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Type II ancient compact solutions to
the Yamabe flow

By Panagiota Daskalopoulos at New York, Manuel del Pino at Santiago and
Natasa Sesum at Rutgers

Abstract. We construct new type II ancient compact solutions to the Yamabe flow. Our
solutions are rotationally symmetric and converge, as t ! �1, to a tower of two spheres.
Their curvature operator changes sign. We allow two time-dependent parameters in our ansatz.
We use perturbation theory, via fixed point arguments, based on sharp estimates on ancient
solutions of the approximated linear equation and careful estimation of the error terms which
allow us to make the right choice of parameters. Our technique may be viewed as a parabolic
analogue of gluing two exact solutions to the rescaled equation, that is the spheres, with narrow
cylindrical necks to obtain a new ancient solution to the Yamabe flow. The result generalizes
to the gluing of k spheres for any k � 2, in such a way the configuration of radii of the spheres
glued is driven as t ! �1 by a First order Toda system.

1. Introduction

Let .M; g0/ be a compact manifold without boundary of dimension n� 3. If g D v
4
n�2g0

is a metric conformal to g0, the scalar curvature R of g is given in terms of the scalar curvature
R0 of g0 by

R D v�
nC2
n�2 .�Ncn�g0v CR0v/

where�g0 denotes the Laplace Beltrami operator with respect to g0 and Ncn D 4.n�1/=.n�2/.
In 1989 R. Hamilton introduced the Yamabe flow

(1.1)
àg
àt
D �Rg

as an approach to solve the Yamabe problem on manifolds of positive conformal Yamabe
invariant. It is the negative L2-gradient flow of the total scalar curvature, restricted to a given
conformal class. The flow may be interpreted as deforming a Riemannian metric to a conformal
metric of constant scalar curvature, when this flow converges.
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2 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Hamilton [8] showed the existence of the normalized Yamabe flow (which is the re-
parametrization of (1.1) to keep the volume fixed) for all time; moreover, in the case when the
scalar curvature of the initial metric is negative, he showed the exponential convergence of the
flow to a metric of constant scalar curvature.

Since then, there has been a number of works on the convergence of the Yamabe flow on
a compact manifold to a metric of constant scalar curvature. Chow [3] showed the convergence
of the flow, under the conditions that the initial metric is locally conformally flat and of positive
Ricci curvature. The convergence of the flow for any locally conformally flat initially metric
was shown by Ye [20].

More recently, Schwetlick and Struwe [19] obtained the convergence of the Yamabe flow
on a general compact manifold under a suitable Kazdan–Warner type of condition that rules
out the formation of bubbles and that is verified (via the Positive Mass Theorem) in dimensions
3 � n � 5. The convergence result, in its full generality, was established by Brendle [1, 2] (up
to a technical assumption, in dimensions n � 6, on the rate of vanishing of Weyl tensor at
the points at which it vanishes): starting with any smooth metric on a compact manifold, the
normalized Yamabe flow converges to a metric of constant scalar curvature.

In the special case where the background manifold M0 is the sphere Sn and g0 is the
standard spherical metric gSn , the Yamabe flow evolving a metric g D v

4
n�2 . � ; t /gSn takes

(after rescaling in time by a constant) the form of the fast diffusion equation

(1.2) .v
nC2
n�2 /t D �Snv � cnv; cn D

n.n � 2/

4
:

Starting with any smooth metric g0 on Sn, it follows by the results in [3], [20] and [6] that
the solution of (1.2) with initial data g0 will become singular at some finite time t < T and
v becomes spherical at time T , which means that after a normalization, the normalized flow
converges to the spherical metric. In addition, v becomes extinct at T .

A metric g D v
4
n�2gSn may also be expressed as a metric on Rn via stereographic

projection. It follows that if g D Nv
4
n�2 . � ; t /gRn (where gRn denotes the standard metric on Rn)

evolves by the Yamabe flow (1.1), then Nv satisfies (after a rescaling in time) the fast diffusion
equation on Rn

(1.3) . Nvp/t D � Nv; p WD
nC 2

n � 2
:

Observe that if g D Nv
4
n�2 . � ; t /gRn represents a smooth solution when lifted on Sn, then Nv. � ; t /

satisfies the growth condition

Nv.y; t/ D O.jyj�.n�2//; as jyj ! 1:

Definition 1.1. The solution g D v. � ; t /
4
n�2g0 to (1.1) is called ancient if it exists for

all time t 2 .�1; T /, where T <1. We will say that the ancient solution g is of type I if it
satisfies

lim sup
t!�1

�
jt jmax

M0
jRmj. � ; t /

�
<1

(where Rm is the Riemannian curvature of metric g D v. � ; t /
4
n�2g0 and can be expressed in

terms of v and its first and second derivatives). An ancient solution which is not of type I will
be called of type II.
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Explicit examples of ancient solutions to the Yamabe flow on Sn are as follows.

Contracting spheres. They are special solutions v of (1.2) which depend only on time t
and satisfy the ODE

dv
nC2
n�2

dt
D �cnv:

They are given by

(1.4) vS .p; t/ D

�
4

nC 2
cn.T � t /

�n�2
4

and represent a sequence of round spheres shrinking to a point at time t D T . They are shrink-
ing solitons and type I ancient solutions.

King solutions. They were discovered by J. R. King [12]. They can be expressed on Rn

in closed from, namely g D NvK. � ; t /
4
n�2gRn , where NvK is the radial function

(1.5) NvK.r; t/ D

�
A.t/

1C 2B.t/r2 C r4

�n�2
4

and the coefficients A.t/ and B.t/ satisfy a certain system of ODEs. The King solutions are not
solitons and may be visualized, as t ! �1, as two Barenblatt self-similar solutions “glued”
together to form a compact solution to the Yamabe flow. They are type I ancient solutions.

Let us make the analogy with the Ricci flow on S2. The two explicit compact ancient
solutions to the two-dimensional Ricci flow are the contracting spheres and the King–Rosenau
solutions [12,13,17]. The latter ones are the analogues of the King solution (1.5) to the Yamabe
flow. The difference is that the King–Rosenau solutions are type II ancient solutions to the Ricci
flow while the King solution above is of type I.

It has been showed by Daskalopoulos, Hamilton and Sesum [4] that the spheres and the
King–Rosenau solutions are the only compact ancient solutions to the two-dimensional Ricci
flow. The natural question to raise is whether the analogous statement holds true for the Yamabe
flow, that is, whether the contracting spheres and the King solution are the only compact ancient
solutions to the Yamabe flow. This occurs not to be the case as the following discussion shows.

In this article we will construct ancient radially symmetric solutions of the Yamabe flow
(1.2) on Sn other than the contracting spheres (1.4) and the King solutions (1.5). Our new
solutions, as t ! �1, may be visualized as two spheres joint by a short neck. Their curvature
operator changes sign and they are type II ancient solutions.

Before we present the ansatz of our construction we will perform a change of variables
switching to cylindrical coordinates. Let g D Nv

4
n�2 . � ; t /gRn be a radially symmetric solution

of (1.3) which becomes extinct at time T , namely Nv D Nv.r; t/ is a radial function on Rn that
vanishes at T . One may introduce the cylindrical change of variables

u.x; �/ D .T � t /�
1
p�1 r

2
p�1 Nv.r; t/; r D ex; t D T .1 � e�� /:
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4 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

In this language equation (1.3) becomes

(1.6) .up/� D uxx C ˛u
p
� ˇu; ˇ D

.n � 2/2

4
; ˛ D

p

p � 1
D
nC 2

4
:

From now on we will denote the time � by t . By suitable scaling we can make the two constants
˛ and ˇ in (1.6) equal to 1, so that from now on we will consider the equation

(1.7) .up/t D uxx C u
p
� u:

The steady states of equation (1.7), namely the solutions w of the equation

(1.8) wxx C w
p
� w D 0; w.˙1/ D 0

are given in closed form

(1.9) w.x/ D

�
kn�e

x

1C �2e2x

�n�2
2

D .2knsech.x C log�//
n�2
2

with

 D
1p
ˇ
D

2

n � 2
and kn D

�
4n

n � 2

� 1
2

:

It is known that w.x/ is the only even, positive solution of (1.8), given in cylindrical coor-
dinates, after stereographic projection, geometrically representing the conformal metric for
a sphere. Observe that

(1.10) w.x/ D O.e�jxj/; as jxj ! 1:

We will construct new evolving ancient compact metrics which look, for t close to �1,
like two spheres glued by a narrow neck. We choose our ansatz for an ancient solution u.x; t/
of (1.7) to be of the form

(1.11) u.x; t/ D .1C �.t//z.x; t/C  .x; t/

with

(1.12) z.x; t/ D w.x C �.t//C w.x � �.t//

for suitable parameter functions �.t/; �.t/. The perturbation function  .x; t/ will converge to
zero, as t ! �1, in a suitable norm that will be defined below. More precisely,

�.t/ D �0.t/C h.t/

for a suitable parameter function h.t/. Both parameter functions h.t/ and �.t/ will decay in jt j,
as t ! �1. Let

�0.t/ WD
1

2
log.2bjt j/

be a solution to
P� C be�2� D 0; with b WD

R1
0 wpe�x dx

p
R

Rw
02wp�1 dx

;

which is the homogeneous part of the nonhomogeneous equation (5.8). As we will explain
below, equation (5.8) is derived as a consequence of adjusting parameters h.t/ and �.t/ so that
our solution  satisfies the orthogonality conditions (3.5) and (3.6).
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The main result in this article states as follows.

Theorem 1.1. There exists a number t0 and a solution u.x; t/ to (1.7) defined on
R � .�1; t0�, of the form (1.11)–(1.12), with � WD 1

2
log.2bjt j/C h.t/, such that the func-

tions  .x; t/, �.t/ and h.t/ tend to zero in appropriate norms as t ! �1. Moreover, u defines
a radially symmetric ancient solution to the Yamabe flow (1.1) on Sn which is of type II (in the
sense of Definition 1.1) and its Ricci curvature changes its sign.

Theorem 1.1 shows that the classification of ancient solutions to the compact Yamabe
flow on Sn poses a rather difficult, even maybe impossible task. On the other hand, it gives
a new way of constructing ancient solutions. It shows how one may glue two ancient solutions
of a parabolic equation, in our case of equation (1.7), to construct a new ancient solution to the
same equation. This parabolic gluing becomes more and more apparent as t ! �1, since as
t !C1 it is known that our conformal factor approaches the one of the standard sphere.

Our construction can be generalized to give ancient solutions which, as t ! �1, may
be visualized as a tower of n spheres joined by short necks. We refer to them as moving towers
of bubbles. In terms of equation (1.7), for a given k � 2 we look for a solution of (1.7) of the
form

(1.13) u.x; t/ D

kX
jD1

.1C �j .t//w.x � �j .t//C  .x; t/

where the functions �j are ordered and symmetrically arranged,

(1.14) �1.t/ < �2.t/ < � � � < �k.t/; �j .t/ D ��k�jC1.t/; j D 0; : : : ; k:

We have the following result.

Theorem 1.2. Given k � 2, there exists a number t0 and a solution u.x; t/ to (1.7)
defined on R � .�1; t0�, of the form (1.13)–(1.14), with

(1.15) �j .t/ D �0j .t/C hj .t/; �0j .t/ D

�
j �

k C 1

2

�
log.bjt j/C j

for certain explicit constants j , where the functions  .x; t/, �j .t/ and hj .t/ tend to zero in
appropriate norms as t ! �1.

The functions �0j in the above statement solve the first order Toda system

(1.16) b�1 P�j .t/C e
�.�jC1��j / � e�.�j��j�1/ D 0; j D 1; : : : ; k; t 2 .�1;�t0�;

with the conventions
�0 � �1; �kC1 � C1:

We will analyze this system in the last section.

Gluing techniques relying on linearization and perturbation theory have been used in
many elliptic settings. We refer to the works of Kapouleas [9–11] on the gluing of two constant
mean curvature surfaces to produce another constant mean curvature surface, and to the works
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6 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

on the works [14], [15] and [18] on the gluing of manifolds of constant scalar curvature to
produce another manifold of constant scalar curvature. Gluing techniques have been used to
construct new solutions to elliptic semilinear equations in [5] and [7]. Embedded self similar
solutions of the mean curvature flow have been constructed in [16] by using gluing techniques.
We use such techniques here in the parabolic setting as well. We expect that our way of con-
structing new ancient solutions to the Yamabe flow could be adopted to other geometric flows
as well.

In the rest of the paper we will carry out in detail the proof of Theorem 1.1 and indicate
in the last section the changes needed for the proof of the more general statement Theorem 1.2.

We will next indicate the main steps in proving Theorem 1.1.
(1) We first define the Banach space, which our ancient solution u to (1.7) belongs to and

its associated norm. We also specify the spaces for our parameter functions �.t/ and h.t/ and
their associated norms.

(2) Using the ansatz (1.11)–(1.12) for our solution u, we show that the perturbation
term  is a solution to the equation

(1.17) pzp�1àt D  xx �  C pzp�1 C pzp�1E. /

where E. / denotes our error term and z is given by (1.12). It is well known that w and w0 are
the eigenvectors of the approximating linear operator

L0 WD �
1

pwp�1
. xx �  C pw

p�1 /

corresponding to the eigenvalues ��1 < 0; �0 D 0 of this operator, respectively. It is also well
known that all the other eigenvalues of L0 are positive.

(3) In the first part of the article we study the linear problem

(1.18) pzp�1àt D  xx �  C pzp�1 C pzp�1f:

Assuming certain orthogonality conditions on f with respect to the eigenvectors w and w0

of L0, we establish the existence of an ancient solution to the linear problem (1.18), satisfying
the appropriate energy and L2 estimates. The latter means that we can bound the weighted
L2 norm of a solution in terms of the weighted L2 norm of the right-hand side f . We also
establish certain weightedW 2;� estimates for solutions to (1.18). It follows that the solution  
belongs to the Banach space which is the intersection of these L2 and weighted W 2;� spaces.

We denote by T the linear operator between our defined Banach spaces, so that T .f / is
the solution to the linear problem (1.18) satisfying the appropriate orthogonality conditions.

(4) In the second part of the article we study the nonlinear equation (1.17). We apply
our linear theory to the nonlinear equation to establish the existence of a solution  to (1.17),
by solving the equation T .E. // D  . We first show that we can achieve this, assuming that
E. / satisfies our orthogonality assumptions with respect to w and w0. The main tool in this
proof is the fixed point Theorem and subtle estimates of the error terms in our norms.

(5) In the final part of our proof we show how to adjust the parameters �.t/ and h.t/ so
that the error term E. / in (1.17) indeed satisfies our orthogonality conditions. We see that
this is equivalent to solving a certain nonlinear system of ODEs for �.t/, h.t/. We establish the
existence of solutions to this system by the fixed point Theorem and subtle estimates.
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 7

2. The ansatz of the problem

Following the discussion in the Introduction we look for an ancient solution u to equa-
tion (1.7). Since the long time existence for the Yamabe flow is well understood, it will be
sufficient to construct a solution u which is defined on R � .�1; t0� with t0 sufficiently close
to �1. Hence, from now on we will restrict our attention to equation

(2.1) .up/t D uxx � uC u
p; .x; t/ 2 R � .�1; t0�;

with exponent p D nC2
n�2

> 1:

2.1. The ansatz of our construction. We seek for a solution of (1.7) which is of the
form

u.x; t/ D .1C �.t//z.x; t/C  .x; t/

for a suitable parameter function �.t/, where

z.x; t/ D

2X
jD1

w.x � �j .t// D

2X
jD1

wj

and  .x; t/! 0 as t ! �1 in a certain sense. We recall that w.x/ is given by (1.9) and
solves the equation (1.8). The functions �j .t/ are given by

�1.t/ D ��.t/ and �2.t/ D �.t/

where

(2.2) �.t/ D �0.t/C h.t/; �0.t/ WD
1

2
log.2bjt j/;

for a suitable parameter function h.t/ and a suitable constant b > 0. Both parameter functions
h.t/ and �.t/ will decay in jt j, as jt j ! 1 and will be chosen in Section 5.

Set

(2.3) w1 WD w.x � �.t//; w2 WD w.x C �.t//

and

(2.4) Nz.x; t/ D w0.x � �.t// � w0.x C �.t// D àxw1 � àxw2:

Also set
Qz.x; t/ WD .1C �.t//z.x; t/:

We notice that z. � ; t / is an even function of x and we impose the condition that  . � ; t / is an
even function of x as well. Equation (1.7) then becomes

àt . Qz C  /p D .à2x �  C à
2
x Qz � Qz/C . Qz C  /

p:

Using that à2xwj � wj D �w
p
j , we obtain the equation

àt . Qz C  /p D

 
à2x �  � .1C �.t//

2X
jD1

w
p
j

!
C . Qz C  /p
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8 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

which can be re-written as

(2.5) pzp�1àt D àxx �  C pzp�1 � zp�1C. /C zp�1E. /

where C. / is a correction term that will be chosen in (3.10). The error term E. / is given by

(2.6) E. / WD z1�pM C C. /C z1�p
�
.1 � àt /N. / � p àtzp�1

�„ ƒ‚ …
DWQ. /

where

(2.7) M WD Qzp �
�
.1C �.t//Œwp.x C �.t//C wp.x � �.t//�

�
� àt Qzp

is the error term that is independent of  , and

(2.8) N. / WD . Qz C  /p � Qzp � p Qzp�1 C p . Qzp�1 � zp�1/:

Our goal is to construct an ancient solution  of the above equation (2.5) with the aid of
the linear theory for equation (2.5) that will be developed in Section 3. The solution  will be
an even function in x and it will satisfy the orthogonality conditions

(2.9)
Z 1
�1

 .x � �.t/; t/w0.x/wp�1 dx D 0 for a.e. t < t0

and

(2.10)
Z 1
�1

 .x � �.t/; t/w.x/wp�1 dx D 0 for a.e. t < t0:

The correction term C. / in equation (2.5) will be chosen in Section 3, in such a way so that
the orthogonality conditions (2.9)–(2.10) for  are being preserved by equation (2.5) if the
forcing term E. / satisfies the same conditions.

However, because in general the error term E. / may not satisfy the orthogonality con-
ditions (2.9)–(2.10), we will first consider the auxiliary equation

pzp�1àt D àxx �  C pzp�1 � zp�1C. /(2.11)

C zp�1ŒE. / � .c1.t/z C c2.t/ Nz/�

where c1.t/ and c2.t/ are chosen so that

(2.12) NE. / WD E. / � .c1.t/z C c2.t/ Nz/

satisfies the orthogonality conditions (2.9)–(2.10).
In Section 5 we will choose the parameter functions h and � so that c1.t/ � 0 and

c2.t/ � 0. The parameter functions h and � will decay in t , as t ! �1, in certain norms
that will be defined in Definition 2.7.

2.2. Norms. We will next introduce all the norms that will be used throughout the
article. We will also fix the values of the various parameters. For a number � < t0 � 1 we
set ƒ� D R � Œ�; � C 1�.

We first define the appropriate L2, H 1 and H 2 norms.
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 9

Definition 2.1 (Local in time weighted L2, H 1 and H 2 norms). Define

k . � ; �/kL2 D

�Z 1
�1

j . � ; �/j2zp�1 dx

� 1
2

;

k kL2.ƒ� / D

�“
ƒ�

j j2zp�1 dx dt

� 1
2

;

k kH1.ƒ� /
D k kL2.ƒ� / C kz

�
p�1
2  xkL2.ƒ� /;

k kH2.ƒ� /
D k tkL2.ƒ� / C kz

�.p�1/. xx �  /kL2.ƒ� /

C kz�
p�1
2  xxkL2.ƒ� / C k kH1.ƒ� /

:

Definition 2.2 (Global in time weighted L2, H 1 and H 2 norms). For a given number
� 2 Œ0; 1/ we define

k k�
L2t0
D sup
��t0�1

j� j�k kL2.ƒ� /;

k k�
H1
t0

D sup
��t0�1

j� j�k kH1.ƒ� /
;

k k�
H2
t0

D sup
��t0�1

j� j�k kH2.ƒ� /
:

Also, for any s < t0 � 1, we define

k k�
L2s;t0

D sup
s���t0�1

j� j�k kL2.ƒ� /;

k k�
H1
s;t0

D sup
s���t0�1

j� j�k kH1.ƒ� /
;

k k�
H2
s;t0

D sup
s���t0�1

j� j�k kH2.ƒ� /
:

When � D 0, we will omit the superscript �.

Set
ˇ WD

2

n � 2
D
p � 1

2
:

For a given number � � 2, we next give the definition of the weighted W 2;� norm and � will
be chosen later in the text. To this end, we define the weight function ˛� .x; t/ by

(2.13) ˛� .x; t/ D

´
znˇ�� .x; t/ if jxj > �.t/;

z.2ˇC�/� .x; t/ if jxj � �.t/;

where � is a small positive number which will be chosen sufficiently close to zero.

