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Type II ancient compact solutions to
the Yamabe flow

By Panagiota Daskalopoulos at New York, Manuel del Pino at Santiago and
Natasa Sesum at Rutgers

Abstract. We construct new type II ancient compact solutions to the Yamabe flow. Our
solutions are rotationally symmetric and converge, as t — —oo, to a tower of two spheres.
Their curvature operator changes sign. We allow two time-dependent parameters in our ansatz.
We use perturbation theory, via fixed point arguments, based on sharp estimates on ancient
solutions of the approximated linear equation and careful estimation of the error terms which
allow us to make the right choice of parameters. Our technique may be viewed as a parabolic
analogue of gluing two exact solutions to the rescaled equation, that is the spheres, with narrow
cylindrical necks to obtain a new ancient solution to the Yamabe flow. The result generalizes
to the gluing of k spheres for any k > 2, in such a way the configuration of radii of the spheres
glued is driven as t — —oo by a First order Toda system.

1. Introduction

Let (M, go) be a compact manifold without boundary of dimensionn > 3.1f g = v = g0
is a metric conformal to g, the scalar curvature R of g is given in terms of the scalar curvature
Ry of go by

_n+2 - _
R =v n=2(=chAgyv + Rov)

where Ag, denotes the Laplace Beltrami operator with respect to go and ¢, = 4(n—1)/(n—2).
In 1989 R. Hamilton introduced the Yamabe flow

og
= =
as an approach to solve the Yamabe problem on manifolds of positive conformal Yamabe
invariant. It is the negative L2-gradient flow of the total scalar curvature, restricted to a given
conformal class. The flow may be interpreted as deforming a Riemannian metric to a conformal
metric of constant scalar curvature, when this flow converges.

(1.1) —Rg
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2 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Hamilton [8] showed the existence of the normalized Yamabe flow (which is the re-
parametrization of (1.1) to keep the volume fixed) for all time; moreover, in the case when the
scalar curvature of the initial metric is negative, he showed the exponential convergence of the
flow to a metric of constant scalar curvature.

Since then, there has been a number of works on the convergence of the Yamabe flow on
a compact manifold to a metric of constant scalar curvature. Chow [3] showed the convergence
of the flow, under the conditions that the initial metric is locally conformally flat and of positive
Ricci curvature. The convergence of the flow for any locally conformally flat initially metric
was shown by Ye [20].

More recently, Schwetlick and Struwe [19] obtained the convergence of the Yamabe flow
on a general compact manifold under a suitable Kazdan—Warner type of condition that rules
out the formation of bubbles and that is verified (via the Positive Mass Theorem) in dimensions
3 < n < 5. The convergence result, in its full generality, was established by Brendle [1, 2] (up
to a technical assumption, in dimensions n > 6, on the rate of vanishing of Weyl tensor at
the points at which it vanishes): starting with any smooth metric on a compact manifold, the
normalized Yamabe flow converges to a metric of constant scalar curvature.

In the special case where the background manifold My is the sphere S” and go is the
standard spherical metric gs», the Yamabe flow evolving a metric g = vrn— 2( ,1)gsn takes
(after rescaling in time by a constant) the form of the fast diffusion equation

nn—2)
—7

(1.2) (vZJ—rg), = Agnv —cuv, cp =

Starting with any smooth metric gg on S”, it follows by the results in [3], [20] and [6] that
the solution of (1.2) with initial data go will become singular at some finite time # < 7 and
v becomes spherical at time 7', which means that after a normalization, the normalized flow
converges to the spherlcal metric. In addition, v becomes extinct at 7.

A metric g = vn— ZgSn may also be expressed as a metric on R” via stereographic
projection. It follows that if g = v7n—2(-,¢)grn (Where gr» denotes the standard metric on R™)
evolves by the Yamabe flow (1.1), then v satisfies (after a rescaling in time) the fast diffusion
equation on R”

n—+2

(1.3) (@) = AD. pi=-—.

. __4_ . . _
Observe thatif g = v7n-2( -, t)gRrn represents a smooth solution when lifted on S”, then v (-, )
satisfies the growth condition

o(y,1) = O(ly|7™2), as|y| — .

Definition 1.1. The solution g = v(-, t)ﬁgo to (1.1) is called ancient if it exists for
all time ¢ € (—oo, T'), where T < oco. We will say that the ancient solution g is of type I if it
satisfies

lim sup(|t|max [Rm|(- t)) < 00

t—>—00 Moy
(where Rm is the Riemannian curvature of metric g = v(-, t)rf%Z go and can be expressed in
terms of v and its first and second derivatives). An ancient solution which is not of type I will
be called of type II.
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 3

Explicit examples of ancient solutions to the Yamabe flow on S” are as follows.

Contracting spheres. They are special solutions v of (1.2) which depend only on time ¢
and satisfy the ODE

dv =
g = ~Cnv
They are given by
4 o
(1.4) vs(p.1) = (n . 2cn<T—r))

and represent a sequence of round spheres shrinking to a point at time ¢ = 7. They are shrink-
ing solitons and type I ancient solutions.

King solutions. They were disciovered by J. R. King [12]. They can be expressed on R”
in closed from, namely g = vk (-,)»—2 grn, Where vk is the radial function

A1) e
1+ 2B(t)r? +r#

(1.5) ik (r, 1) = (

and the coefficients A(¢) and B(t) satisfy a certain system of ODEs. The King solutions are not
solitons and may be visualized, as t — —oo, as two Barenblatt self-similar solutions “glued”
together to form a compact solution to the Yamabe flow. They are type I ancient solutions.

Let us make the analogy with the Ricci flow on S2. The two explicit compact ancient
solutions to the two-dimensional Ricci flow are the contracting spheres and the King—Rosenau
solutions [12,13,17]. The latter ones are the analogues of the King solution (1.5) to the Yamabe
flow. The difference is that the King—Rosenau solutions are type II ancient solutions to the Ricci
flow while the King solution above is of type I.

It has been showed by Daskalopoulos, Hamilton and Sesum [4] that the spheres and the
King—Rosenau solutions are the only compact ancient solutions to the two-dimensional Ricci
flow. The natural question to raise is whether the analogous statement holds true for the Yamabe
flow, that is, whether the contracting spheres and the King solution are the only compact ancient
solutions to the Yamabe flow. This occurs not to be the case as the following discussion shows.

In this article we will construct ancient radially symmetric solutions of the Yamabe flow
(1.2) on S™ other than the contracting spheres (1.4) and the King solutions (1.5). Our new
solutions, as t — —oo, may be visualized as two spheres joint by a short neck. Their curvature
operator changes sign and they are type II ancient solutions.

Before we present the ansatz of our constrliction we will perform a change of variables
switching to cylindrical coordinates. Let g = v7n—2(-,¢)gRrn be a radially symmetric solution
of (1.3) which becomes extinct at time 7', namely v = v(r, ¢) is a radial function on R” that
vanishes at 7. One may introduce the cylindrical change of variables

w(x,7) = (T — 1) 7T rp=Ti(r,1), r=e*, t=T(—eT).
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4 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

In this language equation (1.3) becomes

—2)2 )
(1.6) (up)t = Uxx + au? —,Bu, :B = —(n ) , o= p ; — I/ll— )
p_

4
From now on we will denote the time 7 by ¢. By suitable scaling we can make the two constants
« and B in (1.6) equal to 1, so that from now on we will consider the equation

(1.7) W?)y = uxx +u? —u.
The steady states of equation (1.7), namely the solutions w of the equation
(1.8) Wyxy + WP —w =0, w(*oo)=0

are given in closed form
n—2
kpAeV* '\ 2 n=2
(19) U)(X) = (l_i_n/_\w) = (anseCh(yx + 10gk)) 2
with
1 2

4n 2
= =" and ky= .
PEB -2 T (n—2)

It is known that w(x) is the only even, positive solution of (1.8), given in cylindrical coor-
dinates, after stereographic projection, geometrically representing the conformal metric for
a sphere. Observe that

(1.10) w(x) = 0(e ™, as|x| > co.

We will construct new evolving ancient compact metrics which look, for ¢ close to —oo,
like two spheres glued by a narrow neck. We choose our ansatz for an ancient solution u(x, )
of (1.7) to be of the form

(1.11) ux,t) =10+ n@))z(x,t) + v(x,1)
with
(1.12) z(x,t) =wx +&@)) + wx —£&(1))

for suitable parameter functions 7(¢), £ (¢). The perturbation function v (x, t) will converge to
zero, as  — —o0, in a suitable norm that will be defined below. More precisely,

§@) = &o(1) + h(1)
for a suitable parameter function /(¢). Both parameter functions /(¢) and n(¢) will decay in ||,
ast — —oo. Let

£ol0) = 5 log(2b1)

be a solution to

JoZ wPe ™ dx
p Jg w?wP~ldx’
which is the homogeneous part of the nonhomogeneous equation (5.8). As we will explain
below, equation (5.8) is derived as a consequence of adjusting parameters A (¢) and 7(¢) so that
our solution ¥ satisfies the orthogonality conditions (3.5) and (3.6).

E+be 2 =0, with b:=
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 5

The main result in this article states as follows.

Theorem 1.1. There exists a number ty and a solution u(x,t) to (1.7) defined on
R x (=00, tg], of the form (1.11)=(1.12), with & := %log(2b|t|) + h(t), such that the func-
tions Y (x,t), n(t) and h(t) tend to zero in appropriate norms ast — —oo. Moreover, u defines
a radially symmetric ancient solution to the Yamabe flow (1.1) on S™ which is of type II (in the
sense of Definition 1.1) and its Ricci curvature changes its sign.

Theorem 1.1 shows that the classification of ancient solutions to the compact Yamabe
flow on S” poses a rather difficult, even maybe impossible task. On the other hand, it gives
a new way of constructing ancient solutions. It shows how one may glue two ancient solutions
of a parabolic equation, in our case of equation (1.7), to construct a new ancient solution to the
same equation. This parabolic gluing becomes more and more apparent as t — —oo, since as
t — +oo0 it is known that our conformal factor approaches the one of the standard sphere.

Our construction can be generalized to give ancient solutions which, as ¢ — —oo, may
be visualized as a tower of n spheres joined by short necks. We refer to them as moving towers
of bubbles. In terms of equation (1.7), for a given k > 2 we look for a solution of (1.7) of the
form

k
(1.13) u(x,0) =Y (14 ;) w(x — &) + ¥ (x,1)

Jj=1
where the functions &; are ordered and symmetrically arranged,
(1.14) §1(0) < &2(0) <--- <& (1), &) = =&—j1(0), Jj=0,... .k
We have the following result.
Theorem 1.2. Given k > 2, there exists a number to and a solution u(x,t) to (1.7)
defined on R x (—o0, to], of the form (1.13)—(1.14), with

k
119 0 =G0+ o).ty = (7 -5 )loetbl) +,

for certain explicit constants y;, where the functions Y (x,t), n;(t) and h;(t) tend to zero in
appropriate norms ast — —o0.

The functions £p; in the above statement solve the first order Toda system
(1.16) b7 (1) + e~ @h78) —o=&=8-D =0, j=1,... .k t € (~00, 1],
with the conventions
Eo = —o00, &rqq = +oo.

We will analyze this system in the last section.

Gluing techniques relying on linearization and perturbation theory have been used in
many elliptic settings. We refer to the works of Kapouleas [9-11] on the gluing of two constant
mean curvature surfaces to produce another constant mean curvature surface, and to the works
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6 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

on the works [14], [15] and [18] on the gluing of manifolds of constant scalar curvature to
produce another manifold of constant scalar curvature. Gluing techniques have been used to
construct new solutions to elliptic semilinear equations in [5] and [7]. Embedded self similar
solutions of the mean curvature flow have been constructed in [16] by using gluing techniques.
We use such techniques here in the parabolic setting as well. We expect that our way of con-
structing new ancient solutions to the Yamabe flow could be adopted to other geometric flows
as well.

In the rest of the paper we will carry out in detail the proof of Theorem 1.1 and indicate
in the last section the changes needed for the proof of the more general statement Theorem 1.2.

We will next indicate the main steps in proving Theorem 1.1.

(1) We first define the Banach space, which our ancient solution u to (1.7) belongs to and
its associated norm. We also specify the spaces for our parameter functions 7(¢) and 4 (¢) and
their associated norms.

(2) Using the ansatz (1.11)—(1.12) for our solution u, we show that the perturbation
term v is a solution to the equation

(1.17) pzP 7oy = Yux — ¥ + pz? 7Ny + pzP T E(Y)

where E () denotes our error term and z is given by (1.12). It is well known that w and w’ are
the eigenvectors of the approximating linear operator

1
Loy i= ————Yxx — ¥ + pw?~'y)
pw?

corresponding to the eigenvalues A_; < 0, A9 = 0 of this operator, respectively. It is also well
known that all the other eigenvalues of L are positive.
(3) In the first part of the article we study the linear problem

(1.18) PP = Yy — ¥ 4+ p2P Ny 4 pzPTL S

Assuming certain orthogonality conditions on f* with respect to the eigenvectors w and w’
of Lo, we establish the existence of an ancient solution to the linear problem (1.18), satisfying
the appropriate energy and L2 estimates. The latter means that we can bound the weighted
L? norm of a solution in terms of the weighted L? norm of the right-hand side f. We also
establish certain weighted W2+ estimates for solutions to (1.18). It follows that the solution v/
belongs to the Banach space which is the intersection of these L2 and weighted W 2% spaces.

We denote by T the linear operator between our defined Banach spaces, so that 7'( f) is
the solution to the linear problem (1.18) satisfying the appropriate orthogonality conditions.

(4) In the second part of the article we study the nonlinear equation (1.17). We apply
our linear theory to the nonlinear equation to establish the existence of a solution v to (1.17),
by solving the equation 7' (E (1)) = . We first show that we can achieve this, assuming that
E () satisfies our orthogonality assumptions with respect to w and w’. The main tool in this
proof is the fixed point Theorem and subtle estimates of the error terms in our norms.

(5) In the final part of our proof we show how to adjust the parameters 7(z) and h(¢) so
that the error term E(y) in (1.17) indeed satisfies our orthogonality conditions. We see that
this is equivalent to solving a certain nonlinear system of ODEs for 1(t), h(¢). We establish the
existence of solutions to this system by the fixed point Theorem and subtle estimates.
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 7

2. The ansatz of the problem

Following the discussion in the Introduction we look for an ancient solution u to equa-
tion (1.7). Since the long time existence for the Yamabe flow is well understood, it will be
sufficient to construct a solution u which is defined on R x (—o0, 7] with ¢ sufficiently close
to —oo. Hence, from now on we will restrict our attention to equation

2.1 WP)y = uxx —u+uf,  (x,1) € R x (-00,1),
: _ n+2
with exponent p = 75 > 1.

2.1. The ansatz of our construction. We seek for a solution of (1.7) which is of the
form

u(x,t) = (1 +n@)z(x, 1)+ ¥(x.1)
for a suitable parameter function 7(¢), where

2

2
2 =Y wEx—g@) =Y w
j=1

j=1

and ¥ (x,t) — 0 as t — —oo in a certain sense. We recall that w(x) is given by (1.9) and
solves the equation (1.8). The functions &; (¢) are given by

f()=—60) and &) =£0)
where
@2 €)= (1) + h().  §o(t) = 5 log(2br]),

for a suitable parameter function /(¢) and a suitable constant b > 0. Both parameter functions
h(t) and n(t) will decay in |z|, as |t| — oo and will be chosen in Section 5.

Set

(2.3) wy = w(x —§@1), w2 :=w(x+§@))
and

2.4) Zx,t) = w'(x —§(1) — w'(x + £(1)) = Oxwy — dxw.
Also set

Z(x,t) ;= (1 4+ n(t))z(x,1).

We notice that z(-,¢) is an even function of x and we impose the condition that y(-,¢) is an
even function of x as well. Equation (1.7) then becomes

UWCE+Y! =@ — Y +02E -5+ E+ )P,

Using that 22w, — w; = —w?’, we obtain the equation

2

Oz +9)? = (aiw — ¢ — (14 1(0)) Zw}’) +E+ )P

Jj=1
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8 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

which can be re-written as
(2.5) pzPToy = 0xx ¥y — ¥ + pzP TNy —2PTIC(Y) + 2P T E(Y)

where C (/) is a correction term that will be chosen in (3.10). The error term E (/) is given by

(2.6) EW):=z""PM + C(¥) + z'P[(1 =0 )N(¥) — pyd,zP ']
=:0(%)
where
2.7) M =22 —[(1 + n(t))[w? (x + (1)) + w? (x — £(1))]] — 0,27

is the error term that is independent of i, and
2.8) N@W) = G+ )P =27 — pEP~ly 4 py(EP! —zP7Y),

Our goal is to construct an ancient solution ¥ of the above equation (2.5) with the aid of
the linear theory for equation (2.5) that will be developed in Section 3. The solution ¥ will be
an even function in x and it will satisfy the orthogonality conditions

(2.9 /oo V(x —E@), Hw (X)wP ldx =0 forae.t <t
and
(2.10) /oo V(x —E@), Hwx)w? ldx =0 forae.t < fo.

The correction term C () in equation (2.5) will be chosen in Section 3, in such a way so that
the orthogonality conditions (2.9)—(2.10) for ¥ are being preserved by equation (2.5) if the
forcing term E (1) satisfies the same conditions.

However, because in general the error term E (i) may not satisfy the orthogonality con-
ditions (2.9)—(2.10), we will first consider the auxiliary equation

2.11) pzP oy = 0k — Y + pzP Ty —2PTIC(Y)
+ 2P7HEW) — (c1(t)z + c2(1)3)]

where ¢1(¢) and ¢, (¢) are chosen so that

(2.12) E@W) = EW)— (c1(1)z + c2(1)Z)

satisfies the orthogonality conditions (2.9)—(2.10).

In Section 5 we will choose the parameter functions 4 and 7 so that ¢;(z) = 0 and
¢2(t) = 0. The parameter functions /4 and 1 will decay in ¢, as t — —o0, in certain norms
that will be defined in Definition 2.7.

