Tabla de Contenido

A	Agradecimientosiii	
T	abla de Contenido	iv
Í	Índice de Figuras	
Índice de Tablas		xi
1	Introducción	. 12
	1.1 Estructura de la Tesis	. 12
	1.2 Consideraciones Generales y Motivación del Estudio	. 12
	1.3 Conceptos Generales	. 15
	1.4 Formulación del Problema	. 17
	1.5 Objetivos	. 18
	1.6 Hipótesis de Trabajo	. 19
2	Metodologías	. 20
	2.1 MUESTREO Y PROCEDIMIENTOS ANALÍTICOS	. 20
	2.2 HERRAMIENTAS Y CÁLCULOS GEOQUÍMICOS	. 21
	2.3 Contribución de agua de fiordo	. 21
	2.4 ANÁLISIS ESTADÍSTICOS MULTIVARIABLE	. 22
	2.5 MUESTREO DE EMISIONES GASEOSAS	. 23
	2.5.1 Limpieza del equipo de muestreo	. 24
	2.5.2 Preparación de las ampollas tipo Giggenbach	. 24
	2.5.3 Muestreo de gases en fuentes termales burbujeantes	. 25
	2.5.4Análisis de gases	. 26
	2.6 Análisis de Isotopos de Estroncio (⁸⁷ Sr/ ⁸⁶ Sr)	. 26
	2.6.1 Materiales y reactivos	. 26
	2.6.2Limpieza del material de trabajo	. 27
	2.6.3 Procedimiento de separación química	. 28
	2.6.4Análisis y reducción de datos	. 29

3	Manifestaciones termales en Aysén	. 33
	3.1 Río Rodríguez (5144136 N/ 683911 E/ 18 m)	. 34
	3.2 Puerto Bonito (5130766 N/ 681919 Е/ 37 м)	. 35
	3.3EL SAUCE (5121942 N/ 697678 E/ 38 м)	. 36
	3.4 Gañote (5084758 N/ 691509 E/ 3 м)	. 38
	3.5 EL VENTISQUERO (5084056 N/ 693183 E/ 12 M)	. 39
	3.6Ричиниарі (5079598 N/ 687575 Е/ 16 м)	. 40
	3.7 QUEULAT (5068330 N/ 694291 Е/ 5 м)	. 41
	3.8Isla Magdalena (5062132 N/ 681070 E/ 5m)	. 42
	3.9Los Pobres (5037646 N/ 673198 Е/ 12 м)	. 43
	3.10 Puerto Pérez (4988243 N/ 641401 Е/ 7 м)	. 45
	3.11 CHILCONAL (4979824 N/ 649828 E/ 51 м)	. 46
	3.12 Huiña (4868685 N/ 667620 E/ 276 м)	. 48
	3.13 El Engaño (4854415 N/ 669647 E/ 383 м)	. 49
	3.14 PUERTO CRISTAL (4835765 N/ 697255 E/ 212 м)	. 50
4	Decoding fjord water contribution and geochemical processes in the Aysen thermal	
sĮ	orings (Southern Patagonia, Chile)	. 52
	Abstract	. 52
	4.1 INTRODUCTION	. 53
	4.2 Geological and hydro-geological setting	. 56
	4.3 Methods	. 57
	4.3.1 Sampling and analytical procedures	57
	4.3.1 Sampling and analytical procedures 4.3.2 Geostatistical Methods	. 57 . 58
	 4.3.1 Sampling and analytical procedures 4.3.2 Geostatistical Methods 4.3.3 Sea water contribution 	. 57 . 58 . 59
	 4.3.1 Sampling and analytical procedures	. 57 . 58 . 59 . 62
	 4.3.1 Sampling and analytical procedures	. 57 . 58 . 59 . 62 . 62
	 4.3.1 Sampling and analytical procedures	. 57 . 58 . 59 . 62 . 62 . 62 . 66
	 4.3.1 Sampling and analytical procedures	. 57 . 58 . 59 . 62 . 62 . 62 . 66 . 66
	 4.3.1 Sampling and analytical procedures	. 57 . 58 . 59 . 62 . 62 . 62 . 66 . 66 . 66
	 4.3.1 Sampling and analytical procedures	. 57 . 58 . 59 . 62 . 62 . 66 . 66 . 66 . 67 . 70

