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A B S T R A C T

The objectives of this study were: (i) to assess genotype imputation accuracy in different scenarios using genome-
wide single nucleotide polymorphisms (SNP) data from a population comprising two generations of farmed
Atlantic salmon and (ii) to assess the accuracy of genomic predictions for a quantitative trait (body weight) using
the imputed genotypes. The pedigree consisted of 53 parents and 1069 offspring genotyped using a high-density
SNP panel (50 K). Two groups were created: Group A: 90% of the offspring were included into training and 10%
into validation sets; Group B: 10% of the offspring were included into training and 90% into validation sets.
Different scenarios of available genotypic information from relatives were tested for the two groups previously
described. Imputation was performed using three in silico low-density panels (0.5, 3 and 6 K) with all markers
except the markers present on the low-density panel masked in the validation sets. The accuracy of genomic
selection was tested using the scenarios that resulted in the best and the worst imputation accuracy for the three
low density panels and were compared to accuracy obtained from pedigree-based best linear unbiased prediction
(PBLUP) and genomic predictions using the 50 K SNP panel. In general, imputation accuracy ranged from 0.74 to
0.98 depending on scenario. For the best scenario with the highest number of animals in reference population
(Group A), the accuracy of imputation ranged from 0.95 to 0.98 depending on the low-density panel used. For
the best scenario with the lowest number of animals in reference population (Group B), the accuracy of im-
putation ranged from 0.94 to 0.98 depending on the low-density panel used. In general, the number of SNPs in
the low-density panels had a greater influence on the accuracy of imputation than the size of the reference set.
The accuracies of genomic predictions using imputed genotypes, ranging from 0.71 to 0.73, outperformed
PBLUP (0.66) and were identical or very similar to the use of all true genotype data (0.73). The high imputation
and genomic prediction accuracy suggest that the imputation of genotypes from low density (0.5 to 3 K) to high
density (50 K) could be a cost-effective strategy for the feasibility of the practical implementation of genomic
selection in Atlantic salmon.

1. Introduction

Recent advances in genotyping technology have facilitated the
availability of high density genotyping panels, which can be used to
accelerate the genetic progress of breeding programs by implementing
genomic selection (Meuwissen et al., 2001). In fact, genomic predic-
tions have shown to increase the accuracy of breeding values for several

traits in salmonids (Bangera et al., 2017; Correa et al., 2017; Tsai et al.,
2016, 2015; Vallejo et al., 2016, 2017; Yoshida et al., 2018). These
methodologies are expected to be increasingly used in aquaculture
species (Yáñez et al., 2015), especially for the improvement of traits
which are difficult to measure in the selection candidates, such as dis-
ease resistance and carcass quality traits (Sonesson and Meuwissen,
2009; Yáñez and Martinez, 2010; Yáñez et al., 2014a). However, the
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cost associated with genotyping may represent a limiting factor for the
use of genomic selection (VanRaden et al., 2011). An alternative for
genomic applications would be to use a genotype imputation method
for inferring missing genotypes that were not successfully called during
genotyping, to infer the genotypes of ungenotyped individuals and/or
to infer genotypes for individuals genotyped with a low-density panel
using a reference population genotyped for a high-density marker panel
(Sargolzaei et al., 2009).

The accuracy of imputation is influenced by several factors, in-
cluding proportion of genotypes to be imputed (Zhang and Druet, 2010;
Hickey et al., 2012), number of individuals in reference set (Druet et al.,
2010; Zhang and Druet, 2010), relatedness between validation and
reference set (Carvalheiro et al., 2014; Cleveland and Hickey, 2014),
chromosomal position (Duarte et al., 2013; Hozé et al., 2013) and
minor allele frequency (Badke et al., 2013).

Imputation could be used in Atlantic salmon breeding programs to
decrease the costs of genotyping (Tsai et al., 2017). For instance, dense
genotypes (e.g. 50 K) from parents might be used to impute the missing
genotypes from lower to higher-density in the offspring. However, low
accuracies of imputation may be a limitation for the efficient use of
lower-density panels. It is worth to mention that the cost for a low-
density panel is considerably lower (e.g. USD $ 5 to 15 for a 500 SNP
panel) than the cost for a higher-density one (e.g. USD $ 45 to 75 for a
50 K SNP panel, depending on the number of samples). Thus, assessing
the accuracy of imputation in different scenarios is crucial to define an
adequate genotyping strategy aiming at maximizing the genetic pro-
gress and minimizing the genotyping costs.

The objective of this study was to assess the accuracy of imputation
and genomic predictions by testing different scenarios, using different
densities of low-density SNP panels and number of animals in reference
and validation set in a two-generation farmed Atlantic salmon popu-
lation.