2.2. Norms. We will next introduce all the norms that will be used throughout the
article. We will also fix the values of the various parameters. For a number 7 < f5 — 1 we
set A =R x[r, 7+ 1].

We first define the appropriate L2, H! and H? norms.
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 9

Definition 2.1 (Local in time weighted L2, H! and H? norms). Define

1

()l = (/ (- )Pz dx)z,

1

2

l¥Vllz2a,) = (// Il/flzzp_ldxdt) ,
Ar

_p—1
VI ay = Wiz, + 1272 ¥xllzza,)s
1V la2ca, = 1Wellz2a,) + 12727 @Wax — ¥)l22ca,)
_r=1
+ 12772 Yaxllirea,) + 1 la1a,)-

Definition 2.2 (Global in time weighted L2, H' and H? norms). For a given number
v € [0, 1) we define

I¥ly. = sup [tl'I¥lz2a,)s
10 T<to—1
IVl = sup [Tl (A,
1o T<tp—1
IVl = sup [tlII¥lla2a,)-
o T<to—1
Also, for any s < 79 — 1, we define
Ivly. = sup [t"I¥llz2a,)
.10 s<t<to—1
Il = sup [Tl IVilgia,)s
H;lo s<t<tp—1 H(A2)
Wl = sup [tV lE2a,)-

s.10 s<t<to—1

When v = 0, we will omit the superscript v.

Set 5 i
o _ P~
Pi=i3 2
For a given number o > 2, we next give the definition of the weighted W2:° norm and o will
be chosen later in the text. To this end, we define the weight function o (x, ) by

2= (x,1) if |x| > £(1),

(2.13) oo (X, 1) = {Z(2ﬂ+9)0(x,z) if [x] < £(1).

where 0 is a small positive number which will be chosen sufficiently close to zero.

Remark 2.1. (a) We will see in the sequel that the weight function in the outer region
|x| > &(¢) is such that the solution ¢ of (1.18), or equivalently the solution u of the nonlin-
ear problem, corresponds to a smooth solution, when lifted up to the sphere. However, it is
necessary to change the weight function o in the inner region |x| < £(¢) to incorporate the
singularity, as t — —oo, of the solution u of our nonlinear problem in that region.

(b) In the transition region x = +£(¢) + O(1) the two weights are equivalent.
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10 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Definition 2.3 (Local in time weighted W2 norms). For o > 2 define

Iy

and

1V 2,0a, = IVelloa, + I

ohr = (/f V1% a0 dx dr)‘l’

lo,a: + 1¥xlloa, + [¥xxllo,A., -

Definition 2.4 (Global in time weighted W?2:° norms). For a fixed number v € [0, 1),

o > 2 and A; as above, we define

W6, = sup [V oA,

t<to—1

and

]

t<tp—1

E,U,t(): sup |T|v||¢||2,o,Ar-

We will next define a weighted L°° norm and our global norm.

Definition 2.5 (Weighted L% norm).

For a given v € [0, 1], we define the norm

IIWIIZ%» = sup [T1" 1Y (- D)l Lo )

and the weighted L°° norm as

1V 150,00 = IIZ_1WX{|x|>g(t)}IIE<;§ + ||WX{|x|5g(t)}IIE<;g-

We finally define the global norm for the perturbation term 1.

Definition 2.6 (Global norm).
1]

and

Forv € [0, 1) and 0 > 2 we define the norms

xoto = 1V IL2 + 1Vl
0

V12,000 = ||¢||};,tz0 F V12,000 + 1V 150,00

Also, for any 7 < f¢, we denote by

Wl oa: = 1ViL2a,) + IV

o,Az-

We will next define the norms for the parameters 7(¢) and /4 (¢). They are more or less

determined by the choice of the global norm for .

Definition 2.7 (Weighted in time norms).
tions n and & defined on (—o0, fp], we define the norms

5.0 =

1711560 = sup (Iz[*n()).

T<to
111Y 6.0 = 101150,20 + 11505
14+ S 1+
105 5z = 15z + Iz -

T+1
sup |r|“(/ In(t)l"dt) ,
T<to—1 T

For u € [0,1) and 0 > 2, and for any func-

al-

Brought to you by | Universidad de Chile
Authenticated
Download Date | 6/6/18 6:34 PM



Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 11

2.3. Outline of our construction. We will conclude this section by outlining the con-
struction of the solution u.

Definition 2.8. We define X to be the Banach space of all functions 1 on R x (—o0, #o]
with || ||«,2,0,0 < 0o which also satisfy the orthogonality conditions (2.9)—(2.10).

Y

*,0,10 < 0

We denote by T the linear operator which assigns to any given f with || f||
the solution ¥ := T'(f) of the linear auxiliary equation

pzP oy = 0xx ¥ — Y + p2P iy —2PTIC(Y) + 2P,

with the orthogonality conditions (2.9)—(2.10) being satisfied by f and v and with C (/) given
by (3.10). The construction of such a function ¥ will be given in Section 3.

Going back to the nonlinear problem, a function y is a solution of (2.11) if and only if
Y € X solves the fixed point problem

(2.14) v =AY)

where
AW) =T(EW))
and E (¥) is as in (2.12).

Outline. Given any parameter functions (4, ) with ||/] ’f ﬁj(;“ < oo and ||n||g’t0 < 00,
we will establish, in Section 4, the existence of a solution ¥ := W(h,n) of the fixed point
problem (2.14). In the last Section 5 we will choose the parameter functions / and 1 so that
c1(t) = 0 and ¢, () = 0. We will conclude that the solution ¥ of (2.14) which is equivalent
to (2.11) is actually a solution to (2.5). Hence, u := (1 + )z + ¥ will be the desired ancient
solution to (1.7).

2.4. Notation. We summarize now the notation of parameters, functions and norms
used throughout the article.

Notation 2.1. The choice of the parameters p, 8,0, v, i, b and 6:
(i) For given dimension n > 3, we recall that
n+2 2 p—1

= d = = —.
pi=Ty wd fiE TS =

(ii) In Theorem 1.1, 0 = n + 2. We choose v so that% < v < min{vg, 1}, where vg = vo(n)
is determined by the estimate of Lemma 4.1. We choose 0 < ¢ < min{2v — 1, y}, where
y = y(n) € (0, 1) is determined by Lemma 5.1. The constant b = b(n) > 0 is defined
in (5.3).

(iii) The constant 6 in (2.13) is a small positive constant as determined in the proof of Propo-
sition 3.3. The above constants are all universal depending only on the dimension 7.

Notation 2.2. The choice of functions:
(1) We denote by w(x) the solution to (1.8) given by (1.9).
(i1) The function &y (¢) and the function &(¢) (for a parameter function /(¢)) are given in (7.2).
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12 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

(iii) The functions z(x,¢) and wi(x, ), wa(x,t) are defined in (1.12) and (2.3) respectively.

(iv) Throughout the article, u(x, ¢) will denote an ancient solution of the nonlinear equation
(1.7) of the form (1.11) defined on R” x (—o0, o], where tg is a constant which will be
chosen sufficiently close to —oco. n(¢) is a parameter function defined on (—o0, fg]. The
perturbation function v (x, ) satisfies equation (2.5) where E (/) is a nonlinear error
term give by (2.6)-(2.8).

(v) Only in Section 3, ¥ (x, t) will denote a solution to equation (3.9), for a given f, where

the correction term C(y) is given by (3.10). Also, ¥*(x, ) will denote a solution of
equation (3.11).

Notation 2.3. The norms:
(i) For a given t < t9, the norm || (-, 7)||z2 is given in Definition 2.1.

(i1) Forany v < 9 — 1 we set A; := R X [z, T 4 1]. For a given function v (x, ¢) defined on
Az, the norms [V z2¢a,), Va1 (A,) @nd | [|g1(a,) are given in Definition 2.1.

(iii) The norms v, v and v are given in Definition 2.2.
2 1 2 g
L2 Hp H:
(iv) The norms [|[¥/lo,A, [¥]l2,0,A, are given in Definition 2.3, while the norms ||yl ..
V113 ,6.7, are given in Definition 2.4.

(v) The weighted L* norm |||} - is given in Definition 2.5.
o

(vi) The global norms || |13 5 ; ;- lwll% .4, are given in Definition 2.6.
M1+ M

(vii) For given functions h() and 7(t), the norms ||A[y7; .~ and 7|5, are given in Defini-

tion 2.7.

3. The linear equation

Consider the linear equation

(3.1) Pzl = Oy — Y + pzP Ty + 2PN
defined on —oo < t < tg. The coefficient z is given by

(3.2) z(x,t) =wx —§@)) +w(x +£(@1))

where £(¢) is given by (7.2) for a suitable function 2 € C!((—o0, tp]) and b > 0. Note that
z(-,t)is even in x. We will also impose that g( -, ¢) is an even function in x and we shall seek
for a solution ¥ (-,¢) which is even in x. We will consider a class of functions g defined for
(x,1) € R x (—o00, tp] that decay both in x and ¢ at suitable rates and satisfy certain orthogo-
nality conditions, and will build a solution v that defines a linear operator of g which shares
the same decay rates.

Our goal is to establish the existence of the solution v of (3.1) in appropriate L? and H !
spaces, defined in Definition 2.2. We observe that in the region —co < x < —£(¢) and under
the change of variables X := x + £(¢) the operator in (3.1), namely

1
LY = ——ux — ¥ + pz? ')
zP
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 13

can be approximated by the elliptic operator

1
(3.3) Lop = — = ($xx = ¢ + pwP™'9),

with ¢ (X, 1) := ¥ (x,t), since z(x,t) = w(x) + w(x — 2&(¢)) ~ w(x) in that region. Defin-
ing g(x,t) := g(x,1), the approximated parabolic equation takes the form

(3.4) pw?™'0p = 0xxp — dzE — ¢ + pwP o+ wP g

The region £(¢) < x < 400, under the change of variables x := x — £(¢) is treated similarly.
We wish to construct an ancient solution ¥ of (3.1) such that the weighted L? norm
of v is controlled by the weighted L? norm of the right-hand side g. First, let us consider the
eigenvalue problem
Lo0+A0 =0, 6OeS,

on the weighted space LZ(w?~1dx). It is standard that this problem has an infinite sequence
of simple eigenvalues
Al <Ap=0< A <Ay <---

with an associated orthonormal basis of the space L?(w?~!dx) constituted by eigenfunctions
0;,j =—1,0,1,..., where 6_; is a suitable multiple of w and 6y of w’. Since we are seeking
for a solution which is controlled by the weighted L2 norm of its right-hand side, we need to
restrict ourselves to a subspace So C L% (w?~!dx) which constitutes of functions g(-,?) on
R X (—o0, tp] that are even in x and that also satisfy the orthogonality conditions

(3.5) / gE—E@),Hw EwP ldx =0 forae.t <t
and
(3.6) / g —£@), HwE)wP 1dx =0 forae.t < 1.

Notice that since g is an even function in x, then the orthogonality conditions (3.5) and (3.6)
also imply the symmetric conditions

(3.7) / gE+E@), Hw EwP ldx =0 forae. t <t
and
(3.8) / gE+E@), HwEwP1dx =0 forae.t < fo.

This easily follows by changing the variables of integration and using that w is an even function
of x.

We wish to establish the existence of an ancient solution of (3.1) on R x (—o0, #p] which
satisfies the estimate

sup [t" [V (D)2 = Cliglys -
0

T<Ilo
Such a solution can be easily constructed for the approximated equation (3.4) if g € Sp. Indeed,
one simply looks for a solution in the form

P(E.1) =Y ¢;(1)6; (%)

Jj=1
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14 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

where 6;, j > 1, are the eigenfunctions, corresponding to the positive eigenvalues A;, j > 1
mentioned above. However, this cannot be done for equation (3.1) as its coefficients depend on
time and as a result the equation does not preserve the orthogonality conditions (3.5) and (3.6).
In order to achieve our goal we need to consider the equation

(3.9) PPl = Ouxy — ¥ + pzP Ty + 2PN f = C(¥))
where g := f — C(y) where C(¢) has the form
(3.10) Cy) =di(t)z(x,t) + da(t)z(x,1).

Recall that z(x, 1) := w(x — &(¢)) + w(x + £(¢)) and that Z is defined by (2.4).
We will construct an ancient solution of (3.9) on R x (—o0, tp], by considering first the
solution % of the initial value problem

aun | PO =V =9 T 2PN = CW ) on Rxs. o).
' vi(-,5) =0 on R,
and then pass to the limit as s — —oo. The existence of ¥* will be shown in Lemma 3.1.
The coefficients d1(¢), d»(¢) in (3.9) are defined so that ¥*(-,¢) € So for all ¢ € [s, to].

We will next determine the coefficients ¢ and d». To this end, it is more convenient to work
with the function

P°(x,1) =Y (x —£@0),0).
To simplify notation we omit for the moment the superscript s and set ¢ = ¢* and ¢ = ¥°.

A direct computation shows that if ¥ is a solution to (3.9), then the function ¢ satisfies the
equation

(3.12) pord = Lod + E(p) + f —di — daib.
Here we have used the following notation:
w(x, 1) = z(x = §@).1) = w(x) + w(x —2£(1))

and
Wi=Z(x —£(t) = w'(x) —w'(x —2£(1))
and f(x,1) := f(x —&(t),1), while E(¢) denotes the error term

B @)1= =600 + (g5 — s ) s =)

We recall that L is given by (3.3). Also recall that 6;, i = —1,0, denote the eigenfunctions
(which are the multiples of w, w’) of operator Ly, corresponding to the eigenvalues A—; < 0
and A9 = 0, respectively. We have assumed that f is orthogonal to 6;,i = —1, 0, namely

/oo F(0)0; (x)wPldx = 0.

Since ¢ (-, s) = 0 (remember that ¢ = ¢* for the moment), it follows from (3.12) that the solu-
tion ¢ will remain orthogonal to the eigenfunctions 6;,i = —1, 0, if and only if the coefficients
d1(t) and d5(t) satisfy the system of equations

(3.13) di()d’ (1) + da(t)ab(t) = E', i =—1,0,
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 15

where

al (1) = /oou_)(x,t)ei(x)wp_l dx,

—0o0

ab(t) = /ooii)(x,t)Qi(x)wp_l dx,

—00

E! =/OOE(¢)(x,t)9i(x)wp_1 dx, i=-1,0.

—00

Using that w(x,7) := w(x) + w(x —2£(t)) and W(x,1) := w'(x) — w'(x — 2£(¢)) together
with the orthogonality

/Oow(x)t%(x)wp_l dx = /Oo w' (x)0_1 (x)wP L dx =0,

we conclude that

(¢]

al(t) = et + / w(x —28())0; (x)wP L dx,

o0
ab(t) = e — / w'(x —2E(1))0; (x)wP~ 1 dx
—0o0
where
o0 o0
eyl = c_1/ wPTldx >0, €)= Co/ w'(x)?wP ldx >0, e?=ey!'=0.
—00 —0o0
It is easy to see that

/ " (e = 2606 (0w dx = 0.

—00

/ W (= 26008 Cw? ™ dx = 0(t ).

ast — —oo. Hence,
ay'(t) =er' + 017,
a3(t) = €5 + O(r[™).
ay = 0(t|™).
ay' = 0(t|™).
It follows that the determinant D of the coefficients of system (3.13) satisfies

D:=aj'ad —adas' = e7'ed + O(t|7') >0, ast — —oo.

Solving system (3.13) gives

aQEN 1) —az ' ()E(t)  efET(1)
D )

di(1) = +o(™h

and
_ ai'(E1 (@) —aY () E° (1) _ eTVEO(1)

o(t|™).
) D +O0(|t|™)

d> (1)
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16 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Claim 3.1. We have

t+1 1
(3.14) (/ (d12+d22)dt)

{(// (¢;xp_1 ) w”‘ldxdt)£+||¢||mmr)}.

Proof. It is easy to see that

T+1 1 T+1 2
(3.15) (/ (d12+d22)dt) gc(/ ((E—1)2+(E°)2)dt) + O0(z|™)

so it is enough to estimate the integrals fthLl(E")2 dt, for i = {—1,0} and t < ty9. We will
only discuss the computation for £°, as the computation for E~! is identical. We have

= _£0) / o' (WP dx + / (6.0 (xx — )W (x) dx = E9 + EI

with
wp—l _ II)p_l w p—1
e = = (—) 1

Clearly, we have

T+1 3 1 00 2 1
(3.16) ([ |E?|2dz) §C([ |g|2(/ ¢xw'(x)wp_1dx) dz)
t+1 0o 2 %
=C(/ |é|2(/ ¢(w’(x>wp—1)xdx) dz)
T+l | %
< C||¢||Loo(A,>( / |§|2dr)

ﬂllqﬁllL (Ag)-

For the second term, we have

(3.17) /_ c(x,1)(pxx —P)w' (x)dx < I(t)%(/ (¢xuyjp 1¢) x)

—o0

where

I(t) ;= /_oo c2(x, |w (x)]Pw? ! dx.

Recall that £ given by (7.2) satisfies £(¢) = %log [t| + O(1), as t = —o0. On x < £(t) we
have w < w < 2w, hence

< z < 1.

=5 =

—1\ 2 2
2(x.1) = (1 - (ﬁ)p ) < C(p)(l — ﬁ) .
w w
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 17

We conclude that

£(1)
I :=f c2(x, t)|lw' (x))PwPdx

—00

&(0) _ 2
fcrj’t (551—452) ' () P57 dx

0 w(x,1)

E(t)
< c/ w(x —28)2wP 1 dx

—o0

0 £(1)
<Clt]? (/ e2Xe(Px gy 4 / e?Xe~(P—Dx dx)
—00 0

< Clt[2(Cr + Golt]2")
< C max{]e| 2 1|7 2"

On x > £(t), using the bound ¢? < 1 and |w’(x)|> < C|t|~!, we have

o0
I :=[ 2(x, 0)|w (x)Pw? dx

(1)

o0
< C/ lw’(x)|2w? ! dx
£()

o0
< Cle|™? / WP~ dx
&)
<Clt|™L
Since p > 1, combining the above gives us the estimate

IO)=1L+ 1L <Clt|".

