select a portion of time to see those who contributed in the selected
time period. Contributors are listed and ranked according to their
number of commits. Clicking on a contributor leads us to his or her
personal page (Part B).

Part B summarizes the activity of a contributor. Popular repositories
are listed in a calendar heatmap visualization to summarize the overall
contributions across all repositories.

Part C illustrates the file inspector. The content of each file may be
browsed via the Git interface. A history button gives the list of all the
commits and contributors related to that file.

GitHub offers several additional tools (e.g., blame to see the author
of each line of code and pulse to track the active pull requests and is-
sues). However, we consider them as out of the scope for this work.
Instead, we have presented the three views that are related to our effort.

Datasets. We use two GitHub repositories to conduct our experi-
ment: Microsoft/mwt-ds-explore-java (Section 3.2) and Mi-
crosoft/mssql-jdbc (https://github.com/Microsoft/mssql-jdbc),
another Java project from Microsoft.

Questions. We formulated four questions to describe a task. We have
a set of questions for each dataset. For example, for the exercise in-
volving mwt-ds-explore-java, we use the following set of questions:

Q1 – Who and when did someone commit a change that modified
the file named Test.java?
Q2 – Who worked during the most days during the same month on a
file named Test.java? For how many days did the development
take place?
Q3 – When and who has committed a change on a file that belongs
to the path src/main/java/com/mwt/sample?

Q4 – What is the greatest number of commits pushed during one
single day by a single contributor during the months when Jon
Morra contributed?

Questions for the other application may be found in our additional
material (see Section 5.2).

Running the experiment. In total, 12 participants were involved in
this second controlled experiment, totaling 10 h and 59 min. With six
participants we have A = GitHub, B = GitMultipile. The six other
participants have the treatment swapped.

With six participants we have T1 using mwt-ds-explore-java
and six others we have T2 using mssql-jdbc. The other other parti-
cipants have the tasks swapped.

Results and analysis. Table 2 contains the score and time taken by
each participant. Fig. 13 represents the distribution of the time and
score using a Tukey boxplot.

Applying the non-parametric test Mann–Whitney indicates that data
are significantly different both for score and time (P = 0.0011, P <

Fig. 11. Tukey boxplot of score and time of Excel and GitMultipile.

Fig. 12. Visualizations and navigation tools offered by GitHub.
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0.0001, respectively)
Since the difference is significant, the null-hypothesis is rejected,

and we therefore conclude that GitMultipile performs better (both in
score and in time) than the visualizations of GitHub at answering the
questions we formulated.

Participants evaluated two Git repositories (mwt-ds-explore-java
and mssql-jdbc) using two treatments (GitHub and GitMultipile). We
compared the scores obtained by using the two repositories with each
treatment. The two-tailed Mann–Whitney test applied to the scores
obtained with GitHub results P = 0.5887, U = 14. The same test ap-
plied to the scores obtained with GitMultipile results P = 0.6104, U =
15. These two tests indicate that the two Git repositories we considered
lead to similar results per treatment. We can therefore conclude that the
two Git repositories are similar in their difficulty to analyze.

We compute the effect size: Cohen’s d= 2.440 for the score and d=
2.342 for the time, indicating a large effect size.

We conclude the following:

• Participants graded significantly better using GitMultipile than
using GitHub visualizations and navigation tools at answering our
set of questions about software evolution.

• Participants completed the questionnaire significantly faster using
GitMultipile than using GitHub visualizations.

• The two analyzed projects are similar in their difficultly to answer
our set of questions. We therefore exclude the presence of un-
balanced task difficulties, which could be assimilated as a plausible
bias.

8. Observations

We have closely observed each participant activity in the second
controlled experiment, the one involving GitHub and GitMultipile. We
used two data collection techniques: the think-aloud protocol and user
interactions. In the think-aloud protocol, we asked participants to
verbalize their thoughts while answering their tasks. This protocol
helps us understand developer activities and identify questions that

participants were asking while trying to solve the tasks.
Questions. We identified 7 questions participants asked themselves

during the experiment about GitHub and GitMultipile. Questions are
given below and each is annotated with the number of occurrences
during our experiment. We recall that 12 subjects participated in our
experiment.

