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Abstract

The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was

developed to study the biosynthesis pathways of specialized metabolites and to find

metabolic engineering targets for enhancing their production. The model, iVR1007,

consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the

biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and

other specialized metabolites. iVR1007 was validated using experimental informa-

tion of growth on 166 different sources of carbon, nitrogen and phosphorous,

showing an 83.7% accuracy. The model was used to predict metabolic engineering

targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene

knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090

(trehalose-phosphate synthase), that enhance the production of the specialized

metabolites by increasing the pool of precursors were identified. Using the algorithm

of flux scanning based on enforced objective flux (FSEOF) implemented in python,

35 and 25 over-expression targets for increasing the production of chaxamycin A

and chaxalactin A, respectively, that were not directly associated with their

biosynthesis routes were identified. Nineteen over-expression targets that were

common to the two specialized metabolites studied, like the over-expression of

the acetyl carboxylase complex (sle47660 (accA) and any of the following genes:

sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were

identified. The predicted knockouts and over-expression targets will be used to

perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer

strains.
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1 | INTRODUCTION

Microbial specialized metabolites are generally synthesized in

discrete amount by the cell during the secondary metabolism using

precursors produced during the primary metabolism (Hiltner, Hunter,

& Hoskisson, 2015), these metabolites accomplish diverse roles

within the microbial environment (Demain & Fang, 2000). Specialized

metabolites have shown to have diverse chemical structures and

many different applications, especially in medicine (Gross, 2007;

McMurry & Begley, 2005).

Nowadays the need for novel specializedmetaboliteswith antibiotic

activity is urgent (Laxminarayan et al., 2013), and to accomplish their

therapeuticuse, it is necessary toenhance theirproduction (Parekh,Vinci,

& Strobel, 2000). Traditional methods for increasing the production of

specializedmetabolites involved changes in the expression/regulation of

genes/proteins. However, the improvement due to genetic regulation

would increase the production of the biosynthetic genes and resistance

genes, butnot theavailability of precursors,whichwould still be a limit on

thewayof enhancing the titersof themetabolite (Chen, Smanski,&Shen,

2010). Understanding the connection between primary and secondary

metabolism, to study the pathways devoted to precursor biosynthesis,

and to exploit the genomic potential of themicroorganisms is essential in

order to produce them and improve their yield. Also, metabolic

engineering targets for improving the production of the precursors can

be identified through genome-scale models.

The majority of the specialized metabolites with antibiotic activity

come from Streptomyces strains (Kieser, Bibb, Buttner, Chater, &

Hopwood, 2000). Examples are: chloramphenicol from S. venezuelae,

kanamycin from S. kanamyceticus, streptomycin from S. griseus and

daptomycin from S. roseosporus. The sequenced genome of strains, like

S. coelicolor (Bentley et al., 2002), or S. avermitilis (Ōmura et al., 2001),

have allowed study of the biosynthesis of specialized metabolites and

also identification of silent or cryptic biosynthetic gene clusters (BGCs)

associated to new compounds (Challis, 2008; Lautru, Deeth, Bailey, &

Challis, 2005).

A new Streptomyces strain was isolated from the Chaxa lagoon of

the Atacama Desert of northern Chile (Okoro et al., 2009). This novel

strain was named Streptomyces leeuwenhoekii C34 and a draft genome

sequence was obtained (Busarakam et al., 2014). This strain produces

novel specialized metabolites with antibiotic and anticancer activity,

the chaxamycins and chaxalactins (Rateb, Houssen, Arnold et al., 2011,

Rateb, Houssen, Harrison et al., 2011). The chaxamycins A-D are

ansamycin-type polyketides synthesized from 3-amino-5-hydroxy-

benzoic acid (AHBA) as starting molecule and malonyl-CoA and (S)-

methylmalonyl-CoA as extensor units. The chaxamycin polyketide

synthases (PKS) are similar to that of the rifamycin biosynthesis (Castro

et al., 2015). Also, chaxamycin A-C have antitumor activity through

inhibition of the heat shock protein 90 (Hsp90) (Rateb, Houssen,

Arnold et al., 2011). The chaxalactins A-C are polyketides synthesized

from malonyl-CoA and (S)-methylmalonyl-CoA (Castro, 2015). They

have antibiotic activity against Staphylococcus aureus and methicillin

resistant Staph. aureus (MRSA) (Rateb, Houssen, Arnold et al., 2011,

Rateb, Houssen, Harrison et al., 2011).

Lately, a new genome sequence was achieved using next

generation DNA sequencing techniques (Gomez-Escribano et al.,

2015). The genome sequence allowed the identification of the

biosynthetic gene cluster (BGC) that encoded for chaxamycins (Castro

et al., 2015), and the chaxalactins BGC (currently being studied by

Castro et al., 2015 in preparation). In addition, 32 BGCs encoded in the

chromosome of S. leeuwenhoekii C34, plus one BGC encoded in the

plasmid pSLE2 were identified. The detailed bioinformatic evaluation

of the BGCs revealed that twenty-seven were probably involved in the

synthesis of unknown specialized metabolites, therefore possible new

compounds. The study of the metabolic pathways of S. leeuwenhoekii

C34 would allow identification of metabolic engineering targets that

would improve the production of chaxamycins, chaxalactins, or other

specialized metabolites.

The study of the microorganism metabolism can be accomplished

through a GSM. GSMs are mathematical models that are developed to

study the behavior of the cell taking into account all the available

information of the genome, omics data, and literature. These models

have allowed determination of the behavior of the cell under various

conditions simulating genes deletion or over-expression and their

effect in the organism studied and identification of drug targets

(Campodonico, Andrews, Asenjo, Palsson, & Feist, 2014; Contador,

Rodŕıguez, Andrews, & Asenjo, 2015). Specifically for Streptomyces

strains, GSM have been developed for S. coelicolor (Alam, Merlo,

Takano, & Breitling, 2010; Borodina, Krabben, & Nielsen, 2005; Kim

et al., 2014; Kim, Smith, Micklefield, & Mavituna, 2004), S. clavuligerus

(Medema et al., 2010), S. lividans (D’Huys et al., 2012), and S.

tsukubaensis (Huang, Li, Xia, Wen, & Jia, 2013). These models have

been used to predict gene targets for metabolic engineering in order

to improve specialized metabolite production. For example, the

production of the immunosuppressant FK506 was 1.47 fold higher

in S. tsukubaensis modified with gene knockouts and overexpression

predicted by a GSM (Huang et al., 2013).