Using the last estimate in (3.17) yields the bound

0 L[ @92

Combining (3.16) and (3.18) gives us the bound

T+1 % 1 x — o %
(/ |E°(1)|? dz) <C \/H{(/A (¢u-)p—1¢)2wp Vax dz) + ||¢||L00(AT)}

and the same bound holds for E~1(¢). By (3.15) it follows that (3.14) holds. |

Using (3.14) we can easily estimate the L?(A ;) norm of the term
C) :=di(t)z +dr(t)z
by the H?(A ;) norm of function v, as
1
Vil

The main result in this section is the following proposition.

(3.19) ICW2ay =C 1V lla2a,) + 1V lLoe(a))-
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18 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Proposition 3.1. For given numbers p > 1, b > 0 and 0 < u < 1 and a given function
&= %log(2b|t|) + h on (—o0, tg] with ||h||‘1LGIZ)”“ <1, consider equation (3.9) with coeffi-
cient z given by (3.2). Then, for any v € [0, 1], there is a number ty < 0, depending on (L, v, b

and p and such that for any even function f on R x (—oo, to] with
vV, <00
1713

satisfying the orthogonality conditions (3.5)—(3.6) there exists an ancient solution ¥ of (3.9)
on —oo <t < tg also satisfying the orthogonality conditions (3.5)—(3.6), and for which

(3.20) sup [t|" 1Y (D)2 + 1V 152 = CISIY- -
o 1]

T<Io

The constant C depends only on b, i, v and p.

As we already discussed, the ancient solution 1 will be constructed as the limit of the
solutions ¥ to (3.11), as s — —oo. The existence of the solutions ¥* is given by the next
lemma.

Lemma 3.1. Under the assumptions of Proposition 3.1, there exists a number ty < 0
depending on b, |1, v and p and a solution *® of the initial value problem (3.11) also satisfying
the orthogonality conditions (3.5) and (3.6). In addition,

(3.21) sup [T 1Y @ llz + 1V 152 = CIfIl2
s.10 s.10

T€[s,0]

where C depends only on b, v, i and p.

Remark 3.1 (Dependence on function £). For the remaining of Section 3, we will
fix b >0, u € (0,1) and a function & := %log(2b|z|) + h with ||h||’1’“”;;:)” <1 and we will
only discuss the dependence of the various constants on s and 7o, while assuming that may also

depend on b, p and v.

3.1. A priori estimates. We will establish in this subsection a priori L2 and H? energy
estimates for the solutions ¥* of (3.11) that are independent on s. We begin by proving an
energy estimate (independent of ) for solutions of the initial value problem

pzp—la,w =yi. -+ pzp_lws + z”_lg onR x [s, 7],

(3.22) {
Yi(-,5) =0 on R.

Energy estimates for solutions of equation (3.11) will easily follow by Lemma 3.2 and estimate
(3.19).

Lemma 3.2 (Energy H? and L estimate for equation (3.1)). Let ¥*(x,t) be a solu-
tion of (3.22). Then, for any v € [0, 1) there exists a uniform in s constant C so that for |to|
sufficiently large we have

% 1% v Vv
(3:23) swp e ¥ llzan + Wl < COVIL +lsl}, ).

T€[s,20]
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 19

Proof. To simplify the notation, we will denote ¥* by ¥. In what follows we will
perform various integration by parts in space without worrying about the boundary terms at
infinity. This can be easily justified by considering approximating solutions 5 of the
Dirichlet problem on expanding cylinders Q g := [—R, R] X [s, to], establish the a priori esti-
mates on Y, independent of both, s and R, and then pass to the limit of ¥ as R — oo (our
solution ¥* in Lemma 3.1 will be constructed that way).

If we multiply equation (3.1) by ¥ and integrate it over R, we obtain,

(3.24) ——/ w2zl dx
= [ (wxx w2+p[1 +(p—1>ﬂwzzp‘1 +gw1"1) dx.

If we integrate by parts the first term on the right-hand side, use the bound |ZZ—’| <C |§ | and
apply Cauchy—Schwarz, we obtain

1
2(”/ Y2 (.02 dx+[ (W2 +y?)dx
SC(/ (w2+g2)zp—1dx+|s|[ wzzp_ldx).

For any number 7 € [s,79 — 1], set n(¢) =t — v so that 0 < n(¢) < 1 on [z, T + 1]. Then, for
any ¢ € [t, 7 + 1], we have

GO0 e ta) eno [ i v va
< C(/‘OO (W? 4+ gHzPldx + |é|/‘oo y2zP! dx).

Integrating this inequality in time on [z, T + 1] while applying the Cauchy—Schwarz inequality
to the last term and using that n(¢) < 1 and

1
T . 5 C
(/ Iélzdt) <<
7—1 Tl
we obtain

N | T4 D a4 [ now2+ v axa
. N

< (102 + e,

1 ® 21 :
+— sup (/ Yoz? dx) ||1/’||L2(A,))-
|T| tefr,z+1] \J—00

If we now multiply (3.1) by ¥ (x, t), integrate by parts over R, use the bound @ <C |é|
and apply Cauchy—Schwarz to the last term, we obtain

00
(3.26) : / yrzP dx + ——( / W3+ 92 = pzl~ly?) dx)
—00
00
< C(/ W2+ gHzPldx + |§I/ Yy2zP! dx).
—00 oo
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20 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Multiplying the last inequality by the cut off function 7(¢) introduced above, integrating in time
and using (3.25), we obtain (similarly as above) the bound

(3.27) // n)y2zP Vdxde + /_00 W2+ 92— pzP ) (-, T+ 1) dx

< C(I9120a + 1e12cn,

1 ® a1 :
+ — sup (/ YezP dx) ||W||L2(A,))-
1Tl tefret11\J—00

Furthermore, (3.27), (3.25), the Sobolev embedding theorem in one dimension and the
interpolation inequality yield the L°° estimate

1
oo 2
(a7 + Dl < C(f W24y (- T+ 1>dx)
— o0
1
< C(nwan(Ar) gl + Huwummr)).

We next multiply the last inequality by |t 4 1]¥, forany v > 0. Since s < 7 <ty — 1, by choos-
ing |to| sufficiently large we obtain

sup |t"[[¥]lLooa,)-
T€[s,t0]

1
T+ I llear iy < CIW I +leli. )+ 5
8,10 8.0

Since 7 + 1 < 19 is arbitrary, we obtain

sup [t"[YllLoea) = C>IWIG.  + gl ).
S.10 S.10

T€[s,20]

Since t € [s, t9 — 1] is arbitrary, by choosing |#o| sufficiently large, we conclude

(3.28) sup [t [[¥lleoany < C(Iv M} +lelyz )
s.10 s.10

T€[s,10]

In addition, integrating (3.26) on [, T + 1] and using the previous estimates yields the bound
v v Vv
(3.29) el < CUWIE, +lel}s ).
Finally, from (3.29), (3.28) and equation (3.1) we obtain
—(p—-1) _ v v v
I DW=l < C(WI + sl ).

Combining the above estimates gives us the bound (3.23). O
We will proceed next to showing the same estimate as above for solutions of (3.11).

Lemma 3.3 (Energy H? and L estimate for equation (3.11)). Let ¥*(x, t) be a solu-
tion to (3.11). Then there exists a ty < 0 so that for any v € [0, 1) we have

v v v v
(3:30) sup [l | owian + 1V l5z, < CAVIG, +1717, ).

T€[s,t0]

Proof. 1f we apply the estimate from Lemma 3.2, with g = f + C (), we obtain
v v v v v
sup [el" ¥ lwian + W52, < COVIG:, +ICIL, +If15;, ).

T€[s,70]
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 21

On the other hand, it follows from (3.19) that

< —=I¥l;:
m HZ,,

and the desired estimate follows by choosing ¢ so that —=— m < % |

(33D) Icaly,,

Corollary 3.1 (Estimation of the error term). Under the assumptions of Lemma 3.1,
there exist uniform constants tg < 0 and C > 0 so that for any v € [0, 1), we have

(3.32) Icanly (vlgz, +171z2, ).

< ¢
0 /|t

Proof. It readily follows from combining (3.31) and (3.30). |
We will next establish (3.21) as an a priori estimate.

Proposition 3.2. There exist uniform constants C < oo, tg < 0, such that if ¥5(x,t) is

a solution of (3.11) with s < 3t° , which also satisfies the orthogonality conditions (3.5)—(3.6),
then
(3.33) sup [e[" Y (. D2 = Cl Sz,
T€[s,t0]

It follows that (3.21) holds.

Proof. 'We will first establish estimate (3.33). We begin by observing that under the
assumptions of the proposition, it will be sufficient to establish the bound

(3.34) sup [Y°(-. D)2 =C ,Sup, (DAVEITNS
s<t<t
for all ¢ such that s < ﬁ < 3t0 , where we recall that A; = R x [, T 4+ 1]. Indeed, if (3.34)
holds, then for any ¢ satlsfymg s < 3; < 3;‘) we have

eIy ol = Clel” sup (PAVETTNS!

< sup |T| ||f||L2(Ar)
s<t<

< sup |7|"[fll2a,)
s<t<lo

= C||f||L§’,0

which readily shows that (3.33) holds.
To establish the validity of (3.34) we argue by contradiction If (3.34) does not hold, then

there exist decreasing sequences 7 — —oo and s < >£, s — —oo0, and solutions ¥ of the
equation
(3.35) PPl 0 = Oux Vi — Yk + p2P T ik + 2P [ fi — C(Yr. 1))
defined on R X [sg, %], so that
(3.36) sup Ve Dll2 =k sup [ fillzoca,):
Sk <T<If} Sk <T=<I
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22 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow
We may assume, without loss of generality, that
o0
(3.37) sup f YE(x, 1)z tdx =2
Sk <T<tx /—00

otherwise we would perform the rescaling of the solutions for (3.37) to hold. Then, by (3.36),
we have

C
(3:38) Iz <%

k

Because of (3.37), we can pick ;€ [sg, ] such that

3 o0
(3.39) - 5/ YE(x,)z? Hdx < 2.
27 )
Also, passing to a subsequence if necessary, we may assume that 7 is decreasing.

Claim 3.2. We have
liminf(¢; — sz) = +o00.
k—>o0

Proof. We will apply (3.23) with ¢ = ¥, ¢ = gr := fx — C(Y¥g, 1) and for v = 0.
To estimate the right-hand side of (3.23), we use (3.32), (3.38) and (3.37) to obtain for all
sk <1t < 1 the bound

C

(nwu +1)+C<c( : +1)
2 — — < — — ).
I\ k) k NI

Hence, for all T € [sg, fx] we have

g (.02 <

T poo 1 1 2
aan [ [ g axar = - solal, sc(—+—) )
sk J—o0 7%

Vil K
a(t):// v2zP Vdx dr.
Sk J—00

It follows from (3.23) and the above discussion that () satisfies the differential inequality

Set

o (1) < Ca(r) + pr(t —sg)

with

1 1\?
uk:C( +—) and «(sg) = 0.

Vel k

Solving this differential inequality gives

o(r) = 25 (€T — [1 4+ C(r = 5p)]) < EheC0

which combined with (3.23) and (3.40) gives the bound
o0
/ V2, 0)zP dx < Cl,ukec(’_sk),
—0o0
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 23

for all t € [sg, fx], where Cy is a different, but still uniform constant. Hence

[ee)
/ V2P dx < 1
—00

as long as
eClr=s1) ! .
Cipk
Since f_oooowz(-,tk)zp_ldx > %, we must have
ec(tk_sk) > ! .
Ci ik
Since limy_ oo tx = 0, this readily implies the claim. O

Set
Yr(x, 1) = Y (x.t + 1) and  fy(x,0) = fiu(x,1 + 1)
and observe that each v satisfies the equation
—_ = - - -1 - —1 = -

(3.41) pzi 00k = Oxx Vi — Vi + Pz Uk + 2z [ i — Ce(W. 1)) ]

on R x [5k, 0], with 53 := s — # and
Zr(x,t) = z(x,t + 1), Zr(x,t) =ZzZ(x,t 4+ tg)
and
Cr (Y. 1) = di(Yp.t + tg)zg (x, 1) + do(Yie, t + 1g)Zg (x, 1)

where d; (Yx,t) are defined in terms of v as before. Notice that because of the previous

claim, §; < —o, for a uniform constant o. It follows from (3.30) (with v = 0) and (3.37) that
Yy satisfy the bound

(3.42) 1V |l Loe Rx[51.,01) + ||‘}k||H§2k!O <C
for a uniform in k constant C.
Inequality (3.39) says that
3 < - 2 p—1
(3.43) - < Vi (x,0)z; dx <2.
27 )

If we integrate (3.24) in time on [t; — §, 1] and use (3.43), we conclude, after a straightforward
calculation, the bounds

o0
3.44 1< inf r2(x.1)zP Y dx <2
(3.44) L g /_wwk(x 7)z; dx <

for a uniform in k small constant § > 0.
Claim 3.3. There exists a universal large constant M > 0 for which

Ett)-M » 1
(3.45) sup / w,g(x, r)zlf dx < —.
r€[-§,0] /—E(x+tx)+ M 2

Proof.  We recall that by (7.2),

E(t+1) = %log(2b|t + 1) + O(1).
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24 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow
By symmetry (/% is an even function), we only need to show that
E(rti)-M » 1
sup / W;?(X,T)Z/I; dx < —.
re[—8,0] /o 4
Also, since for x > 0 and t € [-§, 0] we have
z(x. 1) = w(x —§(T + 1) + wlx + (T + 1)) = 2w(x — §(t + 1)),
it will be enough to establish the inequality
E(t+t)—M 1
sup [ Ve, w? N (x —E(r + 1)) dx < .
re[—8,01 Jo 8

Using the L°° bound in (3.42), we conclude that for every t € [—§, 0] we have

E(t+tx)—M B E(t+tx)—M
[ P20 WP (x — £ + 1)) dx < C / WP (x — E(r + ) dx
0 0

for a uniform constant C. Finally, we have

E(r+ix)—M -M
/ wP (x —&(t + 1)) dx =/ w?(x) dx
0 —&(t+k)

where w is given by (1.9). It follows that there exists a uniform constant M such that

E(t+t)—M -M 1
c/ wP Tl (x —E(t + 1)) dx = c/ w? (x)dx < -
0 —E(r+1) 8

for all T € [—§, 0] finishing the proof of the claim. O

We will now conclude the proof of the Proposition. By (3.44), (3.45) and the symmetry
of Vi, we have

(3.46) inf

et Yy (x, r)zk x>

/S(H—tk)—I—M

-

—00

We wish to pass to the limit along a sub-sequence k; — co. However, in order that we see
something nontrivial at the limit, we will need to perform a new change of variables defining

b (x.1) == Y (x —E(t +1).1), 1 <0.
It follows that each ¢, satisfies the equation
(3.47) pwl T 0 = Oxxtr — i + pwl Tk — E(t + 1tx)0np + WP gk
on —5, <t <0 with gg(x,1) := fr(x —&@t + tx). 1) — Cx (¢, t) and
Wi (x, 1) i=zp(x —E@ + 1g), 1) = w(x) + w(x — 28 + 1%)).
Moreover, (3.38) and (3.32) imply the bounds

1 1
3.48 <C|l—-—+—
(3.48) lealzz, = (5 + M)
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 25

and by (3.42) and the inequality wy > w,
(3.49) 16k | Loo R x[5%.,01) + ||¢k||H§2k'0 =C.

In addition, (3.46) implies the following uniform bound:

&=

M
3.50 inf 2. Dyw? Ldx >
(3.50) L. /_ooqﬁk(x Dw, dx >

Set Q = (—00, x¢] X [79, 0], where x¢ > 0 is an arbitrary number and 7¢ is any number
such that 5, < 79 < 0, for all k (recall that 5, < —o for all k£ by Claim 3.2). It follows from
the energy bound (3.49) that passing to a subsequence, still denoted by ¢, we have ¢ — ¢ in
L2(Q) and ¢ — ¢ weakly in H,. (Q). Passing to the limit in (3.47) while using (3.48) and

the bound 0
. 1
E2(t + 1) dt = 0(—),
/ro |tk |

we conclude that ¢ is a weak solution of

(3.51) pwP™19,¢p = Oxxp — ¢ + pwP ¢

on R x (—o0, 0). Standard regularity theory shows that ¢ is actually a smooth solution. In
addition, ¢ satisfies the orthogonality conditions

(o.e]
(3.52) / d(x,HW (X)wP H(x)dx =0 forae.r <t
—OoQ
and
o
(3.53) / d(x,. Hwx)w? L (x)dx =0 forae.t < fo.
—0o0
Moreover, from (3.42) we have the following uniform estimate:
T+1 o]
(3.54) sup/ / ¢ (x, HwPVdx dr <2.
T<0Jrt —00

Also, passing to the limit in (3.50) we conclude that

0 M S
/ / d*(x,)wP ldxdt > - >0
8§ J—00 4

which shows that our limit ¢ is nontrivial. From Claim 3.2 we have lim inf;_, o, S = —o0.
Hence, we may assume, passing to a subsequence, that 5z — —oo. It follows, that the limit ¢
is an ancient solution of equation (3.51), i.e. defined on R x (—o0, 0] which satisfies the ortho-
gonality conditions (3.52) and (3.53).

Set a(t) = %l|¢(',t)||L2(wp—l dx) and observe that since ¢ is orthogonal to the two
eigenfunctions of the operator L¢ (defined in (3.3)) corresponding to its only two nonnega-
tive eigenvalues A_; and A¢, we have

o (t) < —Aa(t), t<0,

for some A > 0, implying that «(t) > a(0)e*!’! which contradicts (3.54). This finishes the
proof of the proposition. |
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26 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

3.2. The proofs of Lemma 3.1 and Proposition 3.1. Based on the a priori estimates
of the previous subsection, we will give now the proofs of Lemma 3.1 and Proposition 3.1.

