Tabla de Contenido

Ín	ndice de Tablas						
Ín	Indice de Ilustraciones						
1.	Intr	oducción	1				
	1.1.	Motivación	1				
		1.1.1. Contexto	1				
		1.1.2. Oportunidad	2				
		1.1.3. Relevancia	2				
	1.2.	Alcance	3				
	1.3.	Objetivos	3				
		1.3.1. Objetivo general	3				
		1.3.2. Objetivos Específicos	3				
	1.4.	Estructura de la memoria	4				
2. Marco Teórico		rco Teórico	5				
	2.1.	Radioastronomía	5				
	2.2.	OMT	6				
		2.2.1. Ondas Planas y Polarización	7				
		2.2.2. Aislación de polarización	8				
	2.3.	FPGA	9				

	2.4.	DOMT	2	10
		2.4.1.	Teoria del DOMT	11
	2.5.	Acopla	dor direccional	13
	2.6.	Antena	as	14
	2.7.	Medici	ón del Patrón de Radiación de una antena	14
		2.7.1.	Superficies de medición	15
		2.7.2.	Cámara Anecoica	16
		2.7.3.	Transformación a campo lejano	17
3.	Inst	rumen	tos y Metodología	18
	3.1.	Instru	nentos	18
		3.1.1.	ROACH II	18
		3.1.2.	Cámara Anecoica	22
		3.1.3.	Front-end Analógico	23
		3.1.4.	Antena de Bocina	26
	3.2.	Metod	ología	28
		3.2.1.	Acumulación de espectros complejos	29
		3.2.2.	Referencia espacial de la fase	33
		3.2.3.	Modificación del diseño del DOMT original	35
		3.2.4.	Esquema del sistema de medición	36
		3.2.5.	Montaje de la configuración de medición	39
		3.2.6.	Medición del patrones de radiación	40
1	Die	ño o i	mplomentación del software de control	19
4.	1 1		inplementation del software de control	42
	4.1.	Diseno	· · · · · · · · · · · · · · · · · · ·	42
		4.1.1.	Descripción de la solución	42
		4.1.2.	Arquitectura lógica	43

		4.1.3.	Arquitectura Física	44	
		4.1.4.	Decisiones de Diseño	44	
	4.2.	Impler	nentación	47	
		4.2.1.	Ambiente de Desarrollo	47	
		4.2.2.	Beam scanner	47	
		4.2.3.	Estructura de la aplicación	51	
		4.2.4.	Fuentes	52	
		4.2.5.	Extracción de Datos	53	
		4.2.6.	Procesamiento de datos	57	
		4.2.7.	Interfaz gráfica	57	
5.	Res	ultado	s y Discución	68	
	5.1.	Patrones de Radiación			
		5.1.1.	DOMT con híbrido ideal	69	
		5.1.2.	Elección de la posición de la antena de prueba para realizar la calibración.	72	
		5.1.3.	DOMT con híbridos compensados	74	
		5.1.4.	DOMT calibrado obteniendo las constantes optimizando la cros-polarizació en el subreflector.	ón 78	
		5.1.5.	DOMT calibrado obteniendo las constantes optimizando la cros-polarizació en 5 grados de apertura	ón 82	
6.	Con	clusio	nes	86	
	6.1.	Impler	nentación	86	
	6.2.	Medici	iones	86	
	6.3.	Trabaj	jo a futuro	87	
Bi	Bibliografía 88				

7	•	Anexos

7.1.	Modelo de bloques en simulink del DOMT de medición	91
7.2.	Reportes de compilación	92
	7.2.1. Reporte de timing	92
	7.2.2. Elementos de la FPGA empleados	93
7.3.	Publicación en congreso	95

Índice de Tablas

2.1.	Clasificación del espectro electromagnético ¹	6
2.2.	Resoluciones máximas para medir el patrón de radiación. En esta caso a representa el radio que se genera entre la antena de prueba y la fuente	16
3.1.	Estimación de los límites de las zonas de radiación de la antena de tipo bocina.	27
5.1.	Comparación de la eficiencia de polarización entre el DOMT ideal y calibrado integrando en 10 grados de apertura.	77
5.2.	Comparación de la eficiencia de polarización entre el DOMT ideal y calibrado integrado en el subreflector.	77
5.3.	Comparación de la eficiencia de polarización entre el DOMT ideal y optimizado en el subreflector e integrando en 10 grados de apertura.	81
5.4.	Comparación de la eficiencia de polarización entre el DOMT ideal y optimizado en el subreflector e integrando en el subreflector	81
5.5.	Comparación de la eficiencia de polarización entre el DOMT ideal y optimizado e integrados en 10 grados de apertura.	85
5.6.	Comparación de la eficiencia de polarización entre el DOMT ideal y optimizado en 10 grados de apertura e integrado en el subreflector.	85