In this work, we present the first GSM for S. leeuwenhoekii C34

constructed using the genome sequence information obtained

previously (Gomez-Escribano et al., 2015). The GSM was used to

study precursor biosynthesis of specialized metabolites, such as

chaxamycins, toward improving their yield. Also, identification of gene

targets for overexpression or deletion that would enhance specialized

metabolite biosynthesis was addressed.

2 | METHODS

2.1 | Construction of the genome scale model

The methodology for the construction of the GSM of S. leeuwenhoekii

C34 is summarized in Figure 1. Concisely, the information of genes/

proteins/reactions of other Streptomyces, especially that of S. coelicolor,

enzyme commission (EC) numbers and pathwayswas downloaded from

the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database

(Kanehisa & Goto, 2000; Kanehisa et al., 2014) using the bioservices

module (Cokelaer, Pultz, Harder, Serra-Musach, & Saez-Rodriguez,

2013) with a script written in python programming language
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version 2.7 (python programme available at https://www.python.

org/download/releases/2.7/).

All the data of genes and proteins of S. coelicolor associated to a

metabolic pathway were retrieved and using the orthology numbers

information the reactionsweredesignated. If needed, the informationwas

complementedwithdataobtained fromotherStreptomyces. For transport

reactions, information of the associated genes and proteins was obtained

from either KEGG or transportDB (Ren, Chen, & Paulsen, 2007).

Local blast of those genes/proteins of S. coelicolor or another

Streptomyces was done against a local gene database of S.

leeuwenhoekii C34. A threshold of at least 45% identity and e-value

lower than 0.001 was defined as a cut-off to select for the best hits.

These lower cut-off settings were selected in order to include all

possible homologous proteins. Later, selection of true homologous

proteins was performed through analysis of conserved domains (CD).

CD-blast (Marchler-Bauer & Bryant, 2004; Marchler-Bauer et al.,

2009, 2011, 2014) was performed separately for S. leeuwenhoekii C34

and for the other Streptomyces. The CD-blast information was used to

compare the domains of homologous proteins to confirm their

similarity in functionality, specially for the proteins with low identity.

The model was refined with bibliographic information. Specialized

metabolitebiosynthesispathwayswere incorporated (formoredetails see

section 2.2). Artificial reactions for the biosynthesis of biomass were

included in order to simulate cell growth (formore details see section 2.3).

Manual curation of the list of proteins, genes, and associated

reactions was done for all the metabolic pathways of S. leeuwenhoekii

C34 to determine the proper Gene-Protein-Reaction (GPR) relation-

ship. Also, enzyme complexes were manually identified and properly

annotated. It was checked that the production of biomass was possible

by simulating the precursor supply of each building block of the

biomass reaction. Gap-filling reactions were incorporated if needed,

especially when all the genes of the pathway down the gap were

present in S. leeuwenhoekii C34. Charge and mass balances were

automatically checked. Mass balances that required water or protons

were automatically fixed, and otherwise, were manually curated.

The predictability of the model was assessed by comparison of in

silico results with experimental data (for more details see section 2.6).

2.2 | Incorporation of specialized metabolite
pathways

Biosynthesis pathways to produce chaxamycins (Castro et al., 2015),

chaxalactins (Castro, 2015), desferrioxamines (Barona-Ǵomez, Wong,

Giannakopulos, Derrick, & Challis, 2004) amongst other specialized

metabolites pathways, were manually included in the model. All the

reactions needed for the biosynthesis of the precursors of the

specialized metabolites were incorporated into the model. It was

checked that the production of each specialized metabolite included

was possible by setting the biomass production rate to a 10% of the

growth in default conditions, therefore ensuring the viability of the

cells, and optimizing the specialized metabolite biosynthesis.

2.3 | Biomass composition

The biomass elementary composition was adapted from the one

described for S. coelicolor (Borodina et al., 2005), using information of S.

leeuwenhoekii C34 when it was available and complementing with

information of other Streptomyces (for a detailed description please see

Supplementary Information: Formulation of the biomass equation and

their components, Supplementary Tables S3–12). Briefly, the DNA

composition was obtained from the deoxyribonucleoside composition

of the chromosome of S. leeuwenhoekii C34. RNA composition was

derived from the deoxyribonucleotide composition of rRNA, tRNA and

mRNA, the later one inferred from the DNA sequence of the

chromosome. The energy requirement for polymerisation of triphos-

phates was obtained from Ingraham, Maaløe, and Neidhardt (1983).

FIGURE 1 Schematic representation of the methodology used for the reconstruction of the genome scale model of Streptomyces
leeuwenhoekii C34. *Several other modules were also used during this methodology, such as Matplotlib (Hunter, 2007) and Tkinter
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Composition of proteins and small molecules was assumed as for S.

coelicolor. Triacylglycerol (TAGs) and lipid proportion of DWwas taken

from S. coelicolor, but TAG and lipid composition was taken from S.

leeuwenhoekii C34 (Busarakam, 2014).

2.4 | Curation of the model

The model obtained was manually curated and the production of

biomass was evaluated with each precursor at a time. The

directionality of the reactions was checked according to ΔG energies

(Flamholz, Noor, Bar-Even, & Milo, 2011) and with bibliographic

information of reversibility available from the closest phylo-genetically

related microorganisms.

Furthermore, the predicted domains through the conserved

domain database (CDD) batch analysis for all the proteins related to

reactions within the model reconstruction, were compared to

Streptomyces homologous proteins assigned to each reaction in

KEGG. To do so, a python script that compares the domains of the

S. leeuwenhoekii C34 proteins and other Streptomyces was developed.

Within this script it was possible to obtain a graphic representation of

the proteins that did not match in order to facilitate further analysis.

Also, it was checked that the domains of the proteins assigned to

each reaction had a coherent functionality. In addition, genes encoding

for protein complexes or isoenzymes were identified, and properly

annotated.

2.5 | Simulations of the metabolism

Simulations were done by flux balance analysis (FBA) or Minimal of

metabolic adjustment (MOMA) using the Constrain Based Recon-

struction Analysis for python (COBRApy) toolbox (Ebrahim, Lerman,

Palsson, &Hyduke, 2013) in python programming language version 2.7

(https://www.python.org/download/releases/2.7/). The GSM was

represented as a stoichiometric matrix S of size m× n, where m

represents the number of metabolites and n the number of reactions.

Under steady state assumption the system of linear equations of mass

balance is defined by:

Sv ¼ 0 ð1Þ

where, S is a stoichiometric matrix and v is a vector of length n that

represents the flux through all the reactions.