Proof of Lemma 3.1. 1t will be sufficient to establish the existence of a solution ¥*
to (3.11). Indeed, given the existence of solution /%, by the fact that the forcing term f satisfies
orthogonality conditions (3.5) and (3.6) we already know that ¥*( -, t) will continue to satisfy
conditions (3.5) and (3.6) for ¢ > 5. Then estimate (3.21) follows by Proposition 3.2.

The strategy for establishing the existence of ¥ is as follows. Fix an s < 9 — 1. We first
establish the existence of a solution ¥ to the initial value problem (3.22) on R X [s, s + 7],
for a given function g with

* v, < oo,
) lel;»

where 7p is a uniform constant, independent of s, to be chosen below. Then we solve the
nonlocal problem (3.11) on R x [s, s 4 7¢]. At the end we show how to extend such a solution
in time up to ¢y, to obtain a solution of (3.11).

We first claim that given an s < fo— 1 and a function g with (x), there exists a solution *
of (3.22), on R x [s,s + 7], for some 7¢ to be chosen below. The solution * will be con-
structed as the limit, as R — oo, of solutions V% to the Dirichlet problems

pzPLos = (W) xx — U + pzP Ty + 2P g on Qg
w;{('7s) =0 OnapQR,S’

on Qgr.s = [-R, R] x [s,s + to]. Since our weight zP~! is bounded from above and below
away from zero on QR s, by standard parabolic theory there exists a solution /5 to the same
Dirichlet problem on the set Q R.s = [—R,R] x [s,s + tg], for some tg > 0 which will be
taken to satisfy g < 1. Similarly as in the proof of Lemma 3.2, ¥ := v}, satisfies the estimate

(3.55) {

d R R
(3.56) — / vzl dx + / (W2 +v¥2)dx
dt J_gr —R

R R
< Cl(/_Rgzzp_ldx+(§+ l)/_R wzzp_ldx)

for a universal constant C;. Before we integrate (3.56) in time, we observe that

S+TR s+Ir |
(3.57) / 5/ Y2zP~ 1a’xa’t<(/ Ezdt) sup / vz dx
[s,s+R]

<e€ sup / w2zl dx

[s,s+TR]

if s is chosen sufficiently close to —oo. The last inequality follows from the fact that

E(t) = m +h(t) and || <1

by assumption.
Set

1
- ’ 1 ’
70 - mm{ 3 }
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 27

with C; being the constant from (3.56) and take tg < 7. Integrating in time (3.56), while
using the Dirichlet boundary condition in (3.55), the Cauchy—Schwarz inequality and (3.57)
with € chosen sufﬁciently small, we obtain

1
— sup / v2zP ldx + /] (1//)%+—1/fz) dx dt
3 [s,s+TRr] ORr 2
SC[/A gzzp_ldxdt—l-leA v2zPVdx dt

o QR,S

1 R
SC// g2zP Vdxdt + - sup / w2 dx dt
ORr.s 3 [s,s+TR]/—R
since C1|tr| < Cito < % by our choice of Cj. It follows that v := ¥} satisfies

(3.58) sup / v2zP Vdx + // (Iﬁi + 11//2) dx dt
[s,5+7) ORr 2

< Cy // g2zP Vdx dt
9]

R.s

R.s

for a uniform constant Cy. Similarly to deriving the energy estimate in Lemma 3.2, using (3.58)
and the fact that (¥)x(-.s) = 0, we find that ¢ := wfe also satisfies

(3.59) f yEzP~ldxdi + = sup / (V2 + ¥7) dx
Or.s 2 [s,541x]
< Co //A g2zP Vdx dt
QR.S

where Cy is a constant, possibly larger than the constant in (3.58), but still independent of R, s.
The right-hand sides in both inequalities (3.58) and (3.59) are bounded by a constant that is

independent of R, namely
s+1 00
CO/ [ g2zP Vdx dr.
N —0oQ

Hence, by standard linear parabolic theory the solution 3 will exist at least for s < ¢ < 7o,
namely on Qg . Take a sequence R; — +o0o and set Ay g, := R x [s,5 4+ 79]. Since the
equation in (3.22) is nondegenerate on any compact subset K of Ay 7, the uniform estimates
(3.58)—(3.59) and standard arguments imply that a subsequence of solutions 5, R, converges in
C°°(K) to a smooth solution ¥* of problem (3.22). The limiting smooth solution ¥ is defined
on Ag ¢,.

The next step is to show that we can solve a nonlocal problem (3.11) on Ay, 7,. We will
do that via contraction mapping arguments. Define a set

=¥ : [¥llg2a,) < ook
We consider the operator A° : X* — X* given by
AW)=T(f —C(¥))
where T (g) denotes the solution to (3.22) constructed above and
CW)=diz+drz

where (d1, d») is the unique solution of the linear system (3.13).
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28 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

We will show that the map A® defines a contraction mapping and we will apply the fixed
point theorem to it. To this end, set ¢ := Co|| f | 12(a,) and X7 :={¥ € X* : |[¥ | g2(a,) < 2¢},
where the constant Cy is taken from (3.58)—(3.59). We claim that A°(X}) C X]. To show
this claim, let ¢ € XJ. Estimates (3.58), (3.59), estimate (3.19) for C(y/) and the Sobolev
embedding yield

(3.60) 1A* (Wl a2y = 1T°(f = CWOD N a2(A,)
< Collf = CWliL2a,)
< Co(ll fllL2cay) + ICW)L2(A,))
=c+ GollCW)lIL2(a,)

C
<c+ —=I¥lr2a,

N

< 2c

if |s| sufficiently large (which holds if 7y is chosen sufficiently close to —co). Next we show
that A® defines a contraction map. Indeed, since C () is linear in i, we have

(3.61) 14° (Y1) — A (W)l g2,y = IT°(C(W1) — CW2))lm2a,)
< CollC(Y1) — C(W¥2)llL2ay)

= CollC(Y1 — vz A,
C
< m”‘ﬂl —V2llg2(ay)

1
< 5||1/f1 —V2lla2ea,)-

By estimates (3.60)—(3.61), the fixed point theorem implies that there exists a 15 € X* so that
A% (Y*) = ¥*®, meaning that equation (3.11) has a solution v/*, defined on Ay .

We claim that ¥ (-, ) can be extended to a solution on R X [s, fg], still satisfying our
orthogonality conditions and a priori estimates. To this end, assume that our solution (-, )
exists for s <t < T, where T < tg is the maximal time of existence. Since ¥*(-, ) satisfies
the orthogonality conditions (3.5) and (3.6) for ¢ € [s, T'], by Proposition 3.2,

(3.62) sup [T"IY7 (o Dlle@y = ClLS N2,
te[s,T) 5
and
(3.63) sup [|"[¥° (L Dllzey + 1V g2, < ClIfIl2,
tels,T) s 5

where C is a uniform constant. Since
< <
1£0z2, < 1Sl <C.

it follows that 1 can be extended past time 7', unless T = ty. Moreover, (3.21) is satisfied as
well and 1% also satisfies the orthogonality conditions. m)

Having Lemma 3.1 we are able to conclude the proof of Proposition 3.1.
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 29

Proof of Proposition 3.1. Having Lemma 3.1 we are able to conclude the proof of the
proposition. Take a sequence of s; — —oo. By Lemma 3.1, for every s; there is a solution
Y¥*/ to equation (3.11) such that ¥*/(-,s;) = 0 and it satisfies the uniform estimate (3.21),
independent of s;. Moreover, our equation (3.11) is nondegenerate on every compact subset
K C R x (—00, tg). Therefore on K we can apply standard parabolic theory to get higher order
derivative estimates for our sequence of solutions v*/, which are independent of s; but may
depend on K. Let j — oo. By the Arzela—Ascoli theorem and a standard diagonalization argu-
ment we conclude that a subsequence {y/%/ } converges, as j — 00, to a smooth function
defined on R x (—o0, tg). Moreover, ¥ satisfies the orthogonality conditions (3.5) and (3.6)
and(!) estimate (3.20). The latter follows from taking the limit as j — oo in (3.62) and (3.63),
both satisfied by ¥*/, and the fact that the constants on the right-hand side are independent
of j. |

3.3. W27 estimates. We will next derive weighted W 2:% estimates for the linear equa-
tion (3.9). We recall that the W2:° norm is given by Definitions 2.3 and 2.4. We have the
following global estimate.

Proposition 3.3.  Let { be a solution of (3.9) as in Proposition 3.1. If || f |4, < oo for
some 0 > 2 and v € [0, 1], then

(3.64) 115,600 < CULI, 2 + 1S loso)-

The proof of Proposition 3.3 will follow from a similar a priori estimate for solutions
of (3.1).

Lemma 3.4. Let  be an even solution of equation (3.1) with g a given even function
that satisfies || g |5 ¢, + ||g||1‘i2 < 0o for some o > 2 and v € [0, 1). Then, we have
140}

(3.65) 115,600 < C (11l 2 + lell; 2 + 1g1l5.4)-

Before we give the proof of Lemma 3.4, we will prove Proposition 3.3 using Lemma 3.4.

Proof of Proposition 3.3. Assume that v is a solution of equation (3.9), as in the state-
ment of the proposition. It follows from Lemma 3.4 and the L? estimate in Proposition 3.1
that

113,000 = CULAI 2 + 1/ 15,0 + IIC(W)IIZ%0 +1CW) g 40)-

It follows from (3.31) and the estimate in Proposition 3.1 that

(3.66) ICwly; < —=If1;;

C
V o

In addition, it can be shown, similarly as in the proof of (3.31), that

(3.67) [ 1113 6.0

CWllg = \/—

Combining the last three estimates, readily yields the estimate of the proposition, provided that
|to| is chosen sufficiently large. i
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30 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Before we proceed with the proof of Lemma 3.4, let us summarize the estimate we have
for C(v), using Propositions 3.1 and 3.3.

Corollary 3.2. Under the assumptions 0f Proposition 3.3 we have

(3.68) ——(llvllY, 2 + 1V 15 6.0)-

ICW% 010 <
\/_

It follows that

(3.69) £ 1% 0.0

ICW% 000 = \/|—
0

for a universal constant C.

Proof. Estimate (3.68) readily follows by combining (3.31) and (3.67). Estimate (3.69)
follows from (3.68) and the bounds in Propositions 3.1 and 3.3. O

We will now proceed to the proof of Lemma 3.4.

Proof of Lemma 3.4. 'We first observe that since both z and Y are even functions in x,
we will only need to establish the lemma on —oco < x < 0. We first perform a translation in
space, setting

d(x,t) =Y (x —&p(t), 1), —oo<x <E&(t),
where &y(7) = % log(2b]t]). Tt follows that ¢ satisfies the equation

(3.70) pEPT10i§ = Ouxgp — poZ” T 0xp — ¢ + pIP 9 + 277G
with

Z(x.1) = w(x +§@) = §o(1) + wx — (1) —6o(1)).  g(x.1) 1= g(x —§o(1).1).

We observe that on the interval of consideration —oco < x < &q(¢), we have
w(x —§(1) —&0(1) = w(x + @) —&o(2)),
hence
BT wlx + 1) —&o(1) = z(x,1) = 2w(x +§@) —&o(r)) on—o0 < x =< §o(1).
If we divide equation (3.70) by Z”~! and perform the change of variables
(3.72) P(x.1) = e*d(r,1), r=eP*,
we conclude, after a simple calculation, that the new function ¢ (r, ¢) satisfies the equation
(3.73) o = a(r. ) AP — Bordr + (1—§0)§ + &(r.1)

with
a(r,t) == p 1B2UP(r,1)

and

Ur,1) == e (w(x + £(1) — () + w(x — () —&(1)), r=eP™.
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To obtain (3.73), we compute directly that

Gxx — ¢ = /326(1+2ﬂ)x (fl;rr + . ; 1(l;r)

and
PPy = pe*di(e*U)P T = pe1H2Pxyp-lg,
and similarly
pzp—lg_ — p€(1+2ﬁ)xU‘D_1g.
Combining the last three equalities, we readily conclude (3.73). In addition, it follows from
(1.9) and (3.71) that

BEo()—E@) \ B BE()—E@) \ B
(3.74) 2kne " U < o 2ne "
e2BEO—EM) ;2 ) — = "\ 2BE(O—E®) 1 ;2

Observe that

§0(1) =€) = |h(D)| = Cle|7F,
since ||h||’1L ;:;M < 0o by assumption. This together with (3.74), the fact that p—1 = niz =28,

imply the estimate for the ellipticity coefficient a(r, ),

1 2
d1 (5 + r2) <oa(rt) <d(1+ r2)2

for d; and d5 universal positive constants.

We fix 7 < . We will next establish sharp W27 estimates for (3.73) on Br)x[t—2,1],
where R(7) := A% is alarge number. Let Q := By x [t —2,7]and Q := B; x [t — 1, 7].
By the standard parabolic W2, we have

(3.75) I$llw200) < C(181L0(g) + 18]lL0(g))-

Translating this estimate back to the original coordinates and in terms of v gives us the desired
weighted W29 bound on the exterior region, namely

(3.76) 1V l2.0.8. <C(1¥ g5, +lglsz,)

where E; = (—o00, —£o(7)) x [t — 1, 7] and E; = (—o0, —&o(7) + %) x [t —2,1].
We will next obtain a weighted W2:° estimate on B R(z) \ B1.To this end, we will assume

that R(t) = 2%0 for a large constant ko = ko(7) and we will derive the estimate on the annuli
(2F < |x| <2y x [t —1,7] foranyk =0,....ko— 1.

Set p = 2k, Dy, ={p<r <2pyx[t—1,1]and Dp = {g <r <4p}x[t—2,1]. Then, on Dp
we have
)L,o4 <ua(rt) < Ap4

for A > 0 and A < oo universal constants. We will then divide the time interval [t — 1, 7] into
subintervals of length - and in each of them we scale our solution ¢ to make equation (3.73)
strictly parabolic. Let us denote by [s — plz, 5] one such sub-interval and consider the cylindrical
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32 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

regions D = {p < r < 2p} x [s — piz,s] and DS ={§ < r <4p}x[s— %,s]. It follows that
the rescaled solution

Pp(r,t) ;= qNS(pr,s + p_zt), (r,t) e D = {% <r< 4} x [t —2,1],

satisfies the equation
a(r,t) . r 1 . 1
BT7) O%pp = —5—Adp— BEo(1) 50r¢p + S (1 = E0(1))pp + — fp(r.1)
P P P P
on D with gp(r,t) == g(pr,s + p~2t). Moreover,
a(r.1)
o*
Recall also that éo(t) = %, and in particular, |§0| is bounded. Hence, by the standard W2:©
estimates on equation (3.77), we have

A<

< A.

||¢,0||L2v<7(D) = C(||¢p“L0([)) + P_2||gp||L<r(f)))

with D :={l <r <2}x[t—1,t]and D := {% < r < 4} x [t —2, t]. This readily yields the
bound

Ipello sy + p*ID*llLo(ps) + 221 DGllLopsy + P> 1l Lo (D)
= C(PZH‘p”La([)Z) + ”g”LG([);;))-
By repeating the above estimate on all time sub-intervals, we finally conclude
(3.78) IpelliLop,) + P*ID*Pllio(p,) + P IIDPlLo D, + P2 ISlLo(D,)
< (1Bl Loz, + 12l Locs,)):
Because the first terms on the left-hand side of (3.78) have a growth in p, we will need

to weight the L% norms by a power r*, for some appropriate A < 0 to be chosen in the sequel.
To this end, we define for any function / the norm

1
1illzg sy = ( [[[ e dra’t)
A

and observe that (3.78) readily implies the following estimate in the new norms:
(3.79) I¢ellLs o, + 17 D*@llLg i,y + 17> DllLsp,) + IIFllLs (b,
27 ~
=< C(”’" ¢||LK([)p) + ”g”LK(ljr))'
We will use the above local estimate to establish an estimate on the entire inner region.
To this end, set D = {1l <r < R(r)} x [t —1,7] and D; = {% <r <2R(1)} x[t—2,1],

where R(7) := e2B%0(D) 45 before. Applying (3.79) for all p = 2% k=o01,... , ko, where
R(7) = 2k0 we obtain the bound

(380)  $ellgwe) + 1r*D*@lig o) + I Dllg ooy + I @llLg ooy
< C(Ir*llg 5,y + 18l L5 (5.))-

Before we find the appropriate A, we will express the bound (3.80) back in terms of the func-
tions ¢ (x,1) = e*¢(r,t) and f(x,1) = e* f(r,1) through the change of variables r = eA*.

Let I; := [0, &(7)]x[t — 1, 7] and I (1) := [—%, Eo(7) + %]x[f — 2, 7] denote the images
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of the sets Dy and D, under this change of variables. We will use the formula
0 _, 0
ar (Br) x
and the bounds
(3.81) ce P < wﬂ(x) < Ce P

which hold in the region of consideration. A direct calculation shows that (3.80) implies the
bound

(3:82) 190:8llLg (1) + 10581l Lg (1) + 10x¢ g (1) < C(llezﬂx¢|ng(i,) +18lLe i)

where, for any function 4 and any I/ C [0, co) x (—o0, 0], we denote

1
Vellagary = ( [ i e dxdt) |
1

We next observe that the same arguments as in the proof of Lemma 3.2 give us a global
L°° bound on the solution ¥ of (3.9), namely

[l @xi-osion = C (W12 + gz )
which gives a similar bound for ¢, namely

¢l @x(—ooda) = € (1913 + 18123 )

1
2
12l = sup( // 72501 dxdt) |
‘0 T<lp .

Using this bound we obtain

where

Q=

||e2ﬂx¢||LK(ir) < C(”g”% + ”¢”L%o)(//- oo +A+m)Bx 4, dt)
I

The last integral is bounded uniformly in 7 if A is chosen so that
20+A+n<0.