GitHub. We identified three questions that identify some limitations
or surprising behavior of GitHub:

1) “Why is the number of the contributors at the initial page different than
the number of contributors shown in the graph page?” [Occurrence =
6] Each GitHub project main page indicates the number of con-
tributors, and time to time, this number differs when accessing the
list of contributors. For example, https://github.com/Microsoft/
EMDocs.hu-hu indicates that 11 contributors are part of the pro-
ject. However, clicking the graph tab lists 8 contributors. The fact
that merge commits are not listed in the graph page was confusing
for the participants.

2) “The Graph tab is not contextual. For example, I am on the page of a
folder of the project, and I press the Graph button, the metrics that are
given are for the whole project, and not the folder as I expected.” [Oc. =
6 ] Participants were expected to have metrics per folder, and not for
the whole project, even if nested folders are currently presented.

3) “Why searching for a file gives me so many answers that I don’t require?”
[Occurrence = 5] Consider Question Q1 about the file Test.java.
Many participants have entered Test.java in the search text field
of GitHub. However, GitHub returns the list of file having
Test.java in their name (e.g., PRGTest.java,
MurMurHash3Test.java). Many participants could not use the
search facility because GitHub does not solely return the exact
match.

GitMultipile. Three questions were identified when participants used
GitMultipile:

1) “Can I highlight relations with a condition involving code comments?”
[Oc. = 5 ]

2) “Can I directly see the code modified by a contributor on a file?” [Oc. =
3 ]

3) “Can I know how many lines of code were changed on a file?” [Oc. = 3
]

4) “Can I modify the relations shown in the timeline?” [Oc. = 3 ]
Currently, the metric shown in the timeline is set and cannot be
changed.

Post-experiment Feedback. After the experiments, we informally
asked the opinion of each participant about GitMultipile. Here are some
comments:

• “GitMultipile is powerful for these kinds of questions while GitHub forced
me to do a lot of manual searches”

• “GitMultiPile with weight:allowed me to reduce the commits to focus
on, thus easing the searches. First, I focus on the timeline, which let me
identify the stacks of matrices and on who is working. Secondly, I
zoomin on the data by using the relevant matrices”

• “GitMultiPile is an interesting tool. I like the idea to stack matrices using
a condition I defined. At first it was not clear to me the difference be-
tween using weight:and not using it. I used a lot the highlight facilities
in the questionnaire”.

All the comments made by the participants focus on the function-
alities offered by GitMultipile.

Results. A number of interesting facts can be deduced from obser-
ving our participants. First, some obvious limitations of GitHub were
spotted. Half of our participants complained about (i) the mismatch of
list of contributors, (ii) the Graph button giving a global analysis when

Table 2
Score and time (in minutes) of GitHub (GH) and GitMultipile (GM). Bold cell indicates the
use of mwt-ds-explore-java, while cell indicates mssql-jdbc.

Part. GH-score GH-time GM-score GM-time

P9 2.5 21 4 15
P11 3 38 4 28
P13 2.5 30 3.5 22
P15 2.5 34 4 27
P17 4 30 4 18
P19 2.5 32 3.5 24
P10 2.8 32 4 17
P12 2.9 44 3.8 18
P14 3.8 33 3.73 18
P16 1.9 40 4 20
P18 2.9 44 3.5 20
P20 3.8 47 3.8 22

Fig. 13. Tukey boxplot of score and time of GitHub and GitMultipile.
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a local one was expected, and (iii) the search facility is suboptimal.
Regarding GitMultipile, a notable result is to not have any questions

about the meaning of the adjacency matrices and their piles. This is
confirmed by the post-experiment feedback. Moreover, no participants
questioned the interaction we provided. The GitMultipile language did
not seem to be difficult to learn and no negative surprises were ex-
perienced by the participants. We can therefore conclude that
GitMultipile is intuitive for the experiments we designed and for the
subjects who participated. All but one comment is about the limitation
of GitMultipile. Currently, GitMultipile does not operate directly on the
application source code. This perceived limitations will shape our fu-
ture work, as described in Section 11.