Índice de Ilustraciones

2.1.	La opacidad de la atmósfera en función de la frecuencia de la radiación electromagnética ²	6
2.2.	Esquema del funcionamiento de un OMT ideal.	7
2.3.	Esquema de un sistema de un receptor heterodino de doble polarización. $\ .$	8
2.4.	Ejemplos de polarizaciones. De izquierda a derecha: lineal, circular y elíptica. ³	9
2.5.	Esquema del OMT analógico.	11
2.6.	Esquema del diseño del receport DOMT	11
2.7.	OMT que forma parte del front-end del DOMT	12
2.8.	Esquema de un acoplador direccional	14
2.9.	Esquema de medición de patrón de radiación, usando dos antenas	15
2.10	. Superficies recomendadas para la medición del patrón de radiación en campo cercano, [15].	16
3.1.	Esquema del sistema indicando las señales que interactúan	19
3.2.	Esquema de ROACH II ⁴	21
3.3.	Esquema simplificado de ROACH II, enfocándose en la transmisión de la señal de reloj y como llegan los datos desde los ADC a la FPGA. FM: frecuencia de muestreo.	22
3.4.	Controlador NSC-M2. Imagen de Newmark Systems.	23
3.5.	Actuador de rotación. Imagen de Newmark Systems.	23
3.6.	Controlador NSC-A1. Imagen de Newmark Systems	24
3.7.	Actuadores lineales. Imagen de Newmark Systems	24

3.8. Material absorbente	25
3.9. Front-end analógico.	26
3.10. Perdida por conversión del mezclador ZX05-24MH-S+ ⁵	27
3.11. Antena de tipo bocina	28
3.12. Perfil interno de la antena de tipo bocina.	28
3.13. Simulación del patrón de radicación de la co-polarización de la antena de la figura 3.11 a 14 GHz.	29
3.14. Una señal adquirida en tres intancias distintas	30
3.15. Cálculo de la diferencia de fase usando CORDIC	31
3.16. Cálculo de la diferencia de fase usando CORDIC y acumulando la parte real separada de la imaginaria.	31
3.17. Cálculo de la diferencia de fase y acumulando el valor complejo usando multi- plicación por el conjugado	33
3.18. Esquematico del amplificador (AD8009AR).	34
3.19. Esquematico del TTL (NC7SZ04M5XX).	34
3.20. Esquema de la implementación del DOMT con referencia de fase. \ldots . \ldots	36
3.21. Esquema del acumulador.	36
3.22. Esquema de los instrumentos que controlan para realizar la medición. $\ .\ .$.	39
3.23. Cámara anecoica desarmada.	39
3.24. Cámara anecoica lista para medir.	40
4.1. Diagrama de la arquitectura lógica	44
4.2. Diagrama general de la arquitectura física	44
4.3. Esquema de interfaz gráfica	45
4.4. Arquitectura lógica del servidor del <i>beam scanner</i>	48
4.5. Arquitectura física del servidor del <i>beam scanner</i>	48
4.6. Esquema UML de las clases que administran las conexiones entre el cliente y los controladores.	49