The solution space was constrained by the boundaries of each

reaction Equation (2), and for the definition of an objective function Z

Equation (3). For reversible reactions the lower (LB) and upper bounds

(UB) were set as −1,000 and 1,000 respectively, leaving the reaction

practically unconstrained, while for irreversible reactions the lower

bound was set to 0. For simulation of specialized metabolite

production, a percentage of the maximum biomass production rate

calculated was added as a constraint, and a specific specialized

metabolite was set as a new objective function Z.

υLB≤υ≤ υUB ð2Þ

Z ¼ CTυ ð3Þ

Thedefault carbon, nitrogen,phosphorousandsulphur sourceswere

glucose, ammonium, phosphate and sulphate, respectively. Default

conditions for simulating growth were set at −10mmol gDW−1 hr−1

uptake rates (lower bound), where a minus sign represents that the

metabolite is being consumed. To simulate aerobic growth the oxygen

uptake rate was set at −10mmol gDW−1 hr−1. Small inorganic ions

needed for biomass biosynthesis were allowed to freely enter or exit the

system by setting the lower and upper bound of each exchange reaction

to −1,000 and 1,000, respectively. The lower bound of the rest of

the exchange reactionswas constrained to zerowhen simulating growth

in MM. When simulating growth in MM with other carbon, nitrogen

or phosphorous sources, the lower bound of the default source was set

to 0, and the uptake rate of the evaluated source was set to

−10mmol gDW−1 hr−1.

The gurobi optimizer version 6.5.1 (http://www.gurobi.com/),

under a free academic license, was used as the linear programming

solver.

2.6 | Validation of the model

Experimental results of growth or no-growthunder sole carbon, nitrogen

or phosphorous sources obtained using Biolog (http://www.biolog.com/

), was used to study the predictability of the model. The uptake rates of

the exchange reaction of each carbon, nitrogen or phosphorous source

was set to −10mmol gDW−1 hr−1 one at a time. A viability threshold of

10% of growth of default conditions was considered.

2.7 | Gene knockout analysis and experimental
studies

FBA andMOMAwere used to simulate gene knockouts and findwhich

gene deletion could enhance synthesis of precursors toward special-

ized metabolite biosynthesis.

In order to simulate gene deletions, simulation of growth in

complex media was used as the default condition. The optimization

was carried outwith the biomass production rate as objective function,

and the initial values of production of chaxamycin A and chaxalactin A

were obtained. Then the gene(s) associated to each reaction was

knocked-out and it was evaluated if the deletion of the gene(s)

increased the initial production rate of each specialized metabolite

evaluated. The gene(s) knockout that generated the higher increase in

production was used as the genetic background for the search for

double or triple gene knockouts thatwould further improve the yield of

chaxamycinA and chaxalactin A. To ensure the viability of the cell, each

knockout was selected considering a viability threshold of at least 10%

of the maximum growth in default conditions.

2.8 | Identification of gene overexpression targets

The algorithm Flux Scanning based on Enforced Objective Flux

(FSEOF) was used to select gene targets for overexpression (Choi, Lee,

1818 | RAZMILIC ET AL.

https://www.python.org/download/releases/2.7/
http://www.gurobi.com/
http://www.biolog.com/


Kim, & Woo, 2010). Through FSEOF it is possible to identify the

fluxes that are increased at the same time the flux through a

objective reaction is incremented, and the production of biomass is

used as an objective function. The algorithm to perform FSEOF

(Choi et al., 2010) was implemented in python and used in

conjunction with the COBRApy toolbox (to see details of the

script used, go to Supplementary Information). As the FBA result

is not unique, flux variability analysis (FVA) was applied to

determine if the predicted targets for overexpression were true

positives.

2.9 | Implementation and software usage

The genome scale model was constructed using biopython

and implemented using COBRApy (Ebrahim et al., 2013)

installed in a computer with 64-bit Windows 10 system, Intel®

CoreTM i5-2430M CPU @ 2.40 GHz with 8 GB RAM. General

drawings and figures were done using Inkscape (https://inkscape.

org) or python. Drawings of fluxes were done with Escher

(King et al., 2015) and edited in Inkscape (https://inkscape.

org).

3 | RESULTS

3.1 | The model

A consistent and validated model was obtained and named iVR1007.

Themodel iVR1007 has 1,722 reactions, 1,463metabolites, and 1,007

genes. There are 425 reactions that do not have an associated gene but

are needed for connectivity of the model or for biomass production

(Table 1). The distribution of iVR1007 reactions is shown in Figure 2.

Growth associated maintenance (GAM) requirements were

assumed to be 40mmol ATP gDW−1 hr−1 as observed for S. coelicolor

(Borodina et al., 2005). This term was added as ATP hydrolysis to the

artificial biomass reaction. Non-growth associated maintenance

(NGAM) requirements are imposed by setting the lower bound

of the ATPM reaction to 3mmol ATP gDW−1 hr−1 as stated for

S. coelicolor (Borodina et al., 2005).

The pathways needed for the use of different carbon/nitrogen and

phosphorous sourceswere included in themodel, specially if therewas

experimental evidence of growth on those sources. Sixty-five percent

of the gap-filling reactions were related to transport reactions or the

fatty acid metabolism, and they were necessary for completeness of

the model. The remaining 35% gap-filling reactions were included

for completion of different metabolisms (Figure 3). They were added

to complete the metabolic pathways when the metabolic pathway

was almost complete or there was evidence of the consumption

or production of the compounds participating in the pathway.

For example, orphan reactions included to allow the degradation of

D-galacturonate and L-rhamnose.

3.1.1 | Fatty acid biosynthesis

The fatty acid composition of S. leeuwenhoekii C34 (Busarakam,

2014), includes branched-chain fatty acids (BCFA) as well as

straight-chain fatty acids (SCFA) which were incorporated in

the model. BCFA are biosynthesized from branched-chain amino

acids, 2-methylpropanoyl-CoA, 3-methylbutanoyl-CoA and (S)-2-

methylbutanoyl-CoA, and use malonyl-CoA as extender units, to

produce iso- (odd numbered chain), iso- (even numbered chain), and

anteiso- (even numbered chain) fatty acids, respectively. Also,

TABLE 1 Statistics of iVR1007

Number

Total reactions 1,722

Metabolic conversions 1,483

Transport reactions 239

Exchange reactions 186

Reactions with ORF assigned 1,297

Reactions without ORF assigned (GAPs) 425

Percentage of reactions with ORF 75.2%

Transport reactions with ORF 108

Percentage of transport reactions with ORF 45.2%

Metabolic conversions with ORF 1,189

Percentage of metabolic conversions with ORF 80%

FIGURE 2 Distribution of reactions of iVR1007 in each metabolism category
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iVR1007 includes the biosynthesis of unsaturated fatty acids.