9. Threats to validity

Our experiments and results are subject to validity threats. Since
such threats may be a source of false negatives and false positives, it is
important to carefully identify possible threats and analyze how their
impact may be mitigated.

Conclusion validity. Our conclusions are founded on two experiments
for which their strong statistical results favor GitMultipile over Excel
and GitHub. However, our conclusions are based on the result of only
20 participants, which is relatively low. Although we had no indication
that increasing the number of participants may invalidate our result,
the strength of the statistic results may be affected.

Internal validity. Our experiments shows strong evidences that
GitMultiple significantly performs better and faster than Excel and
GitHub to formulate queries and solve the software evolution tasks we
have designed. We therefore conclude that the changes in the in-
dependent variables (the employed treatment and the tasks we de-
signed) cause the observed changes in the dependent variables (score
and time).

Construct validity. Can our results be generalized to other software
evolution tasks? Unfortunately, we are not aware of any recognized
standard benchmark for software evolution. Thus, it could be that
GitHub would perform better than GitMultiple for a different set of
tasks. We were careful to identify research questions that reflect soft-
ware evolution tasks, based on existing work [1,8,10].

External validity. Threats to external validity are conditions that
limit the generalization of our result to industrial practices. GitMultiple
is a better solution than GitHub for the tasks we designed. GitHub offers
tools to help address software evolution activity. We picked GitHub as
the most representative baseline, although it is not primarily designed
to support software evolution tasks. Thus, it could be that we wrongly
picked GitHub. As discussed in Section 5.2, we took care to pick GitHub
as the most intuitive and natural choice.

Participants in the second experiment belong to the same company
and have experience from having worked on a common codebase. Thus,
it may be that their common knowledge could put in question the
random heterogeneity of the participants. However, we could not see
any hint supporting this threat.

10. Related work

Software visualization techniques are commonly employed when
analyzing software history. Our approach, which combines a domain-
specific language with stacked matrices, is unique as far as we are
aware of. This section summarizes the work in the field of software
visualization.

10.1. Visualizations

In an attempt to classify software visualization research tools, we
have produced a taxonomy (Table 3). Our taxonomy follows the tax-
onomy proposed by Diehl [24], but adjusted to the field of visualizing
software evolution. The two dimensions of the matrix are the

abstraction layers of software systems (whole systems, repository ac-
tivity, and code clone), and the associated phenomena to these layers.
The remaining of this section details each reference.

Repograms [12] is a visualization technique to qualitatively com-
pare and contrast software projects over time. Each project is re-
presented as a horizontal bar, in which portions of that bar are colored
to indicate values of a metric. Values can either be numerical (in that
case the color saturation is linear to the metric values), or numeral (in
that case, each item has a unique color, e.g., designating code author-
ship by representing author names).

ClonEvol [23] represents evolution of code clones across multiple
software versions. A radial tree and a variant of hierarchical bundle
edges are combined to indicate source code clone relations. A dedicated
color schema for the tree nodes and edges indicates differences from a
baseline. The schema may indicate structural differences or variation in
the activity.

CVSscan [21] is an integrated multiview environment in which each
software version is represented by a column, and where a source code
line is represented as a horizontal line. Metrics and software versions
are represented using configurable color maps. One color map indicates
textual modification: source code lines that have been added, modified,
and deleted are represented in a distinct color. Another color map in-
volves authorship. CVSscan may be seen as an improvement of See-
Soft [25].

Revision Tower [17] represents the activity of a control version
system repository. It uses a vertical layout of boxes in which each box
represents a historical information of a file contained in the repository.

3DSoftVis [19] is a 3D visualization tool in which each software
release history is articulated over time, the software structure, and the
module version numbers.

Multiple Visualization Strategies [13] emphasizes that software
evolution may be analyzed in many different ways, e.g., along the time
dimension or structural dimensions. SourceMiner Evolution tool offers
different visualizations, namely treemap, tree-like polymetric view,
graph showing dependency, timeline matrix, to navigate through a
software history.

History Slicing [14] is a scalable visual metaphor in which a file
history is a horizontal time line. Any part of this time line can be
zoomed in to reveal modification of the source code.

Evolution metrics [16] uses a Kiviat diagram with superposed data
sets: each axis in the diagram presents a metrics and a data set corre-
sponds to a particular system snapshot. This superposition of multiple
revision lets patterns emerge in the system evolution.