Remark 2.1. (a) We will see in the sequel that the weight function in the outer region
jxj > �.t/ is such that the solution � of (1.18), or equivalently the solution u of the nonlin-
ear problem, corresponds to a smooth solution, when lifted up to the sphere. However, it is
necessary to change the weight function ˛� in the inner region jxj � �.t/ to incorporate the
singularity, as t ! �1, of the solution u of our nonlinear problem in that region.

(b) In the transition region x D ˙�.t/CO.1/ the two weights are equivalent.
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10 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Definition 2.3 (Local in time weighted W 2;� norms). For � � 2 define

k k�;ƒ� D

�“
ƒ�

j j�˛� dx dt

� 1
�

and
k k2;�;ƒ� D k tk�;ƒ� C k k�;ƒ� C k xk�;ƒ� C k xxk�;ƒ� :

Definition 2.4 (Global in time weighted W 2;� norms). For a fixed number � 2 Œ0; 1/,
� � 2 and ƒ� as above, we define

k k��;t0 D sup
��t0�1

j� j�k k�;ƒ�

and
k k�2;�;t0 D sup

��t0�1

j� j�k k2;�;ƒ� :

We will next define a weighted L1 norm and our global norm.

Definition 2.5 (Weighted L1 norm). For a given � 2 Œ0; 1�, we define the norm

k k�L1t0
D sup
t�t0

j� j�k . � ; �/kL1.R/

and the weighted L1 norm as

k k�1;t0 D kz
�1 �¹jxj>�.t/ºk

�
L1t0
C k �¹jxj��.t/ºk

�
L1t0

:

We finally define the global norm for the perturbation term  .

Definition 2.6 (Global norm). For � 2 Œ0; 1/ and � � 2 we define the norms

k k��;�;t0 D k k
�
L2t0
C k k��;t0

and
k k��;2;�;t0 D k k

�
H2
t0

C k k�2;�;t0 C k k
�
1;t0

:

Also, for any � < t0, we denote by

k k�;�;ƒ� D k kL2.ƒ� / C k k�;ƒ� :

We will next define the norms for the parameters �.t/ and h.t/. They are more or less
determined by the choice of the global norm for  .

Definition 2.7 (Weighted in time norms). For � 2 Œ0; 1/ and � � 2, and for any func-
tions � and h defined on .�1; t0�, we define the norms

k�k
�
�;t0
D sup
��t0�1

j� j�
�Z �C1

�

j�.t/j� dt

� 1
�

;

k�k
�
1;t0
D sup
��t0

.j� j�j�.�/j/;

k�k
�
1;�;t0

D k�k
�
1;t0
C kP�k

�
�;t0
;

khk
�;1C�
1;�;t0

D khk
�
1;t0
C k Phk

1C�
�;t0

:
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 11

2.3. Outline of our construction. We will conclude this section by outlining the con-
struction of the solution u.

Definition 2.8. We defineX to be the Banach space of all functions  on R � .�1; t0�
with k k�;2;�;� <1 which also satisfy the orthogonality conditions (2.9)–(2.10).

We denote by T the linear operator which assigns to any given f with kf k��;�;t0 <1
the solution  WD T .f / of the linear auxiliary equation

pzp�1àt D àxx �  C pzp�1 � zp�1C. /C zp�1f;

with the orthogonality conditions (2.9)–(2.10) being satisfied by f and  and with C. / given
by (3.10). The construction of such a function  will be given in Section 3.

Going back to the nonlinear problem, a function  is a solution of (2.11) if and only if
 2 X solves the fixed point problem

(2.14)  D A. /

where
A. / WD T . NE. //

and NE. / is as in (2.12).

Outline. Given any parameter functions .h; �/ with khk�;1C�1;�;t0
<1 and k�k��;t0 <1,

we will establish, in Section 4, the existence of a solution  WD ‰.h; �/ of the fixed point
problem (2.14). In the last Section 5 we will choose the parameter functions h and � so that
c1.t/ � 0 and c2.t/ � 0. We will conclude that the solution  of (2.14) which is equivalent
to (2.11) is actually a solution to (2.5). Hence, u WD .1C �/z C  will be the desired ancient
solution to (1.7).

2.4. Notation. We summarize now the notation of parameters, functions and norms
used throughout the article.

Notation 2.1. The choice of the parameters p; ˇ; �; �; �; b and � :

(i) For given dimension n � 3, we recall that

p WD
nC 2

n � 2
and ˇ WD

2

n � 2
D
p � 1

2
:

(ii) In Theorem 1.1, � D nC 2. We choose � so that 1
2
< � < min¹�0; 1º, where �0 D �0.n/

is determined by the estimate of Lemma 4.1. We choose 0 < � < min¹2� � 1; º, where
 D .n/ 2 .0; 1/ is determined by Lemma 5.1. The constant b D b.n/ > 0 is defined
in (5.3).

(iii) The constant � in (2.13) is a small positive constant as determined in the proof of Propo-
sition 3.3. The above constants are all universal depending only on the dimension n.

Notation 2.2. The choice of functions:

(i) We denote by w.x/ the solution to (1.8) given by (1.9).

(ii) The function �0.t/ and the function �.t/ (for a parameter function h.t/) are given in (7.2).
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12 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

(iii) The functions z.x; t/ and w1.x; t/; w2.x; t/ are defined in (1.12) and (2.3) respectively.

(iv) Throughout the article, u.x; t/ will denote an ancient solution of the nonlinear equation
(1.7) of the form (1.11) defined on Rn � .�1; t0�, where t0 is a constant which will be
chosen sufficiently close to �1. �.t/ is a parameter function defined on .�1; t0�. The
perturbation function  .x; t/ satisfies equation (2.5) where E. / is a nonlinear error
term give by (2.6)-(2.8).

(v) Only in Section 3,  .x; t/ will denote a solution to equation (3.9), for a given f , where
the correction term C. / is given by (3.10). Also,  s.x; t/ will denote a solution of
equation (3.11).

Notation 2.3. The norms:

(i) For a given � < t0, the norm k . � ; �/kL2 is given in Definition 2.1.

(ii) For any � < t0 � 1 we setƒ� WD R � Œ�; � C 1�. For a given function  .x; t/ defined on
ƒ� , the norms k kL2.ƒ� /, k kH1.ƒ� /

and k kH1.ƒ� /
are given in Definition 2.1.

(iii) The norms k k�
L2t0

, k k�
H1
t0

and k k�
H2
t0

are given in Definition 2.2.

(iv) The norms k k�;ƒ� , k k2;�;ƒ� are given in Definition 2.3, while the norms k k��;t0 ,
k k�2;�;t0 are given in Definition 2.4.

(v) The weighted L1 norm k k�
L1t0

is given in Definition 2.5.

(vi) The global norms kf k�
�;2;�;t0

, kwk��;�;t0 are given in Definition 2.6.

(vii) For given functions h.t/ and �.t/, the norms khk�;1C�1;�;t0
and k�k��;t0 are given in Defini-

tion 2.7.

3. The linear equation

Consider the linear equation

(3.1) pzp�1àt D àxx �  C pzp�1 C zp�1g

defined on �1 < t � t0. The coefficient z is given by

(3.2) z.x; t/ D w.x � �.t//C w.x C �.t//

where �.t/ is given by (7.2) for a suitable function h 2 C 1..�1; t0�/ and b > 0. Note that
z. � ; t / is even in x. We will also impose that g. � ; t / is an even function in x and we shall seek
for a solution  . � ; t / which is even in x. We will consider a class of functions g defined for
.x; t/ 2 R � .�1; t0� that decay both in x and t at suitable rates and satisfy certain orthogo-
nality conditions, and will build a solution  that defines a linear operator of g which shares
the same decay rates.

Our goal is to establish the existence of the solution  of (3.1) in appropriate L2 andH 1

spaces, defined in Definition 2.2. We observe that in the region �1 < x < ��.t/ and under
the change of variables Nx WD x C �.t/ the operator in (3.1), namely

L WD
1

zp�1
. xx �  C pz

p�1 /
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 13

can be approximated by the elliptic operator

(3.3) L0� WD
1

wp�1
.� Nx Nx � � C pw

p�1�/;

with �. Nx; t/ WD  .x; t/, since z.x; t/ D w. Nx/C w. Nx � 2�.t// � w. Nx/ in that region. Defin-
ing Ng. Nx; t/ WD g.x; t/, the approximated parabolic equation takes the form

(3.4) pwp�1àt� D à Nx Nx� � � Nx P� � � C pwp�1� C wp�1 Ng:

The region �.t/ < x < C1, under the change of variables Nx WD x � �.t/ is treated similarly.
We wish to construct an ancient solution  of (3.1) such that the weighted L2 norm

of  is controlled by the weighted L2 norm of the right-hand side g. First, let us consider the
eigenvalue problem

L0� C �� D 0; � 2 S;

on the weighted space L2.wp�1dx/. It is standard that this problem has an infinite sequence
of simple eigenvalues

��1 < �0 D 0 < �1 < �2 < � � �

with an associated orthonormal basis of the space L2.wp�1dx/ constituted by eigenfunctions
�j , j D �1; 0; 1; : : : , where ��1 is a suitable multiple of w and �0 of w0. Since we are seeking
for a solution which is controlled by the weighted L2 norm of its right-hand side, we need to
restrict ourselves to a subspace S0 � L2.wp�1dx/ which constitutes of functions g. � ; t / on
R � .�1; t0� that are even in x and that also satisfy the orthogonality conditions

(3.5)
Z 1
�1

g. Nx � �.t/; t/w0. Nx/wp�1 d Nx D 0 for a.e. t < t0

and

(3.6)
Z 1
�1

g. Nx � �.t/; t/w. Nx/wp�1 d Nx D 0 for a.e. t < t0:

Notice that since g is an even function in x, then the orthogonality conditions (3.5) and (3.6)
also imply the symmetric conditions

(3.7)
Z 1
�1

g. Nx C �.t/; t/w0. Nx/wp�1 d Nx D 0 for a.e. t < t0

and

(3.8)
Z 1
�1

g. Nx C �.t/; t/w. Nx/wp�1 d Nx D 0 for a.e. t < t0:

This easily follows by changing the variables of integration and using thatw is an even function
of Nx.

We wish to establish the existence of an ancient solution of (3.1) on R � .�1; t0� which
satisfies the estimate

sup
��t0

j� j�k .�/kL2 � Ckgk
�
L2t0
:

Such a solution can be easily constructed for the approximated equation (3.4) if Ng 2 S0. Indeed,
one simply looks for a solution in the form

�. Nx; t/ D

1X
jD1

�j .t/�j . Nx/
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14 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

where �j , j � 1, are the eigenfunctions, corresponding to the positive eigenvalues �j , j � 1
mentioned above. However, this cannot be done for equation (3.1) as its coefficients depend on
time and as a result the equation does not preserve the orthogonality conditions (3.5) and (3.6).
In order to achieve our goal we need to consider the equation

(3.9) pzp�1àt D àxx �  C pzp�1 C zp�1Œf � C. /�

where g WD f � C. / where C. / has the form

(3.10) C. / D d1.t/z.x; t/C d2.t/ Nz.x; t/:

Recall that z.x; t/ WD w.x � �.t//C w.x C �.t// and that Nz is defined by (2.4).
We will construct an ancient solution of (3.9) on R � .�1; t0�, by considering first the

solution  s of the initial value problem

(3.11)

´
pzp�1àt s D  sxx � 

s
Cpzp�1 sC zp�1.f �C. s; t // on R�Œs; t0�;

 s. � ; s/ D 0 on R;

and then pass to the limit as s ! �1. The existence of  s will be shown in Lemma 3.1.
The coefficients d1.t/; d2.t/ in (3.9) are defined so that  s. � ; t / 2 S0 for all t 2 Œs; t0�.

We will next determine the coefficients d1 and d2. To this end, it is more convenient to work
with the function

�s.x; t/ WD  s.x � �.t/; t/:

To simplify notation we omit for the moment the superscript s and set � D �s and  D  s .
A direct computation shows that if  is a solution to (3.9), then the function � satisfies the
equation

(3.12) pàt� D L0� CE.�/C Nf � d1 Nw � d2 Qw:

Here we have used the following notation:

Nw.x; t/ WD z.x � �.t/; t/ D w.x/C w.x � 2�.t//

and
Qw WD Nz.x � �.t// D w0.x/ � w0.x � 2�.t//

and Nf .x; t/ WD f .x � �.t/; t/, while E.�/ denotes the error term

E.�/ WD �P�.t/�x C

�
1

Nwp�1
�

1

wp�1

�
.�xx � �/:

We recall that L0 is given by (3.3). Also recall that �i , i D �1; 0, denote the eigenfunctions
(which are the multiples of w, w0) of operator L0, corresponding to the eigenvalues ��1 < 0
and �0 D 0, respectively. We have assumed that Nf is orthogonal to �i , i D �1; 0, namelyZ 1

�1

Nf .x/�i .x/w
p�1 dx D 0:

Since �. � ; s/ D 0 (remember that � D �s for the moment), it follows from (3.12) that the solu-
tion � will remain orthogonal to the eigenfunctions �i , i D �1; 0, if and only if the coefficients
d1.t/ and d2.t/ satisfy the system of equations

(3.13) d1.t/a
i
1.t/C d2.t/a

i
2.t/ D E

i ; i D �1; 0;
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 15

where

ai1.t/ D

Z 1
�1

Nw.x; t/�i .x/w
p�1 dx;

ai2.t/ D

Z 1
�1

Qw.x; t/�i .x/w
p�1 dx;

Ei D

Z 1
�1

E.�/.x; t/�i .x/w
p�1 dx; i D �1; 0:

Using that Nw.x; t/ WD w.x/C w.x � 2�.t// and Qw.x; t/ WD w0.x/ � w0.x � 2�.t// together
with the orthogonalityZ 1

�1

w.x/�0.x/w
p�1 dx D

Z 1
�1

w0.x/��1.x/w
p�1 dx D 0;

we conclude that

ai1.t/ D e
i
1 C

Z 1
�1

w.x � 2�.t//�i .x/w
p�1 dx;

ai2.t/ D e
i
2 �

Z 1
�1

w0.x � 2�.t//�i .x/w
p�1 dx

where

e�11 D c�1

Z 1
�1

wpC1 dx > 0; e02 D c0

Z 1
�1

w0.x/2wp�1 dx > 0; e01 D e
�1
2 D 0:

It is easy to see that Z 1
�1

w.x � 2�.t//�i .x/w
p�1 dx D O.jt j�1/;Z 1

�1

w0.x � 2�.t//�i .x/w
p�1 dx D O.jt j�1/;

as t ! �1. Hence,

a�11 .t/ D e�11 CO.jt j
�1/;

a02.t/ D e
0
2 CO.jt j

�1/;

a01 D O.jt j
�1/;

a�12 D O.jt j
�1/:

It follows that the determinant D of the coefficients of system (3.13) satisfies

D WD a�11 a02 � a
0
1a
�1
2 D e

�1
1 e02 CO.jt j

�1/ > 0; as t ! �1:

Solving system (3.13) gives

d1.t/ D
a02.t/E

�1.t/ � a�12 .t/E0.t/

D
D
e20E

�1.t/

D
CO.jt j�1/

and

d2.t/ D
a�11 .t/E�1.t/ � a01.t/E

0.t/

D
D
e�11 E0.t/

D
CO.jt j�1/:
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16 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Claim 3.1. We have�Z �C1

�

.d21 C d
2
2 / dt

� 1
2

(3.14)

� C
1p
j� j

´�“
ƒ�

�
�xx � �

Nwp�1

�2
Nwp�1 dx dt

� 1
2

C k�kL1.ƒ� /

µ
:

Proof. It is easy to see that

(3.15)
�Z �C1

�

.d21 C d
2
2 / dt

� 1
2

� C

�Z �C1

�

..E�1/2 C .E0/2/ dt

� 1
2

CO.j� j�1/

so it is enough to estimate the integrals
R �C1
� .Ei /2 dt , for i D ¹�1; 0º and � � t0. We will

only discuss the computation for E0, as the computation for E�1 is identical. We have

E0 D �P�.t/

Z 1
�1

�xw
0.x/wp�1 dx C

Z 1
�1

c.x; t/.�xx � �/w
0.x/ dx D E01 CE

0
2

with

c.x; t/ D
wp�1 � Nwp�1

Nwp�1
D

�
w

Nw

�p�1
� 1:

Clearly, we have�Z �C1

�

jE01 j
2 dt

� 1
2

� C

�Z �C1

�

j P�j2
�Z 1
�1

�xw
0.x/wp�1 dx

�2
dt

� 1
2

(3.16)

D C

�Z �C1

�

j P�j2
�Z 1
�1

�.w0.x/wp�1/x dx

�2
dt

� 1
2

� Ck�kL1.ƒ� /

�Z �C1

�

j P�j2 dt

� 1
2

�
C

j� j
k�kL1.ƒ� /:

For the second term, we have

(3.17)
Z 1
�1

c.x; t/.�xx � �/w
0.x/ dx � I.t/

1
2

�Z 1
�1

.�xx � �/
2

Nwp�1
dx

� 1
2

where

I.t/ WD

Z 1
�1

c2.x; t/jw0.x/j2 Nwp�1 dx:

Recall that � given by (7.2) satisfies �.t/ D 1
2

log jt j CO.1/, as t ! �1. On x < �.t/ we
have w � Nw � 2w, hence

1

2
�
w

Nw
� 1:

It follows that

c2.x; t/ D

�
1 �

�
w

Nw

�p�1�2
� C.p/

�
1 �

w

Nw

�2
:
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 17

We conclude that

I1 WD

Z �.t/

�1

c2.x; t/jw0.x/j2 Nwp�1 dx

� C

Z �.t/

�1

�
w.x � 2�/

Nw.x; t/

�2
jw0.x/j2 Nwp�1 dx

� C

Z �.t/

�1

w.x � 2�/2 Nwp�1 dx

� C jt j�2
�Z 0

�1

e2xe.p�1/x dx C

Z �.t/

0

e2xe�.p�1/x dx

�
� C jt j�2

�
C1 C C2jt j

3�p
2

�
� C max

®
jt j�2; jt j�

1Cp
2

¯
:

On x > �.t/, using the bound c2 � 1 and jw0.x/j2 � C jt j�1, we have

I2 WD

Z 1
�.t/

c2.x; t/jw0.x/j2 Nwp�1 dx

� C

Z 1
�.t/

jw0.x/j2 Nwp�1 dx

� C jt j�1
Z 1
�.t/

Nwp�1 dx

� C jt j�1:

Since p > 1, combining the above gives us the estimate

I.t/ D I1 C I2 � C jt j
�1:

Using the last estimate in (3.17) yields the bound

(3.18) jE02 .t/j � C
1p
jt j

�Z 1
�1

.�xx � �/
2

Nwp�1
dx

� 1
2

:

Combining (3.16) and (3.18) gives us the bound�Z �C1

�

jE0.t/j2 dt

� 1
2

� C
1p
j� j

´�“
ƒ�

.
�xx � �

Nwp�1
/2 Nwp�1 dx dt

� 1
2

C k�kL1.ƒ� /

µ
and the same bound holds for E�1.t/. By (3.15) it follows that (3.14) holds.

Using (3.14) we can easily estimate the L2.ƒ� / norm of the term

C. / WD d1.t/z C d2.t/ Nz

by the H 2.ƒ� / norm of function  , as

(3.19) kC. /kL2.ƒ� / � C
1p
j� j
.k kH2.ƒ� /

C k kL1.ƒ� //:

The main result in this section is the following proposition.
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18 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Proposition 3.1. For given numbers p > 1, b > 0 and 0 � � � 1 and a given function
� WD 1

2
log.2bjt j/C h on .�1; t0� with khk�;1C�1;�;t0

� 1, consider equation (3.9) with coeffi-
cient z given by (3.2). Then, for any � 2 Œ0; 1�, there is a number t0 < 0, depending on �; �; b
and p and such that for any even function f on R � .�1; t0� with

kf k�
L2t0

<1

satisfying the orthogonality conditions (3.5)–(3.6) there exists an ancient solution  of (3.9)
on �1 � t � t0 also satisfying the orthogonality conditions (3.5)–(3.6), and for which

(3.20) sup
��t0

j� j�k .�/kL2 C k k
�
H2
t0

� Ckf k�
L2t0
:

The constant C depends only on b; �, � and p.

As we already discussed, the ancient solution  will be constructed as the limit of the
solutions  s to (3.11), as s ! �1. The existence of the solutions  s is given by the next
lemma.

Lemma 3.1. Under the assumptions of Proposition 3.1, there exists a number t0 < 0
depending on b; �; � and p and a solution  s of the initial value problem (3.11) also satisfying
the orthogonality conditions (3.5) and (3.6). In addition,

(3.21) sup
�2Œs;t0�

j� j�k s.�/kL2 C k 
s
k
�

H2
s;t0

� Ckf k�
L2s;t0

where C depends only on b; �; � and p.

Remark 3.1 (Dependence on function �). For the remaining of Section 3, we will
fix b > 0, � 2 .0; 1/ and a function � WD 1

2
log.2bjt j/C h with khk�;1C�1;�;t0

� 1 and we will
only discuss the dependence of the various constants on s and t0, while assuming that may also
depend on b, � and �.