4.7.	UML de los paneles de la interfaz gráfica.	59
4.8.	Diagrama general del coordinador.	60
4.9.	Diagrama UML de las vistas para configurar los equipos	61
4.10.	Diagrama UML de las clases que implementan las conexiones con los equipos.	62
4.11.	Diagrama UML de las clases que implementan la lectura de memorias de la FPGA.	63
4.12.	Interfase gráfica.	63
4.13.	Elección de fuente.	64
4.14.	Opciones beam scanner.	64
4.15.	Configurar fuente telent.	65
4.16.	Alternativas del origen de los datos	65
4.17.	Configuraciones almacenadas.	66
4.18.	Funciones de disponible para procesar datos	66
4.19.	Configuración de una medida.	67
5.1.	Cortes del patrón de radiación para una frecuencia de 12.4 GHz, usando el DOMT con la calibración ideal y el patrón simulado. Co-polarización (izquier- da) y cros-polarización (derecha).	69
5.2.	Cortes del patrón de radiación para una frecuencia de 13.5 GHz, usando el DOMT con la calibración ideal y el patrón simulado. Co-polarización (izquier- da) y cros-polarización (derecha).	70
5.3.	Cortes del patrón de radiación para una frecuencia de 14.5 GHz, usando el DOMT con la calibración ideal y el patrón simulado. Co-polarización (izquier- da) y cros-polarización (derecha).	70
5.4.	Cortes del patrón de radiación para una frecuencia de 15.5 GHz, usando el DOMT con la calibración ideal y el patrón simulado. Co-polarización (izquier- da) y cros-polarización (derecha).	71
5.5.	Cortes del patrón de radiación para una frecuencia de 16.5 GHz, usando el DOMT con la calibración ideal y el patrón simulado. Co-polarización (izquier- da) y cros-polarización (derecha).	71

5.6.	Cortes del patrón de radiación para una frecuencia de 16.5 GHz y calibración realizada sobre un máximo de cros-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	72
5.7.	Cortes del patrón de radiación para una frecuencia de 16.5 GHz y calibración realizada entre dos máximos de cros-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	73
5.8.	Cortes del patrón de radiación para una frecuencia de 16.5 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	73
5.9.	Cortes del patrón de radiación para una frecuencia de 12.4 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	74
5.10.	Cortes del patrón de radiación para una frecuencia de 13.5 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	75
5.11.	Cortes del patrón de radiación para una frecuencia de 14.5 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	75
5.12.	Cortes del patrón de radiación para una frecuencia de 15.5 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	76
5.13.	Cortes del patrón de radiación para una frecuencia de 16.5 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha).	76
5.14.	Cortes del patrón de radiación para una frecuencia de 12.4 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando la cros-polarización en el subreflector.	78
5.15.	Cortes del patrón de radiación para una frecuencia de 13.5 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando la cros-polarización en el subreflector.	79
5.16.	Cortes del patrón de radiación para una frecuencia de 14.5 GHz y calibración realizada en punto de máxima potencia de co-polarización. Co-polarización (izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando la cros-polarización en el subreflector.	79

5.17. C re (i la	Cortes del patrón de radiación para una frecuencia de 15.5 GHz y calibración ealizada en punto de máxima potencia de co-polarización. Co-polarización izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando a cros-polarización en el subreflector.	80
5.18. C re (i la	Cortes del patrón de radiación para una frecuencia de 16.5 GHz y calibración ealizada en punto de máxima potencia de co-polarización. Co-polarización izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando a cros-polarización en el subreflector.	80
5.19. C re (i la	Cortes del patrón de radiación para una frecuencia de 12.4 GHz y calibración ealizada en punto de máxima potencia de co-polarización. Co-polarización izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando a cros-polarización en 5 grados de apertura	82
5.20. C re (i la	Cortes del patrón de radiación para una frecuencia de 13.5 GHz y calibración ealizada en punto de máxima potencia de co-polarización. Co-polarización izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando a cros-polarización en 5 grados de apertura.	83
5.21. C re (i la	Cortes del patrón de radiación para una frecuencia de 14.5 GHz y calibración ealizada en punto de máxima potencia de co-polarización. Co-polarización izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando a cros-polarización en 5 grados de apertura.	83
5.22. C re (i la	Cortes del patrón de radiación para una frecuencia de 15.5 GHz y calibración ealizada en punto de máxima potencia de co-polarización. Co-polarización izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando a cros-polarización en 5 grados de apertura	84
5.23. C re (i la	Cortes del patrón de radiación para una frecuencia de 16.5 GHz y calibración ealizada en punto de máxima potencia de co-polarización. Co-polarización izquierda) y cros-polarización (derecha). Constantes obtenidas minimizando a cros-polarización en 5 grados de apertura.	84
7.1. M	Modelo de simulink de la implementación del DOMT de medición	91