Choose A = —(20 + n + 0), with 6 > 0 any small universal constant. With this choice of A
and for any function / we have

1

Vg = ( [ e cemb dz)" _ ( [[[eeeoronay dt)
I I

With such a choice of A, combining this last estimate with (3.82), yields the bound

=

191200 = CI8l2 + 122 +12N25(7,)-

This readily gives the desired W?2:° estimate on 1 in the intermediate region, which combined
with (3.76) yields to (3.65), finishing the proof of the lemma. O
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34 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

We recall next the weighted L°° norm and our global norm given in Definitions 2.5
and 2.6 respectively. It is clear that

W lizse = CllY llso.so

since z~! > ¢ > 0 for a universal constant c.

The following L°° estimate follows as a consequence of estimates (3.20) and (3.64).
To derive it, as we will see below we need to take 0 > n + 1, so let us define from now on
o :=n + 2. We have

Corollary 3.3. Under the assumptions of Proposition 3.3, if 0 = n + 2, then the solu-
tion  satisfies the estimate

(3.83) 1Vl < CULA N2 + 1/ 150)-

Proof.  The bound on the norm ||/ ||; - readily follows from estimate (3.20) and Sobolev
1
embedding. For the bound on ||z~ 1 X{x|> 5(0,)} |7 o> by symmetry we may restrict ourselves to
N 11
the region {—oo < x < —£(¢) + B~ ' In2}. Set  °

d(x.,1) = V(x —E().1), —oo<x<pB 2.
As in the proof of Lemma 3.4, it follows that ¢ satisfies equation (3.70) with g := g(x—£&(¢), 1)
and g := f — C(¥). Hence, ¢(r,t) given by (3.72) satisfies equation (3.73) which is now
strictly parabolic in the region of consideration 0 <r <2, ¢ <ty. Let Q = Bee X [t — 1, 7]
and Q = By x [t —2,1], T <tpand e < 2. Standard parabolic estimates imply the bound

1610y = C(IPll o (g) + 18llLa(5))

since 0 > n + 1. Expressing everything in the original variables, using that
§(0) =) =R = Clt]™" <€

for || sufficiently large, we conclude

||Z_1WX{|x|zs(z)}||Z§>g < IIZ_IWX{|x|ng(z)—e}||Z§>3 < (I llg. + lgles)-
Since g = f — C(¥), where C(v) satisfies the bound (3.69), the desired bound readily follows
from (3.64). D

We will finally summarize the results in this section in one result. This will play a crucial
role in the construction of the solution of our nonlinear problem. We have shown the following
result.

Proposition3.4. Let 1, v €[0,1) and o = n+2, n > 3, be fixed constants. Then, there is
anumber to < 0 such that for any even function f on R x (—oo, to] with || f ||} 5 < 00, satisfy-
ing the orthogonality conditions (3.5)—(3.6) and a function h on (—oo, to] with |||} ”;’Z)’L <00
there exists an ancient solution ¥ = T (f) of (3.9) on —oo <t < tg also satisfying the ortho-

gonality conditions (3.5)—(3.6), and the estimate

(3.84) V1% 2,000 = CILS 000

The constant C depends only on dimension n, v and Ji.
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 35

4. The nonlinear problem

Let X be the Banach space defined as in Definition 2.8 and let 7" and A be the operators
as introduced in Section 2.3. In addition, for a given u € (0, 1) and ¢y < 0, we set

< Co}

(4.1) K = {(h,n): (00, 10] = R : [R}"2FH < Tand ||},

1,0.t0

where Cy is the universal constant given by (5.16). We say that € K or n € K if (h,0) € K
or (0, n) € K respectively. Moreover, define

(4.2) A={YeX: |¥lrow <1}

Remark 4.1. 1If (h,7n) € K, then

(4.3) 21| Lo (—o0.t0]) < ol ™ and  |]|Loo(—o0.rop < Colto| ™"

In particular, by choosing |fo| sufficiently large we may assume that both 4 and 1 have small
L norms. In addition,

1 1
4.4) E@) := 3 log(2b|t|) + h(t) = 3 log(2b|t|) + o(1), as|t| > —o0.
The main goal in this section is to prove the following proposition.

Proposition 4.1. Leto = n + 2. There exist numbers v € (% 1) and ty < 0, depending
only on dimension n, such that for any given pair of functions (h,n) in K, there is a solution
Y = W(h,n) of (2.14) which satisfies the orthogonality conditions (2.9)—(2.10). Moreover, the

following estimates hold:

- J+1
(4.5) 1@t ) — W2 Y000 < Cliol ™[Rt — R2EY
and
(4.6) W () = WP s 204 < Cliol ™ I = 0?1104,

for any (h',n) € K and (h,n') € K, i = 1,2, and u < min{2v — 1,y}, where y € (0, 1) is
a positive number determined by Lemma 5.1 and C is a universal constant.

We will find a solution of (2.14) by the contraction mapping principle. To this end, we
need suitable estimates on the operator £ (). They are given in the following subsection, after
which we will proceed with the proof of Proposition 4.1.

4.1. The estimation of the error term. We will next estimate the error term E (i) in
the || - [ 5,s, norm and also establish its Lipschitz property with respect to ¥ as well as &
and n. We will begin by estimating the error term M in (2.6).

Lemmad.l. Leto = n+2. There exist numbers v = vg(n) € (%, 1] andty < 0, depend-
ing on dimension n, such that for any v € (%, vo| and u < min{2v — 1, y} and any (h,n) € K
(where the set K is defined with respect to this particular (), we have

Iz P M| < €

*507t0 -

for a universal constant C.
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36 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Proof. Throughout the proof, C will denote various universal constants. Since all the
functions involved, including M, are even in x, it will be sufficient to restrict our computation
to the region x > 0. Notice in that region

wa(x,1) = w(x +£@1)) < wlx —£@)) = wi(x,?).
We write M = My + M,, where
My =27 — (1 + P W] +wh). My =[(1+n? -1+ nlw] +wd)—0z?

and set
My =z"PM; and M, =z'"PM,.
We have
0< M =z"P(1 4+ )P ([(w + wz)? — wf] — wé’)

U (wy + swy)?™!
zp—1

< p(1 +n?w; ds
0

hence, using that wp, < w; < z, obtain the bound
|M1| < Cws,.

For the moment take o > 2 to be any constant and ¢ > 0. By the last bound and the estimate
z < 2wy which holds on x > 0, we compute

Al

HONE > £(1)
( M7 z9° dx) <C (/ w? (x + E@))w?? (x — £(2)) dx)
0 0

0 5
<C ( / o0 HEW) g0 (—£(1) dx)
0

£(0)
_ Co-HE®) ( / ola-Dox dx)
0

Recalling (4.4) we then conclude that

Q-

=

E@) _
( My z9° dx) < Cua(|t])
0

where a(|7]) = |t|~ 3% if g < La(t]) = |t|Vifg > 1, and a(|t]) = (n|t])7 |¢] " ifg = 1.
On the other hand, recalling that 8 := % = pT_l, we have

1

(/oo M¢ B0 dx)c < c(/oo w(x 4+ £E@)w™ 7 (x — £(1)) dx)
&@) £@)

Q=

Q-

<c ( / % =0 (HE W) ,—(nB—0) (x—£(1)) dx)
¢

®
00 v
— Ce™ 20 (/ o~ (MB)(x—£()) dx)
&)
<Cltr|™L
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 37

First, we combine the above estimates when ¢ = 8 and 0 = 2, to conclude that on the
set Az =R x[r, 7+ 1], 7 <19 — 1, we have [ M| 12¢5,) < Clr|7", with vy := vo(B) > %
for all 8. It follows that

M| <C.
I3 <

Also, if we combine the above estimates for o =n + 2 and ¢ = 28 + 6, with 6 a small uni-
versal positive constant as in the proof of Proposition 3.3, we obtain (recall the definitions
(3.75) and (3.78)) that || M, lo.a, < C|z|7"°, where vg = vo(B) > % By choosing 79 < —1,
we obtain

1M1 g%, < C.
We conclude that
1M1, = C-
We will now estimate the term involving M. Since w, < wy < z, we have
|Ma| < C(p)(Inlwr + [E@)|[w'(x + E@) —w'(x —£@)| + [7(0)]2)
hence, using that |w’(x)| < Cw(x), we obtain

|M2) < C(Inl + |7] + [€])z.

It follows that for any ¢ > 0, 0 > 2 and v < f9 — 1, we have

al-

(// |M2|U[Zq0)({|x|<g(t)} + Znﬁ_g)({|x|zg(t)}] dx dt)

1

T+1 X 3
SC(/ (Inl"+|$|"+|f7|")dt).

By Definition 2.7, the right-hand side of the last estimate is bounded by C|z|™! if we assume
that ||7]| (1,’,0 < Cp and ||h||’[,‘,’tt+“ <1, with u > 0. Hence, arguing as before, we easily con-
clude the bound

1M2] 35,4, = C-

*,0,l0 —

This finishes the proof of the lemma. ]

The following corollary follows immediately from Lemma 4.1 by choosing v = v(n) to
be any number in (%, Vo) and 79 < 0 so that C|ro| 0™ < % Let also i < min{2v — 1, y},
where y € (0, 1) is a positive number determined by Lemma 5.1.

Corollary 4.1. Leto =n +2andletv =v(n) € (%, 1), to <0, u be as above. Then
there exist uniform constants ty < 0 and C > 0, depending on dimension n, such that for any
(h,n) € K, we have

|12 7P MY 4 < Clio| 7).

For the remaining of the subsection we will fix the parameters o, 4 and v as in Corol-
lary 4.1. We will next establish an L°° bound on % which will be used very frequently in the
rest of the article.
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38 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Claim 4.1. For any function ¥ on R x (—o0, tg], we have

14

1_
(4.7) 1 =ClolP Y 200
L%
for a universal constant C. Hence, under the assumption ||y ||i’2, oo = 1,
1
(4.8) v < Clto|>™"
zZ o
LS

and it can be made sufficiently small by taking |to| sufficiently large.

Proof. Recalling the definitions of our norms from Section 2.2, we have

v _
4.9) H;X{|x|zg(z)} = Cliol ™" 1Y 11%,2,0,20-

o

On the other hand for any t < #y — 1,on A; = R X [r, T + 1] we have

;X{|x|se(r)}H < [t 1W 1% 2,000 127 oo (AL niIxI<E D) -
Loo(A,)

T

To estimate ||z~ | Loo (A, N{|x|<E(r)})> WeE Observe that

1
min  z(x,t)> min wx—=£§&@¢)) = wE@)) > Clt|"2
ey 2D 2 min e EO) = wE) 2 Cl|

since (7.2) holds. Hence, ||z~! lZoo (A, n{x|<E@))) = C|‘L’|%. It follows that

_ 1_
127 Y oo ar ntixi<eon < CIElR VIV 1Y 2,000

implying the bound
w l—v v
(4.10) — X{|x|<t@)} = Clool27" ¥ 115,200
z L(t)g
The claim now follows from estimates (4.9)~(4.10) and our assumption |/ |5, ;. < 1. O

We will next estimate the norm of the term (1 — 0;) N (¥) in (2.6).

Lemma 4.2. There exist uniform constants tg < 0 and C > 0, depending on dimen-
sion n, such that for any functions (h,n) € K and ¥ € A, we have

12172 (1 =) NI osy < Cliol2 W2

*70510 - *5290510‘
Proof. We write N(¥) = N1(y) + Na(¥), where

Ni@y) = G+ )P =20 = p2P7ly, No(¥) = pyz? (A + )P = 1],

To estimate ||z! =2 (1 — 9;) N1 (V)% we begin by observing that

*,0,00°

1-p _ p—1z W P W _ p—1
@11 z77PNi () = A+ Pz 1+; —l—pg =p(1+n)? " YyAW)
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 39

where . bt
Ao = [ ((1+si) _1) ds.
0 z
By (4.8) we have
@12 )= <!

and therefore we conclude the bound

1_
< Clto|Z" "1V 1%,2.0,10-

oo
Llo

) v
1212 N 2ty < ClIV w00 | =

It remains to estimate z! =20, N1 (). Differentiating (4.11) in ¢, we get

4.13)  Ni1(¥) = por 2P AW + pEPT o A(Y) + pEPT Yo A(Y).
=:N1 =:N12 =:N13

Using (4.12) we obtain, similarly as before, the bounds

vl vl

|21~ ”N11|<C(IE|+|77|)I¢| 27PNy 2| = Cloy =

To estimate the term |z =2 N13 ()|, we first observe that since | <1 by (4.8) and |to]| > 1,
we have

(4.14) 10, A(W)| < CW/OI(I +s%)p_zs ds
0wl + (& + DIy |
Hence ]
(4.15) 2Nl = o+ G+ 1Dl

Combining the above estimates with (4.7) gives

” = patNl(W)”*ato — C|f0|§_v||W||* 2m0(||1/f||* 2,0,t0 + ||(|§| + |7I|)W||* Uto)

However, a direct computation shows that

(4.16) IUEN+ 1DV 1Y 6.0 < Cliol ™ (1€ 1520 + Illor) IV 1% 2,006

where

: : 1+
Ilosy < Il os <1 and  [Elgy, < 3 -+ 1Al < 5 1l gs =2

Hence,
12120 Ny (W1 gy < Cleol 2~ 1|12 2,0,t0"
Since || n||* 10,10 = Co, a computation along the lines of the previous estimate also shows that
(4.17) 1277 (=3 N2 (W) % 1 = Cltol ™ 1V 122,06
The proof of the lemma is now complete. |
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Lemma 4.3. There exist to < 0 and C > 0, depending on dimension n, such that for
any functions (h,n) € K and { € A, we have

- _ _ 1_
(4.18) HEWI 600 < C (110174 + 10127 1W 12 2.000)-

Proof. Let Q(y) be as in (2.6). The estimate of the error term N(y) given in Lem-
ma 4.2, the estimate of the correction term C (1) given in Corollary 3.2, and the bound

12 7P Y0 2P 1Y gy < CHIEIV IS 0y = Cleol ™ V1Y 2,000
(where we have used the L°° bound on 1 given by Lemma 3.2) yield

1_
(4.19) QW Ik 0.00 = Cliol2 "1V Ik 2.0.10 -

This combined with the estimate in Lemma 4.1 easily imply (4.18). O
We will next show the Lipschitz property of E (1) with respect to .

Lemma 4.4. There exist to < 0 and C > 0, depending on dimension n, such that for
any functions (h,n) € K and ¢!, % € A, we have

1_
(4.20) IE@W) = EQY o000 < Cliol 2 1V = ¥ 1% 2 000

Proof. 'We begin by observing that the bound
C

1! — 22,00
Vol

ICwW! 1) = CW> D os <

follows similarly as the bound in Corollary 3.2.
All the other estimates are similar to those in Lemma 4.2, so we will omit most of the
details. Using the notation in the proof of Lemma 4.2, let us look at the estimate of the term

1212 (N3 () = Nis(@2)| = C(Iv! — w210, AW )| + [ 210 A ) — 0, A 2))).
By (4.14) we have

T2 1 M 1 : INIA
" =yllo Ay )] = € (I0ew ' + (&1 + [aD1v )

z

hence, by (4.8) applied to /! — 2, (4.16) and the assumed bounds on /, 7 and ¥, we conclude
1
vt = 9210 AW DY 0o < Clto 2 IV = V2 1Y 2,000
To estimate the last term, we set
1
I(Y) = / (1 +s271y)P 25 ds
0

so that
Y210 A(Y!) — 0, A(W)| < Ay + Az
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where
= PP gy
and
NP T G B E VAT & T
The bound

IIAzII*gtO_Cltolf"IIW =213 2,000

follows by similar arguments as before. For the other term we have

2
1AL < C HW |||atw [+ &1+ DI g 1Y) = TPz
where
127125 < Clro] 2™
by (4.8) and

110:v '+ &L+ 1ADIY 11 00 <

by (4.16) and the assumed bounds on v, & and 7. On the other hand, applying (4.7) to ! — 2
and using that |Zl| < % (by (4.8) and |f9| > 1), we obtain

1_
< Clto|2 " |¥" = ¥ 2 [x.2,0.10-
LOO
o

wl o v/.Z
—

10 = 10l =€

Combining the above gives us the bound

||A2||*at0_C|ZO|§_U||w V2% 2,000

All other bounds can be obtained similarly. |
We will now show the Lipschitz property of the error term M with respect to & and 7.

Lemma 4.5. There exist tg < 0 and C > 0, depending on dimension n, such that for
any functions h, hi,n,n; € K, i = 1,2, we have

4.21) 1D P (MBY n) — MW D)L gy < Cliol IR — h2 |41
and
(4.22) Iz =P (M (k. 0"y = MR, )% 600 < Cliol" ™ ' = 0211164,

Proof. The estimates follow by direct (yet tedious) calculation, along the lines of the
proof of Lemma 4.1. Set

2 = w + £0) + wix =& (1))

el P
=lw, =lwy
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42 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

For the reason of dealing with even functions we restrict ourselves to the region x > 0, where
w), < wj < z'. Using the notation of Lemma 4.1, we have

|(Zl)1_p[M1(h1’ 77) - Ml(hzv 7))”
- 1 1
=EHl™PA +n)? wé[o (w% + swé)‘”‘1 ds — w%/o (w% + sw%)p_1 ds:|
+EHITPA + P [=(wy)? + (w3)?]