Malonyl-CoA is produced from acetyl-CoA in the reactions rx0404

and rx0405 (in KEGG: r04386 and r04385, respectively).

All the reactions of fatty acid biosynthesis were added stepwise

instead of being lumped in one reaction. Because of this, 37% of the

gap-filling reactions were from the fatty acid biosynthesis and

metabolism (Figure 3).

3.1.2 | Specialized metabolite pathways

Specialized metabolites like polyketides or non-ribosomal peptides are

assembled with precursors synthesized during the primary metabo-

lism. polyketide synthase (PKS)s use acyl-CoA molecules as building

blocks such as acetyl-CoA, malonyl-CoA, or (S)-methylmalonyl-CoA.

Non-ribosomal peptide synthetase (NRPS)s use amino acids and

derivatives as precursors and extender units. The Shikimate pathway is

important for generation of amino acids and derivatives that are used

during the primary metabolism and also in the biosynthesis of

specialized metabolites. Reactions needed for the biosynthesis of

chaxamycins, chaxalactins, desferrioxamines, and ectoine were

included in the model.

Chaxamycins

The proposed metabolic pathway of chaxamycin biosynthesis (Castro

et al., 2015) is based on rifamycin biosynthesis. Biosynthesis reactions

of chaxamycins were lumped according to the PKS genes (Figure 4a). A

total of 21 reactions that were exclusive, were included in the model in

order to allow production of chaxamycin A and B. The key precursors

FIGURE 3 Number of reactions of iVR1007 in each metabolism.
Reactions with ORF assigned are shown in gray and gap-filling
reactions in light gray

FIGURE 4 Specialized metabolites biosynthesis pathways in S. leeuwenhoekii. Chaxamycin A biosynthesis (a) and Chaxalactin A biosynthesis
pathway (b). Green: specialized metabolites product, red: main used precursors, blue: intermediates metabolites. Abbreviations: SucnylCoA_c
(succinyl-CoA), RMylmalnylCoA_c (R-methylmalonyl-CoA), ProoylCoA_c (propanoyl-CoA), SMylmalnylCoA_c (S-methylmalonyl-CoA),
MalnylCoA_c (malonyl-CoA), AceCoA_c (acetyl-CoA), AmiD_c (aminoDAHP), Ami_c (aminoDHQ), cAmi5deo3deh_c (5-Amino-5-deoxy-3-
dehydroshikimate), tAmi5hydbzte_c (3-Amino-5-hydroxybenzoate), tetraketideCxm_c (tetraketide intermediate of chaxamycin),
m_tetraketideCxm_c (modified tetraketide intermediate of chaxamycin), heptaketideCxm_c (heptaketide intermediate chaxamycin),
octaketideCxm_c (octaketide intermediate chaxamycin), nonaketideCxm_c (nonaketide intermediate chaxamycin), undecaketideCxm_c
(undecaketide intermediate chaxamycin), Prochax_c (prochaxamycin), ChaxA_c (chaxamycin A), SAdeLmet_c (S-adenosyl-L-methionine),
SAdeLhom_c (S-adenosyl-L-homocysteine), t4ketideCxl_c tetraketide intermediate chaxalactin), h6ketideCxl_c (hexaketide intermediate
chaxalactin), o8ketideCxl_c (octaketide intermediate chaxalactin), d10ketideCxl_c (decaketide intermediate chaxalactins), CxlA_c (chaxalactin A)
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needed for the biosynthesis of chaxamycins are: 3-Amino-5-

hydroxybenzoate (AHBA), malonyl-CoA and (S)-methylmalonyl-CoA.

Chaxalactins

There are three types of chaxalactins (A-C) but as all of them use the

same precursors it has been proposed that chaxalactin A is synthesized

first; only chaxalactin A biosynthesis reactions were added to the

model. The reactions needed for chaxalactin A biosynthesis was

inferred from the putative biosynthetic pathway proposed (Castro,

2015). There are five PKS biosynthesis genes and each of them was

annotated as a reaction (Figure 4b).

Desferrioxamines

Desferrioxamines are siderophores with high affinity to iron. They are

produced when the concentration of iron is low. Desferrioxamines are

released by the cells, they form an iron complex and then the complex is

transported into the cell to recover the iron. The BGC of desferriox-

amines has been studied for S. coelicolor (Barona-Ǵomez et al., 2004). In

the same work the biosynthesis pathway of desferrioxamine E was

described, complementing the previous information (Günter, Toupet, &

Schupp, 1993; Schupp, Toupet, & Divers, 1988).

Ectoine

Ectoine is a compatible solute that has a protective role within the cell.

It is produced in higher amounts when the cell is in conditions of

salinity or heat stress. The biosynthesis pathway of ectoine has been

previously described (Bursy et al., 2008; Peters, Galinski, & Trüper,

1990). Ectoine is synthesized by enzymes encoded in a highly

conserved BGC:ectABC. Homologous genes of the ectoine BGC

have been identified in the genome of S. leeuwenhoekii C34.

3.2 | Validation of the model

The default conditions for simulation of growthwere set as specified in

the methodology (section 2.5 and 2.6).

Simulations were carried out to challenge the model to correctly

predicted growth in aerobic conditions and no growth in anaerobic

conditions, by analyzing the growth capabilities when the oxygen

exchange reactionwas blocked. Themodel predicted that therewas no

growth when the oxygen exchange reaction was blocked, and that

growth depends on the uptake rate of oxygen.

The predictability of the model was evaluated and validated using

data of growth/no-growth in sole carbon, nitrogen or phosphorous

sources inferred fromBiolog data. Comparison between the prediction

and experimental results are shown in the supplementary information

(Supplementary Figures S1 and S2). The model correctly predicted

growth/no-growth with 72 out of 89 carbon sources, 45 out of 54

nitrogen sources and 22 out of 23 phosphorous sources, correspond-

ing to an 83.7% accuracy. There were five cases for which the model

was not capable of predicting growth contradicting the experimental

information. These discrepancies could be due to missing content or

inconsistencies. On the other hand there were 16 cases where the

model predicts growth and the experimental evidence showed the

opposite. The differences could be due to errors, inconsistencies or

missing constrains, such as transcriptional regulatory constraints.

To allow the model to use several carbon/nitrogen sources, it was

necessary to includegap-filling reactions. For example, the experimental

evidence showed that S. leeuwenhoekii C34 was capable of growing

using L-lysine as carbon/nitrogen source, however the reactions

required to allow L-lysine consumption and connection to themetabolic

network did nothave theS. leeuwenhoekiiC34genesassociated. Further

studies are required in order to identify the genes involved.