3.1. A priori estimates. We will establish in this subsection a prioriL2 andH 2 energy
estimates for the solutions  s of (3.11) that are independent on s. We begin by proving an
energy estimate (independent of s) for solutions of the initial value problem

(3.22)

´
pzp�1àt s D  sxx �  

s
C pzp�1 s C zp�1g on R � Œs; t0�;

 s. � ; s/ D 0 on R:

Energy estimates for solutions of equation (3.11) will easily follow by Lemma 3.2 and estimate
(3.19).

Lemma 3.2 (Energy H 2 and L1 estimate for equation (3.1)). Let  s.x; t/ be a solu-
tion of (3.22). Then, for any � 2 Œ0; 1/ there exists a uniform in s constant C so that for jt0j
sufficiently large we have

(3.23) sup
�2Œs;t0�

j� j�k kL1.ƒ� / C k k
�
H2
s;t0

� C
�
k k�

L2s;t0
C kgk�

L2s;t0

�
:
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 19

Proof. To simplify the notation, we will denote  s by  . In what follows we will
perform various integration by parts in space without worrying about the boundary terms at
infinity. This can be easily justified by considering approximating solutions  sR of the
Dirichlet problem on expanding cylinders QR WD Œ�R;R� � Œs; t0�, establish the a priori esti-
mates on  sR, independent of both, s and R, and then pass to the limit of  sR as R!1 (our
solution  s in Lemma 3.1 will be constructed that way).

If we multiply equation (3.1) by  and integrate it over R, we obtain,

p

2

d

dt

Z 1
�1

 2zp�1 dx(3.24)

D

Z 1
�1

�
  xx �  

2
C p

�
1C .p � 1/

zt

z

�
 2zp�1 C g zp�1

�
dx:

If we integrate by parts the first term on the right-hand side, use the bound jzt j
z
� C j P�j and

apply Cauchy–Schwarz, we obtain

p

2

d

dt

Z 1
�1

 2. � ; t /zp�1 dx C

Z 1
�1

. 2x C  
2/ dx

� C

�Z 1
�1

. 2 C g2/zp�1 dx C jP�j

Z 1
�1

 2zp�1 dx

�
:

For any number � 2 Œs; t0 � 1�, set �.t/ D t � � so that 0 � �.t/ � 1 on Œ�; � C 1�. Then, for
any t 2 Œ�; � C 1�, we have

d

dt

�
�.t/

Z 1
�1

 2. � ; t /zp�1 dx

�
C �.t/

Z 1
�1

. 2x C  
2/ dx

� C

�Z 1
�1

. 2 C g2/zp�1 dx C jP�j

Z 1
�1

 2zp�1 dx

�
:

Integrating this inequality in time on Œ�; � C 1� while applying the Cauchy–Schwarz inequality
to the last term and using that �.t/ � 1 and�Z �

��1

j P�j2 dt

� 1
2

�
C

j� j
;

we obtain Z 1
�1

 2. � ; � C 1/zp�1dx C

“
ƒ�

�.t/. 2x C  
2/ dx dt(3.25)

� C

�
k k2

L2.ƒ� /
C kgk2

L2.ƒ� /

C
1

j� j
sup

t2Œ�;�C1�

�Z 1
�1

 2zp�1 dx

� 1
2

k kL2.ƒ� /

�
:

If we now multiply (3.1) by t .x; t/, integrate by parts over R, use the bound jzt j
z
� C j P�j

and apply Cauchy–Schwarz to the last term, we obtain

p

2

Z 1
�1

 2t z
p�1 dx C

1

2

d

dt

�Z 1
�1

. 2x C  
2
� pzp�1 2/ dx

�
(3.26)

� C

�Z 1
�1

. 2 C g2/zp�1 dx C jP�j

Z 1
�1

 2zp�1 dx

�
:

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM



20 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Multiplying the last inequality by the cut off function �.t/ introduced above, integrating in time
and using (3.25), we obtain (similarly as above) the bound“

ƒ�

�.t/ 2t z
p�1 dx dt C

Z 1
�1

. 2x C  
2
� pzp�1 2/. � ; � C 1/ dx(3.27)

� C

�
k k2

L2.ƒ� /
C kgk2

L2.ƒ� /

C
1

j� j
sup

t2Œ�;�C1�

�Z 1
�1

 2zp�1 dx

� 1
2

k kL2.ƒ� /

�
:

Furthermore, (3.27), (3.25), the Sobolev embedding theorem in one dimension and the
interpolation inequality yield the L1 estimate

k . � ; � C 1/kL1.R/ � C

�Z 1
�1

. 2x C  
2/. � ; � C 1/ dx

� 1
2

� C

�
k kL2.ƒ� / C kgkL2.ƒ� / C

1

j� j
k kL1.ƒ� /

�
:

We next multiply the last inequality by j� C 1j� , for any � � 0. Since s � � � t0 � 1, by choos-
ing jt0j sufficiently large we obtain

j� C 1j�k kL1.ƒ�C1/ � C
�
k k�

L2s;t0
C kgk�

L2s;t0

�
C
1

2
sup

�2Œs;t0�

j� j�k kL1.ƒ� /:

Since � C 1 � t0 is arbitrary, we obtain

sup
�2Œs;t0�

j� j�k kL1.ƒ� / � C
�
k k�

L2s;t0
C kgk�

L2s;t0

�
:

Since � 2 Œs; t0 � 1� is arbitrary, by choosing jt0j sufficiently large, we conclude

(3.28) sup
�2Œs;t0�

j� j�k kL1.ƒ� / � C
�
k k�

L2s;t0
C kgk�

L2s;t0

�
:

In addition, integrating (3.26) on Œ�; � C 1� and using the previous estimates yields the bound

(3.29) k tk
�

L2s;t0
� C

�
k k�

L2s;t0
C kgk�

L2s;t0

�
:

Finally, from (3.29), (3.28) and equation (3.1) we obtain

kz�.p�1/. xx �  /k
�

L2s;t0
� C

�
k k�

L2s;t0
C kgk�

L2s;t0

�
:

Combining the above estimates gives us the bound (3.23).

We will proceed next to showing the same estimate as above for solutions of (3.11).

Lemma 3.3 (Energy H 2 and L1 estimate for equation (3.11)). Let  s.x; t/ be a solu-
tion to (3.11). Then there exists a t0 < 0 so that for any � 2 Œ0; 1/ we have

(3.30) sup
�2Œs;t0�

j� j�k kL1.ƒ� / C k k
�
H2
s;t0

� C
�
k k�

L2s;t0
C kf k�

L2s;t0

�
:

Proof. If we apply the estimate from Lemma 3.2, with g D f C C. /, we obtain

sup
�2Œs;t0�

j� j�k kL1.ƒ� / C k k
�
H2
s;t0

� C
�
k k�

L2s;t0
C kC. /k�

L2s;t0
C kf k�

L2s;t0

�
:
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 21

On the other hand, it follows from (3.19) that

(3.31) kC. /k�
L2s;t0

�
Cp
jt0j
k k�

H2
s;t0

and the desired estimate follows by choosing t0 so that Cp
jt0j
�
1
2

.

Corollary 3.1 (Estimation of the error term). Under the assumptions of Lemma 3.1,
there exist uniform constants t0 < 0 and C > 0 so that for any � 2 Œ0; 1/, we have

(3.32) kC. /k�
L2s;t0

�
Cp
jt0j

�
k k�

L2s;t0
C kf k�

L2s;t0

�
:

Proof. It readily follows from combining (3.31) and (3.30).

We will next establish (3.21) as an a priori estimate.

Proposition 3.2. There exist uniform constants C <1, t0 < 0, such that if  s.x; t/ is
a solution of (3.11) with s < 3t0

2
, which also satisfies the orthogonality conditions (3.5)–(3.6),

then

(3.33) sup
�2Œs;t0�

j� j�k s. � ; �/kL2 � Ckf kL2s;t0
:

It follows that (3.21) holds.

Proof. We will first establish estimate (3.33). We begin by observing that under the
assumptions of the proposition, it will be sufficient to establish the bound

(3.34) sup
s���t

k s. � ; �/kL2 � C sup
s���t

kf kL2.ƒ� /

for all t such that s � 3t
2
�
3t0
2

, where we recall that ƒ� D R � Œ�; � C 1�. Indeed, if (3.34)
holds, then for any t satisfying s < 3t

2
�
3t0
2

, we have

jt j�k s. � ; t /kL2 � C jt j
� sup
s���t

kf kL2.ƒ� /

� sup
s���t

j� j�kf kL2.ƒ� /

� sup
s���t0

j� j�kf kL2.ƒ� /

D Ckf kL2s;t0

which readily shows that (3.33) holds.
To establish the validity of (3.34) we argue by contradiction. If (3.34) does not hold, then

there exist decreasing sequences Ntk ! �1 and sk <
3Ntk
2

, sk ! �1, and solutions  k of the
equation

(3.35) pzp�1àt k D àxx k �  k C pzp�1 k C zp�1Œfk � C. k; t /�

defined on R � Œsk; Ntk�, so that

(3.36) sup
sk���Ntk

k k. � ; �/kL2 � k sup
sk���Ntk

kfkkL2.ƒ� /:
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22 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

We may assume, without loss of generality, that

(3.37) sup
sk���Ntk

Z 1
�1

 2k .x; �/z
p�1 dx D 2

otherwise we would perform the rescaling of the solutions for (3.37) to hold. Then, by (3.36),
we have

(3.38) kfkkL2
sk;
Ntk

�
C

k
:

Because of (3.37), we can pick tk 2 Œsk; Ntk� such that

(3.39)
3

2
�

Z 1
�1

 2k .x; tk/z
p�1 dx � 2:

Also, passing to a subsequence if necessary, we may assume that tk is decreasing.

Claim 3.2. We have
lim inf
k!1

.tk � sk/ D C1:

Proof. We will apply (3.23) with  D  k , g D gk WD fk � C. k; t / and for � D 0.
To estimate the right-hand side of (3.23), we use (3.32), (3.38) and (3.37) to obtain for all
sk � t � Ntk the bound

kgk. � ; t /kL2 �
Cp
jNtkj

�
k kL2

s;Ntk

C
1

k

�
C
C

k
� C

�
1p
jNtkj
C
1

k

�
:

Hence, for all � 2 Œsk; Ntk� we have

(3.40)
Z �

sk

Z 1
�1

g2kz
p�1 dx dt � .� � sk/kgkk

2
L2
Ntk

� C

�
1p
jNtkj
C
1

k

�2
.� � sk/:

Set

˛.�/ D

Z �

sk

Z 1
�1

 2zp�1 dx dt:

It follows from (3.23) and the above discussion that ˛.�/ satisfies the differential inequality

˛0.�/ � C˛.�/C �k.� � sk/

with

�k D C

�
1p
jNtkj
C
1

k

�2
and ˛.sk/ D 0:

Solving this differential inequality gives

˛.�/ �
�k

C 2

�
eC.��sk/ � Œ1C C.� � sk/�

�
�
�k

C 2
eC.��sk/

which combined with (3.23) and (3.40) gives the boundZ 1
�1

 2. � ; �/zp�1 dx � C1�ke
C.��sk/;
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 23

for all � 2 Œsk; Ntk�, where C1 is a different, but still uniform constant. HenceZ 1
�1

 2. � ; �/zp�1 dx � 1

as long as

eC.��sk/ <
1

C1�k
:

Since
R1
�1

 2. � ; tk/z
p�1dx � 3

2
, we must have

eC.tk�sk/ �
1

C1�k
:

Since limk!1 �k D 0, this readily implies the claim.

Set
N k.x; t/ D  k.x; t C tk/ and Nfk.x; t/ D fk.x; t C tk/

and observe that each N k satisfies the equation

(3.41) pz
p�1

k
àt N k D àxx N k � N k C pz

p�1

k
N k C z

p�1

k

�
Nfk � Ck. N k; t //

�
on R � ŒNsk; 0�, with Nsk WD sk � tk and

zk.x; t/ WD z.x; t C tk/; Nzk.x; t/ D Nz.x; t C tk/

and
Ck. N k; t / D d1. N k; t C tk/zk.x; t/C d2. N k; t C tk/ Nzk.x; t/

where di . N k; t / are defined in terms of  k as before. Notice that because of the previous
claim, Nsk � �� , for a uniform constant � . It follows from (3.30) (with � D 0) and (3.37) that
N k satisfy the bound

(3.42) k N kkL1.R�ŒNsk ;0�/ C k
N kkH2

Nsk;0
� C

for a uniform in k constant C .
Inequality (3.39) says that

(3.43)
3

2
�

Z 1
�1

N 2k .x; 0/z
p�1

k
dx � 2:

If we integrate (3.24) in time on Œtk � ı; tk� and use (3.43), we conclude, after a straightforward
calculation, the bounds

(3.44) 1 � inf
�2Œ�ı;0�

Z 1
�1

N 2k .x; �/z
p�1

k
dx � 2

for a uniform in k small constant ı > 0.

Claim 3.3. There exists a universal large constant M > 0 for which

(3.45) sup
�2Œ�ı;0�

Z �.�Ctk/�M

��.�Ctk/CM

N 2k .x; �/z
p�1

k
dx <

1

2
:

Proof. We recall that by (7.2),

�.� C tk/ D
1

2
log.2bj� C tkj/CO.1/:

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM



24 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

By symmetry ( N k is an even function), we only need to show that

sup
�2Œ�ı;0�

Z �.�Ctk/�M

0

N 2k .x; �/z
p�1

k
dx <

1

4
:

Also, since for x > 0 and � 2 Œ�ı; 0� we have

zk.x; �/ D w.x � �.� C tk//C w.x C �.� C tk// � 2w.x � �.� C tk//;

it will be enough to establish the inequality

sup
�2Œ�ı;0�

Z �.�Ctk/�M

0

N 2k .x; �/w
p�1.x � �.� C tk// dx <

1

8
:

Using the L1 bound in (3.42), we conclude that for every � 2 Œ�ı; 0� we haveZ �.�Ctk/�M

0

N 2k .x; �/w
p�1.x � �.� C tk// dx � C

Z �.�Ctk/�M

0

wp�1.x � �.� C tk// dx

for a uniform constant C . Finally, we haveZ �.�Ctk/�M

0

wp�1.x � �.� C tk// dx D

Z �M
��.�Ctk/

wp�1.x/ dx

where w is given by (1.9). It follows that there exists a uniform constant M such that

C

Z �.�Ctk/�M

0

wp�1.x � �.� C tk// dx D C

Z �M
��.�Ctk/

wp�1.x/ dx <
1

8

for all � 2 Œ�ı; 0� finishing the proof of the claim.

We will now conclude the proof of the Proposition. By (3.44), (3.45) and the symmetry
of N k , we have

(3.46) inf
�2Œ�ı;0�

Z �.�Ctk/CM

�1

N 2k .x; �/z
p�1

k
dx �

1

4
:

We wish to pass to the limit along a sub-sequence kl !1. However, in order that we see
something nontrivial at the limit, we will need to perform a new change of variables defining

�k.x; t/ WD N k.x � �.t C tk/; t/; t � 0:

It follows that each �k satisfies the equation

pw
p�1

k
àt�k D àxx�k � �k C pw

p�1

k
�k � P�.t C tk/àx�k C w

p�1

k
gk(3.47)

on �Nsk < t � 0 with gk.x; t/ WD Nfk.x � �.t C tk/; t/ � Ck.�k; t / and

wk.x; t/ WD zk.x � �.t C tk/; t/ D w.x/C w.x � 2�.t C tk//:

Moreover, (3.38) and (3.32) imply the bounds

(3.48) kgkkL2s;t0
� C

�
1

k
C

1p
jtkj

�

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM
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and by (3.42) and the inequality wk � w,

(3.49) k�kkL1.R�ŒNsk ;0�/ C k�kkH2
Nsk;0
� C:

In addition, (3.46) implies the following uniform bound:

(3.50) inf
�2Œ�ı;0�

Z M

�1

�2k.x; �/w
p�1

k
dx �

1

4
:

Set Q D .�1; x0� � Œ�0; 0�, where x0 > 0 is an arbitrary number and �0 is any number
such that Nsk < �0 < 0, for all k (recall that Nsk � �� for all k by Claim 3.2). It follows from
the energy bound (3.49) that passing to a subsequence, still denoted by �k , we have �k ! � in
L2w.Q/ and �k ! � weakly in H 1

w.Q/. Passing to the limit in (3.47) while using (3.48) and
the bound Z 0

�0

P�2.t C tk/ dt D O

�
1

jtkj
2

�
;

we conclude that � is a weak solution of

(3.51) pwp�1àt� D àxx� � � C pwp�1�

on R � .�1; 0/. Standard regularity theory shows that � is actually a smooth solution. In
addition, � satisfies the orthogonality conditions

(3.52)
Z 1
�1

�.x; t/w0.x/wp�1.x/ dx D 0 for a.e. t < t0

and

(3.53)
Z 1
�1

�.x; t/w.x/wp�1.x/ dx D 0 for a.e. t < t0:

Moreover, from (3.42) we have the following uniform estimate:

(3.54) sup
��0

Z �C1

�

Z 1
�1

�2.x; t/wp�1 dx dt � 2:

Also, passing to the limit in (3.50) we conclude thatZ 0

�ı

Z M

�1

�2.x; t/wp�1 dx dt �
ı

4
> 0

which shows that our limit � is nontrivial. From Claim 3.2 we have lim infk!1 Nsk D �1.
Hence, we may assume, passing to a subsequence, that Nsk ! �1. It follows, that the limit �
is an ancient solution of equation (3.51), i.e. defined on R � .�1; 0� which satisfies the ortho-
gonality conditions (3.52) and (3.53).

Set ˛.t/ D 1
2
k�. � ; t /kL2.wp�1 dx/ and observe that since � is orthogonal to the two

eigenfunctions of the operator L0 (defined in (3.3)) corresponding to its only two nonnega-
tive eigenvalues ��1 and �0, we have

˛0.t/ � ��˛.t/; t � 0;

for some � > 0, implying that ˛.t/ � ˛.0/e�jt j which contradicts (3.54). This finishes the
proof of the proposition.
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26 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

3.2. The proofs of Lemma 3.1 and Proposition 3.1. Based on the a priori estimates
of the previous subsection, we will give now the proofs of Lemma 3.1 and Proposition 3.1.

Proof of Lemma 3.1. It will be sufficient to establish the existence of a solution  s

to (3.11). Indeed, given the existence of solution s , by the fact that the forcing term f satisfies
orthogonality conditions (3.5) and (3.6) we already know that  s. � ; t / will continue to satisfy
conditions (3.5) and (3.6) for t � s. Then estimate (3.21) follows by Proposition 3.2.

The strategy for establishing the existence of  s is as follows. Fix an s < t0 � 1. We first
establish the existence of a solution  s to the initial value problem (3.22) on R � Œs; s C �0�,
for a given function g with

(�) kgk�
L2t0

<1;

where �0 is a uniform constant, independent of s, to be chosen below. Then we solve the
nonlocal problem (3.11) on R � Œs; s C �0�. At the end we show how to extend such a solution
in time up to t0, to obtain a solution of (3.11).

We first claim that given an s < t0�1 and a function g with (�), there exists a solution s

of (3.22), on R � Œs; s C �0�, for some �0 to be chosen below. The solution  s will be con-
structed as the limit, as R!1, of solutions  sR to the Dirichlet problems

(3.55)

´
pzp�1àt sR D . 

s
R/xx �  

s
R C pz

p�1 sR C z
p�1g on QR;s;

 sR. � ; s/ D 0 on àpQR;s;

on QR;s WD Œ�R;R� � Œs; s C �0�. Since our weight zp�1 is bounded from above and below
away from zero on QR;s , by standard parabolic theory there exists a solution  sR to the same
Dirichlet problem on the set OQR;s WD Œ�R;R� � Œs; s C �R�, for some �R > 0 which will be
taken to satisfy �R � 1. Similarly as in the proof of Lemma 3.2,  WD  sR satisfies the estimate

d

dt

Z R

�R

 2zp�1 dx C

Z R

�R

. 2 C  2x/ dx(3.56)

� C1

�Z R

�R

g2zp�1 dx C . P� C 1/

Z R

�R

 2zp�1 dx

�
for a universal constant C1. Before we integrate (3.56) in time, we observe thatZ sC�R

s

P�

Z R

�R

 2zp�1 dx dt �

�Z sC�R

s

P�2 dt

� 1
2

sup
Œs;sC�R�

Z R

�R

 2zp�1 dx(3.57)

� � sup
Œs;sC�R�

Z R

�R

 2zp�1 dx

if s is chosen sufficiently close to �1. The last inequality follows from the fact that

P�.t/ D
1

2jt j
C Ph.t/ and khk

�;1C�
1;�;t0

� 1

by assumption.
Set

�0 WD min
²
1

3C1
; 1

³
;
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 27

with C1 being the constant from (3.56) and take �R � �0. Integrating in time (3.56), while
using the Dirichlet boundary condition in (3.55), the Cauchy–Schwarz inequality and (3.57)
with � chosen sufficiently small, we obtain

2

3
sup

Œs;sC�R�

Z R

�R

 2zp�1 dx C

“
OQR;s

�
 2x C

1

2
 2
�
dx dt

� C

“
OQR;s

g2zp�1dxdt C C1

“
OQR;s

 2zp�1dx dt

� C

“
OQR;s

g2zp�1 dx dt C
1

3
sup

Œs;sC�R�

Z R

�R

 2 dx dt

since C1j�Rj � C1�0 � 1
3

by our choice of C1. It follows that  WD  sR satisfies

sup
Œs;sC�/

Z R

�R

 2zp�1 dx C

“
QR;s

�
 2x C

1

2
 2
�
dx dt(3.58)

� C0

“
QR;s

g2zp�1 dx dt

for a uniform constant C0. Similarly to deriving the energy estimate in Lemma 3.2, using (3.58)
and the fact that . sR/x. � ; s/ D 0, we find that  WD  sR also satisfies“

OQR;s

 2t z
p�1 dx dt C

1

2
sup

Œs;sC�R�

Z R

�R

. 2 C  2x/ dx(3.59)

� C0

“
OQR;s

g2zp�1 dx dt

where C0 is a constant, possibly larger than the constant in (3.58), but still independent of R; s.
The right-hand sides in both inequalities (3.58) and (3.59) are bounded by a constant that is
independent of R, namely

C0

Z sC1

s

Z 1
�1

g2zp�1 dx dt:

Hence, by standard linear parabolic theory the solution  sR will exist at least for s � t � �0,
namely on QR;s . Take a sequence Rj !C1 and set ƒs;�0 WD R � Œs; s C �0�. Since the
equation in (3.22) is nondegenerate on any compact subset K of ƒs;�0 , the uniform estimates
(3.58)–(3.59) and standard arguments imply that a subsequence of solutions  sRj converges in
C1.K/ to a smooth solution  s of problem (3.22). The limiting smooth solution  s is defined
on ƒs;�0 .