1
= (Y )| w0l — ) / (! + swh)? ds + (wl)? - (wé)%}
0

1
+H=Pa + n)l’w%/ (w] +swhH)?™1 — w? + sw?)P~ 1) ds.
0

From the bound . )
|w2 - w2|
2

w;

< Clhi(t) —ha2(0)|, i=1,2,
we conclude the estimate
)P [My (R ) — My (B2, ]| < Cw3lhy — hol.
Having the above estimate, a similar computation as in Lemma 4.1 implies
1D P My (R ) = My(R? )1 g0y < ClEIT IR = B2l 4,
For the M, term we have

EH' P Mo (R ) = Mo, )| < Clal((w)? — (w])?P) + (w3)? — (w3)P))
< Clnllh' — R |lw(x — &)
implying
1D P (Ma(h' ) = Ma(B? )12 gse < ClEIPT IR = B2 |15 40
To conclude (4.21) we observe that v < 1 and
s 1
IR = R2||h 4 < IBY = 2[R
1nally,to show the Lipschitz property o 1n 77, we use the bounds
Finally,to show the Lipschi fM i he bound
1Y (M(h.n") = M(h.n?)| < Cln' — n*|wy
and
Im =2l < 1ol " = 1% llaese < 1017 10" = 17111 10

implying that
IEDTPM (') = M )Y g0y < ClITHIN = 0211 0.0 O
We will show the Lipschitz property of the error term
E@)(h,n) := (1 =0)NW) — pyrd; 227" — 227 (e1(0)z + €2(1)2)

with respect to & and 7.
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Lemma 4.6. There exist tg < 0 and C > 0, depending on dimension n, so that for any
functions € A, h,hi,n,n; € K, i = 1,2, we have
n.1n
A - NTES
423)  EHTPEW) R ) — EQ)Y R )Y gho < Clio| ™ [IB" = R[0T

1,0,t0

and
(4.24) 12" "PE@) ') = EQ) 0 P 000 < Cliol ™M 0" = 11100
Proof. The estimates again follow from a direct (yet tedious) calculation, along the lines

of the proof of Lemma 4.2. For example, regarding the term N3, as in the proof of Lemma 4.2,
we have

|HTPNis () (R ) — (25" P Nz () (h2, )|

1 p—2 ~1 p—2 s
ECW"/O ((1+S_) (Wi (le)/fz(z )t)_(lJr _) (2 (22;/;(z )t))sds‘

1 -2 -2
i — v D (1+__)P _(1+&%)P
zZ

1)2
1 (%), (Y ! y\? 2
%(5“”7)_¢Q;ﬁ_(;ﬁﬂl;o+“?) $ds

< Clyln’ - (Mﬂ+MM&Hwﬂ+m0

< Cly|

sds

+ Cly|

Now it easily follows (similarly as in the proof of Lemma 4.2) that for v € A, we have

1D PN @) B ) = ) TP N B )16,
1_,
< Clto 277 [Ih" = h2 11 1o 1V 11%

Lv— 1 21 st 1
< Cluo|27" 7|k — R?|1 00

All other terms in E (/) can be estimated similarly and estimate (4.23) follows.
Let us now look at the contraction of E (/) in . For example, we have

|21 7P (N3 (W) (h.n') = Nus(¥) (b, n?)]
(1+771)p_1( L —W(1+nl)é+ﬁlz)/l(l+s—w )P_sts
0

<Cly|

(1+nHz (1+nh)2z2 (1+nHz
speif Vi (1 + 02z + 72z (! v\
— (u+%v‘w 1+ P22 )A(”“a+#v) $ds
anw_ﬁ(WWHw+YMHﬂmw+C%mm_w+§mhwm'

This easily implies (as in the proof of Lemma 4.2) the bound

12" 7P (N1 () (B, n') = Nis@) B P 1Y 0 < Clto[ 2" |In" — 7 Moo 1V 115 2,000

Furthermore,

VF%wamWo—Mthmscwm#—f(Hl?)
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44 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

implying that

12172 (N2 (B n') = Ni2(h D% .0 = Cleol ™M 10" = 12l o106 1V 113 2,000

The other terms in E () can be estimated similarly and estimate (4.24) follows by recalling
that ||y ||} < 1forall y € A. O

*,2,0,t0

4.2. Proof of Proposition 4.1. In this subsection we give the proof of Proposition 4.1
which claims the existence of a solution to the auxiliary equation (2.14) with the desired
properties. We fix (7, 7n) € K and we show that A : X N A — X N A, given by (2.14) defines
a contraction and then use the fixed point theorem.

(a) There exists a universal constant 79 < (0 for which A(X N A) € X N A. Indeed,
assume that v € X N A. By Proposition 3.4 we have

AW 2,000 = ITEWE 2,000 = CHEW 3 0.z

given that E (1) satisfies the orthogonality conditions (2.9) and (2.10). In addition, it is easy to
see that for the second term on the right-hand side in (2.12), we have

ler @)z + 2Dz 6,19 = CHEW) k0,00

Hence, )
TAWIIY 2,600 = ITEWY 2,600 < CIEW) S 6.20-

Combining the last estimate with (4.18) and the bound [/}, , ,, = 1. we get

AW 1% 2,000 = 1

if |zo] is chosen sufficiently large.

(b) There exists a universal constant 79 < 0 for which 4 : X N A — X N A defines
a contraction map. For any ¥'!,¥2 € X N A, Proposition 3.4 implies the bound

1AW = AW 200 = ITEWD) = EWDIE 2,000 < CHEW) = EWP) Y 0

Similarly as above, we have

IE@W) = EQ)L s < CIEW) = EQ o4

The last two estimates with (4.20) yield the contraction bound

IAW) = AW 2,000 < a1V = V212 2000

with ¢ < 1, provided that |#g| is chosen sufficiently large.

The above discussion and the fixed point theorem readily imply the existence of a unique
fixed point ¥ = W(h,n) € X N A of the map A.

We will now continue with the proofs of (4.5) and (4.6).
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(¢) There exists a ty < 0 such that for any (21, ), (h2,3) € K, (4.5) holds. Since 7
is fixed, we will omit denoting the dependence on 7. For simplicity we set ! = W(h!, ) and
V2 = W(h2, ). The estimate will be obtained by applying estimate (3.20). However, because
each 1/fi satisfies the orthogonality conditions (2.9) and (2.10) with

) = £1(0) = 5 og(2b]) + 1 (1),

the difference ! — 12 does not satisfy an exact orthogonality condition. To overcome this
technical difficulty, we will consider instead the difference ¥ := ! — 2, where

PP =Y = Ow'(x = £1(0) — 2 (Owx —£1(1)
with
M) = [ V26— 6100w wrdx,
halt) = [ V2= 610wl ax.
Clearly, Y satisfies the orthogonality conditions (2.9) and (2.10) with £(¢) = £'(¢). Denote by
L} the operator
L1Y := p(")P 'Y — oY — Y + p(z1)77'Y].
Since each of the ' satisfies equation (2.14), it follows that ¥ := ! — 12 satisfies
LY = M(h') = M) + )P EW ! 1Y) = E@ %)
—Li@? = 92) + ()P = @HPTHa - a)y?
where fori = 1,2, we denote by M’ := M(h') and by
E@' ht) =)' TP[A =N = py'on(z)? ™! = )P THA 02 + e5(0)2)]
with M(h'), N(y") and ¢}, ¢} defined in (2.7), (2.8) and (2.12) respectively.
We next observe that estimate (3.20) holds for any even solution ¥ of equation
LiY =@l f

as long as the solution Y itself, and not necessarily f, satisfies the orthogonality conditions
(2.9) and (2.10). Indeed, the a priori estimate

1Y 152,000 < CUY Ik 000 + 11/ 15,0,
holds for any solution ¥ and the bound [|Y ||} 5, < C| f|% ¢ based on the contradiction
argument given in Proposition 3.2 can be shown to hold for any even solution Y that satisfies
(2.9) and (2.10). Hence, we have
(4.25) 1Y 13 200 < CHEDTPLIY I

*,2,0,tl0 — *,0,t0°
Claim 4.2. We have
_ 1_ — s 1
1Y TPLIY Y 60y < Cliol 2NV 1Y + Cleo| Ikt = R?|

*,0,l0 — *,2,0,t0 1,0,t0
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Proof. By (4.21), we have
IGHTP MR = MEP)IY g < Clio| (IR = B2 20T

*,0,[0 — 1,0,t0

Also, by combining (4.20) and (4.23), we have

A A 1_ —
IEW B = EQ? )5 g4 = Clio 27V 101 = 9213 + Clio) ™A' = W[

*,2,0,t0 1,0,t0
Also, since [[(1 =0V} g0 = 20V 1Y 5 60y < 2-
(G L 0 L 2| —p gl 2 et
Gy (1—-0)y < Clto| ™" = 12|I¥00
*,0,10

For the term L!(2 — /%) we observe that since both w(x) and w’(x) are eigenfunctions of
the operator L given in (3.3), and w(x) and all its derivatives are bounded in R, we have

2
EOPILI @2 =9 = C Y (Al + 1Al + 1A l1EY).
i=1

Let us now estimate |A; (¢)| and |i,- (¢)|. Using the orthogonality condition (2.9) satisfied by 12
(with £ = £2), we have

A1) = '/R(Wz(x —EH) =y (x - ) (wP " dx

< Cl(h" =I)OIY>(- 0]l 2
Similarly, one can see that
A1 = (I =) OlI0:y> . DllL2 + 1R = ROV .0)llz2)-

The estimates for |1, (¢)| and |iz(t)| are the same. Combining the last estimates readily yields
the bound
1D PIL W = I gy = Clio TR =210

*,0,10 I,U,to

To finish the proof of the claim, we need to show that

1 2 - 1 2 Mspt1
1" =¥ k2,000 = IV + Cleo| ™" = h* 11y 5 -

*,2,0,t0 1,0,t0
Since ||y! — w2||i’2,0’t0 <MY N5 2600 T 1210 (x —ED + Aw(x— EI)HK,Z,UJO, this estimate
readily follows from the previous bounds on A;. O

The proof of (4.5) now readily follows by combining (4.25) and the above claim and
choosing |tp| sufficiently large.

(d) There exists tg < 0 such that for any (&, n'), (,5?) € K, (4.6) holds. This
proof is an easy consequence of (4.22), (4.20), (4.24) and (3.20), since for ! = W(h, n!)
and 2 = W(h, n?), we have

1V =212 0000 = ITE@ . 0" = TEQ )Y 2.0

where now the operator T depends only on /4 (not the 1;) and 4 is fixed.
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5. Solving for & and 7y

We recall the definition of K given by (4.1). In the previous section we have established
that for any given (4, n) € K, there exists a solution ¥ = W(h, n) of the auxiliary equation
(2.14). Recall that ¢ (¢) and ¢, (¢) are chosen so that the error term

E(W):= E(¥) — (c1(t)z + c2()2)

satisfies the orthogonality conditions (2.9) and (2.10) whenever ¥ does. The error term E ()
is given by (2.6). Thus ¥ = W(h, n) defines a solution to our original equation (2.5) if we
manage to adjust the parameter functions (%, ) in such a way that ¢c; = 0 and ¢, = 0. This is
equivalent to choosing (4, 1) so that

(5.1) /Oo EW)w?(x +£(t))dx =0,
(5.2) /Oo EW)w' (x + E@)wP Y (x + (1)) dx = 0.

In fact, the main result in this section is the following.

Proposition 5.1. There exists (h,n) € K such that (5.1)—(5.2) are satisfied. It follows
that the solution v = V(h, n) of the auxiliary equation (2.14) given by Proposition 4.1 defines
a solution of our original equation (2.5) and Theorem 1.1 holds.

5.1. Computation of error projections. The proof of Proposition 5.1 is based on care-
ful expansions for the projections of the error terms (given by the left-hand sides of (5.1)
and (5.2)) which lead us to a system of ODE for the functions & := £(¢) and n := n(¢). We will
then solve this system by employing the fixed point theorem. We will see that the main order
terms in the system are all coming from the projections of the term z!=? M in (2.6). Let us first
expand these projections in terms of £, 1 and their derivatives.

Lemma 5.1 (Projections of the error term M). We have
o0 p — 1 .
[ mwreer o2t ax = e (= oS- ae ) + Race o
—0oQ

and
/ Mw' (x 4+ E)wP N (x + £)217Pdx = c(E + be ) + Ra(£,€, 1, 1)

where c1, co are universal constants and

0 _
_ (p—1) [o-wPe¥dx + p [~ wPe* dx and b= JoZ wPe ™ dx

5.3 .
(53) p [wPtldx p [w?wP~ldx

Moreover,
; . 1 .
IR (5. &. 0. Dllgg) <C  fori €{1,2},

and for some 0 < y < 1 that depends on dimension only.

Proof.  'We will use the notation of previous sections. Let us write M = M| + M, + M3
with
My = (14 )P (w1 +w2)? —wf), My =—(1+n’w]
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48 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

and

M3 = (1+n)? = (L +m) ] +wh) = p(L+m)? " iz? — p(1+ )P 2P~ E@xwr —ywn) .

=: M3, =: M3 =:M33

We first compute the expansion of the term [ z 1=rpm wé’ dx. We have

oo wp (e’ 1 wp
/ M, 31 dx =p(l+ U)p/ |:w1/(; (wa + Swl)p_1 ds:| 2_dx
—00

zP oo zP—1
* p-1 wy
_ p -
= p(l+17) (/_oow2 w15 dx

zP

o) 1 p
+(p—1)/_ [wf/O (w2 + swi)?2(1 — s)ds] wil dx)

where we have used the notation w(x) := w(x) + w(x —2§). We next analyze the terms on
the right-hand side of the last equation. For the first term we have

o] . wp o] w?
w? wy —2—dx = w? ™ w(x — 2§) dx
2 —1 —1
—00 zP p

0 w

_ / W= 2607 dx+ 1(28)
x<2
_ 2 / eFw? dx + g1(26)
x<2§&

o0
= 6—25/ e*w? dx + g1(28)

—00

where we denote by g;(2§) various error terms having the following decay:
lg1(26)] < Ce T2 witho <y < 1.

The other term turns out to be of a lower order and absorbable in g;(2§). To see that, since
wy < wip for x > 0 and w1 < w, for x < 0, we have

p 1
/w% wil [/ (w2 + sw1)P72(1 —5) dS} dx < C/ wiws dx + C/ wiw? ™ dx
zr 0 x>0 x<0

=< g1(28).

For the term M5, we have

o0 p o0 P -2
_/ M2 w21dx:(1+n)p/ ng)wpdx
oo ZPT oo WPT

2¢
:/o wP (x —28)w dx + g2(2€, 1)
0

— /_ZS wPw(y + 28) dy + g2(2§. 1)

0
= e_ZE/ wPe ™ dy + g2(2€, 1)
—00
0o
= 6—25[ wPe* dx + g2(26, 1)
0
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where we denote by g5 (2&, 1) various error terms having the following behavior:

lg22, )| < Ce (e %Y +|y)),  withy > 0.

/M31

Furthermore,

cdr=ta =) [Twratras

—0o0

+ /oo wPw?(x —28)w! P dx)
=(p— 1)'7/00 w?Pw! P dx + g3(2¢, 1)
= (p— 1)y / WP dx + g3(26.7)

where we denote by g3(2&, n) various error terms with the behavior

12328, )| < C(e7 25 (e %Y 4 [n]) + [n]?), withy > 0.

/ M32

Also,

[e.e]

dx—p(l—l—n)p 1/ zwd dx

—0o0

o0
— i f WP dx + ga(26,7)

—00

with |g4(2£, )| < Ce—sz, and

/ M33

dx = p(1 + )Pé [ @ws — dxwi)w? dx

= pé /_ W (x — 26)wP dx + gs(2E..7)
= g5(2£,&,1)

with ) ) )
g5 (2€.E.m)| < Ce (Il + [E]) + ElIn)).

Combining the previous estimates for M, M», M3, we obtain

1 o0
(5.4) p(n—p—n)/ wP 1 dx
p —00
[e’s) 0
+ e‘zf((p - 1)/ e*w? dx + p/ e*w? dx)
0 —00
+ 321(5» g’ 7, T])
where

(5.5 |RiEEn D] < Ce @8 + Inl + & + [a]) + [l (€] + Inl + 171)).
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Let us now expand [ Mz!7P9,w, w2 Vdx. Similarly as before, analyzing term by term
we obtain
/ M;0x wz

0 wp—l
dx = p(1 +n)p/ wé’_ w10y w2y T dx + R (8, E.n.1)
—0oQ

:p/ wp_lw/w(x—2é)dX+=Rz(§,é’ n, 1)
x<2§&

o0 .
— pe / WPl w'e® dx + Ro (&, £, n, 1)

—0oQ0

o0
= —6_25/ U)pex dx + CRZ(E’ Ev na f])
—00

where by R, (&, é, 1, n) we have denoted various error terms that have the same behavior as
in (5.5). Also,

[ Mza w2

w?(x — 25)

p—1
D71 w'w dx

dx—(1+ )p[

28 .
- [0 w? (x —28)w’ dx + Ro(£,6.1.1)
0

— /_25 wPw'(y +28) dy + Ra(£,£,1,1)

o0
_ 2% / wPe* dx + Ry (€. £.1. i)
0

where R (€, S .1, 7) is the error term satisfying (5.5). Next, using that [ w'w? dx = 0 and that

p—1 _w
1_(1) - C(p)(1—3) forx <&,
w 1 otherwise,

we obtain

p—l
/ M3laxw2

o0

dx—(p—l)r)/ wPw

-1 )
— dx + Ra(5.5.1.1)
o

00 p—1 .
~o-onf((£)" - 1)uter s+ Rateboni

—00
= ‘722(%-’ %-’ m, 7’])
where R (£, £, . 7) satisfies (5.5). Using again that J w'w? dx = 0, we obtain

o) wP—l o)
/ M328xw2% dx = p(1+ n)p_lfy/ ww' wP dx
oo z oo
o0
= pﬁ/ w(x —28)w'w?dx
—00
= ﬁz(é, E’ n, 7’])
Finally,
p—1
w;
/M33axw2 =

dx = p(1+ r))p_lé /(w/(x) —w'(x =28)w'w? ' dx
. oo .
-7 5/ W) ?wP™" dx + Ro(§.€.1.).
—00
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Combining the above estimates, we conclude the bound

wé’_l %2 e
< dx = —pé/ (w")*wP™ dx
z )

o0
(5.6) / M 0oxw,

—00

Oo .
—e % / wPe ™ dx + Ro(€,€, 1. 7).
0
Combining (5.4), (5.6) and (5.5) finishes the proof of the lemma. O
As an immediate corollary of the previous lemma we obtain:

Corollary 5.1. Set Q(V) := E(Y) — M z'=P. With the same notation as in Lemma 5.1,
equations (5.1) and (5.2) are equivalent to the system

(5.7) r';—pT?ln—ae‘zé = R1(E.E.0.0) + G (Y. E. )
and
(5.8) E+be % = Ro(E.E,1.1) + Ga(V.6.1)
where
Gy i=ci' [ 0w+ e s
and N

Ga() = 5" [~ 0w+ P +8) d
The error terms R; (€, S n, 1) satisfy
IR € E.nillgrd <C  fori €{1,2}.