Chronia [20] is a visualization in which each file is represented as a
horizontal line. Time goes from left to right. Authorship is represented
with a color. Chronia indicates authorship of commit during each file
lifetime. Commits are indicated as a colored circle, and size of the
commit is reflected in the size of the circle.

Spectographs [22] represents the evolution of software components
on a particular property measurements. The visualization is a 2D chart
in which the X-Axis represents software versions and the Y-Axis re-
presents files. Each element of the chart indicates the spectrum (similar
to the one used in sound decomposition) and is colored accordingly to

Table 3
Taxonomy of software evolution visualizations.

Static Component Evolution of Source Metric
structure logical coupling static structure code evolution

Systems [12] [13] [14]
[10]
[15]

[16]

Activity
reposi-
tory

[17] [18] [19] [20]
[21]

[22]

Code clones [23]
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reflect variation of metrics.
Evolution radar [18] visualizes the logical coupling of one module

with the others. A selected module is placed at the center of a pie chart
(similar to a “radar”) and each sector represents a module the central
module depends on. The size of each sector represents the size of each
module as indicated with the number of files. Time intervals are re-
presented using a user-defined position-color mapping.

CodeCity [10,15] is a 3D visualization of the structure of a software
system using a city metaphor. In a city, each building represents a class
for which the height represents the number of methods of that class and
the building top area represents the number of variables. Underneath
flat squares, indicating a district, represent packages. CodeCity has
evolved with two time lines represent structural evolution of a
system [26]: a coarse-grained time in which each visualization re-
presents a snapshot of a system in a given point in time, and a fine-
grained time in which a visualization shows the evolution in time.

Dependency Structure Matrix is commonly used to represent evo-
lution of dependencies between software components. Lattix [3] offers
a navigable adjacency matrix. Enriched DSM [4] augments each matrix
cell with information about the indicated dependency.

10.2. Domain specific languages

Boa [27] is a domain-specific language and infrastructure that eases
mining software repositories. Boa runs over an “ultra-large dataset” and
the language is designed in such a way that scripts are relatively shorts
(a few lines long). Output are textual and a visualization tool is ne-
cessary to produce compact representations.

Feature-based DSL construction [28] has been proposed as a way to
build DSL families. A DLS family is a series of DLSs having a com-
monality in their domain. Such encoding of DSL families is expressed
using Alloy,12 a language to describe explorable structures.

Contrary of these domain specific languages to mine software re-
positories, GitMultipile’s domain-specific language is designed to pro-
duce stacked matrices.

11. Conclusion and future work

We designed a visualization framework and a domain-specific lan-
guage to produce software visualizations from a Git repository. We
performed two controlled experiments, involving 20 professional soft-
ware engineers for nearly 20 h. We made three findings: (i) the parti-
cipants performed better at formulating queries using GitMultipile than
using Excel, (ii) our participants performed better using GitMultipile
than GitHub’s visualizations to answer a set of questions on the history
of two Git repositories, and (iii) we identified some oddities in the way
GitHub behaves.

We conclude that GitMultipile represents a better alternative than
GitHub’s visualization to crawl and extract historical information.

As future work, we plan to expand our work as follows:

• Consider application source code. Currently, GitMultipile does not
consider the actual source code commit.

• Making the timeline more flexible by considering user defined me-
trics.

These two aspects will address some of the situations our partici-
pants have faced during our experiment.

Appendix A. GitMultiple language

A1. Program structure and language constructions

A program written in the GitMultiple Language has to begin with
instructions that (i) map a domain and co-domain to the matrices; (ii)
set a time period per matrix; (iii) define the weights of each matrix cell;
(iv) ordering, filtering, and highlighting instructions.

Our domain-specific languages features the following constructions:

• The domain S1 and co-domain S2 used in the matrices is defined
using mapFrom: S1 to: S2. Values commonly given to S1 and S2
are #authors, #files, #days, #months, or #hours. These do-
mains are exposed by the meta-model we used to represent the Git
repository data. This construction is allowed only once in a script.