	4.5 Conclusions	73
	4.6 ACKNOWLEDGEMENTS	74
5	Composición química e isotópica de las fuentes termales en Aysén: Influencia de	fluidos
m	nagmáticos	75
	5.1 Introducción	75
	5.2 CARACTERIZACIÓN GEOQUÍMICA DE LOS ELEMENTOS TRAZAS	76
	5.2.1 Anomalías de elementos o especies químicas en el fiordo de Aysén	82
	5.2.2 Geoquímica del cloruro, vanadio y selenio	83
	5.2.2.1 Factor salino	84
	5.2.3 Geoquímica del litio, rubidio y cesio	85
	5.2.4 Geoquímica del cobalto, germanio y arsénico	87
	5.3 Índices de saturación y especies químicas dominantes	88
	5.4 Isótopos de carbono y estroncio	91
	5.5 Gases en fuentes termales burbujeantes	96
	5.5.1 Geotermómetros de gases	97
6	Modelo conceptual esquemático	99
7	Conclusiones	102
8	Bibliografía	103

Índice de Figuras

Figura 1.1 Comparación promedios mensuales y número total de episodios MP 2.5 (Ministerio
del Medio Ambiente, 2016) 14
Figura 1.2 Sistema geotermal dominado por convección con diferentes tipos de reservorios (1, 2a y 2b) (Moeck, 2014)
Figura 1.3 Sección esquemática de una cuenca sedimentaria intracratónica. Varios reservorios geotermales (A, B y C) se distinguen a diferentes rangos de profundidades y temperaturas (Moeck, 2014)
Figura 2.1 Configuración del equipo de muestreo de fuentes termales burbujeantes
Figura 2.2 Configuración y procedimiento de purga del sistema de muestreo. Conexiones 1, 2 y 3 de la llave de tres vías en azul
Figura 2.3 Disposición de las columnas y tubos de centrifuga con sus respectivos racks 29
Figura 3.1 Fuentes termales catastradas y analizadas en este estudio
Figura 3.2 Fuente termal Río Rodríguez 34
Figura 3.3 Fuente termal Puerto Bonito
Figura 3.4 Fuente termal El Sauce
Figura 3.5 Imagen satelital del área del río Palena donde se identifican las principales unidades volcánicas (Gonzales-Ferran, 1995) y estructurales (Arancibia et al. 1999; Cembrano & Lara 2009; Mella & Páez 2011) asociados a las termas. Se indica la ubicación de muestras de fuentes termales, agua de lluvia y fiordo
Figura 3.6 Fuente termal Gañote
Figura 3.7 Surgencia de agua de las termas El Ventisquero
Figura 3.8 Fuente termal Puyuhuapi
Figura 3.9 Fuente termal Queulat
Figura 3.10 Fuente termal Isla Magdalena 42
Figura 3.11 Fuente termal Los Pobres