Remark 5.1. If we look at the proof of Lemma 5.1, we can trace all the error terms we
have denoted by R; (§, &, n, 7). Observe that

(5.9) Oy Ri| + 19 Ri| < Ce (™28 +|E + [l + |3l + D).
9 Ri| + [0 Ri| < C(e™ + 1),

Our strategy in solving system (5.7)—(5.8) is as follows: For given £ := % log(2blt]) + h
with ||h||‘fff:g ' <1, we will first find a solution n(€) to (5.7) by the fixed point theorem.

The existence of (&, n) will be given by plugging 1(£) in (5.8) and applying the fixed point
theorem once more.

5.2. Solving for ». In this subsection we will fix a function & on (—o0, tp] with

i+ 1
1hl1 e, =1

and solve the equation

-1
(5.10) === Fn )
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where

(5.11) Fp(, 0, %) = ae™% + Ry(£,€, 0, 1) + G1 (¥, h, )

and ﬁl(s,é, n,1), G1(¥, h,n) are as in Corollary 5.1. Recall that for any given (4, 7) € K,
Y = W(h,n) is the solution of (2.14), which was proved in Proposition 4.1. For simplicity we
will denote, most of the time, those functions as Fj, Ry and G respectively.

Let A = pTTI. A function 7 is a solution of equation (5.10) on (—o0, fg] if

to
(5.12) AM(@) = — f A5 By (n(s). 1(s). v (5)) ds

t

satisfies A(n) = n. We have the following result.

Proposition 5.2. For any fixed h € K there is an n = n(h) € K so that A(n) = .
Moreover, for any hy, hy € K, we have

(5.13) In(h") = n(h*)|} 4.0y < Cltol 310" — B2

1,0,t0

where tyg < 0 and C are universal constants and § > 0 is a small constant depending on [
and v.

Proof. Let A be the operator defined by (5.12).

(a) There exist a universal constant 7y < 0 so that K is invariant under 4, namely
A(K) ¢ K. We will first show that for o = n + 2 and |1o| sufficiently large, we have

(5.14) sup |t]|AM)| < ClIFxl3.4, < CIFnllys,-

T<Ilp
Indeed, if 19 < —1, then for v < £y,
[fo—7] z4j+1
Al = celel 3 [ e MR s
=0 T+

L g ot i)
< CllFplz e Izl )
j=0

to
1 A
< CIFulL e ’|r|/
T

1
< CllFnl2,q

[T+l

ds

e—/ls
Is|

since

to ,—As
e’h|t|/ ¢ ds <C
t N

for a uniform constant C. Denoting for simplicity by I; = [t, t + 1] and using (5.14), observe
that

d
EA(U)

(5.15) IAM ] 00 = sup IellAM Loy + sup 7|
T<to—1 T<to

<to—1 Lo(Iy)

1
= ClFullg s
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where C is a uniform constant. Next we want to use the previous estimate to show that
A(K) C K, for an appropriately chosen constant Cy. By (5.11) we have

1 .
1 Fnllo == sup |zl FallLo )
T<to—1

< sup [tl(alle™ Lo,y + IR lLo,y + G llLo,))-

T<to—1
Since £ = 1 log(2blt]) + h with [|2]}y £* < 1. we have

[Zl* 1kl oo,y < 1.

Hence, fort <19 — 1,

2oy < — o1y < =
alellle™= lLoan = o5 e, U0 =5
provided that |f| is chosen sufficiently large so that [le 2" Loo(I,) < 2. Set
2a
5.16 Co = —
(5.16) 0= 7

where C is the same constant as in (5.15) and constants a and b are defined in (5.3). This
implies that Cp is a universal constant depending only on the dimension . We claim that

Co _
(5.17) | Fhllso < 5 +Cliol ™. 6> 0.
To show this claim, we recall that by Corollary 5.1 we have

sup ||| R1llzor,) < Cltol™7,

T<to—1

so we only need to show that

sup [7||G1llzocr,y < Cltol™

T<top—1

for some § > 0. To this end, we recall that

T+1
||Gl||w,)=(/ (/ Q(w)wgdx) dx)

where Q(Y) := E(y) — z!7P M is given in (2.6). To establish the above bound, we estimate
term by term similarly as in the proof of Lemma 4.2. For example, for the term z' =2 N3 which
is given in (4.13) and satisfies estimate (4.15), if we also use that w, < z, we have

1

T+1 1
(17 ([wostion) o)

T+1 . 1 . %

SC(/ (/_ W1yl + 16+ [l Dws ™ dx) dt)

Recalling that 28 = p — 1 and using the bounds

1

IV llLoe@xize+1) < 1T MV k2,000 =1 w2 <2
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together with Holder’s inequality, we obtain
1

T+1 o
(/ (/ N13 dx) dl‘)
T+1 nB—o _nB o
sc(/ (/ e at dx) dr)
r |x|>£
T4+1 o 1
+c(/ (/ |1p||w,|22ﬂ+9w2_6dx) dt) + Cle|7Y
T x| <&

T+1 poo %

sc(/ / |wt|“aodxdz) (o™ + e[ ) + Cle|
T —00

< C|‘E|_2v+0

< C|,L,|—1—8

al-

for some § > 0 and sufficiently small 6. Similar bounds hold for all the other terms which
readily give the bound for ||G1||zo(1,).
The above discussion establishes the bound (5.17). Using this bound, we finally obtain

Co 5 2
14D 00 = ClFllos = 5 + Cliol ™ = 5C0 < Co

provided that |79 is sufficiently large. We conclude that A(K) C K, where Cj is the universal
constant on the right-hand side of (5.17), finishing the proof of (a).

(b) There exists a universal constant 79 < 0 for which A : K — K defines a contrac-
tion map. Since 4 is fixed, we only write in F}, 1 and G their dependence on ¥ and 7. As
in part (a), for every n', n? € K, if ¥ = W(h, n'), we have

(518) 4G = A0 N esy = CIERC ' ) = Fa(r, i )l Le
< C(IR1 (1" 1" = RGP 1) g
+ 1610y ) = G, ¥ )l g )-

Observe first, using (5.9), that

7'72

[RELTR
n

,’2
[Ri(n'. ') = Ra(?. %) < € / anﬁl(n,le)dn‘+
n

2

n .
<c([} e @l b+ il +
n

r‘,2
+[1 (% 4 |n2|)df7)
n

implying that
(5.19) IR (' 1) — R )L, < ™ |||77 =% o0
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Furthermore, we claim

IG1 (" ") = G2 DL < IG 1  Y) = GL(r v D IlE 4,
+ G2 ¥h) — G D)L,

where

(5.20) 1G1(" ") = G ¥ D 54y < Cliol > In" = 02111 4
and

(5.21) 1G1 (. ¥ = Gr (P ¥ D)5 < Clio 2 Ny =¥ 1% 2040

-2 0 1 2n1
< Clool " UIn' = 1|l 040 -

To establish (5.20), as in part (a) let us look at the term coming from z!~7 Ny3(v). Using the
estimate of this term obtained in the proof of Lemma 4.6 and a similar analysis as in part (a),
we obtain

o 1y, 12 W 7 o
sup |r|(/ (/(N13(¢ Y — Nis(@ ) () 22 dx) dr)
T<tpo—1 T z
< Clio["*lIn" = 1l .z,
where we used that ||/ %2040 = 1 and that (h, n;) € K. All other terms in (5.20) can be esti-

mated similarly, so estimate (5.20) follows. To establish (5.21) one argues similarly as above

using the established bounds in the proof of Lemma 4.4 and in (4.6). Recall that v > % and

6 > 0 is small. Then combining (5.18)—(5.21) and taking |o| sufficiently large yields the con-
traction bound

1
(5.22) 1401 = A0 oy = 510" =711 0210

This finishes the proof of part (b).

Having (a) and (b), we may apply the fixed point theorem to the operator 4 : K — K to
conclude the existence of an n = n(h) € K so that A(n) = n.

(c) For any h1,h, € K, (5.13) holds. Since A(n) = n, we have

to
n(h) = f e Fyy(s) ds.
t
Hence, similarly as in the proof of (5.14),

sup |z||n(h') = n(h?)| < CllFp, = Fiy 2,49 < C Il Fny = Fiy oz

T<tp—1

which yields

(5.23) (k") = )1 600 < CIFny = Fiylloso-

Recall that )
F, = ae % 4 Ri1E.En,n)+Gi1(Y, h,n)
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and & = &y + h with & (¢) = %10g(2b|t|) and || small. Applying that to 2 and h?, we get

+1 1
o260t 2ot < cosup ([Tt - h2p )

T<to—1

< oo™ 1" = 1254,
Next, using (5.9) and the notation ' = n(h') = n(£'), where £ = %log(2b|t|) + h', we have

| R1(E", €L, 7717'7) RiE2E2 P D)L

E2
<CH/S TG E i ae+ [ aa"?(sz d
OR . 0
' P i, dn+/l B n)'dn
n

C(lrol™ Mnhl 12154 + ltol " (17 —/%2||£,Z,1
+ o ™M ' = 1P llg gy + 10l 17" = 72 l0)
< Clio[ P (Ih" =215/ + In(h") = ()] 4)
if 6 < min{l, u}. Finally, similarly to the estimates obtaiped in the proof. of Proposition 5.2
and Lemma 4.6, if we denote for simplicity ¥' = ¥ (h', n') with ' = n(h'), using (5.20) and
(5.21) we have
1GL (A ') = GL(W2 W2 ) g
<G h ") = G B2 D)llg . + 1GIW A2 Y = Gi( P ) 54
G W) = Gr W2 12 0P g,

1—2v—pu+0 51 _ p2y i1+ 20401 _ 21
< C(leol ™2 7FF Rt =m0 + 10017200t = 021 o

+ o2y — Y 5 00

1—2v—pu+0 1 _ p2q i1+ 20401 _ 21
< C(leol 27RO Rt =m0 + 10017200t = 0?1 o

+ [t 2y (h n(h")) — v (B2 (DL 2.0
+ 1w (h? . n(mY) =y (> ()2 2.6.00))
< C (It OB — B2 4 12Ot = 0211 5 s)

1,0,t0
where we have used (4.5) and (4.6). For the above estimate we only need to check that

IG (! ht Yy = Gi(w k2 gL, < Cleol™™27# 0 nt — n2 |

loto *

Indeed, if we pick the term z!77 Ny3, using the estimates from the proof of Lemma 4.6 we
have

T+1 o) o
suplrl(/ (/_ |N13(W1,771)(h1)—le(wl,nl)(hz)lﬁzl_”dX) dl)

T<Ilo

7+1 () . . oz
sCsup|r|(/ (/_ |w||h1—h2|(|wr|+|w<|sl|+|sz|+|f7|>>w§"1dx) dr)

T<Ilo

Q=

al-

1—2v—p+0 51 _ 211+
< Cleol ™2 7F 0 Int — h? |0
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Combining the estimates from above yields

1 Syl _ p2qielt —v40y 1 21
1Fhy = Fayllzg < C (12l IR" = B2 11550k + 100l ™" " = 1211 0.0

where § < min{l, i, | —2v — u + 6}. Hence by (5.23) and choosing |#p| sufficiently large we
conclude the bound (5.13), finishing the proof of (c). O

5.3. Solving for &. Recall that £(r) = &o(¢) 4+ h(2), &o(t) = %log(2b|t|). Moreover,
£o(2) is a solution to the homogeneous part of equation (5.8), namely

éo + be—ZSO = 0.

Using this last equation, we may rewrite equation (5.8) as follows:
|
(5.24) h + ;h = F(h)

where )
E(h) := G3(h) + Ra(§.§.0.7) + G2(¥. h. 1)
with G, (¥, h, ) as in Corollary 5.1 and

(5.25) G3(h) := —(§ (50 + h) — §(E0) — DeF(E0)h), G(€) = e .

Equivalently, the left-hand side of (5.24) is the linearization of equation (5.8) around &;. We
can in fact write (5.24) as a fixed point for a left inverse of that operator. The equation

C
(5.26) ht —h=g. hig) =0

is solved by the formula

to
(5.27) h(t) =T (g) = |z|—1/ g(n)rdr
t
and then, writing
to
B(h) := T (F(h)) = |z|—1ft sF(h)(s)ds

it suffices to solve the fixed point problem 4 = B(h) in a suitable region. Let us consider the
set
Ko = {h: (—00,10] = R : [[h|[{) T < 1),

1,0,t0

We have the following result.

Msp+1 <1,

Proposition 5.3.  There exist a universal constant to < 0 and function h, ||h||}" o

so that B(h) = h.
Proof.  'We will show that the map B leaves the sets invariant and that it is a contraction.

(a) There exists a universal constant 7o < 0 so that B(K¢) C K. It is easy to see
that if to < 0 and o0 > 2, we have

(5.28) sup [2|| B(h)(x)] < C|[F(h)[l5 4"

T<to—1
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58 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

for a universal constant C. Denote by I; = [t, T 4 1]. Using (5.28), we observe that

d
629 IBOILG = sw [t IBMILeay + sup el ] T B
<to—1 t<to—1 dt Lo(I,)
1
< an(h)na,to“.
We will use this estimate to show that B(Kg) C K. We have
1+
IFE Mo = _suwp [N FM) Lo )
<to—
<C sup 1 [t (| Rl Lo () + 1G2llLeayy + IIG3llLo(ry))-

T<tp—

A straightforward computation, recalling (5.25) shows that

1G3(M)llLo(r,) = B |||h Lo 1)
implying (since | & ||‘1L 7’;’;’* < 1) the bound
1+ C
(5.30) sup [t TG Loy = 7
T<tp—1 |t0|
By Corollary 5.1 we have
(5.31) sup [t|" | Ra Lo,y < _C
T<to—1 |t0|y_M

where we choose pu so that i < y. To establish the bound on sup,  |7| H ) Gy (h) lzo (1), we
estimate term by term, similarly to the proof of Lemma 4.2. Similarly to deriving the estimate
for the term G in Section 5.2 we have

1G2llLor,y < Cle| 72+

implying . st
1Gallgyy < Cle|72 01T

where we choose (< min{y,2v — 1} and 6 > 0 is chosen small so that 2v — 8 — 1 — u > 0.
This together with (5.30) and (5.31) implies

C
IBW i < |[Fy ottt < ——,

1,0.t0 o,tp —
fo°

where § = min{u,y — n,2v — 6 — 1 — u}. We conclude that for |¢g| sufficiently large we
have B(Kp) C Ko.

(b) There exists a universal constant 79 < 0 for which the map B : Ky — K¢ defines
a contraction map. Observe that similarly as in part (a) we have

(5.32) IB(hY) — B2)|EEY < C|IF(hY) — F(h2)|| o b

1,0.,t0 o,to

An easy computation (the same as in part (a)) shows that

G3(h') — G3(h?)| < T |(Ih1 W22+ (bt + [h2D]h" —h?))
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implying that
C
||G3(h1) _ G3(h2)||1+lb < _”hl _ h2||M’1+M.

o,tp — |to]* 1,0,t0

Let £ = & + h' and recall the notation n° = n(£'). Then, similar to a discussion in part (c)
of the proof of Proposition 5.2, we have

(5.33) IR (L, E n(EY), (EY) — Ra (82, 2, n(ED), (E2)) | A
< Cleol 8 (IIh" = B2 5 + IIn") = 0D .00)
< Cloo 1A' = W21 "

where in the last line we have used (5.13) where § < min{1, u, 1 —2v — u + 6}. Furthermore,
similar to deriving (5.13) in part (c) of the proof of Proposition 5.2, we get

1G2w " 1t ") = Ga(w 2. P55, < Cleol ™20 Int = 2|15

1,0.t0
Using (5.32), the definition of F (/) and the estimates above, if we choose |t ]| sufficiently large,
we obtain the bound

1
IBOY) = B0 Y5 < 510t =Rl 55"

1,0,t0 1,0,t0

which finishes the proof of part (b).

By the fixed point theorem applied to the operator B, there exists an & € K¢ so that
B(h) = h, or in other words, & solves (5.24). This concludes the proof of the proposition. ©

We conclude Section 5 by the proof of Proposition 5.1.

Proof of Proposition 5.1. By Proposition 5.2, for every & € K, there exists an n = n(h)
so that (5.1) is satisfied. By Proposition 5.3, if we take n = n(h), there exists an &, so that
||h||’1/“(’f;g '<1and (5.2) holds. Take this pair of functions (%, 7n) € K, for which both (5.1)

and (5.2) are satisfied. Then by Proposition 4.1 there is a solution {» = W(h, n) of (2.5), satisfy-
ing the orthogonality conditions (3.5) and (3.6). This finishes the proof of Proposition 5.1. ©

6. Properties of the solution

Unlike the contracting spheres (1.4) and the King solution (1.5) to the Yamabe flow (1.1)
which are both type I ancient solutions with positive Ricci curvature, the solution that we
construct in Theorem 1.1 is of type II and its Ricci curvature changes its sign. More precisely,
we have the following proposition.

Proposition 6.1. The solution constructed in Theorem 1.1 is a type Il ancient solution
in the sense of Definition 1.1. Its Ricci curvature changes its sign.

Proof. 'We recall that under the conformal change of the metric g = e2f grn, the Ricci
tensor changes as follows:

Rij = —(n=2)(fij — fi ;) + (Af = (n =2V f1})8;j.
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60 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

In particular, if f is a radially symmetric function and we denote by Rj; the Ricci tensor in
the radial direction and by R;;, with j > 2 the Ricci tensor in the spherical direction, then

n—1
Ryy = —(n—=3)frr + Tfr

and for j > 2,
n—1

j}'_(n'_z)f?'