The metabolism of D-melibiose, D-raffinose and stachyose goes

through the production of D-galactose. The model predicts that S.

leeuwenhoekiiC34 is able to grow using either of thementioned carbon

sources, however the experimental information indicated that there is

no growth with D-melibiose, D-raffinose, and stachyose, while there is

growth with D-galactose. The conversion of D-melibiose, D-raffinose,

or stachyose to D-galactose is catalyzed by the genes sle10440,

sle08850, or sle63600. Additional analyses are required in order to see

if these reactions are subject to transcriptional constraints.

Similar cases occur for D-alanine, formic acid, D-glucose

6-phosphate, sucrose, uridine, glycolate, L-homoserine, L-leucine,

L-ornithine, D-glutamate, cytidine, and cytosine, all the genes needed

to use these carbon/nitrogen sources are present in iVR1007 and

consequently the model predicts growth, however the experimental

evidence showed that S. leeuwenhoekii was not able to use those sole

carbon/nitrogen sources. This suggests that there could be regulatory

constrains over those genes.

The model predicts growth with L-lactic acid as carbon source in

contrast with experimental evidence. The metabolism of this

compound in the model includes gap-filling reactions that were added

to complete the fructose and mannose metabolism. If these reactions

were eliminated from the model, iVR1007 predicts not-growth with

L-rhamnose contradicting the experimental information. Similarly in

the case of formamide, where if the gap-filling reaction is deleted the

model wrongly predicts growth with other sources.

The experimental information showed that D-glucosamine could

be used as sole carbon source but not as nitrogen source. In contrast,

the model predicts that it is possible to use it as either carbon or

nitrogen source. Further studies are required in order to understand

why S. leeuwenhoekii is not capable of using this substrate as a nitrogen

source.

The capacity to grow in complex media was also evaluated. The

model predicted a higher growth rate in complex media compared to

growth on sole carbon sources.

3.3 | Identification of metabolic engineering targets

The GSM was used to identify non-intuitive gene knockouts or

overexpression that would improve specialized metabolite production

like chaxamycins and chaxalactins. A simplification of the core

metabolism of S. leeuwenhoekii C34 showing the biosynthesis of

precursors for specialized metabolites biosynthesis, as well as the

metabolic engineering targets for increasing their production is shown

in Figure 5.
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FIGURE 5 Simplified core metabolism of S. leeuwenhoekii C34 showing gene targets for over-expression (highlighted in green) and
knockouts (highlighted in orange) for increasing specialized metabolites biosynthesis. The genes involved in other reactions had been omitted
for simplicity. Abbreviations: ChaxA_c (chaxamycin A), CxlA_c (chaxalactin A), aDGlu_c (α-D-Glucose), DGlu1p_c (D-Glucose 1-phosphate),
UDPglu_c (UDP-glucose), aDGl6p_c (α-D-Glucose 6-phosphate), aaTreh6P_c (α,α-Trehalose 6-phosphate), AmiD_c (aminoDAHP), Ami_c
(aminoDHQ), cAmi5deo3deh_c (5-Amino-5-deoxy-3-dehydroshikimate), tAmi5hydbzte_c (3-Amino-5-hydroxybenzoate), bDfr6p_c (β-D-
Fructose 6-phosphate), bDFr16bp_c (β-D-Fructose 1,6-bisphosphate), DGlyc3p_c (D-Glyceraldehyde 3-phosphate), DEryt4p_c (D-Erythrose 4-
phosphate), Sedo7p_c (Sedoheptulose 7-phosphate), Dxylu5p_c (D-Xylulose 5-phosphate), DRibu5p_c (D-Ribulose 5-phosphate), Dribo5p_c
(D-Ribose 5-phosphate), aDRibo1p_c (α-D-Ribose 1-phosphate), cPaDribo1dp_c (5-Phospho-α-D-ribose 1-diphosphate), Pyr_c (Pyruvate),
AceCoA_c (acetyl-CoA), MalnylCoA_c (malonyl-CoA), LHomo_c (L-Homoserine), OAceLhom_c (O-Acetyl-L-homoserine), tMyl2obutad_c (3-
Methyl-2-oxobutanoic acid), aIsopro_c (α-Isopropylmalate), Cit_c (Citrate), Isocit_c (Isocitrate), dOglu_c (2-Oxoglutarate), SucnylCoA_c
(succinyl-CoA), Succ_c (Succinate), Fum_c (Fumarate), SMal_c (S-Malate), Oxa_c (Oxaloacetate), RMylmalnylCoA_c (R-methylmalonyl-CoA),
SMylmalnylCoA_c (S methylmalonyl-CoA)
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3.3.1 | Gene knockout analysis

The procedure described in section 2.7, allowed obtention of sets of

gene deletions that increment the production of chaxalactin A. For

increasing chaxamycinAproductionnosinglegeneknockoutwas found.

The gene sle03600 (metX), encoding for an acetyl-CoA:L-homo-

serine O-acetyltransferase is associated to the reaction rx0268 (KEGG

No. r01776) in the cysteine andmethioninemetabolism.Deletion of this

gene producedmore availability of acetyl-CoA that in principle, could be

converted to malonyl-CoA and increase chaxalactin A production to a

60% of the theoretical maximum yield. The deletion of sle03600 was

used as a starting point to predict further improvement of chaxalactin A

production. It was found that an additional deletion of the genes

sle21250 (leuA_3), sle22000 (leuA_2), and sle47020 (leuA_1) (encoding

for 2-isopropylmalate synthase), associated to the reaction rx0022

(KEGGNo. r01213) predicted an increase in chaxalactin Aproduction to

67% of the maximum yield (Figure 6a).

The chaxamycin A production was predicted to be increased in the

presence of at least double gene deletions. The deletionof sle03600 and

sle39090 (otsA, encoding for a trehalose 6-phosphate synthase)

produced an increase to 8% of the theoretical maximum. Further

deletion of sle29000, sle29010 (gauA_2) and sle56410 (gauA_1)

(encoding for IMP dehydrogenase), associated to the reaction rx1231

(KEGG No. r02661, r01130), predicted an improvement of chaxamycin

A production to 44 % of the theoretical maximum (Figure 6b).

A summary of the predicted gene knockouts that enhance the

production of specialized metabolites and their associated reactions is

shown in Table 2.