The next step is to show that we can solve a nonlocal problem (3.11) on ƒs;�0 . We will
do that via contraction mapping arguments. Define a set

Xs WD ¹ W k kH2.ƒs/
<1º:

We consider the operator As W Xs ! Xs given by

As. / WD T s.f � C. //

where T s.g/ denotes the solution to (3.22) constructed above and

C. / D d1z C d2 Nz

where .d1; d2/ is the unique solution of the linear system (3.13).
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28 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

We will show that the map As defines a contraction mapping and we will apply the fixed
point theorem to it. To this end, set c WDC0kf kL2.ƒs/ andXsc WD ¹ 2X

s W k kH2.ƒs/
< 2cº,

where the constant C0 is taken from (3.58)–(3.59). We claim that As.Xsc / � X
s
c . To show

this claim, let  2 Xsc . Estimates (3.58), (3.59), estimate (3.19) for C. / and the Sobolev
embedding yield

kAs. /kH2.ƒs/
D kT s.f � C. //kH2.ƒs/

(3.60)

� C0kf � C. /kL2.ƒs/

� C0.kf kL2.ƒs/ C kC. /kL2.ƒs//

D c C C0kC. /kL2.ƒs/

� c C
Cp
jsj
k kL2.ƒs/

< 2c

if jsj sufficiently large (which holds if t0 is chosen sufficiently close to �1). Next we show
that As defines a contraction map. Indeed, since C. / is linear in  , we have

kAs. 1/ � A
s. 2/kH2.ƒs/

D kT s.C. 1/ � C. 2//kH2.ƒs/
(3.61)

� C0kC. 1/ � C. 2/kL2.ƒs/

D C0kC. 1 �  2/kL2.ƒs/

�
Cp
jsj
k 1 �  2kH2.ƒs/

�
1

2
k 1 �  2kH2.ƒs/

:

By estimates (3.60)–(3.61), the fixed point theorem implies that there exists a  s 2 Xs so that
As. s/ D  s , meaning that equation (3.11) has a solution  s , defined on ƒs;�0 .

We claim that  s. � ; t / can be extended to a solution on R � Œs; t0�, still satisfying our
orthogonality conditions and a priori estimates. To this end, assume that our solution  s. � ; t /
exists for s � t < T , where T < t0 is the maximal time of existence. Since  s. � ; t / satisfies
the orthogonality conditions (3.5) and (3.6) for t 2 Œs; T �, by Proposition 3.2,

(3.62) sup
t2Œs;T /

j� j�k s. � ; t /kL2.R/ � Ckf kL2s;T

and

(3.63) sup
t2Œs;T /

j� j�k s. � ; t /kL1.R/ C k kH2
s;T
� Ckf kL2s;T

where C is a uniform constant. Since

kf kL2s;T
� kf kL2s;t0

� C ;

it follows that  s can be extended past time T , unless T D t0. Moreover, (3.21) is satisfied as
well and  s also satisfies the orthogonality conditions.

Having Lemma 3.1 we are able to conclude the proof of Proposition 3.1.
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Proof of Proposition 3.1. Having Lemma 3.1 we are able to conclude the proof of the
proposition. Take a sequence of sj ! �1. By Lemma 3.1, for every sj there is a solution
 sj to equation (3.11) such that  sj . � ; sj / D 0 and it satisfies the uniform estimate (3.21),
independent of sj . Moreover, our equation (3.11) is nondegenerate on every compact subset
K � R � .�1; t0/. Therefore onK we can apply standard parabolic theory to get higher order
derivative estimates for our sequence of solutions  sj , which are independent of sj but may
depend onK. Let j !1. By the Arzela–Ascoli theorem and a standard diagonalization argu-
ment we conclude that a subsequence ¹ sj º converges, as j !1, to a smooth function  
defined on R � .�1; t0/. Moreover,  satisfies the orthogonality conditions (3.5) and (3.6)
and(!) estimate (3.20). The latter follows from taking the limit as j !1 in (3.62) and (3.63),
both satisfied by  sj , and the fact that the constants on the right-hand side are independent
of j .

3.3. W 2;� estimates. We will next derive weightedW 2;� estimates for the linear equa-
tion (3.9). We recall that the W 2;� norm is given by Definitions 2.3 and 2.4. We have the
following global estimate.

Proposition 3.3. Let  be a solution of (3.9) as in Proposition 3.1. If kf k��;t0 <1 for
some � > 2 and � 2 Œ0; 1�, then

(3.64) k k�2;�;t0 � C
�
kf k�

L2t0
C kf k��;t0

�
:

The proof of Proposition 3.3 will follow from a similar a priori estimate for solutions
of (3.1).

Lemma 3.4. Let  be an even solution of equation (3.1) with g a given even function
that satisfies kgk��;t0 C kgk

�

L2t0

<1 for some � > 2 and � 2 Œ0; 1/. Then, we have

(3.65) k k�2;�;t0 � C
�
k k�

L2t0
C kgk�

L2t0
C kgk��;t0

�
:

Before we give the proof of Lemma 3.4, we will prove Proposition 3.3 using Lemma 3.4.

Proof of Proposition 3.3. Assume that  is a solution of equation (3.9), as in the state-
ment of the proposition. It follows from Lemma 3.4 and the L2 estimate in Proposition 3.1
that

k k�2;�;t0 � C
�
kf k�

L2t0
C kf k��;t0 C kC. /k

�
L2t0
C kC. /k��;t0

�
:

It follows from (3.31) and the estimate in Proposition 3.1 that

(3.66) kC. /k�
L2t0
�

Cp
jt0j
kf k�

L2t0
:

In addition, it can be shown, similarly as in the proof of (3.31), that

(3.67) kC. /k��;t0 �
Cp
jt0j
k k�2;�;t0 :

Combining the last three estimates, readily yields the estimate of the proposition, provided that
jt0j is chosen sufficiently large.
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30 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Before we proceed with the proof of Lemma 3.4, let us summarize the estimate we have
for C. /, using Propositions 3.1 and 3.3.

Corollary 3.2. Under the assumptions of Proposition 3.3 we have

(3.68) kC. /k��;�;t0 �
Cp
j�0j

�
k k�

H2
t0

C k k�2;�;t0

�
:

It follows that

(3.69) kC. /k��;�;t0 �
Cp
j�0j
kf k��;�;t0

for a universal constant C .

Proof. Estimate (3.68) readily follows by combining (3.31) and (3.67). Estimate (3.69)
follows from (3.68) and the bounds in Propositions 3.1 and 3.3.

We will now proceed to the proof of Lemma 3.4.

Proof of Lemma 3.4. We first observe that since both z and  are even functions in x,
we will only need to establish the lemma on �1 < x � 0. We first perform a translation in
space, setting

�.x; t/ D  .x � �0.t/; t/; �1 < x < �0.t/;

where �0.t/ D 1
2

log.2bjt j/. It follows that � satisfies the equation

(3.70) p Nzp�1àt� D àxx� � p P�0 Nzp�1àx� � � C p Nzp�1� C Nzp�1 Ng

with

Nz.x; t/ WD w.x C �.t/ � �0.t//C w.x � �.t/ � �0.t//; Ng.x; t/ WD g.x � �0.t/; t/:

We observe that on the interval of consideration �1 < x � �0.t/, we have

w.x � �.t/ � �0.t// � w.x C �.t/ � �0.t//;

hence

(3.71) w.x C �.t/ � �0.t// � z.x; t/ � 2w.x C �.t/ � �0.t// on �1 < x � �0.t/:

If we divide equation (3.70) by Nzp�1 and perform the change of variables

(3.72) �.x; t/ D ex Q�.r; t/; r D eˇx;

we conclude, after a simple calculation, that the new function Q�.r; t/ satisfies the equation

(3.73) Q�t D ˛.r; t/� Q� � ˇ P�0r Q�r C .1 � P�0/ Q� C Qg.r; t/

with
˛.r; t/ WD p�1ˇ2U 1�p.r; t/

and
U.r; t/ WD e�x.w.x C �.t/ � �0.t//C w.x � �.t/ � �0.t///; r D eˇx :

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM



Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 31

To obtain (3.73), we compute directly that

�xx � � D ˇ
2e.1C2ˇ/x

�
Q�rr C

n � 1

r
Q�r

�
and

p Nzp�1�t D pe
x Q�t .e

xU/p�1 D pe.1C2ˇ/xU p�1 Q�t

and similarly
p Nzp�1 Ng D pe.1C2ˇ/xU p�1 Qg:

Combining the last three equalities, we readily conclude (3.73). In addition, it follows from
(1.9) and (3.71) that

(3.74)
�
2kne

ˇ.�0.t/��.t//

e2ˇ.�0.t/��.t// C r2

� 1
ˇ

� U.r; t/ � 2

�
2kne

ˇ.�0.t/��.t//

e2ˇ.�0.t/��.t// C r2

� 1
ˇ

:

Observe that
j�0.t/ � �.t/j D jh.t/j � C jt j

��;

since khk�;1C�1;�;t0
<1 by assumption. This together with (3.74), the fact that p�1 D 4

n�2
D 2ˇ,

imply the estimate for the ellipticity coefficient ˛.r; t/,

d1

�
1

2
C r2

�2
� ˛.r; t/ � d2.1C r

2/2

for d1 and d2 universal positive constants.
We fix � � t0. We will next establish sharpW 2;� estimates for (3.73) onBR.�/�Œ��2; ��,

whereR.�/ WD eˇ�0.�/ is a large number. Let NQ WD B2 � Œ� � 2; �� andQ WD B1 � Œ� � 1; ��.
By the standard parabolic W 2;� , we have

(3.75) k Q�kW 2;� .Q/ � C
�
k Q�kL� . NQ/ C k QgkL� . NQ/

�
:

Translating this estimate back to the original coordinates and in terms of  gives us the desired
weighted W 2;� bound on the exterior region, namely

(3.76) k k2;�;E� � C
�
k k�; NE� C kgk�; NE�

�
where E� D .�1;��0.�// � Œ� � 1; �� and NE� D .�1;��0.�/C ln2

ˇ
/ � Œ� � 2; ��.

We will next obtain a weightedW 2;� estimate onBR.�/ n B1. To this end, we will assume
that R.�/ D 2k0 for a large constant k0 D k0.�/ and we will derive the estimate on the annuli

¹2k < jxj < 2kC1º � Œ� � 1; �� for any k D 0; : : : ; k0 � 1:

Set � D 2k ,D� D ¹� < r < 2�º� Œ��1; �� and ND� D ¹
�
2
< r < 4�º� Œ��2; ��. Then, on ND�

we have
��4 � ˛.r; t/ � ƒ�4

for � > 0 and ƒ <1 universal constants. We will then divide the time interval Œ� � 1; �� into
subintervals of length 1

�2
and in each of them we scale our solution Q� to make equation (3.73)

strictly parabolic. Let us denote by Œs � 1
�2
; s� one such sub-interval and consider the cylindrical

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM



32 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

regionsDs� D ¹� < r < 2�º� Œs�
1
�2
; s� and NDs� D ¹

�
2
< r < 4�º� Œs� 2

�2
; s�. It follows that

the rescaled solution

��.r; t/ WD Q�.�r; s C �
�2t /; .r; t/ 2 ND WD

²
1

2
< r < 4

³
� Œ� � 2; ��;

satisfies the equation

(3.77) àt�� D
˛.r; t/

�4
��� � ˇ P�0.t/

r

�3
àr�� C

1

�2
.1 � P�0.t//�� C

1

�2
f�.r; t/

on ND with g�.r; t/ WD Qg.�r; s C ��2t /. Moreover,

� �
˛.r; t/

�4
� ƒ:

Recall also that P�0.t/ D 1
t
, and in particular, j P�0j is bounded. Hence, by the standard W 2;�

estimates on equation (3.77), we have

k��kL2;� .D/ � C
�
k��kL� . ND/ C �

�2
kg�kL� . ND/

�
withD WD ¹1 < r < 2º� Œ� � 1; �� and ND WD ¹1

2
< r < 4º� Œ� � 2; ��. This readily yields the

bound

k Q�tkL� .Ds�/ C �
4
kD2 Q�kL� .Ds�/ C �

3
kD Q�kL� .Ds�/ C �

2
k Q�kL� .Ds�/

� C
�
�2k Q�kL� . NDs�/ C k QgkL� . NDs�/

�
:

By repeating the above estimate on all time sub-intervals, we finally conclude

k Q�tkL� .D�/ C �
4
kD2 Q�kL� .D�/ C �

3
kD Q�kL� .D�/ C �

2
k Q�kL� .D�/(3.78)

� C
�
�2k Q�kL� . ND�/ C k QgkL� . ND�/

�
:

Because the first terms on the left-hand side of (3.78) have a growth in �, we will need
to weight the L� norms by a power r�, for some appropriate � < 0 to be chosen in the sequel.
To this end, we define for any function Qh the norm

k QhkL�
�
.A/ D

�“
A

j Qhj�r�Cn�1 dr dt

� 1
�

and observe that (3.78) readily implies the following estimate in the new norms:

k Q�tkL�
�
.D�/ C kr

4D2 Q�kL�
�
.D�/ C kr

3D Q�kL�
�
.D�/ C kr

2 Q�kL�
�
.D�/(3.79)

� C
�
kr2 Q�kL�

�
. ND�/
C k QgkL�

�
. ND� /

�
:

We will use the above local estimate to establish an estimate on the entire inner region.
To this end, set D� D ¹1 < r < R.�/º � Œ� � 1; �� and ND� D ¹12 < r < 2R.�/º � Œ� � 2; ��,
where R.�/ WD e2ˇ�0.�/, as before. Applying (3.79) for all � D 2k , k D 0; 1; : : : ; k0, where
R.�/ D 2k0 , we obtain the bound

k Q�tkL�
�
.D� / C kr

4D2 Q�kL�
�
.D� / C kr

3D Q�kL�
�
.D� / C kr

2 Q�kL�
�
.D� /(3.80)

� C
�
kr2 Q�kL�

�
. ND� /
C k QgkL�

�
. ND� /

�
:

Before we find the appropriate �, we will express the bound (3.80) back in terms of the func-
tions �.x; t/ D ex Q�.r; t/ and f .x; t/ D ex Qf .r; t/ through the change of variables r D eˇx .
Let I� WD Œ0; �0.�/��Œ� � 1; �� and NI .�/ WD Œ� ln2

ˇ
; �0.�/C

ln4
ˇ
��Œ� � 2; �� denote the images
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of the sets D� and ND� under this change of variables. We will use the formula

à
àr
D .ˇr/�1

à
àx

and the bounds

(3.81) ce�ˇx � wˇ .x/ � Ce�ˇx

which hold in the region of consideration. A direct calculation shows that (3.80) implies the
bound

(3.82) kàt�kL�
�
.I� /Ckà

2
x�kL��.I� /

Ckàx�kL�
�
.I� / � C

�
ke2ˇx�kL�

�
. NI� /
Ck NgkL�

�
. NI� /

�
where, for any function h and any I � Œ0;1/ � .�1; 0�, we denote

khkL�
�
.I / WD

�“
I

jhj�e.�Cn/ˇx dx dt

� 1
�

:

We next observe that the same arguments as in the proof of Lemma 3.2 give us a global
L1 bound on the solution  of (3.9), namely

k kL1.R�.�1;t0�/ � C
�
k kL2t0

C kgkL2t0

�
which gives a similar bound for �, namely

k�kL1.R�.�1;t0�/ � C
�
k�kL2t0

C k NgkL2t0

�
where

k NgkL2t0
WD sup

��t0

�“
ƒ�

Ng2 Nzp�1 dx dt

� 1
2

:

Using this bound we obtain

ke2ˇx�kL�
�
. NI� /
� C

�
k NgkL2t0

C k�kL2t0

��“
NI�

e.2�C�Cn/ˇx dx dt

� 1
�

:

The last integral is bounded uniformly in � if � is chosen so that

2� C �C n < 0:

Choose � D �.2� C nC �/, with � > 0 any small universal constant. With this choice of �
and for any function h we have

khkL�
�
.I / D

�“
I

jhj�e.�Cn/ˇx dx dt

� 1
�

D

�“
I

jhj�e�.2�C�/ˇx dx dt

� 1
�

:

With such a choice of �, combining this last estimate with (3.82), yields the bound

k�k2;�;I� � C
�
k�kL2t0

C k NgkL2t0
C k NgkL�

�
. NI� /

�
:

This readily gives the desiredW 2;� estimate on  in the intermediate region, which combined
with (3.76) yields to (3.65), finishing the proof of the lemma.
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34 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

We recall next the weighted L1 norm and our global norm given in Definitions 2.5
and 2.6 respectively. It is clear that

k k�L1t0
� Ck k�1;t0

since z�1 � c > 0 for a universal constant c.
The following L1 estimate follows as a consequence of estimates (3.20) and (3.64).

To derive it, as we will see below we need to take � > nC 1, so let us define from now on
� WD nC 2. We have

Corollary 3.3. Under the assumptions of Proposition 3.3, if � D nC 2, then the solu-
tion  satisfies the estimate

(3.83) k k�1;t0 � C
�
kf k�

L2t0
C kf k��;t0

�
:

Proof. The bound on the norm k k�
L1t0

readily follows from estimate (3.20) and Sobolev
embedding. For the bound on kz�1 �¹jxj��.t/ºk�L1t0

, by symmetry we may restrict ourselves to
the region ¹�1 < x < ��.t/C ˇ�1 ln 2º. Set

�.x; t/ WD  .x � �0.t/; t/; �1 < x < ˇ�1 ln 2:

As in the proof of Lemma 3.4, it follows that � satisfies equation (3.70) with Ng WD g.x��0.t/; t/
and g WD f � C. /. Hence, Q�.r; t/ given by (3.72) satisfies equation (3.73) which is now
strictly parabolic in the region of consideration 0 � r < 2, t � t0. Let Q D Be� � Œ� � 1; ��
and NQ D B2 � Œ� � 2; ��, � � t0 and e� < 2. Standard parabolic estimates imply the bound

k Q�kL1.Q/ � C
�
k Q�kL� . NQ/ C k QgkL� . NQ/

�
since � > nC 1. Expressing everything in the original variables, using that

j�.t/ � �0.t/j D jh.t/j � C jt j
�� < �

for jt j sufficiently large, we conclude

kz�1 �¹jxj��.t/ºk
�
L1t0
� kz�1 �¹jxj��0.t/��ºk

�
L1t0
�
�
k k��;t0 C kgk

�
�;t0

�
:

Since g D f � C. /, whereC. / satisfies the bound (3.69), the desired bound readily follows
from (3.64).

We will finally summarize the results in this section in one result. This will play a crucial
role in the construction of the solution of our nonlinear problem. We have shown the following
result.