Figura 3.13 Fuente termal Puerto Pérez	4
--	---

Figura 3.17 Fuente termal El Engaño. 49

Figure 4.6 Ca+Mg-HCO ₃ -SO ₄ vs. Na+K-Cl and Ca+Mg vs. HCO ₃ +SO ₄ binary diagrams showing different water-rock interaction processes
Figure 4.7 Dendrogram from the HCA for water samples. Segmented line defines "phenon line" at a linkage distance of five
Figure 4.8 Plot of factorial scores. The HCA groups are shown
Figure 4.9 Binary graph δ2H vs. δ18O for water samples taken. GMWL: global meteoric water line (Craig, 1963); LMWL: local meteoric water line
Figure 4.10 Ternary diagram of Aysen thermal springs based on Na/1000-K/100-Mg ^{0.5} (Giggenbach, 1988)
Figura 5.1 Modelos alternativos para el origen del calor y los constituyentes químicos disueltos en los fluidos termales (Sharma and Srivastava, 2014)
Figura 5.2 Diagrama de caja de las concentraciones de elementos trazas de cada una de las fuentes termales
Figura 5.3 Concentración de elementos trazas en función de la temperatura superficial 80
Figura 5.4 Gráficos binarios entre cloruro, vanadio y selenio. La línea en el diagrama representa la línea de dilución de agua de fiordo
Figura 5.5 Gráficos binarios Li, Rb y Cs vs Cl ⁻ . La línea en el diagrama representa la línea de dilución de agua de fiordo
Figura 5.6 Diagrama ternario Li, Rb y Cs. Basado en (Giggenbach, 1991)
Figura 5.7 Gráficos binarios Ge, Co y As vs Cl ⁻ . La línea en el diagrama representa la línea de dilución de agua de fiordo
Figura 5.8 Gráfico binario TDIC vs $\delta^{13}C_{TDIC}$. Modificado de (Frondini et al., 2009)
Figura 5.9 Razones isotópicas de ⁸⁷ Sr/ ⁸⁶ Sr en rocas del BNP en las distintas zonas de surgencia de los fluidos termales (Pankhurst et al., 1999), de los volcanes Maca y Cay (D'Orazio et al., 2003; Lopez-Escobar et al., 1993) y de las aguas termales y de fiordo en la región de Aysén. Entre paréntesis está el número de muestras de rocas consideradas en los diagramas de caja y en rectángulo en plomo el rango de valores de ⁸⁷ Sr/ ⁸⁶ Sr del agua de lluvia (0 709-0 7106) (Négrel
et al., 2001)

Figura 5.10 Diagrama δ^{18} O vs 87 Sr/ 86 Sr	95
Figura 5.11 Diagrama ternario N ₂ , He y Ar	97
Figura 6.1 Modelo esquemático sistemas geotermales de Aysén	101

Índice de Tablas

Tabla 2.1 Parámetros de ejecución del MC-ICP-MS	
Tabla 2.2. Configuración de las copas de Faraday	30
Table 4.1 Chemical and isotopic analyses of meteoric, thermal and fjord water sar Aysen region.	nples from
Table 4.2 Average values and standard deviation for G1, G2 and G3 water groups dis	stinguished
Table 4.3 Factorial analysis with Varimax rotation. Bold value corresponds to variables in each factor.	significant
Table 4.4 Estimated reservoir temperature by silica and cations geothermometers	
Tabla 5.1 Análisis de elementos trazas en ppb. Muestras de Fuentes termales (TS), Fi Lluvia (MW) y Río (FW). Símbolos (<) menor al límite de cuantificación y (-) no me	ordo (SW), edido 78
Tabla 5.2 Matriz de correlación entre seleccionados elementos trazas más el cloruro rojo correlaciones mayores a 0.9, en amarillo entre 0.8 y 0.89, y en verde entre 0.7 y). Texto en 0.79 81
Tabla 5.3 Concentración química del fiordo (muestra n°21) respecto a la química pr un océano abierto. En fondo azul cuando las concentraciones en el fiordo son mayore océano.	romedio de es que en el
Tabla 5.4 Comparación del factor salino calculado mediante las concentraciones de y V.	Cl ⁻ , Br ⁻ , Se 85
Tabla 5.5 Especies químicas dominantes de seleccionados elementos trazas en cada fu incluido la muestra de fiordo más salina.	ente termal 90
Tabla 5.6 Índices de saturación de minerales comunes en sistemas geotermales. En r de saturación mayores que cero.	ojo índices 90
Tabla 5.7 Concentración de TDIC, signaturas isotópicas de δ^{13} C y razones isotópicas en las muestras de aguas de Aysén. El símbolo (-) significa análisis no realizado	de ⁸⁷ Sr/ ⁸⁶ Sr 92
Tabla 5.8 Composición química de las muestras de gases	
Tabla 5.9 Temperaturas de equilibrio mediante geotermómetros de gases	