3.3.2 | Identification of targets for overexpression

FSEOF was applied to identify reactions that had an incremented flux

when a specific specialized metabolite production was enforced and

the production of biomass was optimized in growth in complex media,

this procedure allows obtention of overexpression gene targets that

would enhance the production of chaxamycins and chaxalactins

(Supplementary Tables S1 and S2).

Fifty-four reactions that had increasing fluxes while the produc-

tion of chaxamycin A was enforced were identified. Nineteen of them

are directly involved in the production of the precursor AHBA and in

the production and transport of chaxamycin A, while 35 reactions are

not. When FSEOF was applied to study targets of overexpression for

chaxalactins enhancement, a total of 31 reactions were detected as

possible targets.

Of the not directly related reactions several of them were found

for more than one of the specialized metabolites. The identification of

common overexpression targets is probably due to the use of the same

extensor unit (malonyl-CoA).

4 | DISCUSSION

4.1 | Discrepancies between model predictions and
the experimental data

The reported accuracy of other models developed and validated using

growth phenotype data was around 74–90% (Durot et al., 2008; Feist

et al., 2007; Oberhardt, Pucha∤ka, Fryer, Dos Santos, & Papin, 2008;

FIGURE 6 Gene knockout search for increased chaxalactin A production in the wildtype strain (gray) and Δsle03600 (light gray) (a); and
gene knockout search for increasing chaxamycin A production in Δsle03600 (gray) and Δsle39090 (light gray) background (b). The proteins are:
Sle21300 and Sle55630 (branched-chain amino acid aminotransferase); Sle21450 (ketol-acid reductoisomerase); Sle31780 and Sle52440
(dihydroxy-acid dehydratase); Sle21350 (1-pyrroline-5-carboxylate dehydrogenase); Sle31740 (pyrroline-5-carboxylate reductase); Sle03050,
Sle11780, Sle21470, Sle44740 and Sle21460 (acetolactate synthase complex); Sle21310 (3-isopropylmalate dehydrogenase); Sle03600
(homoserine O-acetyltransferase); Sle14750 and Sle25340 (catalase); Sle25340, Sle14750 and Sle65590 (catalase); Sle01610, Sle10270 and
Sle50220 (3-deoxy-7-phosphoheptulonate synthase); Sle28620 (phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP
cyclohydrolase); Sle21250, Sle22000 and Sle47020 (2-isopropylmalate synthase); Sle32240 (2-amino-4-hydroxy-6-
hydroxymethyldihydropteridine diphosphokinase); Sle39090 (trehalose 6-phosphate synthase); Sle05040 (cystathione beta-lyase); Sle29000,
Sle29010 and Sle56410 (IMP dehydrogenase); Sle06860 (L-histidine N-α-methyltransferase)
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Oh, Palsson, Park, Schilling, & Mahadevan, 2007). The higher accuracy

was reported when the number of considered carbon/nitrogen/

phosphorous/sulfur sources was lower, such as the case for iMO1056

with a reported accuracy of 90% (Oberhardt et al., 2008) but just

considering 30 conditions. On the other hand, accuracies of 74% and

76% were reported for the Bacillus subtilismodel (Oh et al., 2007), and

E. coli K-12 model (Feist et al., 2007), considering 271 and 170

conditions, respectively. In the case of iVR1007, an accuracy of 83.7%

was obtained considering 166 conditions.

This percentage of accuracy could be improved by analysing and

understanding the discrepancies between predictions and experimen-

tal data. The model iVR1007 did not include regulatory constraints,

hence the discrepancies could be due to missing regulatory informa-

tion. The model could be improved with the inclusion of regulatory

constraints (Herrgård, Lee, Portnoy, & Palsson, 2006). On the other

hand, the identification of genes involved in gap-filling reactions would

allow polishing of the GSM. For example, the GSM of E. coli has been

greatly improved over the years by the inclusion of experimental

information (Orth et al., 2011).

GSMs are always under development, and with the future

availability of more experimental data for S. leeuwenhoekii C34, it is

going to be possible to further improve the predictability of the model.

4.2 | Identification of metabolic engineering targets
for increasing chaxamycin and chaxalactin production

4.2.1 | Prediction of gene knockout targets

The GSM allowed obtention of novel knockout gene targets that could

be used to improve specializedmetabolite biosynthesis (Table 2). Gene

knockouts were detected that predict an increment in the production

of chaxamycin A and chaxalactin A.

The deletion of sle03600 produced an increased flux through the

reactions rx0404 and rx0405 due to more availability of acetyl-CoA,

and consequently an enhanced flux toward chaxalactin A production is

predicted. Further deletion of sle21250, sle22000, and sle47020

(2-isopropylmalate synthases; reaction rx0022), increments the pool

of acetyl-CoA that can go to the production of malonyl-CoA, a key

precursor in specialized metabolite biosynthesis.

In a Δsle03600 background, the deletion of sle39090 (trehalose

6-phosphate synthase) that participates in the reaction rx1350

that consumes UDP-glucose, predicts an increase in the fluxes toward

the production of AHBA a key precursor for the biosynthesis of

chaxamycin A.

Similarly, other gene deletions predicted to increase chaxamycin A

production were found to, directly or indirectly, increment the fluxes

toward the production of the building blocks of these metabolites. For

example an increment in the flux through the reactions rx0404 and

rx0405, generating a higher conversion of acetyl-CoA tomalonyl-CoA.

The gene knockout targets differ from previously reported ones and

can lead to an improvement in specialized metabolite biosynthesis. Some

of the reported gene knockouts for enhancing specialized metabolites

in other Streptomyces are: SCO1937 and SCO6661 in S. coelicolor (Ryu,

Butler, Chater, & Lee, 2006). The homologous genes in S. leeuwenhoekii

C34 are sle52050 and sle11620 that participate in reactions rx1099 and

rx1101. These genes were not found as deletion targets with iVR1007,

and when the deletion of those genes was simulated, an increased

productionof specializedmetaboliteswasnot found,nor an increased flux

through rx0404andrx0405.However,usingΔsle52050andΔsle11620as

genetic background, enables the identification of other gene deletions

that enhanced specialized metabolites production (data not shown).

It has been described that gene knockouts associated with the

metabolism of N-acetyl-glucosamine produce a higher yield of

actinorhodin (Swiatek, Tenconi, Rigali, & van Wezel, 2012). However,

the role of N-acetyl-glucosamine metabolism in enhancing specialized

metabolites is associated to regulatory constraints, as those were not

included in themodel, it was not possible to detect if the deletion of the

homologous genes, sle39040, sle25040, sle39050, and sle43640would

enhance the production of specialized metabolites in S. leeuwenhoekii

C34. Nevertheless, these and other gene knockouts that were not

found could be used along with the predicted gene targets in order to

boost specialized metabolite production.