• Each matrix represents a time period, for which its granularity may
be determined: timeYear, timeMonth, timeHour, timeDay de-
fine the time interval represented by one matrix. Only one keyword
is allowed in a script (i.e., all the matrices represents the same period
of time).

• The weights of each cell is defined using from: B1 to: B2
weight: B3. B1 and B2 are two-args block predicates used to select
the relevant commits. In case the domain are authors and the co-
domain are days, we can have B1 = [ :commit :author |
commit author = author ] and B2= [ :commit :day | commit
day = day ] to define the weight of a matrix cell as the number of
commits made by an author in a given day.
B3 is an one-arg block function that accepts a list of commits and a
new list of commits. The function B3 may do some manipulations of
the selected list of commits, for example, B3 = [ :commits |
commits select: #hasNoComment ] selects commits without
any comment. A variant of this construction is from: B1 to: B2 for
which the weight is the number of commits that matches B1 and B2.

• Each matrix cell has a popup text, activated when the mouse is lo-
cated above the cell. The popup value depends on the domain and
co-domain. The constructions fromIdentifier: B1 and
toIdentifier: B2 build the popup using a textual description re-
sulting from B1 and B2, both being an one-arg block function. A
typical one-arg block function will project and manipulate some
attributes of the domain and co-domain. For example, in case the
domain are authors, B1 = [ :author | author fullName ,
author email ] will define a popup as the full author name con-
catenated with author’s email.

• A particular author represented in matrices may be highlighted
using highlightAuthorName: N using: Col. N represents the
author name and Col a color.

• Matrices may be piled up using pileIf: C. Matrices that match the
condition C are piled. The condition C is expressed as a predicate
evaluated on a matrix, described below.

• Matrices representing time periods within the interval D1 and D2
may be piled using pileFrom: D1 to: D2. Time may be a year, a
month, a day, or an hour and are specified using a dedicated syntax.
For example:
– Year year: 2017 represents the year 2017
– Month month: ’January’ year: 2017 represents the month
January of the year 2017. A month index may be provided instead
of the month name.

– Date year: 2017 month: ’March’ day: 23 represents March
23, 2017.

• Matrices may be avoided to be piled using the construction
sequenceIf: C. Matrices matching a condition C are not included
in a pile. This construction is useful in case that matrices piled using
pileIf: C should remain in sequence.

• Some authors may be filtered out from the visualization using
filterOutAuthor: C, according to a particular condition C. This
condition is expressed for a given author.12 http://alloy.mit.edu/alloy.
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• Matrices and piles of matrices may be ordered using a layout.
Several layouts are available, the commonly used are layout
horizontalLine and layout grid.

Appendix B. Predicates

Many of the constructions given in the previous section requires a
predicates. Our DSL offers a large set of constructions to build pre-
dicates.

• Piling matrices involves conditions, which may involve some dedi-
cated predicates. A matrix offers various predicates, including
containsAuthorNamed: anAuthorName indicating whether or
not a matrix contains data for a particular author. Another predicate
is containsAnyAuthorMatchingFrom: authors accepting a
collection of author names.

• A commit offers some predicates. For example
containsCommentMatching: aContent indicates whether a
commit comment contains a text portion aContent. Some pre-
dicates are dedicated to files, for example, containsFile: C in-
dicates whether a commit contains a file whose matches a particular
condition C. For example, C = [ :file | file fullName
endsWith: ’.java’ ] is a predicate that matches file whose name
are ending with .java. The condition C may be arbitrary complex
and be combined with other conditions using boolean operator (&
and |).
Another predicate is containsFileNamed: aFilename indicates
whether a commit directly modify a file with a specific name.
Similarly, containsAnyFileMatchingFrom: someFilenames
matches commits that contain a file that matches any of the set of
names someFilenames.

Appendix C. DLS program input and host language

A script written using the GitMultiple language operates on a log file
obtained from a Git repository. GitMultiple is expressed as a domain-
specific language embedded in the Pharo programming language.13

Pharo therefore acts as a host language. Many libraries supported by
Pharo may therefore be used in GitMultiple scripts, including the col-
lection and data manipulation facilities. As we employed in our ex-
ample, the select: P construct filters a collection of elements using a
predicate P.
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