Observe that R;; = 0fori # j. We will next express Ry with respect to our conformal factor
u(x,t), expressed in cylindrical coordinates. Let u(x, ¢) be the solution of (1.7) constructed
in Theorem 1.1. Recall that u(x,?) represents the conformal factor of the rescaled flow in
cylindrical coordinates. Using the change of variables

Rjj = frr +

logu(x,7) —x, r=-e",

fr) =

n—2

we find that R (the Ricci curvature of the rescaled metric in the radial direction) in terms of u
is given by

(n — 2)2 > — (n - 3)”)2c + u[(” B 3)uxx - 2(” B 2)ux]

Ry =—
€2xu2

The Ricci curvature changes its sign. We will show that R1; changes sign. Note that
the sign of R, is determined by the sign of
0 = —((n—2%u® — (n = 3)u2 + u[(n — Nuxx — 2(n — 2)ux]).

Recall that our solution u is given by

u=(1+mz+y=z+y. ¥i=nz+y.
Let Q := Q1 + Q», where
Q1:=(n— 3)Z;2c —(n—2)%z% - z[(n = 3)zxx — 2(n — 2)zx]

and Q5 is the error term that is a linear combination of 1/73, &xe, 1}2, 1}2, &&xx, &Zxx,
Yzx, Yxxz. An easy computation shows that for t < fg — 1,

41 pl C
6.1) /r /_1 Q1zP Vdxdt ~ — 8?1 <0, ast— —o0.

|f|T

Hence, it will be sufficient to show that

1 1 il
[ [ 0:zP Vdxdt =o(t|” "2 ), ast— —o0.
T -1

Let us check that is the case for some of the terms that enter in the expression for Q. All the
other terms can be checked similarly. To simplify the notation, set R, := [—1, 1] x [t, T + 1].
Using the energy estimate (3.23) and the fact that

—1
P71 < C|f|_pT on R,
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we obtain the bound

(6.2) / W2 4+ 92)zP Vdx dr
R,

<[t ((Hnnoo,o)z /fR 2dvdi+ fR W + 2 dx dt)

_pr=1 2 _2
<7z (e + 7T
p+3

=Clg|7 2>

and also

63) / Wxxzp—ldxdzsc|r|“’51(<||n||éo,to)2 // 2 dxdi
R; R

Il // ey + Yz d dt)
R
+/ lﬁlﬂxxzp_l dx dt
R:

< C|t|_pT+2_” + / UexzP Vdx dt.
R

For the last term in (6.3), using the energy estimates (3.23) again, we have

1

(6.4) / Yxxz? tdxdt < (/ Y2zP71 dxdt)z(/ wfxzp_ldxdt)2
R R: R;

1
< ClWlzsoanlel ™ (/ wxxdxdz)
< Clr|~ 72,

We see that p Lo > pTH is equivalent to 2v > 1, which is true. Using (3.23), we have

6.5) [ Faxz?dxdt < Cllnll lo1=F + / Vrewz? dx di
R, R;
< (7 4 5.

Combining (6.1), (6.2), (6.3), (6.4), (6.5) yields

// 0P Vdxdt < —C(n)|c|~3
R;

if t is sufficiently close to —oco. Hence Rj; has to be negative somewhere on R, if t is suffi-
ciently close to —oo. On the other hand, since the scalar curvature R of our ancient metric
is positive, the Ricci curvature must be positive somewhere. The conclusion is that the Ricci
curvature of our ancient solution changes its sign all the way to t — —oo.

The solution is of type II. 'We observe that our rescaled ancient solution is of type II if

lim sup |[Rm|(-,?) = +o0.

—>—00
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62 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Hence, it will be sufficient to show that

(6.6) lim sup |Ric|(-,7) = +o0.
t——00
Since, as we have noticed above, the Ricci curvature of our radially symmetric solution is
diagonal, we have

Ric|> = R}, (¢")> + D R7 (')

i>2
Look at the Rllg“ = Rllu_ﬁ, which is
11 _ (n— 3)“)2c —(n— 2)2u2 —ul(n —3uxx —2(n — 2)ux]

2n )
e2Xyn—2

Ri1g

. : = S |
As in part (a), write u = z + . Since [|[{||po(a,) < Clz|7", and z ~ C[7|72 on R, we
have < u <2z on Ry. Let us write

Rug'' =0+ 1

where the term J; we obtain from R g”, after replacing u by z, and J; is the difference of
those two terms. An easy computation shows that

6.7) ‘ // J1zP~Vdx dt
R,

. . 1 I .
Using the energy estimate (3.23), the fact that z ~ |t|”2 on R, very similar estimates to those
in part (a) show that

(6.8) ‘ f / JozP~Vdx dt

for some ¢ > 0. Combining (6.7) and (6.8), we see that

‘// Rllgllzp_ldth‘ZC>0

. . _ _2_ . o
for all T sufficiently close to —oo. Since z?~! ~ |z|~7#=2 on Ry, the last estimate implies there
exists a uniform constant § > 0 so that for every T < g, with tq sufficiently close to —oo, there
exists an (x¢, 7) € Ry so that

2
~C|r|n—2/[ 2P~ Vdxdt ~ C, ast— —oo.
T

=ClzI™?

2
Rllgll(xf,t) > §|r|n-2.

We conclude that (6.6) holds and our solution is of type II. O
We conclude this section with a final remark on our shape of our solution, as 1 — —oo.

Remark 6.1. The ancient solution u(x, ¢) constructed in Theorem 1.1 looks like a tower
of two bubbles as t — —o0.

More precisely, for any § € (0, 1) it is easy to check that we have the following:

(a) For x < &(¢)(1 —68) we have |u(x,t) —w(x + £(1))| < C|t|_%, which means that in
this considered region we are close to one of the spheres (bubbles).
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(b) For x > —£(¢)(1 — &) we have |u(x,t) —w(x —£&(1))| < C|t|_%, which means that in
this considered region we are close to the other sphere (bubble).

(¢) Forany x1, x5 € [£(¢)(1-5), E(r)(1—F)] and any two corresponding points py, p, € R”
whose radial variables correspond to x1, x2 in cylindrical coordinates respectively, we
have that

. 5
distg (1) (p1, p2) < Clt|" =2 log [¢],

which means that in the region where the two spheres interfere we have a short and
narrow neck connecting the two bubbles and as # — —oo this neck becomes shorter and
narrower. We denoted by g(-) the rescaled metric.

To check (c) observe that

§((1-9)

sz = [ (W = §0) F wx + E@) + ¥ (. 0) 72 d

—£(@)(1-48
2

<C (|t + |t]7") 72 log 1]

< Cle|"% log t].

We finish the paper with the proof of the Main Theorem 1.1, which we restate below.

Theorem 6.1. Let p := (n+2)/(n—2) withn > 3. There exist a constant ty = to(n) and
a radially symmetric solution u(x, t) to (1.7) defined on R x (—o0, to] of the form (1.11)—(1.12),
where the functions = ¥ (x,t), &€ 1= %log(2b|t|) + h(t) and n := n(t) satisfy

51+ 2
1113 2,000 < 000 IR 55" <00, Il <0

(according to Definitions 2.6 and 2.7). The constants o, i, v and b are all positive and depend
only on the dimension n.

It follows that the solution u defines a radially symmetric ancient solution to the Yamabe
flow (1.1) on 8™ which is of type II (in the sense of Definition 1.1) and its Ricci curvature
changes its sign.

Proof. Proposition 5.1 gives us, for |fg| sufficiently large, the existence of a radially
symmetric solution ¥ to (2.5) on R x (—o0, fp], which is equivalent to the existence of a radi-
ally symmetric solution u to (1.7), defined on R x (—o0, #9]. This finishes the proof of the first
part, that is, the existence part of Theorem 1.1. Furthermore, by Proposition 6.1 our constructed
solution is a type II ancient solution to the Yamabe flow, with the Ricci curvature that changes
its sign. |

7. The case of multiple bubbles

In this section we sketch the proof of Theorem 1.2, indicating the changes needed with
respect to the two-bubble case. Now we seek for a solution of (1.7) of the form

k
u(x,1) =Y (14 1;(0)w;(x,1) + Y (x,1)

Jj=1
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64 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

where w; (x,7) = w(x —&;(t)) and ¥ (x,t) — 0 as t — —oo. The functions ; (¢) are ordered
and symmetric,

(7.1) §1(0) < &2(1) <--- <& (1), &) = —&x—j41(0).

We also assume 7; () = ng—;j41(7).
Welet £(t) = (61(2), ..., & (1)). Let us write

(7.2) §(t) = &o(1) + h(1)

where £o(¢) is the solution of the first order Toda system (1.16) as in the statement of the
theorem that we will analyze later. The parameter functions /4 (¢) and 1, (¢) will decay in |¢|,
as |t| — oo and will be chosen according to a system of first order differential equations.

We write now and

k k
Z:= Z(l—knj)wjg z::ij.
j=1 j=1

Equation (1.7) then becomes
U(E+ Y)Y =@y —¥ +0Z -2 + E+ )’

Using that 02w i —w; = —wf , we obtain the equation

k
%G+ 1Y) = (a,%w —y =) 1+ nj)w;’) +E+ )P

j=1

which can be re-written as

(7.3) pzP7l0iy = 0xx ¥ — ¥ + pz? 'y — 2PTIC (Y1) + 2P TV E(Y)
where now .
CY) = dij(Ow) + doj ()}
j=1

and the coefficients d;, d»; are precisely chosen as linear functions of v in such a way that
the following (nearly diagonal) system holds:

|2 @t =+ 92ty = p ol d
= Zdlj/ wf_lw}w; dx + dzj/ wlp_lew; dx,
- R R
J
|27 @y =+ p27 N pz Byl d
= Zdlj[ wf_le/-wl dx + dyj / w! ™ wyw; dx,
F R R

and E () is given by
(7.4) E(W):=z""M +CW) +z""P[(1 =0)N () = pydr 277"
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where
k
(7.5) M =27 = (1 +n,()wl — 0,27
j=1
and
(7.6) N@W) =G+ )P =22 — pz?~ 'y + py (EP~' — 277,

We consider first the auxiliary equation
(7.7) pzP7loy = 0ux ¥ — Y + pzP Ty —2PTIC(Y)
#2771 B - lery 0] + ez 0u))|
J

under the orthogonality conditions

(7.8) ww} wf_l dx =0 forae.t <ty
R
and
(7.9) / wij;"ldx =0 forae.r <ty
R

where ¢1;(¢) and c¢2; (¢) are uniquely chosen so that the function

k

(7.10) E:=EW) =Y ci(Ow) + czj (0w,
j=1

satisfies the orthogonality conditions (7.8)—(7.9).

Following the same arguments of the case k = 2, only at the expense of further notation,
we find for each given vectors / and 7 a solution ¥ = W(h, n) to problem (7.7) subject to the
orthogonality conditions (7.8)—(7.9) for ¥, in a similar way to that found in Proposition 4.1.
After this, the problem is thus reduced to choosing the parameter vector functions 4(¢) and 7(z)
so that ¢;;(¢) = 0, where h and 7 decay in #, as t — —o0. The procedure is exactly the same
as before. Now we need to solve the system

/ w? ™ w] E(U(h. n)) dx =/ w? ™ w; E(W(h.n)dx =0 forall j =1.... k.
R R

Similar computations to those in Section 5 yield that the above system has the form

-1 .
0=r1j — 4 nj — a(e—(§/+1—§i) — e—(§/—§i—1)) + @Q1(5, .0, 1)
p
and
0= b_léj 4o Er178) _ o= &= | @2(55 )
where §g = —o0, £ 41 = 400 and the terms @;, / = 1,2, decay as suitable negative powers

of || provided that the terms 1 and / do so (recall that §; (t) = &g, (¢) + h;(t)). We proceed
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66 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

in a similar way as in Section 5, solving first for vector function 7 as a function of & using
a fixed point formulation as that in Section 5.2. The problem gets at last reduced to solving
a perturbation of the Toda system

711 b7 () + e GHTE) o EG 80 — o j =1, k. 1€ (—o0,—Io].

Let us find first the explicit solution &p. Let us set

(7.12) Re(£) := _[e—(se—se_l) _ e—($z+1—ée)]
and
R1(§)
(7.13) R(E):=|
Rin (§)

We want to solve the system E + R(&) = 0. To do so, we find first a convenient represen-
tation of the operator R(§). Let us consider the auxiliary variables

U1

defined in terms of & as

k
W:Eé-l—l—ge With€=1,...,k—l, UkZZSL
{=1

with the conventions vg = vg4; = +o00 and define the operators

5% - S1(v)
S(V)i=[ 0 } S() = :
Sk—1(¥)
where
e7V2 —2e7 Ul if¢ =1,
Se(v) := Ry41(85) — Ry(§) = e Vet — 27V 71 ifl <l <k —1,
—2e7Vk—1 4 T Vk—2 ifl=k—1.

Then the operators R and S are in correspondence through the formula
(7.14) S(v) = BR(B™'v)

where B is the constant, invertible N x N matrix

-1 1 0
0 =1 1 -0

(7.15) B=| : o i
0 0 -1 1
i Y
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and then through the relation £ = B~!v the system é +R(§) = 0is equivalentto v+S(v) =0
which decouples into

(7.16) V+S® =0,
(7.17) b =0
where
(2 -1 0 7
e Y1 -1 2 -1 0
(7.18) S# :=C : , C=] :
e vkt 0 -1 2 -1
| 0 -1 2 |

We choose simply v; = 0 and look for a solution v?(¢) = (v°(¢), 0) of the system, where v°(¢)
has the form

Vo (1) = log(=1) + By
for constants 8, to be determined.

Substituting this expression into the system, we find the following equations for the
numbers Sy:

We compute explicitly
1
(7.19) ﬂgzlog[—(k—ﬁ)ﬂ}, t=1,....k—1,
20
and hence we find a solution £°(¢) = B~1v? to system (1.16), which is explicitly given by

o k+1 ,
£ (1) = (1 ——) log(=t) +yj. j=1,....k

2
where

1l j—1

j=11=1 I=1

This solution of the system is symmetric, in the sense that
k

0 _ _s0

Se—jr1 =8 J=5

After &y has been built, we follow exactly the scheme of Section 5.3. We linearize around
&0 and the equation for § = &y + h takes the form, analogous to (5.24),

(7.20) h+ DeR(E®)h = F(h) in (—o0, —to)

where the nonlinear term F (/) is small with £ and it roughly has a decay at least one negative
power more of || than that of 4. At this point we make the following important observation.
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68 Daskalopoulos, del Pino and Sesum, Type Il ancient compact solutions to the Yamabe flow

Since we are restricting ourselves to symmetric &, it follows that / satisfies the symmetry
condition

.k
hk—j+1 :—h], J = Ev
and the solution ¥ is even in x, then examining closely the symmetries of F'(h) we find that

F(Wk—j+1=—F(h);.

An exact analog of Proposition 5.3 does indeed hold, for a suitable inverse of the linear
operator of the left-hand side of (7.21) in a subset of the vector functions / satisfying the
symmetry requirement, which we construct next. Thus, we are reduced to building a solution
of the linear system

(7.21) h+ DeR(E®)h =g in (—o0, —19)

where g is such that g ;11 = —g;. We observe that, in particular,

k
j=1

‘We observe that
B~ D\S(v*)B = D¢R(¢"),

hence setting
p = Bh, q = Bg,

system (7.21) becomes equivalent to

(7.22) p+ D,SV)p =q in(—00,1).
Writing p = (p, px)> 9 = (g, g% ), the latter system decouples as
(7.23) P+DS(F)p=q in(—00.1).
(7.24) Pk = qr in (—o00,1p).
We keep in mind that
k
%= & =0
j=1
We simply choose py(t) = 0. Now,
et 0 0
_ e 2
(7.25) DS(v) = -C
O O e e_kal
_2611 —aj 0 ]
—dai 2612 —das
1| 0 —azx 2as 0
= ,
0 o —am—3 2am—2 —am—1
L 0 —Am—2 2am_1_
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Daskalopoulos, del Pino and Sesum, Type 1l ancient compact solutions to the Yamabe flow 69

with

—1
(7.26) cu=37@—@£ C=1,.. k—1.

We shall solve problem (7.23). It is convenient to express it replacing the matrix D;S(v?) with
a symmetric one. We recall that we have

e P 0 0
—B2
_ 1 e 0
Dﬁ@%:;c
0 0 .- e P

where the matrix C is given in (7.18); C is symmetric and positive definite. Indeed, a straight-
forward computation yields that its eigenvalues are explicitly given by

k—1

1
b 2 9 k
We consider the symmetric, positive definite square root matrix of C and denote it by C2. Then
setting

1

p:= C%a), q .= C_%EL

we see that equation (7.23) becomes
L1 -
(7.27) o + ;Aa) =g in(—00,tp)

where A is the symmetric matrix

a, 0 .- 0
0 ap - 0 i
(7.28) A=C2 C2
0 0 - ap_1
where 1
= —l(m—1).
ag = St(m—1£)
In particular, A has positive eigenvalues. Let 11, ..., u;_; be an orthonormal set of eigenvec-
tors of A associated to its positive eigenvalues A1, ..., Ax_;1. Then writing
k—1 k—1
o) =Y wiug,  §(0) =Y Ge)ug
{=1 {=1

we arrive at the equations
) Ag .
wg + TOr= qe(t)
or
[(—=0*w) = (=0t G ()
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and then we find a solution by setting

to
() = —(—1) M [ (0 Gy (v dr.

In this discussion, we have thus built an inverse

h=Tlg]

to system (7.21) which is precisely its unique solution with i(f9) = 0. This inverse clearly
satisfies the symmetry condition

k
hg—j+1=—h; forj < 3

in case g does. The main fact to be observed is that if g = O(|¢|~!™#) with 0 < u < I, then

h=0(|t]™")

with bounded control in the sense of the norms used in Section 5.3. The remaining of the
proof of existence of a solution to the nonlinear problem (7.20) goes essentially the same as in
Section 5.3. O
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