Proposition 3.4. Let�; � 2 Œ0; 1/ and � D nC2, n� 3, be fixed constants. Then, there is
a number t0 < 0 such that for any even function f on R � .�1; t0� with kf k��;� <1, satisfy-
ing the orthogonality conditions (3.5)–(3.6) and a function h on .�1; t0� with khk�;1C�1;�;t0

<1

there exists an ancient solution  D T .f / of (3.9) on �1 � t � t0 also satisfying the ortho-
gonality conditions (3.5)–(3.6), and the estimate

(3.84) k k��;2;�;t0 � Ckf k
�
�;�;t0

:

The constant C depends only on dimension n, � and �.
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4. The nonlinear problem

Let X be the Banach space defined as in Definition 2.8 and let T and A be the operators
as introduced in Section 2.3. In addition, for a given � 2 .0; 1/ and t0 < 0, we set

(4.1) K WD
®
.h; �/ W .�1; t0�! R W khk�;1C�1;�;t0

� 1 and k�k11;�;t0 � C0
¯

where C0 is the universal constant given by (5.16). We say that h 2 K or � 2 K if .h; 0/ 2 K
or .0; �/ 2 K respectively. Moreover, define

(4.2) ƒ WD
®
 2 X W k k�;2;�;� � 1

¯
:

Remark 4.1. If .h; �/ 2 K, then

(4.3) khkL1.�1;t0�/ � jt0j
�� and k�kL1.�1;t0�/ � C0jt0j

�1:

In particular, by choosing jt0j sufficiently large we may assume that both h and � have small
L1 norms. In addition,

(4.4) �.t/ WD
1

2
log.2bjt j/C h.t/ D

1

2
log.2bjt j/C o.1/; as jt j ! �1:

The main goal in this section is to prove the following proposition.

Proposition 4.1. Let � D nC 2. There exist numbers � 2 .1
2
; 1/ and t0 < 0, depending

only on dimension n, such that for any given pair of functions .h; �/ in K, there is a solution
 D ‰.h; �/ of (2.14) which satisfies the orthogonality conditions (2.9)–(2.10). Moreover, the
following estimates hold:

(4.5) k‰.h1; �/ �‰.h2; �/k��;2;�;t0 � C jt0j
��
kh1 � h2k

�;�C1
1;�;t0

and

(4.6) k‰.h; �1/ �‰.h; �2/k��;2;�;t0 � C jt0j
�1C�

k�1 � �2k11;�;t0

for any .hi ; �/ 2 K and .h; �i / 2 K, i D 1; 2, and � < min¹2� � 1; º, where  2 .0; 1/ is
a positive number determined by Lemma 5.1 and C is a universal constant.

We will find a solution of (2.14) by the contraction mapping principle. To this end, we
need suitable estimates on the operator E. /. They are given in the following subsection, after
which we will proceed with the proof of Proposition 4.1.

4.1. The estimation of the error term. We will next estimate the error term E. / in
the k � k��;�;t0 norm and also establish its Lipschitz property with respect to  as well as h
and �. We will begin by estimating the error term M in (2.6).

Lemma 4.1. Let � D nC2. There exist numbers � D �0.n/ 2 .12 ; 1� and t0 < 0, depend-
ing on dimension n, such that for any � 2 .1

2
; �0� and � < min¹2� � 1; º and any .h; �/ 2 K

(where the set K is defined with respect to this particular �), we have

kz1�pMk
�0
�;�;t0

� C

for a universal constant C .
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36 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Proof. Throughout the proof, C will denote various universal constants. Since all the
functions involved, including M , are even in x, it will be sufficient to restrict our computation
to the region x > 0. Notice in that region

w2.x; t/ WD w.x C �.t// � w.x � �.t// DW w1.x; t/:

We write M DM1 CM2, where

M1 D Qz
p
� .1C �/p.w

p
1 C w

p
2 /; M2 D Œ.1C �/

p
� .1C �/�.w

p
1 C w

p
2 / � àt Qz

p

and set
NM1 D z

1�pM1 and NM2 D z
1�pM2:

We have

0 � NM1 D z
1�p.1C �/p.Œ.w1 C w2/

p
� w

p
1 � � w

p
2 /

� p.1C �/pw2

Z 1

0

.w1 C sw2/
p�1

zp�1
ds

hence, using that w2 � w1 � z, obtain the bound

j NM1j � Cw2:

For the moment take � � 2 to be any constant and q > 0. By the last bound and the estimate
z � 2w1 which holds on x > 0, we compute�Z �.t/

0

NM �
1 z

q� dx

� 1
�

� C

�Z �.t/

0

w� .x C �.t//wq� .x � �.t// dx

� 1
�

� C

�Z �.t/

0

e��.xC�.t//eq�.x��.t// dx

� 1
�

D Ce�.1Cq/�.t/
�Z �.t/

0

e.q�1/�x dx

� 1
�

:

Recalling (4.4) we then conclude that�Z �.t/

0

NM �
1 z

q� dx

� 1
�

� C˛.jt j/

where ˛.jt j/ D jt j�
1Cq
2 if q < 1, ˛.jt j/ D jt j�1 if q > 1, and ˛.jt j/ D .ln jt j/

1
� jt j�1 if q D 1.

On the other hand, recalling that ˇ WD 2
n�2
D

p�1
2

, we have�Z 1
�.t/

NM �
1 z

nˇ�� dx

� 1
�

� C

�Z 1
�.t/

w� .x C �.t//wnˇ�� .x � �.t// dx

� 1
�

� C

�Z 1
�.t/

e��.xC�.t//e�.nˇ��/.x��.t// dx

� 1
�

D Ce�2�.t/
�Z 1

�.t/

e�.nˇ/.x��.t// dx

� 1
�

� C jt j�1:
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First, we combine the above estimates when q D ˇ and � D 2, to conclude that on the
setƒ� D R � Œ�; � C 1�, � < t0 � 1, we have k NM1kL2.ƒ� / � C j� j

��0 ; with �0 WD �0.ˇ/ > 1
2

for all ˇ. It follows that
k NM1k

�0
L2t0

� C :

Also, if we combine the above estimates for � D nC 2 and q D 2ˇ C � , with � a small uni-
versal positive constant as in the proof of Proposition 3.3, we obtain (recall the definitions
(3.75) and (3.78)) that k NM1k�;ƒ� � C j� j

��0 , where �0 D �0.ˇ/ > 1
2

. By choosing t0 < �1,
we obtain

k NM1k
�0
�;t0
� C :

We conclude that

k NM1k
�0
�;�;t0

� C:

We will now estimate the term involving NM2. Since w2 � w1 � z, we have

j NM2j � C.p/
�
j�jw1 C jP�.t/jjw

0.x C �.t// � w0.x � �.t//j C j P�.t/jz
�

hence, using that jw0.x/j � Cw.x/, we obtain

j NM2j � C.j�j C j P�j C j P�j/z:

It follows that for any q > 0, � � 2 and � < t0 � 1, we have�“
ƒ�

j NM2j
� Œzq��¹jxj<�.t/º C z

nˇ���¹jxj��.t/º� dx dt

� 1
�

� C

�Z �C1

�

.j�j� C jP�j� C jP�j� / dt

� 1
�

:

By Definition 2.7, the right-hand side of the last estimate is bounded by C j� j�1 if we assume
that k�k1�;t0 � C0 and khk�;1C��;t0

� 1, with � > 0. Hence, arguing as before, we easily con-
clude the bound

k NM2k
�0
�;�;t0

� C:

This finishes the proof of the lemma.

The following corollary follows immediately from Lemma 4.1 by choosing � D �.n/ to
be any number in .1

2
; �0/ and t0 < 0 so that C jt0j�.�0��/ < 1

2
. Let also � < min¹2� � 1; º,

where  2 .0; 1/ is a positive number determined by Lemma 5.1.

Corollary 4.1. Let � D nC 2 and let � D �.n/ 2 .1
2
; 1/, t0 < 0, � be as above. Then

there exist uniform constants t0 < 0 and C > 0, depending on dimension n, such that for any
.h; �/ 2 K, we have

kz1�pMk��;�;t0 � C jt0j
�.�0��/:

For the remaining of the subsection we will fix the parameters �; � and � as in Corol-
lary 4.1. We will next establish an L1 bound on  

z
which will be used very frequently in the

rest of the article.
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Claim 4.1. For any function  on R � .�1; t0�, we have

(4.7)
 z


L1t0

� C jt0j
1
2
��
k k��;2;�;t0

for a universal constant C . Hence, under the assumption k k�
�;2;�;t0

� 1,

(4.8)
 z


L1t0

� C jt0j
1
2
��

and it can be made sufficiently small by taking jt0j sufficiently large.

Proof. Recalling the definitions of our norms from Section 2.2, we have

(4.9)
 z �¹jxj��.t/º


L1t0

� C jt0j
��
k k��;2;�;t0 :

On the other hand for any � � t0 � 1, on ƒ� D R � Œ�; � C 1� we have z �¹jxj��.t/º

L1.ƒ� /

� j� j��k k��;2;�;t0kz
�1
kL1.ƒ�\¹jxj��.t/º/:

To estimate kz�1kL1.ƒ�\¹jxj��.t/º/, we observe that

min
¹jxj��.t/º

z.x; t/ � min
¹0<x��.t/º

w.x � �.t// D w.�.t// � C jt j�
1
2

since (7.2) holds. Hence, kz�1kL1.ƒ�\¹jxj��.t/º/ � C j� j
1
2 . It follows that

kz�1 kL1.ƒ�\¹jxj��.t/º/ � C j� j
1
2
��
k k��;2;�;t0

implying the bound

(4.10)
 z �¹jxj��.t/º


L1t0

� C jt0j
1
2
��
k k��;2;�;t0 :

The claim now follows from estimates (4.9)–(4.10) and our assumption k k�
�;2;�;t0

� 1.

We will next estimate the norm of the term .1 � àt /N. / in (2.6).

Lemma 4.2. There exist uniform constants t0 < 0 and C > 0, depending on dimen-
sion n, such that for any functions .h; �/ 2 K and  2 ƒ, we have

kz1�p.1 � àt /N. /k��;�;t0 � C jt0j
1
2
��
k k��;2;�;t0 :

Proof. We write N. / D N1. /CN2. /, where

N1. / D . Qz C  /
p
� Qzp � p Qzp�1 ; N2. / D p z

p�1Œ.1C �/p�1 � 1�:

To estimate kz1�p.1 � àt /N1. /k��;�;t0 , we begin by observing that

(4.11) z1�pN1. / D .1C �/
p�1
Qz

��
1C

 

Qz

�p
� 1 � p

 

Qz

�
D p.1C �/p�1 A. /
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where

A. / D

Z 1

0

��
1C s

 

Qz

�p�1
� 1

�
ds:

By (4.8) we have

(4.12) jA. /j � C.p/
j j

Qz
� C
j j

z

and therefore we conclude the bound

kz1�pN1. /k
�
�;�;t0

� Ck k�;�;t0

 z

L1t0

� C jt0j
1
2
��
k k�;2;�;t0 :

It remains to estimate z1�pàtN1. /. Differentiating (4.11) in t , we get

(4.13) àtN1. / D pàt Qzp�1 A. /„ ƒ‚ …
DWN11

C p Qzp�1àt A. /„ ƒ‚ …
DWN12

C p Qzp�1 àtA. /„ ƒ‚ …
DWN13

:

Using (4.12) we obtain, similarly as before, the bounds

jz1�pN11j � C.j P�j C j P�j/j j
j j

z
; jz1�pN12j � C jàt j

j j

z
:

To estimate the term jz1�pN13. /j, we first observe that since j j
Qz
< 1
2

by (4.8) and jt0j � 1,
we have

jàtA. /j � C
j Qzàt � Qzt j

Qz2

Z 1

0

�
1C s

 

Qz

�p�2
s ds(4.14)

� C
jàt j C .j P�j C j P�j/j j

z
:

Hence

(4.15) jz1�pN13. /j � C
j j

z
.jàt j C .j P�j C j P�j/j j/:

Combining the above estimates with (4.7) gives

kz1�pàtN1. /k��;�;t0 � C jt0j
1
2
��
k k��;2;�;t0

�
k k��;2;�;t0 C k.j

P�j C j P�j/ k��;�;t0

�
:

However, a direct computation shows that

(4.16) k.j P�j C j P�j/ k��;�;t0 � C jt0j
�1
�
kP�k1�;t0 C kP�k

1
�;t0

�
k k��;2;�;t0

where

k P�k1�;t0 � k�k
1
1;�;t0

� 1 and kP�k1�;t0 �
1

2
C k Phk1�;t0 �

1

2
C khk

�;1C�
1;�;t0

� 2:

Hence,
kz1�pàtN1. /k��;�;t0 � C jt0j

1
2
��
k k��;2;�;t0 :

Since k�k1
�;1;�;t0

� C0, a computation along the lines of the previous estimate also shows that

(4.17) kz1�p.1 � àt /N2. /k��;�;t0 � C jt0j
�1
k k��;2;�;t0 :

The proof of the lemma is now complete.
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Lemma 4.3. There exist t0 < 0 and C > 0, depending on dimension n, such that for
any functions .h; �/ 2 K and  2 ƒ, we have

(4.18) k NE. /k��;�;t0 � C
�
jt0j
�.�0��/ C jt0j

1
2
��
k k��;2;�;t0

�
:

Proof. Let Q. / be as in (2.6). The estimate of the error term N. / given in Lem-
ma 4.2, the estimate of the correction term C. / given in Corollary 3.2, and the bound

kz1�p àtzp�1k��;�;t0 � Ckj P�j k
�
�;�;t0

� C jt0j
�1
k k��;2;�;t0

(where we have used the L1 bound on  given by Lemma 3.2) yield

(4.19) kQ. /k��;�;t0 � C jt0j
1
2
��
k k��;2;�;t0 :

This combined with the estimate in Lemma 4.1 easily imply (4.18).

We will next show the Lipschitz property of E. / with respect to  .

Lemma 4.4. There exist t0 < 0 and C > 0, depending on dimension n, such that for
any functions .h; �/ 2 K and  1;  2 2 ƒ, we have

(4.20) kE. 1/ �E. 2/k��;�;t0 � C jt0j
1
2
��
k 1 �  2k��;2;�;t0 :

Proof. We begin by observing that the bound

kC. 1; t / � C. 2; t /k��;�;t0 �
Cp
jt0j
k 1 �  2k�;2;�;t0

follows similarly as the bound in Corollary 3.2.
All the other estimates are similar to those in Lemma 4.2, so we will omit most of the

details. Using the notation in the proof of Lemma 4.2, let us look at the estimate of the term

jz1�p.N13. 
1/ �N13. 

2//j � C
�
j 1 �  2jjàtA. 1/j C j 2jjàtA. 1/ � àtA. 2/j

�
:

By (4.14) we have

j 1 �  2jjàtA. 1/j � C
j 1 �  2j

z

�
jàt 1j C .j P�j C j P�j/j 1j

�
hence, by (4.8) applied to 1 �  2, (4.16) and the assumed bounds on h; � and , we conclude

kj 1 �  2jjàtA. 1/jk��;�;t0 � C jt0j
1
2
��
k 1 �  2k��;2;�;t0 :

To estimate the last term, we set

I. / D

Z 1

0

.1C s Qz�1 /p�2s ds

so that
j 2jjàtA. 1/ � àtA. 2/j � ƒ1 Cƒ2
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where

ƒ1 D j 
2
j
j Qzàt 1 � àt Qz 1j

Qz2
jI. 1/ � I. 2/j

and

ƒ2 D j 
2
j
j Qzàt . 1 �  2/ � àt Qz. 1 �  2/j

Qz2
jI. 2/j:

The bound

kƒ2k
�
�;�;t0

� C jt0j
1
2
��
k 1 �  2k��;2;�;t0

follows by similar arguments as before. For the other term we have

kƒ1k
�
�;�;t0

� C

 2z

L1t0

kjàt 1j C .j P�j C j P�j/j 1jk��;�;t0kI. 
1/ � I. 2/kL1t0

where

kQz�1 2kL1t0
� C jt0j

1
2
��

by (4.8) and

kjàt 1j C .j P�j C j P�j/j 1jk��;�;t0 � C

by (4.16) and the assumed bounds on  , h and �. On the other hand, applying (4.7) to  1 �  2

and using that j j
Qz
< 1
2

(by (4.8) and jt0j � 1), we obtain

kI. 1/ � I. 2/kL1t0
� C

 1 �  2Qz


L1t0

� C jt0j
1
2
��
k 1 �  2k�;2;�;t0 :

Combining the above gives us the bound

kƒ2k
�
�;�;t0

� C jt0j
1
2
��
k 1 �  2k��;2;�;t0 :

All other bounds can be obtained similarly.

We will now show the Lipschitz property of the error term M with respect to h and �.

Lemma 4.5. There exist t0 < 0 and C > 0, depending on dimension n, such that for
any functions h; hi ; �; �i 2 K, i D 1; 2, we have

(4.21) k.z1/1�p.M.h1; �/ �M.h2; �//k��;�;t0 � C jt0j
��
kh1 � h2k

�;�C1
1;�;t0

and

(4.22) kz1�p.M.h; �1/ �M.h; �2//k��;�;t0 � C jt0j
��1
k�1 � �2k11;�;t0 :

Proof. The estimates follow by direct (yet tedious) calculation, along the lines of the
proof of Lemma 4.1. Set

zi .x; t/ WD w.x C �i .t//„ ƒ‚ …
DWwi2

C w.x � �i .t//„ ƒ‚ …
DWwi1

:
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For the reason of dealing with even functions we restrict ourselves to the region x � 0, where
wi2 � w

i
1 � z

i . Using the notation of Lemma 4.1, we have

j.z1/1�pŒM1.h
1; �/ �M1.h

2; �/�j

D .z1/1�p.1C �/p
�
w12

Z 1

0

.w11 C sw
1
2/
p�1 ds � w22

Z 1

0

.w21 C sw
2
2/
p�1 ds

�
C .z1/1�p.1C �/pŒ�.w12/

p
C .w22/

p�

D .z1/1�p.1C �/p
�
.w12 � w

2
2/

Z 1

0

.w11 C sw
1
2/
p�1 ds C ..w22/

p
� .w12/

p/

�
C .z1/1�p.1C �/pw22

Z 1

0

..w11 C sw
1
2/
p�1
� .w21 C sw

2
2/
p�1/ ds:

From the bound
jw12 � w

2
2j

w22
� C jh1.t/ � h2.t/j; i D 1; 2;

we conclude the estimate

j.z1/1�pŒM1.h
1; �/ �M1.h

2; �/�j � Cw22jh1 � h2j:

Having the above estimate, a similar computation as in Lemma 4.1 implies

k.z1/1�p.M1.h
1; �/ �M1.h

2; �//k��;�;t0 � C jt j
��
kh1 � h2k

�
1;t0

:

For the M2 term we have

.z1/1�pjM2.h
1; �/ �M2.h

2; �/j � C j�j
�
..w11/

p
� .w21/

p/C ..w12/
p
� .w22/

p/
�

� C j�jjh1 � h2jw.x � �1/

implying

k.z1/1�p.M2.h
1; �/ �M2.h

2; �//k��;�;t0 � C jt j
��1��

kh1 � h2k
�
1;t0

:

To conclude (4.21) we observe that � < 1 and

kh1 � h2k
�
1;t0
� kh1 � h2k

�;�C1
1;�;t0

:

Finally,to show the Lipschitz property of M in �, we use the bounds

j.z1/1�p.M.h; �1/ �M.h; �2//j � C j�1 � �2jw1

and
j�1 � �2j � jt0j

�1
k�1 � �2k11;t0 � jt0j

�1
k�1 � �2k11;�;t0 ;

implying that

k.z1/1�p.M.h; �1/ �M.h; �2//k��;�;t0 � C jt j
��1
k�1 � �2k11;�;t0 :

We will show the Lipschitz property of the error term

QE. /.h; �/ WD .1 � àt /N. / � p àtzp�1 � zp�1.c1.t/z C c2.t/ Nz/

with respect to h and �.
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Lemma 4.6. There exist t0 < 0 and C > 0, depending on dimension n, so that for any
functions  2 ƒ, h; hi ; �; �i 2 K, i D 1; 2, we have

(4.23) k.z1/1�p. QE. /.h1; �/ � QE. /.h2; �//k��;�;t0 � C jt0j
��
kh1 � h2k

�;�C1
1;�;t0

and

(4.24) kz1�p. QE. /.h; �1/ � QE. /.h; �2//k��;�;t0 � C jt0j
�1
k�1 � �2k11;�;t0 :

Proof. The estimates again follow from a direct (yet tedious) calculation, along the lines
of the proof of Lemma 4.2. For example, regarding the termN13, as in the proof of Lemma 4.2,
we have

j.z1/1�pN13. /.h
1; �/ � .z2/1�pN13. /.h

2; �/j

� C j j

ˇ̌̌̌Z 1

0

��
1C s

 

Qz1

�p�2 . t Qz1 �  . Qz1/t /
. Qz1/2

�

�
1C s

 

Qz2

�p�2 . t Qz2 �  . Qz2/t /
. Qz2/2

�
s ds

ˇ̌̌̌
� C j j

j t Qz
1 �  . Qz1/t j

. Qz1/2

Z 1

0

ˇ̌̌̌�
1C s

 

Qz1

�p�2
�

�
1C s

 

Qz2

�p�2 ˇ̌̌̌
s ds

C C j j

ˇ̌̌̌
 t

�
1

Qz2
�
1

Qz1

�
�  

�
. Qz2/t

. Qz2/2
�
. Qz1/t

. Qz1/2

�ˇ̌̌̌ Z 1

0

�
1C s

 

Qz2

�p�2
s ds

� C j jjh1 � h2j

�
j t j

Qz1
C
j j

Qz1
.j P�1j C j P�2j C j P�j/

�
:

Now it easily follows (similarly as in the proof of Lemma 4.2) that for  2 ƒ, we have

k.z1/1�pN13. /.h
1; �/ � .z2/1�pN13. /.h

2; �/k��;�;t0

� C jt0j
1
2
����

kh1 � h2k
�
1;t0
k k��;�;t0

� C jt0j
1
2
����

kh1 � h2k
�;�C1
1;�;t0

:

All other terms in E. / can be estimated similarly and estimate (4.23) follows.
Let us now look at the contraction of E. / in �. For example, we have

jz1�p.N13. /.h; �
1/ �N13. /.h; �

2//j

� C j j

ˇ̌̌̌
.1C �1/p�1

�
 t

.1C �1/z
�  

.1C �1/ Pz C P�1z

.1C �1/2z2

�Z 1

0

�
1C s

 

.1C �1/z

�p�2
s ds

� .1C �2/p�1
�

 t

.1C �2/z
�  

.1C �2/ Pz C P�2z

.1C �2/2z2

�Z 1

0

�
1C s

 

.1C �2/z

�p�2
s ds

ˇ̌̌̌
� C j jj�1 � �2j

�
j t j C j j C j j.j P�j C j P�1j/

z

�
C C
j j

z

�
j P�1 � P�2j C j P�jj�

1
� �2j

�
:

This easily implies (as in the proof of Lemma 4.2) the bound

kz1�p.N13. /.h; �
1/ �N13. /.h; �

2//k��;�;t0 � C jt0j
� 1
2
��
k�1 � �2k11;�;t0k k

�
�;2;�;t0

:

Furthermore,

jz1�p.N12. /.h; �1/ �N12.h; �2//j � C j t jj�
1
� �2j

�
1C
j j

z

�
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44 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

implying that

kz1�p.N12. /.h; �
1/ �N12.h; �

2//k��;�;t0 � C jt0j
�1
k�1 � �2k

1
1;�;t0
k k��;2;�;t0 :

The other terms in E. / can be estimated similarly and estimate (4.24) follows by recalling
that k k�

�;2;�;t0
� 1 for all  2 ƒ.