As gene targets were found for improving each specialized

metabolite production separately, it is possible that the deletion of the

predicted genes generates an increase in the production of any of the

studied metabolites. Particularly, as many of the gene deletions

cause an improvement in the flux through the reactions that convert

acetyl-CoA to malonyl-CoA, the main precursor used to synthesized

TABLE 2 Predicted genes knockout targets for increasing chaxamycin A and chaxalactin A production

Predicted effect of knockout Gene(s) No. Reaction

Increase chaxalactin A production sle03600 rx0268 AceCoA_c + LHomo_c ↔ CoA_c +OAceLhom_c

Increase chaxalactin A production in
a Δsle03600 background

sle21250,
sle22000, sle47020

rx0022 AceCoA_c + tMyl2obutad_c + H2O_c → aIsopro_c + CoA_c +H_c

Increase chaxamycin A production in

a Δsle03600 background

sle39090 rx1350 UDPglu_c + aDGl6p_c → UDP_c + aaTreh6p_c

Increase chaxamycin A production in

a Δsle03600 and Δsle39090
background

sle29000,

sle29010,
sle56410

rx1231 IMP_c + NAD_c + H2O_c → Xant5p_c + NADH_c + H_c

AceCoA_c (acetyl-CoA), LHomo_c (L-homoserine), CoA_c (coenzyme A), OAceLhom_c (O-acetyl-L- homoserine), tMyl2obutad_c (3-methyl-2-oxobutanoic

acid), aIsopro_c (α-isopropylmalate), UDPglu_c (UDP-glucose), aDGl6p_c (α-D-glucose 6-phosphate), aaTreh6p_c (α,α-trehalose 6-phosphate), Xant5p_c
(xanthosine 5-phosphate).
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specialized metabolites. For this reason, it is important to consider the

predicted gene deletions on modified strains that do not contain

competitive BGC. For example, when improving production of

chaxalactins the strain S. leeuwenhoekii M1614 (Δchaxamycins BGC)

should be used as the starting point. Also, it would be better if the

proposed modifications could be performed in a S. leeuwenhoekii C34

strain lacking other main active BGCs. Therefore, the metabolic profile

would be easier to analyse and there would be more precursors

available for the biosynthesis of the desired specialized metabolite

(Gomez-Escribano & Bibb, 2011).

4.2.2 | Prediction of overexpression gene targets

Several potential gene targets for overexpressionwere identified using

FSEOF. Nineteen reactions were identified as targets to increase the

production of chaxamycins and chaxalactins, they are mainly

associated with the biosynthesis of the precursor malonyl-CoA or

with the pentose phosphate pathway (PPP).

An important precursor for the biosynthesis of polyketides such as

chaxamycin A and chaxalactin A is malonyl-CoA. In the model, there

are two essential reactions needed for malonyl-CoA biosynthesis,

rx0404 and rx0405 (in KEGG:r04386 and r04385, respectively). These

two reactions are usually lumped into one reaction (KEGG: r00742)

that was not included in the model to avoid duplicity. The genes

predicted to catalyse both reactions are sle47660 (accA) and any of the

following: sle27560 (bccA), sle44630 (accA_1), sle39830 (accA_2), or

sle59710. The first two could be better targets because they have

higher homology to proteins already studied (Maharjan, Park, Yoon,

Lee, & Sohng, 2010). However the protein Sle59710, despite having

lower identity to the associated proteins of the reaction rx0404,

has the same domains as homologue proteins and also has the

domains that are present in Sle47660. Future studies would allow

determination of whether this protein is capable of catalyzing the

conversion of acetyl-CoA to malonyl-CoA.

The reactions rx0404 and rx0405 were found as overexpression

targets for chaxamycins and chaxalactins. Overexpression of acetyl-

CoA carboxylase (acc) has proven to be very useful to accomplish

overproduction of several specialized metabolites (Maharjan et al.,

2010, Maharjan, Koju, Lee, Yoo, & Sohng, 2012; Ryu et al., 2006; Zha,

Rubin-Pitel, Shao, & Zhao, 2009;).

Besides the use of ATP and acetyl-CoA, for the generation of

malonyl-CoA in reaction rx0404 and rx0405, bicarbonate is also

needed. Bicarbonate is generated from CO2 in the reaction rx1057

(KEGG No. r10092). This reaction was found as a target for the three

specialized metabolites, and the three genes encoding for carbonic

anhydrase are sle16220 (cynT_2), sle32790 (cynT_1), and sle50480

(mtcA1). The overexpression of homologous genes of other strains

had not been required when overexpressing acetyl-CoA carboxylase

complex (Maharjan et al., 2010, 2012; Ryu et al., 2006; Zha,

Rubin-Pitel, Shao, & Zhao, 2009), this indicates that the bicarbonate

is not restricting the reaction, therefore the overexpression of the

genes in S. leeuwenhoekii C34 could not affect specialized metabolite

production.

Several targets are associated to the PPP and some of them

were identified as targets for the two specialized metabolites

(rx1090 and rx1095), and others for chaxalactins (rx1094, rx1098,

rx1103, and rx1226). The reaction rx1090 (KEGG No. r01827)

associated to the genes sle11610 (tal1) or sle52060 (tal2) (encoding

for transaldolase), produces D-erythrose 4-phosphate, and β-D-

fructose 6-phosphate.

The interlink between the PPP and the glycolysis pathway means

that anymodifications in either of the pathways directly affect the other

(Olano, Lombó,Méndez, & Salas, 2008). In the case of themodifications

suggested by the model, the higher flux of rx1090 could generate a

higher flux of β-D-fructose 6-phosphate to the glycolysis pathway.

Thereareother reactions (rx0291, rx1711, rx0288, rx1709, rx1710,

rx0283, and rx0264) that are associated with cysteine and methionine

metabolism. They seem to be selected as targets for overexpression as

they could increase the acetyl-CoA pool (rx0288, in KEGG r00586),

however this is a gap-filling reaction in themodel. There is not evidence

of overexpression of homologous genes in other strains to increase

specialized metabolite production. Hence, the overexpression of any of

the associated genes should be addressed carefully.

Among the reactions not directly involved that were found as

targets to enhance production of chaxamycins, is the reaction rx1367

(KEGGNo. r00289) that usesD-glucose 1-phosphate to produceUDP-

glucose, the latter compound is needed for the biosynthesis of AHBA.