4.2. Proof of Proposition 4.1. In this subsection we give the proof of Proposition 4.1
which claims the existence of a solution to the auxiliary equation (2.14) with the desired
properties. We fix .h; �/ 2 K and we show that A W X \ƒ! X \ƒ, given by (2.14) defines
a contraction and then use the fixed point theorem.

(a) There exists a universal constant t0 < 0 for whichA.X \ƒ/ � X \ƒ. Indeed,
assume that  2 X \ƒ. By Proposition 3.4 we have

kA. /k��;2;�;t0 D kT .
NE. /k��;2;�;t0 � Ck

NE. /k��;�;t0

given that NE. / satisfies the orthogonality conditions (2.9) and (2.10). In addition, it is easy to
see that for the second term on the right-hand side in (2.12), we have

kc1.t/z C c2.t/ Nzk
�
�;�;t0

� CkE. /k��;�;t0 :

Hence,
kA. /k��;2;�;t0 D kT .

NE. /k��;2;�;t0 � CkE. /k
�
�;�;t0

:

Combining the last estimate with (4.18) and the bound k k�
�2;�;t0

� 1, we get

kA. /k��;2;�;t0 � 1

if jt0j is chosen sufficiently large.

(b) There exists a universal constant t0 < 0 for which A W X \ƒ! X \ƒ defines
a contraction map. For any  1;  2 2 X \ƒ, Proposition 3.4 implies the bound

kA. 1/ � A. 2/k��;2;�;t0 D kT .
NE. 1/ � NE. 2//k��;2;�;t0 � Ck

NE. 1/ � NE. 2/k��;�;t0 :

Similarly as above, we have

k NE. 1/ � NE. 2/k��;�;t0 � CkE. 
1/ �E. 2/k��;�;t0 :

The last two estimates with (4.20) yield the contraction bound

kA. 1/ � A. 2/k��;2;�;t0 � qk 
1
�  2k��;2;�;t0

with q < 1, provided that jt0j is chosen sufficiently large.

The above discussion and the fixed point theorem readily imply the existence of a unique
fixed point  D ‰.h; �/ 2 X \ƒ of the map A.

We will now continue with the proofs of (4.5) and (4.6).
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 45

(c) There exists a t0 < 0 such that for any .h1; �/; .h2; �/ 2 K , (4.5) holds. Since �
is fixed, we will omit denoting the dependence on �. For simplicity we set  1 D ‰.h1; �/ and
 2 D ‰.h2; �/. The estimate will be obtained by applying estimate (3.20). However, because
each  i satisfies the orthogonality conditions (2.9) and (2.10) with

�.t/ D � i .t/ WD
1

2
log.2bjt j/C hi .t/;

the difference  1 �  2 does not satisfy an exact orthogonality condition. To overcome this
technical difficulty, we will consider instead the difference Y WD  1 � N 2, where

N 2.x; t/ D  2.x; t/ � �1.t/w
0.x � �1.t// � �2.t/w.x � �

1.t//

with

�1.t/ D

Z
 2.x � �1.t/; t/w0.x/wp�1dx;

�2.t/ D

Z
 2.x � �1.t/; t/w.x/wp�1dx:

Clearly, Y satisfies the orthogonality conditions (2.9) and (2.10) with �.t/ D �1.t/. Denote by
L1t the operator

L1t Y WD p.z
1/p�1àtY � ŒàxxY � Y C p.z1/p�1Y �:

Since each of the  i satisfies equation (2.14), it follows that Y WD  1 � N 2 satisfies

L1t Y DM.h
1/ �M.h2/C .z1/p�1. OE. 1; h1/ � OE. 2; h2//

� L1t . 
2
� N 2/C ..z2/p�1 � .z1/p�1/.1 � àt / 2

where for i D 1; 2, we denote by M i WDM.hi / and by

OE. i ; hi / WD .z1/1�p
�
.1 � àt /N. i / � p iàt .zi /p�1 � .zi /p�1.ci1.t/z

i
C ci2.t/ Nz

i /
�

with M.hi /, N. i / and ci1; c
i
2 defined in (2.7), (2.8) and (2.12) respectively.

We next observe that estimate (3.20) holds for any even solution Y of equation

L1t Y D .z
1/p�1f

as long as the solution Y itself, and not necessarily f , satisfies the orthogonality conditions
(2.9) and (2.10). Indeed, the a priori estimate

kY k��;2;�;t0 � C.kY k
�
�;�;t0

C kf k��;�;t0/

holds for any solution Y and the bound kY k��;�;t0 � Ckf k
�
�;�;t0

, based on the contradiction
argument given in Proposition 3.2 can be shown to hold for any even solution Y that satisfies
(2.9) and (2.10). Hence, we have

(4.25) kY k��;2;�;t0 � Ck.z
1/1�pL1t Y k

�
�;�;t0

:

Claim 4.2. We have

k.z1/1�pL1t Y k
�
�;�;t0

� C jt0j
1
2
��
kY k��;2;�;t0 C C jt0j

��
kh1 � h2k

�;�C1
1;�;t0

:
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46 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Proof. By (4.21), we have

k.z1/1�p.M.h1/ �M.h2//k��;�;t0 � C jt0j
��
kh1 � h2k

�;�C1
1;�;t0

:

Also, by combining (4.20) and (4.23), we have

k OE. 1; h1/ � OE. 2; h2/k��;�;t0 � C jt0j
1
2
��
k 1 �  2k��;2;�;t0 C C jt0j

��
kh1 � h2k

�;�C1
1;�;t0

:

Also, since k.1 � àt / 2k��;�;t0 � 2k 
2k�
�;2;�;t0

� 2,.z2/p�1 � .z1/p�1.z1/p�1
.1 � àt / 2

�
�;�;t0

� C jt0j
��
kh1 � h2k

�;�C1
1;�;t0

:

For the term L1t . 
2 � N 2/ we observe that since both w.x/ and w0.x/ are eigenfunctions of

the operator L0 given in (3.3), and w.x/ and all its derivatives are bounded in R, we have

.z1/1�pjL1t . 
2
� N 2/j � C

2X
iD1

.j�i j C jP�i j C j�i jj P�
1
j/:

Let us now estimate j�i .t/j and j P�i .t/j. Using the orthogonality condition (2.9) satisfied by  2

(with � D �2), we have

j�1.t/j D

ˇ̌̌̌Z
R
. 2.x � �1/ �  2.x � �2//w0.x/wp�1 dx

ˇ̌̌̌
� C j.h1 � h2/.t/jk 2. � ; t /kL2 :

Similarly, one can see that

j P�1.t/j � C
�
j.h1 � h2/.t/jkàt 2. � ; t /kL2 C j. Ph

1
� Ph2/.t/jk 2. � ; t /kL2

�
:

The estimates for j�2.t/j and j P�2.t/j are the same. Combining the last estimates readily yields
the bound

k.z1/1�pjL1t . 
2
� N 2/k��;�;t0 � C jt0j

��
kh1 � h2k

�;�C1
1;�;t0

:

To finish the proof of the claim, we need to show that

k 1 �  2k��;2;�;t0 � kY k
�
�;2;�;t0

C C jt0j
��
kh1 � h2k

�;�C1
1;�;t0

:

Since k 1� 2k�
�;2;�;t0

� kY k�
�;2;�;t0

Ck�1w
0.x� �1/C�2w.x� �

1/k�
�;2;�;t0

, this estimate
readily follows from the previous bounds on �i .

The proof of (4.5) now readily follows by combining (4.25) and the above claim and
choosing jt0j sufficiently large.

(d) There exists t0 < 0 such that for any .h; �1/; .h; �2/ 2 K , (4.6) holds. This
proof is an easy consequence of (4.22), (4.20), (4.24) and (3.20), since for  1 D ‰.h; �1/
and  2 D ‰.h; �2/, we have

k 1 �  2k��;2;�;t0 D kT .
NE. 1; �1// � T . NE. 2; �2//k��;2;�;t0

where now the operator T depends only on h (not the �i ) and h is fixed.
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Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 47

5. Solving for � and �

We recall the definition of K given by (4.1). In the previous section we have established
that for any given .h; �/ 2 K, there exists a solution  D ‰.h; �/ of the auxiliary equation
(2.14). Recall that c1.t/ and c2.t/ are chosen so that the error term

NE. / WD E. / � .c1.t/z C c2.t/ Nz/

satisfies the orthogonality conditions (2.9) and (2.10) whenever  does. The error term E. /

is given by (2.6). Thus  D ‰.h; �/ defines a solution to our original equation (2.5) if we
manage to adjust the parameter functions .h; �/ in such a way that c1 � 0 and c2 � 0. This is
equivalent to choosing .h; �/ so that Z 1

�1

E. /wp.x C �.t// dx D 0;(5.1) Z 1
�1

E. /w0.x C �.t//wp�1.x C �.t// dx D 0:(5.2)

In fact, the main result in this section is the following.

Proposition 5.1. There exists .h; �/ 2 K such that (5.1)–(5.2) are satisfied. It follows
that the solution  D ‰.h; �/ of the auxiliary equation (2.14) given by Proposition 4.1 defines
a solution of our original equation (2.5) and Theorem 1.1 holds.

5.1. Computation of error projections. The proof of Proposition 5.1 is based on care-
ful expansions for the projections of the error terms (given by the left-hand sides of (5.1)
and (5.2)) which lead us to a system of ODE for the functions � WD �.t/ and � WD �.t/. We will
then solve this system by employing the fixed point theorem. We will see that the main order
terms in the system are all coming from the projections of the term z1�pM in (2.6). Let us first
expand these projections in terms of � , � and their derivatives.

Lemma 5.1 (Projections of the error term M ). We haveZ 1
�1

Mwp.x C �/z1�p dx D c1

�
P� �

p � 1

p
� � ae�2�

�
CR1.�; P�; �; P�/

and Z 1
�1

Mw0.x C �/wp�1.x C �/z1�pdx D c2. P� C be
�2�/CR2.�; P�; �; P�/

where c1; c2 are universal constants and

(5.3) a D
.p � 1/

R1
0 wpex dx C p

R 0
�1

wpex dx

p
R
wpC1 dx

and b D

R1
0 wpe�x dx

p
R
w02wp�1 dx

:

Moreover,
kRi .�; P�; �; P�/k

1C
�;t0
� C for i 2 ¹1; 2º;

and for some 0 <  < 1 that depends on dimension only.

Proof. We will use the notation of previous sections. Let us writeM DM1CM2CM3

with
M1 D .1C �/

p..w1 C w2/
p
� w

p
2 /; M2 D �.1C �/

pw
p
1
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48 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

and

M3 D ..1C�/
p
� .1C�//.w

p
1 Cw

p
2 /„ ƒ‚ …

DWM31

�p.1C�/p�1 P�zp„ ƒ‚ …
DWM32

�p.1C�/pzp�1 P�.àxw2�àxw1/„ ƒ‚ …
DWM33

:

We first compute the expansion of the term
R
z1�pMw

p
2 dx. We haveZ 1

�1

M1

w
p
2

zp�1
dx D p.1C �/p

Z 1
�1

�
w1

Z 1

0

.w2 C sw1/
p�1 ds

�
w
p
2

zp�1
dx

D p.1C �/p
�Z 1
�1

w
p�1
2 w1

w
p
2

zp�1
dx

C .p � 1/

Z 1
�1

Œw21

Z 1

0

.w2 C sw1/
p�2.1 � s/ds�

w
p
2

zp�1
dx

�
where we have used the notation Nw.x/ WD w.x/C w.x � 2�/. We next analyze the terms on
the right-hand side of the last equation. For the first term we haveZ 1

�1

w
p�1
2 w1

w
p
2

zp�1
dx D

Z 1
�1

wp�1w.x � 2�/
wp

Nwp�1
dx

D

Z
x�2�

w.x � 2�/wp dx C g1.2�/

D e�2�
Z
x�2�

exwp dx C g1.2�/

D e�2�
Z 1
�1

exwp dx C g1.2�/

where we denote by g1.2�/ various error terms having the following decay:

jg1.2�/j � Ce
�.1C/2� ; with 0 <  < 1:

The other term turns out to be of a lower order and absorbable in g1.2�/. To see that, since
w2 � w1 for x > 0 and w1 � w2 for x < 0, we haveZ
w21

w
p
2

zp�1

�Z 1

0

.w2 C sw1/
p�2.1 � s/ ds

�
dx � C

Z
x�0

w1w
p
2 dx C C

Z
x�0

w21w
p�1
2 dx

� g1.2�/:

For the term M2 we have

�

Z 1
�1

M2

w
p
2

zp�1
dx D .1C �/p

Z 1
�1

wp.x � 2�/

Nwp�1
wp dx

D

Z 2�

0

wp.x � 2�/w dx C g2.2�; �/

D

Z 0

�2�

wpw.y C 2�/ dy C g2.2�; �/

D e�2�
Z 0

�1

wpe�y dy C g2.2�; �/

D e�2�
Z 1
0

wpex dx C g2.2�; �/

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM



Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow 49

where we denote by g2.2�; �/ various error terms having the following behavior:

jg2.2�; �/j � Ce
�2�.e�2� C j�j/; with  > 0:

Furthermore, Z
M31

w
p
2

zp�1
dx D Œ.1C �/p � .1C �/�

�Z 1
�1

w2p Nw1�p dx

C

Z 1
�1

wpwp.x � 2�/ Nw1�p dx

�
D .p � 1/�

Z 1
�1

w2p Nw1�p dx C g3.2�; �/

D .p � 1/�

Z 1
�1

wpC1 dx C g3.2�; �/

where we denote by g3.2�; �/ various error terms with the behavior

jg3.2�; �/j � C
�
e�2�.e�2� C j�j/C j�j2

�
; with  > 0:

Also, Z 1
�1

M32

w
p
2

zp�1
dx D p.1C �/p�1 P�

Z 1
�1

zw
p
2 dx

D p P�

Z 1
�1

wpC1 dx C g4.2�; P�/

with jg4.2�; P�/j � Ce�2� j P�j, andZ 1
�1

M33

w
p
2

zp�1
dx D p.1C �/p P�

Z 1
�1

.àxw2 � àxw1/w
p
2 dx

D p P�

Z 1
�1

w0.x � 2�/wp dx C g5.2�; P�; �/

D g5.2�; P�; �/

with
jg5.2�; P�; �/j � C.e

�2�.j�j C j P�j/C jP�jj�j/:

Combining the previous estimates for M1;M2;M3, we obtainZ 1
�1

M
w
p
2

zp�1
dx D �p

�
P� �

p � 1

p
�

�Z 1
�1

wpC1 dx(5.4)

C e�2�
�
.p � 1/

Z 1
0

exwp dx C p

Z 0

�1

exwp dx

�
CR1.�; P�; �; P�/

where

(5.5) jR1.�; P�; �; P�/j � C.e
�2�.e�2� C j�j C j P�j C j P�j/C j�j.j P�j C j�j C j P�j//:
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50 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Let us now expand
R
Mz1�pàxw2w

p�1
2 dx. Similarly as before, analyzing term by term

we obtainZ 1
�1

M1àxw2
w
p�1
2

zp�1
dx D p.1C �/p

Z 1
�1

w
p�1
2 w1àxw2

w
p�1
2

zp�1
dx CR2.�; P�; �; P�/

D p

Z
x�2�

wp�1w0w.x � 2�/ dx CR2.�; P�; �; P�/

D pe�2�
Z 1
�1

wp�1w0ex dx CR2.�; P�; �; P�/

D �e�2�
Z 1
�1

wpex dx CR2.�; P�; �; P�/

where by R2.�; P�; �; P�/ we have denoted various error terms that have the same behavior as
in (5.5). Also,

�

Z 1
�1

M2àxw2
w
p�1
2

zp�1
dx D .1C �/p

Z
wp.x � 2�/

Nwp�1.x/
w0wp�1 dx

D

Z 2�

0

wp.x � 2�/w0 dx CR2.�; P�; �; P�/

D

Z 0

�2�

wpw0.y C 2�/ dy CR2.�; P�; �; P�/

D �e�2�
Z 1
0

wpex dx CR2.�; P�; �; P�/

where R2.�; P�; �; P�/ is the error term satisfying (5.5). Next, using that
R
w0wp dx D 0 and that

1 �

�
w

Nw

�p�1
�

´
C.p/.1 � w

Nw
/ for x < �,

1 otherwise,
we obtainZ 1

�1

M31àxw2
w
p�1
2

zp�1
dx D .p � 1/�

Z 1
�1

wpw0
wp�1

Nwp�1
dx CR2.�; P�; �; P�/

D .p � 1/�

Z 1
�1

��
w

Nw

�p�1
� 1

�
w0wp dx CR2.�; P�; �; P�/

D R2.�; P�; �; P�/

where R2.�; P�; �; P�/ satisfies (5.5). Using again that
R
w0wp dx D 0, we obtainZ 1

�1

M32àxw2
w
p�1
2

zp�1
dx D p.1C �/p�1 P�

Z 1
�1

Nww0wp�1 dx

D p P�

Z 1
�1

w.x � 2�/w0wp�1 dx

D R2.�; P�; �; P�/:

Finally, Z
M33àxw2

w
p�1
2

zp�1
dx D p.1C �/p�1 P�

Z
.w0.x/ � w0.x � 2�//w0wp�1 dx

D p P�

Z 1
�1

.w0/2wp�1 dx CR2.�; P�; �; P�/:
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Combining the above estimates, we conclude the boundZ 1
�1

Màxw2
w
p�1
2

zp�1
dx D �p P�

Z 1
�1

.w0/2wp�1 dx(5.6)

� e�2�
Z 1
0

wpe�x dx CR2.�; P�; �; P�/:

Combining (5.4), (5.6) and (5.5) finishes the proof of the lemma.

As an immediate corollary of the previous lemma we obtain:

Corollary 5.1. SetQ. / WD E. / �Mz1�p. With the same notation as in Lemma 5.1,
equations (5.1) and (5.2) are equivalent to the system

(5.7) P� �
p � 1

p
� � ae�2� D R1.�; P�; �; P�/CG1. ; �; �/

and

(5.8) P� C be�2� D R2.�; P�; �; P�/CG2. ; �; �/

where

G1. ; �; �/ WD c
�1
1

Z 1
�1

Q. /wp.x C �/ dx

and

G2. ; �; �/ WD c
�1
2

Z 1
�1

Q. /w0.x C �/wp�1.x C �/ dx:

The error terms Ri .�; P�; �; P�/ satisfy

kRi .�; P�; �; P�/k
1C
�;t0
� C for i 2 ¹1; 2º:

Remark 5.1. If we look at the proof of Lemma 5.1, we can trace all the error terms we
have denoted by Ri .�; P�; �; P�/. Observe that

jà�Ri j C jà�Ri j � Ce
�2�.e�2� C jP�j C j�j C j P�j C 1/;(5.9)

jà P�Ri j C jàP�Ri j � C.e
�2�
C j�j/:

Our strategy in solving system (5.7)–(5.8) is as follows: For given � WD 1
2

log.2bjt j/C h
with khk�;�C11;�;t0

� 1, we will first find a solution �.�/ to (5.7) by the fixed point theorem.
The existence of .�; �/ will be given by plugging �.�/ in (5.8) and applying the fixed point
theorem once more.