The gene associated to this reaction is sle41020 (galU, UTP-glucose-1-

phosphate uridylyltransferase). The expression of the homologous

gene in Amycolatopsis mediterranei U32, galU, associated to rifamycin

biosynthesis had been increased by the incorporation of nitrate to the

media (Shao et al., 2015). However, the effect of the overexpression

under a constitutive strong promoter over the AHBA production has

not been studied.

The genes encoding for methylmalonyl-CoA mutase, associ-

ated to the reaction rx0227 (KEGG No. r00833), sle28060 or

sle28760 or sle22410 or sle22940, are also targets for over-

expression as the production of (R)-methylmalonyl-CoA is pre-

dicted to be used to produce (S)-methylmalonyl-CoA by the

gene sle22570 in the reaction rx0228 (KEGG No. r02765). (S)-

methylmalonyl-CoA is an important precursor in the biosynthesis of

chaxamycins and chaxalactins, therefore these overexpression

targets were found for both cases. Overexpression of homologous

genes in other Streptomyces has not been performed. The over-

expression of these genes should be studied in conjunction with the

overexpression of the genes predicted to increase the biosynthesis

of malonyl-CoA and AHBA.

Among the other common overexpression targets identified for

chaxamycins and chaxalactins, there is a set of reactions (rx1257,

rx1258, rx1262, rx1263, rx1277, and rx1628) that lead to the

production of glyoxylate and urea, however the last reaction is a

gap-filling reaction in the model. Therefore it is necessary to identify

enzymes that could be associated to that reaction.

From the gene targets identified for overexpression other

genes that could be used could be inferred. For example, it can

be inferred that succinyl-CoA is required for the production of
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(S)-methylmalonyl-CoA, a precursor molecule of chaxamycins and

chaxalactins. However, the FSEOF result does not include over-

expression targets for increasing succinyl-CoA because there is more

than one reaction from where the model can predict succinyl-CoA

production, like rx0205 or rx1000 (in KEGG: r01197 and r08549,

respectively). In the case of overexpressing those reactions it will be

necessary to overexpress the genes: sle30310 (korB, 2-oxoglutarate

ferredoxin oxidoreductase subunit β) with sle30300 (korA, 2-oxoglu-

tarate ferredoxin oxidoreductase subunit α) (for rx0205) and sle24580

(kgd, 2-oxoglutarate dehydrogenase E1 component) with sle49590

(dlaT, 2-oxoglutarate dehydrogenase E2 component) and with

sle49600 (pdhD, dihydrolipoamide dehydrogenase) (for rx1000). A

similar case can be proposed for the reaction rx1551 (KEGG

No. r00678), catalysed by tryptophan 2,3-dioxygenase, generating

L-formylkynurenine that could be used to produce L-alanine in the

reaction rx1557 (KEGG No. r03936) that could be used later to

produce pyruvate in the reaction rx0049 (KEGG No. r00396). In this

case, the two last reactions were not predicted as overexpression

targets because there are several reactions in which the involved

metabolites participate. The gene encoding for the enzyme catalysing

the reaction rx1551, sle33790, could be used as a non-intuitive

overexpression target.

Several of the reactions identified are associatedwith isoenzymes,

so it is crucial to analyze through RT-PCR which genes are actually

being expressed (see section 4.3).

All the predicted overexpression targets should be used for

metabolic engineering of S. leeuwenhoekii C34. Also, the over-

expression targets can be included as gene targets for improving

PKS production identified in similar strains. On the other hand, the

gene overexpression targets identified for other strains elsewhere,

that were not detected in this study, could also be considered as

targets. Such is the case of the overexpression of the branched-chain

α-keto acid dehydrogenase (BCDH) complex that improves actino-

rhodin production in S. coelicolor (Kim et al., 2014).

4.3 | Addressing functionality and genetic
redundancy

The genomes of Streptomyces strains usually contain several genes

encoding for the same biochemical function (Bentley et al., 2002; Ikeda

et al., 2003). This has been observed for S. leeuwenhoekii C34 in this

work. The studyof theessential genesof the centralmetabolism inE. coli

(Kim & Copley, 2007) showed that a large number (80 out of 227)

were nonessential under the studied conditions. The reason for this is

the availability of alternative pathways, isoenzymes, multifunctional

enzymes or broad-specific enzymes (Kim & Copley, 2007). The

redundancy or metabolic flexibility, allows the cell to use different

pathways under specific environmental conditions (Hiltner et al., 2015).

In the GSMs the isoenzymes are associated with a particular

pathway. However, it is important to study their regulation to

determine their biochemical relevance under different culture con-

ditions and to evaluate their impact in the production of specialized

metabolites.

4.4 | The genome scale model of S. leeuwenhoekii
C34 would allow experimental design

The combination of the genes identified as targets for overexpression

and knockouts can be used to design strains with specific phenotypes.

Also, the model can be used to identify the formulation of an optimal

media for the production of each specialized metabolite. Similarly, the

model could be used to study gene deletions that would help in

understanding and complementing the biosynthesis pathways that,

currently, are incomplete.

5 | CONCLUSIONS

The first GSM of S. leeuwenhoekii C34, iVR1007, was developed.

Experimental information of growth in different carbon, nitrogen, and

phosphorous sources was used to validate the model. The in-silico

simulations showed that the model had 83.7% accuracy. The model,

iVR1007, was used to predict gene knockouts and overexpression that

could enhance specialized metabolite production. The deletion of

sle03600 (homoserine O-acetyltransferase) and sle21250, sle22000,

and sle47020 (2-isopropylmalate synthases) predicted an increase in

chaxalactin production as the deletion of these genes produced

knockouts of reactions that consume acetyl-CoA, therefore allowing

an increase in the acetyl-CoA pool that is predicted to be used to

enhance the production of malonyl-CoA.

Chaxamycin production was predicted to be enhanced by the

deletion of sle03600 and sle39090 (trehalose 6-phosphate synthase)

due to the indirect increment of malonyl-CoA and AHBA production,

respectively. Further improvement was predicted with the additional

deletion of the genes sle29000, sle29010, and sle56410 (IMP

dehydrogenases) associated to the reaction rx1231.

Gene targets for overexpression were found for each of the

analysed specialized metabolites. Specifically, 35 and 25 overexpres-

sion targets for enhancing the production of chaxamycins and

chaxalactins, respectively, were predicted. These targets were not

directly related to their biosynthesis. The majority of them correspond

to new overexpression targets, although homologous genes to

previously described overexpression targets for increasing other

polyketides biosynthesis were also found, such as the genes associated

with the conversion of acetyl-CoA to malonyl-CoA in the reactions

rx0404 and rx0405.
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