5.2. Solving for �. In this subsection we will fix a function h on .�1; t0� with

khk
�;�C1
1;�;t0

� 1

and solve the equation

(5.10) P� �
p � 1

p
� D Fh.�; P�;  /

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM



52 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

where

(5.11) Fh.�; P�;  / WD ae
�2�
CR1.�; P�; �; P�/CG1. ; h; �/

and R1.�; P�; �; P�/, G1. ; h; �/ are as in Corollary 5.1. Recall that for any given .h; �/ 2 K,
 D ‰.h; �/ is the solution of (2.14), which was proved in Proposition 4.1. For simplicity we
will denote, most of the time, those functions as Fh, R1 and G1 respectively.

Let � D p�1
p

. A function � is a solution of equation (5.10) on .�1; t0� if

(5.12) A.�/.t/ WD �

Z t0

t

e�.t�s/Fh.�.s/; P�.s/;  .s// ds

satisfies A.�/ D �. We have the following result.

Proposition 5.2. For any fixed h 2 K there is an � D �.h/ 2 K so that A.�/ D �.
Moreover, for any h1; h2 2 K, we have

(5.13) k�.h1/ � �.h2/k11;�;t0 � C jt0j
�ı
kh1 � h2k

�;�C1
1;�;t0

where t0 < 0 and C are universal constants and ı > 0 is a small constant depending on �
and �.

Proof. Let A be the operator defined by (5.12).

(a) There exist a universal constant t0 < 0 so that K is invariant under A, namely
A.K/ � K . We will first show that for � D nC 2 and jt0j sufficiently large, we have

(5.14) sup
��t0

j� jjA.�/j � CkFhk
1
2;t0
� CkFhk

1
�;t0
:

Indeed, if t0 < �1, then for � < t0,

j� jjA.�/j � Ce�� j� j

Œt0���X
jD0

Z �CjC1

�Cj

e��sjFh.s/j ds

� CkFhk
1
2;t0
e�� j� j

Œt0���X
jD0

e��.�Cj /

j� C j j

� CkFhk
1
2;t0
e�� j� j

Z t0

�

e��s

jsj
ds

� CkFhk
1
2;t0

since

e�� j� j

Z t0

t

e��s

jsj
ds � C

for a uniform constant C . Denoting for simplicity by I� D Œ�; � C 1� and using (5.14), observe
that

kA.�/k11;�;t0 D sup
��t0�1

j� jkA.�/kL� .I� / C sup
��t0�1

j� j

 ddt A.�/

L� .I� /

(5.15)

� CkFhk
1
�;t0
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where C is a uniform constant. Next we want to use the previous estimate to show that
A.K/ � K, for an appropriately chosen constant C0. By (5.11) we have

kFhk
1
�;t0
WD sup

��t0�1

j� jkFhkL� .I� /

� sup
��t0�1

j� j
�
ake�2�kL� .I� / C kR1kL� .I� / C kG1kL� .I� /

�
:

Since � D 1
2

log.2bjt j/C h with khk�;1C�1;�;t0
� 1, we have

j� j�khkL1.I� / � 1:

Hence, for � < t0 � 1,

aj� jke�2�kL� .I� / �
a

2b
ke�2hkL1.I� / �

a

b

provided that jt0j is chosen sufficiently large so that ke�2hkL1.I� / � 2. Set

(5.16) C0 WD
2a

Cb

where C is the same constant as in (5.15) and constants a and b are defined in (5.3). This
implies that C0 is a universal constant depending only on the dimension n. We claim that

(5.17) kFhk
1
�;t0
�
C0

2
C C jt0j

�ı ; ı > 0:

To show this claim, we recall that by Corollary 5.1 we have

sup
��t0�1

j� jkR1kL� .I� / � C jt0j
� ;

so we only need to show that

sup
��t0�1

j� jkG1kL� .I� / � C jt0j
�ı

for some ı > 0. To this end, we recall that

kG1kL� .I� / D

�Z �C1

�

�Z 1
�1

Q. /w
p
2 dx

��
dx

� 1
�

where Q. / WD E. / � z1�pM is given in (2.6). To establish the above bound, we estimate
term by term similarly as in the proof of Lemma 4.2. For example, for the term z1�pN13 which
is given in (4.13) and satisfies estimate (4.15), if we also use that w2 � z, we have�Z �C1

�

�Z 1
�1

N13
w
p
2

zp�1
dx

��
dt

� 1
�

� C

�Z �C1

�

�Z 1
�1

j j.j t j C j P�j C j P�jj j/w
p�1
2 dx

��
dt

� 1
�

Recalling that 2ˇ D p � 1 and using the bounds

k kL1.R�Œ�;�C1�/ � j� j
��
k k��;2;�;t0 � 1; w2 � z
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together with Hölder’s inequality, we obtain�Z �C1

�

�Z 1
�1

N13
w
p
2

zp�1
dx

��
dt

� 1
�

� C

�Z �C1

�

�Z
jxj��

j jj t jz
nˇ��
� w

p�nˇ
�

2 dx

��
dt

� 1
�

C C

�Z �C1

�

�Z
jxj��

j jj t jz
2ˇC�w��2 dx

��
dt

� 1
�

C C j� j�1��

� C

�Z �C1

�

Z 1
�1

j t j
�˛� dx dt

� 1
�

.j� j�� C j� j��C� /C C j� j�1��

� C j� j�2�C�

� C j� j�1�ı

for some ı > 0 and sufficiently small � . Similar bounds hold for all the other terms which
readily give the bound for kG1kL� .I� /.

The above discussion establishes the bound (5.17). Using this bound, we finally obtain

kA.�/k11;�;t0 � CkFhk
1
�;t0
�
C0

2
C C jt0j

�ı
�
2

3
C0 < C0

provided that jt0j is sufficiently large. We conclude that A.K/ � K, where C0 is the universal
constant on the right-hand side of (5.17), finishing the proof of (a).

(b) There exists a universal constant t0 < 0 for whichA W K ! K defines a contrac-
tion map. Since h is fixed, we only write in Fh;R1 and G1 their dependence on  and �. As
in part (a), for every �1; �2 2 K, if  i D ‰.h; �i /, we have

kA.�1/ � A.�2/k11;�;t0 � CkFh.�
1; P�1;  1/ � Fh.�

2; P�2;  2/k1L�t0
(5.18)

� C
�
kR1.�

1; P�1/ �R1.�
2; P�2/k1L�t0

C kG1.�
1;  1/ �G1.�

2;  2/k1L�t0

�
:

Observe first, using (5.9), that

jR1.�
1; P�1/ �R1.�

2; P�2/j � C

ˇ̌̌̌Z �2

�1
à�R1.�; P�

1/ d�

ˇ̌̌̌
C

ˇ̌̌̌Z P�2
P�1
à P�R.�2; P�/ d P�

ˇ̌̌̌
� C

�Z �2

�1
e�2�.e�2� C jP�j C j�j C j P�j C 1/ d�

C

Z P�2
P�1
.e�2� C j�2j/ d P�

�
implying that

(5.19) kR1.�
1; P�1/ �R1.�

2; P�2/k1�;t0 �
C

jt0j
k�1 � �2k11;�;t0 :
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Furthermore, we claim

kG1.�
1;  1/ �G1.�

2;  2/k1�;t0 � kG1.�
1;  1/ �G1.�

2;  1/k1�;t0

C kG1.�
2;  1/ �G1.�

2;  2/k1�;t0

where

(5.20) kG1.�
1;  1/ �G1.�

2;  1/k1�;t0 � C jt0j
�2�C�

k�1 � �2k11;�;t0

and

kG1.�
2;  1/ �G1.�

2;  2/k1�;t0 � C jt0j
1�2�C�

k 1 �  2k��;2;�;t0(5.21)

� C jt0j
�2�C�

k�1 � �2k11;�;t0 :

To establish (5.20), as in part (a) let us look at the term coming from z1�pN13. /. Using the
estimate of this term obtained in the proof of Lemma 4.6 and a similar analysis as in part (a),
we obtain

sup
��t0�1

j� j

�Z �C1

�

�Z
.N13. 

1/.�1/ �N13. 
1/.�2//

w
p
2

zp�1
dx

��
dt

� 1
�

� C jt0j
�2�C�

k�1 � �2k11;�;t0

where we used that k 1k�
�;2;�;t0

� 1 and that .h; �i / 2 K. All other terms in (5.20) can be esti-
mated similarly, so estimate (5.20) follows. To establish (5.21) one argues similarly as above
using the established bounds in the proof of Lemma 4.4 and in (4.6). Recall that � > 1

2
and

� > 0 is small. Then combining (5.18)–(5.21) and taking jt0j sufficiently large yields the con-
traction bound

(5.22) kA.�1/ � A.�2/k11;�;t0 �
1

2
k�1 � �2k11;�;t0 :

This finishes the proof of part (b).

Having (a) and (b), we may apply the fixed point theorem to the operator A W K ! K to
conclude the existence of an � D �.h/ 2 K so that A.�/ D �.

(c) For any h1; h2 2 K , (5.13) holds. Since A.�/ D �, we have

�.h/ D

Z t0

t

e�.t�s/Fh.s/ ds:

Hence, similarly as in the proof of (5.14),

sup
��t0�1

j� jj�.h1/ � �.h2/j � CkFh1 � Fh2k
1
2;t0
� CkFh1 � Fh2k

1
�;t0

which yields

(5.23) k�.h1/ � �.h2/k11;�;t0 � CkFh1 � Fh2k
1
�;t0
:

Recall that
Fh D ae

�2�
CR1.�; P�; �; P�/CG1. ; h; �/
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and � D �0 C h with �0.t/ D 1
2

log.2bjt j/ and jhj small. Applying that to h1 and h2, we get

ke�2.�0Ch
1/
� e�2.�0Ch

2/
k
1
�;t0
� C sup

��t0�1

�Z �C1

�

jh1 � h2j� dt

� 1
�

� jt0j
��
kh1 � h2k

�
�;t0
:

Next, using (5.9) and the notation �i D �.hi / D �.� i /, where � i D 1
2

log.2bjt j/C hi , we have

kR1.�
1; P�1; �1; P�1/ �R1.�

2; P�2; �2; P�2/k1�;t0

� C

Z �2

�1

ˇ̌̌̌
àR1

à�
.�; P�1; �1; P�1/

ˇ̌̌̌
d� C

Z P�2
P�1

ˇ̌̌̌
àR1

à P�
.�2; P�; �1; P�1/

ˇ̌̌̌
d P�

C

Z �2

�1

ˇ̌̌̌
àR1

à�
.�2; P�2; �; P�1/

ˇ̌̌̌
d�C

Z P�2
P�1

ˇ̌̌̌
àR1

à P�
.�2; P�2; �2; P�/

ˇ̌̌̌
d P�

1
�;t0

� C
�
jt0j
��
kh1 � h2k

�
�;t0
C jt0j

�1
k Ph1 � Ph2k

�C1
�;t0

C jt0j
�1
k�1 � �2k1�;t0 C jt0j

�1
k P�1 � P�2k1�;t0

�
� C jt0j

�ı
�
kh1 � h2k

�;1C�
1;�;t0

C k�.h1/ � �.h2/k11;�;t0

�
if ı < min¹1; �º. Finally, similarly to the estimates obtained in the proof of Proposition 5.2
and Lemma 4.6, if we denote for simplicity  i D  .hi ; �i / with �i D �.hi /, using (5.20) and
(5.21) we have

kG1. 
1; h1; �1/ �G1. 

2; h2; �2/k1�;t0

� kG1. 
1; h1; �1/ �G1. 

1; h2; �1/k1�;t0 C kG1. 
1; h2; �1/ �G1. 

1; h2; �2/k1�;t0

C kG1. 
1; h2; �2/ �G1. 

2; h2; �2/k1�;t0

� C
�
jt0j

1�2���C�
kh1 � h2k

�;1C�
1;�;t0

C jt0j
�2�C�

k�1 � �2k11;�;t0

C jt0j
1�2�C�

k 1 �  2k��;2;�;t0

�
� C

�
jt0j

1�2���C�
kh1 � h2k

�;1C�
1;�;t0

C jt0j
�2�C�

k�1 � �2k11;�;t0

C jt0j
1�2�C�

�
k .h1; �.h1// �  .h2; �.h1//k��;2;�;t0

C k .h2; �.h1// �  .h2; �.h2//k��;2;�;t0

��
� C

�
jt0j

1�2���C�
kh1 � h2k

�;1C�
1;�;t0

C jt0j
��C�

k�1 � �2k11;�;t0

�
where we have used (4.5) and (4.6). For the above estimate we only need to check that

kG1. 
1; h1; �1/ �G1. 

1; h2; �1/k1�;t0 � C jt0j
1�2���C�

kh1 � h2k
�;1C�
1;�;t0

:

Indeed, if we pick the term z1�pN13, using the estimates from the proof of Lemma 4.6 we
have

sup
��t0

j� j

�Z �C1

�

�Z 1
�1

jN13. 
1; �1/.h1/ �N13. 

1; �1/.h2/jw
p
2 z
1�p dx

��
dt

� 1
�

� C sup
��t0

j� j

�Z �C1

�

�Z 1
�1

j jjh1 � h2j.j � j C j j.j P�1j C j P�2j C j P�j//w
p�1
2 dx

��
dt

� 1
�

� C jt0j
1�2���C�

kh1 � h2k
�;1C�
1;�;t0

:
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Combining the estimates from above yields

kFh1 � Fh2k
1
2;t0
� C

�
jt0j
�ı
kh1 � h2k

�;1C�
1;�;t0

C jt0j
��C�

k�1 � �2k11;�;t0

�
where ı < min¹1; �; 1 � 2� � �C �º. Hence by (5.23) and choosing jt0j sufficiently large we
conclude the bound (5.13), finishing the proof of (c).

5.3. Solving for �. Recall that �.t/ D �0.t/C h.t/, �0.t/ D 1
2

log.2bjt j/. Moreover,
�0.t/ is a solution to the homogeneous part of equation (5.8), namely

P�0 C be
�2�0 D 0:

Using this last equation, we may rewrite equation (5.8) as follows:

(5.24) PhC
1

t
h D F.h/

where
F.h/ WD G3.h/CR2.�; P�; �; P�/CG2. ; h; �/

with G2. ; h; �/ as in Corollary 5.1 and

(5.25) G3.h/ WD �.G .�0 C h/ � G .�0/ �D�G .�0/h/; G .�/ D e�2� :

Equivalently, the left-hand side of (5.24) is the linearization of equation (5.8) around �0. We
can in fact write (5.24) as a fixed point for a left inverse of that operator. The equation

(5.26) PhC
1

t
h D g; h.t0/ D 0

is solved by the formula

(5.27) h.t/ WD T .g/ D jt j�1
Z t0

t

g.�/� d�

and then, writing

B.h/ WD T .F.h// D jt j�1
Z t0

t

sF.h/.s/ ds

it suffices to solve the fixed point problem h D B.h/ in a suitable region. Let us consider the
set

K0 D
®
h W .�1; t0�! R W khk�;1C�1;�;t0

� 1
¯
:

We have the following result.

Proposition 5.3. There exist a universal constant t0 < 0 and function h, khk�;�C11;�;t0
� 1,

so that B.h/ D h.

Proof. We will show that the map B leaves the sets invariant and that it is a contraction.

(a) There exists a universal constant t0 < 0 so that B.K0/ � K0. It is easy to see
that if t0 < 0 and � � 2, we have

(5.28) sup
��t0�1

j� j�jB.h/.�/j � CkF.h/k
1C�
2;t0

Brought to you by | Universidad de Chile
Authenticated

Download Date | 6/6/18 6:34 PM



58 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

for a universal constant C . Denote by I� D Œ�; � C 1�. Using (5.28), we observe that

kB.h/k
�;�C1
1;�;t0

D sup
��t0�1

j� j�kB.h/kL� .I� / C sup
��t0�1

j� j1C�
 ddt B.h/


L� .I� /

(5.29)

� CkF.h/k
1C�
�;t0

:

We will use this estimate to show that B.K0/ � K0. We have

kF.h/k
1C�
�;t0
D sup
��t0�1

j� j1C�kF.h/kL� .I� /

� C sup
��t0�1

j� j1C�
�
kR2kL� .I� / C kG2kL� .I� / C kG3kL� .I� /

�
:

A straightforward computation, recalling (5.25) shows that

kG3.h/kL� .I� / �
C

j� j
kh2kL� .I� /

implying (since khk�;1C�1;�;t0
� 1) the bound

(5.30) sup
��t0�1

j� j1C�kG3.h/kL� .I� / �
C

jt0j�
:

By Corollary 5.1 we have

(5.31) sup
��t0�1

j� j1C�kR2kL� .I� / �
C

jt0j��

where we choose� so that� <  . To establish the bound on sup��t0 j� j
1C�kG2.h/kL� .I� /, we

estimate term by term, similarly to the proof of Lemma 4.2. Similarly to deriving the estimate
for the term G1 in Section 5.2 we have

kG2kL� .I� / � C j� j
�2�C�

implying
kG2k

1C�
�;t0
� C j� j�2�C�C1C�

where we choose � < min¹; 2� � 1º and � > 0 is chosen small so that 2� � � � 1 � � > 0.
This together with (5.30) and (5.31) implies

kB.h/k
�;1C�
1;�;t0

� kF.h/k
1C�
�;t0
�

C

jt0j
Qı
;

where Qı D min¹�;  � �; 2� � � � 1 � �º. We conclude that for jt0j sufficiently large we
have B.K0/ � K0.

(b) There exists a universal constant t0 < 0 for which the mapB W K0 ! K0 defines
a contraction map. Observe that similarly as in part (a) we have

(5.32) kB.h1/ � B.h2/k
�;�C1
1;�;t0

� CkF.h1/ � F.h2/k
1C�
�;t0

:

An easy computation (the same as in part (a)) shows that

jG3.h
1/ �G3.h

2/j �
C

jt j
.jh1 � h2j2 C .jh1j C jh2j/jh1 � h2j/
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implying that

kG3.h
1/ �G3.h

2/k
1C�
�;t0
�

C

jt0j�
kh1 � h2k

�;1C�
1;�;t0

:

Let � i D �0 C hi and recall the notation �i D �.� i /. Then, similar to a discussion in part (c)
of the proof of Proposition 5.2, we have

kR2.�
1; P�1; �.�1/; P�.�1// �R2.�

2; P�2; �.�2/; P�.�2//k
1C�
�;t0

(5.33)

� C jt0j
�ı
�
kh1 � h2k

�;1C�
1;�;t0

C k�.h1/ � �.h2/k11;�;t0

�
� C jt0j

�ı
kh1 � h2k

�;1C�
1;�;t0

where in the last line we have used (5.13) where ı < min¹1; �; 1 � 2� � �C �º. Furthermore,
similar to deriving (5.13) in part (c) of the proof of Proposition 5.2, we get

kG2. 
1; h1; �1/ �G2. 

2; h2; �2/k
�C1
�;t0
� C jt0j

1�2�C�
kh1 � h2k

�;1C�
1;�;t0

:

Using (5.32), the definition of F.h/ and the estimates above, if we choose jt0j sufficiently large,
we obtain the bound

kB.h1/ � B.h2/k
�;1C�
1;�;t0

�
1

2
kh1 � h2k

�;1C�
1;�;t0

which finishes the proof of part (b).

By the fixed point theorem applied to the operator B , there exists an h 2 K0 so that
B.h/ D h, or in other words, h solves (5.24). This concludes the proof of the proposition.

We conclude Section 5 by the proof of Proposition 5.1.

Proof of Proposition 5.1. By Proposition 5.2, for every h 2 K, there exists an � D �.h/
so that (5.1) is satisfied. By Proposition 5.3, if we take � D �.h/, there exists an h, so that
khk

�;�C1
1;�;t0

� 1 and (5.2) holds. Take this pair of functions .h; �/ 2 K, for which both (5.1)
and (5.2) are satisfied. Then by Proposition 4.1 there is a solution D ‰.h; �/ of (2.5), satisfy-
ing the orthogonality conditions (3.5) and (3.6). This finishes the proof of Proposition 5.1.

6. Properties of the solution

Unlike the contracting spheres (1.4) and the King solution (1.5) to the Yamabe flow (1.1)
which are both type I ancient solutions with positive Ricci curvature, the solution that we
construct in Theorem 1.1 is of type II and its Ricci curvature changes its sign. More precisely,
we have the following proposition.

Proposition 6.1. The solution constructed in Theorem 1.1 is a type II ancient solution
in the sense of Definition 1.1. Its Ricci curvature changes its sign.

Proof. We recall that under the conformal change of the metric g D e2f gRn , the Ricci
tensor changes as follows:

Rij D �.n � 2/.fij � fifj /C .�f � .n � 2/jrf j
2/ıij :
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60 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

In particular, if f is a radially symmetric function and we denote by R11 the Ricci tensor in
the radial direction and by Rjj , with j � 2 the Ricci tensor in the spherical direction, then

R11 D �.n � 3/frr C
n � 1

r
fr

and for j � 2,

Rjj D frr C
n � 1

r
fr � .n � 2/f

2
r :

Observe thatRij D 0 for i ¤ j . We will next expressR11 with respect to our conformal factor
u.x; t/, expressed in cylindrical coordinates. Let u.x; t/ be the solution of (1.7) constructed
in Theorem 1.1. Recall that u.x; t/ represents the conformal factor of the rescaled flow in
cylindrical coordinates. Using the change of variables

f .r/ D
2

n � 2
logu.x; �/ � x; r D ex;

we find thatR11 (the Ricci curvature of the rescaled metric in the radial direction) in terms of u
is given by

R11 D �
.n � 2/2u2 � .n � 3/u2x C uŒ.n � 3/uxx � 2.n � 2/ux�

e2xu2
:

The Ricci curvature changes its sign. We will show that R11 changes sign. Note that
the sign of R11 is determined by the sign of

Q WD �..n � 2/2u2 � .n � 3/u2x C uŒ.n � 3/uxx � 2.n � 2/ux�/:

Recall that our solution u is given by

u D .1C �/z C  D z C Q ; Q WD �z C  :

Let Q WD Q1 CQ2, where

Q1 WD .n � 3/z
2
x � .n � 2/

2z2 � zŒ.n � 3/zxx � 2.n � 2/zx�

and Q2 is the error term that is a linear combination of Q 2x , Q xzx , Q 2, Q z, Q Q xx , Q zxx ,
Q zx , Q xxz. An easy computation shows that for � < t0 � 1,

(6.1)
Z �C1

�

Z 1

�1

Q1z
p�1 dx dt � �

C.n/

j� j
pC1
2

< 0; as � ! �1:

Hence, it will be sufficient to show thatZ �C1

�

Z 1

�1

Q2z
p�1 dx dt D o.j� j�

pC1
2 /; as � ! �1:

Let us check that is the case for some of the terms that enter in the expression for Q2. All the
other terms can be checked similarly. To simplify the notation, set R� WD Œ�1; 1� � Œ�; � C 1�.
Using the energy estimate (3.23) and the fact that

zp�1 � C j� j�
p�1
2 on R� ,
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we obtain the bound“
R�

. Q 2 C Q 2x/z
p�1 dx dt(6.2)

� j� j�
p�1
2

�
.k�k11;t0/

2

“
R�

z2 dx dt C

“
R�

. 2 C  2x/ dx dt

�
� j� j�

p�1
2 .j� j�2 C j� j�2�/

� C j� j�
pC3
2

and also “
R�

Q Q xxz
p�1 dx dt � C j� j�

p�1
2

�
.k�k11;t0/

2

“
R�

z2 dx dt(6.3)

C k�k11;t0

“
R�

z xx C  zxx dx dt

�
C

“
R�

  xxz
p�1 dx dt

� C j� j�
pC2
2
��
C

“
R�

  xxz
p�1 dx dt:

For the last term in (6.3), using the energy estimates (3.23) again, we have“
R�

  xxz
p�1 dx dt �

�“
R�

 2zp�1 dx dt

� 1
2
�“

R�

 2xxz
p�1 dx dt

� 1
2

(6.4)

� Ck kL1.ƒ� /j� j
�
p�1
2

�“
R�

 2xx dx dt

� 1
2

� C j� j�
p�1
2
�2� :

We see that p�1
2
C 2� > pC1

2
is equivalent to 2� > 1, which is true. Using (3.23), we have“

R�

Q xxz
p dx dt � Ck�k11;t0 j� j

�
pC1
2 C

“
R�

 xxz
p dx dt(6.5)

� C
�
j� j�

pC3
2 C j� j�

p
2
��
�
:

Combining (6.1), (6.2), (6.3), (6.4), (6.5) yields“
R�

Qzp�1 dx dt � �C.n/j� j�
pC1
2

if � is sufficiently close to �1. Hence R11 has to be negative somewhere on R� if � is suffi-
ciently close to �1. On the other hand, since the scalar curvature R of our ancient metric
is positive, the Ricci curvature must be positive somewhere. The conclusion is that the Ricci
curvature of our ancient solution changes its sign all the way to t ! �1.

The solution is of type II. We observe that our rescaled ancient solution is of type II if

lim sup
t!�1

jRmj. � ; t / D C1:
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Hence, it will be sufficient to show that

(6.6) lim sup
t!�1

jRicj. � ; t / D C1:

Since, as we have noticed above, the Ricci curvature of our radially symmetric solution is
diagonal, we have

jRicj2 D R211.g
11/2 C

X
i�2

R2i i .g
i i /2:

Look at the R11g11 D R11u�
4
n�2 , which is

R11g
11
D
.n � 3/u2x � .n � 2/

2u2 � uŒ.n � 3/uxx � 2.n � 2/ux�

e2xu
2n
n�2

:

As in part (a), write u D z C Q . Since k kL1.ƒ� / � C j� j
�� , and z � QC j� j�

1
2 on R� , we

have z
2
� u � 2z on R� . Let us write

R11g
11
D J1 C J2

where the term J1 we obtain from R11g
11, after replacing u by z, and J2 is the difference of

those two terms. An easy computation shows that

(6.7)
ˇ̌̌̌“

R�

J1z
p�1 dx dt

ˇ̌̌̌
� C j� j

2
n�2

“
R�

zp�1 dx dt � C; as � ! �1:

Using the energy estimate (3.23), the fact that z � j� j�
1
2 on R� , very similar estimates to those

in part (a) show that

(6.8)
ˇ̌̌̌“

R�

J2z
p�1 dx dt

ˇ̌̌̌
� C j� j�q

for some q > 0. Combining (6.7) and (6.8), we see thatˇ̌̌̌“
R�

R11g
11zp�1 dx dt

ˇ̌̌̌
� c > 0

for all � sufficiently close to �1. Since zp�1 � j� j�
2
n�2 on R� , the last estimate implies there

exists a uniform constant ı > 0 so that for every � � �0, with �0 sufficiently close to�1, there
exists an .x� ; �/ 2 R� so that

R11g
11.x� ; �/ � ıj� j

2
n�2 :

We conclude that (6.6) holds and our solution is of type II.

We conclude this section with a final remark on our shape of our solution, as t ! �1.

Remark 6.1. The ancient solution u.x; t/ constructed in Theorem 1.1 looks like a tower
of two bubbles as t ! �1.

More precisely, for any ı 2 .0; 1/ it is easy to check that we have the following:

(a) For x < �.t/.1 � ı/ we have ju.x; t/ � w.x C �.t//j < C jt j�
ı
2 , which means that in

this considered region we are close to one of the spheres (bubbles).
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(b) For x > ��.t/.1 � ı/ we have ju.x; t/ � w.x � �.t//j < C jt j�
ı
2 , which means that in

this considered region we are close to the other sphere (bubble).

(c) For any x1; x2 2 Œ��.t/.1�ı/; �.t/.1�ı/� and any two corresponding points p1; p2 2Rn

whose radial variables correspond to x1; x2 in cylindrical coordinates respectively, we
have that

distg.t/.p1; p2/ � C jt j
� ı
n�2 log jt j;

which means that in the region where the two spheres interfere we have a short and
narrow neck connecting the two bubbles and as t ! �1 this neck becomes shorter and
narrower. We denoted by g. � / the rescaled metric.

To check (c) observe that

distg.t/.p1; p2/ �
Z �.t/.1�ı/

��.t/.1�ı/

.w.x � �.t//C w.x C �.t//C  .x; t//
2
n�2 dx

� C
�
jt j�

ı
2 C jt j��

� 2
n�2 log jt j

� C jt j�
ı
n�2 log jt j:

We finish the paper with the proof of the Main Theorem 1.1, which we restate below.

Theorem 6.1. Let p WD .nC2/=.n�2/with n� 3. There exist a constant t0 D t0.n/ and
a radially symmetric solution u.x; t/ to (1.7) defined on R�.�1; t0� of the form (1.11)–(1.12),
where the functions  WD  .x; t/, � WD 1

2
log.2bjt j/C h.t/ and � WD �.t/ satisfy

k k��;2;�;t0 <1; khk
�;1C�
1;�;t0

<1; k�k
�;
1;�;t0

<1

(according to Definitions 2.6 and 2.7). The constants �; �; � and b are all positive and depend
only on the dimension n.

It follows that the solution u defines a radially symmetric ancient solution to the Yamabe
flow (1.1) on Sn which is of type II (in the sense of Definition 1.1) and its Ricci curvature
changes its sign.

Proof. Proposition 5.1 gives us, for jt0j sufficiently large, the existence of a radially
symmetric solution  to (2.5) on R � .�1; t0�, which is equivalent to the existence of a radi-
ally symmetric solution u to (1.7), defined on R � .�1; t0�. This finishes the proof of the first
part, that is, the existence part of Theorem 1.1. Furthermore, by Proposition 6.1 our constructed
solution is a type II ancient solution to the Yamabe flow, with the Ricci curvature that changes
its sign.

7. The case of multiple bubbles

In this section we sketch the proof of Theorem 1.2, indicating the changes needed with
respect to the two-bubble case. Now we seek for a solution of (1.7) of the form

u.x; t/ D

kX
jD1

.1C �j .t//wj .x; t/C  .x; t/
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64 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

where wj .x; t/ D w.x � �j .t// and  .x; t/! 0 as t ! �1. The functions �j .t/ are ordered
and symmetric,

(7.1) �1.t/ < �2.t/ < � � � < �k.t/; �j .t/ D ��k�jC1.t/:

We also assume �j .t/ D �k�jC1.t/.
We let �.t/ D .�1.t/; : : : ; �k.t//. Let us write

(7.2) �.t/ D �0.t/C h.t/

where �0.t/ is the solution of the first order Toda system (1.16) as in the statement of the
theorem that we will analyze later. The parameter functions hj .t/ and �j .t/ will decay in jt j,
as jt j ! 1 and will be chosen according to a system of first order differential equations.

We write now and

Qz WD

kX
jD1

.1C �j /wj ; z WD

kX
jD1

wj :

Equation (1.7) then becomes

àt . Qz C  /p D .à2x �  C à
2
x Qz � Qz/C . Qz C  /

p:

Using that à2xwj � wj D �w
p
j , we obtain the equation

àt . Qz C  /p D

 
à2x �  �

kX
jD1

.1C �j /w
p
j

!
C . Qz C  /p

which can be re-written as

(7.3) pzp�1àt D àxx �  C pzp�1 � zp�1C. ; t/C zp�1E. /

where now

C. / D

kX
jD1

d1j .t/wj C d2j .t/w
0
j

and the coefficients d1j , d2j are precisely chosen as linear functions of  in such a way that
the following (nearly diagonal) system holds:Z

R
z1�p.àxx �  C pzp�1 � pzp�1àt /w

p�1

l
w0l dx

D

X
j

d1j

Z
R
w
p�1

l
w0jw

0
l dx C d2j

Z
R
w
p�1

l
wjw

0
l dx;Z

R
z1�p.àxx �  C pzp�1 � pzp�1àt /w

p�1

l
wl dx

D

X
j

d1j

Z
R
w
p�1

l
w0jwl dx C d2j

Z
R
w
p�1

l
wlwj dx;

and E. / is given by

(7.4) E. / WD z1�pM C C. /C z1�p
�
.1 � àt /N. / � p àtzp�1

�
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where

(7.5) M WD Qzp �

kX
jD1

.1C �j .t//w
p
j � àt Qz

p

and

(7.6) N. / WD . Qz C  /p � Qzp � p Qzp�1 C p . Qzp�1 � zp�1/:

We consider first the auxiliary equation

pzp�1àt D àxx �  C pzp�1 � zp�1C. /(7.7)

C zp�1
�
E. / �

X
j

.c1j .t/w
0
j C c2j .t/wj /

�
under the orthogonality conditions

(7.8)
Z

R
 w0jw

p�1
j dx D 0 for a.e. t < t0

and

(7.9)
Z

R
 wjw

p�1
j dx D 0 for a.e. t < t0

where c1j .t/ and c2j .t/ are uniquely chosen so that the function

(7.10) NE WD E. / �

kX
jD1

c1j .t/w
0
j C c2j .t/wj

satisfies the orthogonality conditions (7.8)–(7.9).
Following the same arguments of the case k D 2, only at the expense of further notation,

we find for each given vectors h and � a solution  D ‰.h; �/ to problem (7.7) subject to the
orthogonality conditions (7.8)–(7.9) for  , in a similar way to that found in Proposition 4.1.
After this, the problem is thus reduced to choosing the parameter vector functions h.t/ and �.t/
so that clj .t/ � 0, where h and � decay in t , as t ! �1. The procedure is exactly the same
as before. Now we need to solve the systemZ

R
w
p�1
j w0jE.‰.h; �// dx D

Z
R
w
p�1
j wjE.‰.h; �// dx D 0 for all j D 1; : : : ; k:

Similar computations to those in Section 5 yield that the above system has the form

0 D P�j �
p � 1

p
�j � a

�
e�.�jC1��j / � e�.�j��j�1/

�
CQ1.�; P�; �; P�/

and
0 D b�1 P�j C e

�.�jC1��j / � e�.�j��j�1/ CQ2.�; P�; �; P�/

where �0 � �1, �kC1 � C1 and the terms Ql , l D 1; 2, decay as suitable negative powers
of jt j provided that the terms � and h do so (recall that �j .t/ D �0j .t/C hj .t/). We proceed
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66 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

in a similar way as in Section 5, solving first for vector function � as a function of h using
a fixed point formulation as that in Section 5.2. The problem gets at last reduced to solving
a perturbation of the Toda system

(7.11) b�1 P�j .t/C e
�.�jC1��j / � e�.�j��j�1/ D 0; j D 1; : : : ; k; t 2 .�1;�t0�:

Let us find first the explicit solution �0. Let us set

(7.12) R`.�/ WD �
h
e�.�`��`�1/ � e�.�`C1��`/

i
and

(7.13) R.�/ WD

2664
R1.�/
:::

Rm.�/

3775 :
We want to solve the system P� C R.�/ D 0. To do so, we find first a convenient represen-

tation of the operator R.�/. Let us consider the auxiliary variables

v WD

"
Nv
vk

#
; Nv D

2664
v1
:::

vk�1

3775 ;
defined in terms of � as

v` D �`C1 � �` with ` D 1; : : : ; k � 1; vk D

kX
`D1

�`;

with the conventions v0 D vkC1 D C1 and define the operators

S.v/ WD

"
NS.Nv/
0

#
; NS.Nv/ D

2664
S1.Nv/
:::

Sk�1.Nv/

3775
where

S`.v/ WD R`C1.�/ �R`.�/ D

8̂<̂
:
e�v2 � 2e�v1 if ` D 1;

e�v`C1 � 2e�v` C e�v`�1 if 1 < ` < k � 1;

�2e�vk�1 C e�vk�2 if ` D k � 1:

Then the operators R and S are in correspondence through the formula

(7.14) S.v/ D BR.B�1v/

where B is the constant, invertible N �N matrix

(7.15) B D

266666664

�1 1 0 � � � 0

0 �1 1 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � 0 �1 1

1 � � � 1 1 1

377777775
;
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and then through the relation � D B�1v the system P�CR.�/ D 0 is equivalent to PvCS.v/ D 0
which decouples into

PNvC NS.Nv/ D 0;(7.16)

Pvk D 0(7.17)

where

(7.18) NS.Nv/ WD C

2664
e�v1

:::

e�vk�1

3775 ; C D

266666664

2 �1 0 � � � 0

�1 2 �1 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � �1 2 �1

0 � � � �1 2

377777775
:

We choose simply vk D 0 and look for a solution v0.t/ D .Nv0.t/; 0/ of the system, where Nv0.t/
has the form

v0`.t/ D log.�t /C ˇ`

for constants ˇ` to be determined.
Substituting this expression into the system, we find the following equations for the

numbers ˇ`:

C

2664
e�ˇ1

:::

e�ˇm�1

3775 D ˛
2664
1
:::

1

3775 :
We compute explicitly

(7.19) ˇ` D log
�
1

2˛
.k � `/`

�
; ` D 1; : : : ; k � 1;

and hence we find a solution �0.t/ D B�1v0 to system (1.16), which is explicitly given by

�0j .t/ D

�
j �

k C 1

2

�
log.�t /C j ; j D 1; : : : ; k;

where

1 D �
1

k

k�1X
jD1

jX
lD1

ˇl ; j D 1 C

j�1X
lD1

ˇl ; 2 � j � k:

This solution of the system is symmetric, in the sense that

�0k�jC1 D ��
0
j ; j �

k

2
:

After �0 has been built, we follow exactly the scheme of Section 5.3. We linearize around
�0 and the equation for � D �0 C h takes the form, analogous to (5.24),

(7.20) PhCD�R.�0/h D F.h/ in .�1;�t0/

where the nonlinear term F.h/ is small with h and it roughly has a decay at least one negative
power more of jt j than that of h. At this point we make the following important observation.
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68 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

Since we are restricting ourselves to symmetric � , it follows that h satisfies the symmetry
condition

hk�jC1 D �hj ; j �
k

2
;

and the solution  is even in x, then examining closely the symmetries of F.h/ we find that

F.h/k�jC1 D �F.h/j :

An exact analog of Proposition 5.3 does indeed hold, for a suitable inverse of the linear
operator of the left-hand side of (7.21) in a subset of the vector functions h satisfying the
symmetry requirement, which we construct next. Thus, we are reduced to building a solution
of the linear system

(7.21) PhCD�R.�0/h D g in .�1;�t0/

where g is such that gk�jC1 D �gj . We observe that, in particular,

kX
jD1

gj � 0:

We observe that
B�1DvS.v0/B D D�R.�0/;

hence setting
p D Bh; q D Bg;

system (7.21) becomes equivalent to

(7.22) PpCDvS.v0/p D q in .�1; t0/:

Writing p D .Np; pk/, q D .Nq; qk/, the latter system decouples as

PNpC DNv NS.Nv0/Np D Nq in .�1; t0/;(7.23)

Ppk D qk in .�1; t0/:(7.24)

We keep in mind that

qk D
kX

jD1

gj D 0:

We simply choose pk.t/ D 0. Now,

D NS.Nv/ D �C

266664
e�v1 0 � � � 0

0 e�v2 � � � 0
:::

: : :
:::

0 0 � � � e�vk�1

377775(7.25)

D
1

t

26666666664

2a1 �a2 0 � � � 0

�a1 2a2 �a3 � � � 0

0 �a2 2a3 � � � 0
:::

: : :
: : :

: : :
:::

0 � � � �am�3 2am�2 �am�1

0 � � � �am�2 2am�1

37777777775
;
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with

(7.26) a` D
˛�1

2
.k � `/`; ` D 1; : : : ; k � 1:

We shall solve problem (7.23). It is convenient to express it replacing the matrix DNv NS.Nv0/ with
a symmetric one. We recall that we have

DNv NS.Nv0/ D
1

t
C

266664
e�ˇ1 0 � � � 0

0 e�ˇ2 � � � 0
:::

: : :
:::

0 0 � � � e�ˇk�1

377775
where the matrix C is given in (7.18); C is symmetric and positive definite. Indeed, a straight-
forward computation yields that its eigenvalues are explicitly given by

1;
1

2
; : : : ;

k � 1

k
:

We consider the symmetric, positive definite square root matrix of C and denote it by C
1
2 . Then

setting
Np WD C

1
2!; Qq WD C�

1
2 Nq;

we see that equation (7.23) becomes

(7.27) P! C
1

t
A! D Qq in .�1; t0/

where A is the symmetric matrix

(7.28) A D C
1
2

266664
a1 0 � � � 0

0 a2 � � � 0
:::

: : :
:::

0 0 � � � am�1

377775C
1
2

where
a` D

1

2
`.m � `/:

In particular, A has positive eigenvalues. Let u1; : : : ; uk�1 be an orthonormal set of eigenvec-
tors of A associated to its positive eigenvalues �1; : : : ; �k�1. Then writing

!.t/ D

k�1X
`D1

!`.t/u`; Qq.t/ D

k�1X
`D1

Qq`.t/u`

we arrive at the equations

P!` C
�`

t
!` D Qq`.t/

or
Œ.�t /�`!`�

0
D .�t /�` Qq`.t/
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70 Daskalopoulos, del Pino and Sesum, Type II ancient compact solutions to the Yamabe flow

and then we find a solution by setting

!`.t/ D �.�t /
��`

Z t0

t

.��/�` Qq`.�/ d�:

In this discussion, we have thus built an inverse

h D T Œg�

to system (7.21) which is precisely its unique solution with h.t0/ D 0. This inverse clearly
satisfies the symmetry condition

hk�jC1 D �hj for j �
k

2

in case g does. The main fact to be observed is that if g D O.jt j�1��/ with 0 < � < 1, then

h D O.jt j��/

with bounded control in the sense of the norms used in Section 5.3. The remaining of the
proof of existence of a solution to the nonlinear problem (7.20) goes essentially the same as in
Section 5.3.
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