2. Material and methods

2.1. Data

The Atlantic salmon population used in the current study belongs to
the 2006 and 2010 year-classes of the breeding program of Salmones
Chaicas (Puerto Montt, Chile). The origin, management of the fish and
genotyping are described in detail by Correa et al. (2015, 2016, 2017),
Bangera et al. (2017) and Yáñez et al. (2013, 2014b, 2016). Briefly, the
eggs of each full-sib family were incubated and reared in separate tanks
from fecundation until tagging. An average number of 32 fish/family
(ranging from 26 to 40) were tagged and distributed in six different
tanks, with an average of 160 fish/family in total (ranging from 137 to
170). Fish were reared until they were an average of 25months old and
the trait body weight was recorded on each individual fish, with an
average 331.2 g (SD=121 g).

Genomic DNA was extracted from fin clip samples from 53 parents
(19 sires and 34 dams) and 1069 offspring, which were genotyped using
a 50 K Affymetrix SNP array (Correa et al., 2015, 2016; Yáñez et al.,
2016), hereafter called the high-density (HD) panel. Before imputation,
genotypes and samples were filtered according to the following exclu-
sion criteria: Hardy-Weinberg Disequilibrium (p-value < 1×10−6),
Minor Allele Frequency (MAF < 0.02) and genotyping rate for SNP
and samples < 0.95. The SNPs and samples passed in the quality
control were used for downstream analysis.

Three in silico low-density (LD) panels were constructed with SNP
densities of 499 (LD0.5 K), 2928 (LD3 K), and 5878 (LD6 K). The SNPs
from the LD panels were initially selected based on a proportional
number of SNPs to chromosome size. Then SNPs were selected, based
on approximate even spacing within each chromosome, highest MAF
(within those which passed quality control) and having unique position
when performing BLAST of the 71 pb probes against the reference
genome of Atlantic salmon (GenBank Accession no.

GCA_000233375.4).

2.2. Imputation scenarios

Two different groups of individuals were created, varying in the
proportion of offspring in reference and validation set. For the “Group
A”, 90% of the offspring was used as reference and 10% as validation
set. The “Group B” analyses were run using 10% of the offspring as
reference and 90% as validation set. The assignment of the offspring to
the reference and validation sets was at random, and five replicates
were used each time.

Five scenarios per group were investigated, each of which defined
the validation set for imputation. Scenario 1 (A1 and B1) involved
genotyping of all the parents and offspring using the HD panel. Scenario
2 (A2 and B2) and Scenario 3 (A3 and B3) was the same as Scenario 1
except that genotypes for the dams and sires, respectively, were re-
moved from the validation set. Scenario 4 (A4 and B4) and Scenario 5
(A5 and B5) comprised genotyping only the parents and the sibs with
the HD panel, respectively. In each scenario, a pedigree of 1115 in-
dividuals was used for imputation, consisting of two generations of
records for each genotyped animal. Imputation of genotypes was per-
formed using the FImpute v2.2 software (Sargolzaei et al., 2014) and
the accuracy of imputation was calculated as the correlation between
true and imputed genotypes for the validation set.

2.3. Genomic predictions

Phenotypic data for body weight were available for animals from
the 2010 year-class (Yoshida et al., 2017) and used to test the impact of
imputation errors on the accuracy of genomic predictions. The accuracy
of genomic predictions was evaluated only in Group B, because this is
more proximate to realistic applications of genomic predictions using
imputed genotype data. We used the imputed genotypes from the three
low-density panels (0.5, 3 and 6 K) for Scenario B1 and B5 (Group B)
due the fact that these are the scenarios with the highest (B1) and
lowest (B5) imputation accuracy. The breeding values (EBV) were
predicted using both pedigree and genomic best linear unbiased pre-
diction methods (PBLUP and GBLUP, respectively). The numerator (A)
and genomic (G) relationship matrices were used to account for the
kinship between animals in PBLUP and GBLUP, respectively
(VanRaden, 2008). The statistical model fitted was as follows:

= + +y Xβ Zg e

where y is a vector of phenotypes (body weight), β is a vector of fixed
effects (tank and age), g is a vector of additive genetic effects that
follows a distribution ~N(0, Aσg2) or ~N(0, Gσg2), for PBLUP and
GBLUP, respectively, where σg2 is the additive genetic variance, and A
and G are the pedigree and genomic relationship matrices, respectively.
X and Z are incidence matrices for fixed and additive effects, respec-
tively, and e is the vector of random residual with a distribution ~N
(0, Iσe2), where σe2 is the residual variance and I is an identity matrix.

We used the BLUPF90 package (Misztal et al., 2016) to perform the
genetic evaluations using pedigree and genomic information. Prediction
accuracies were assessed using a five-fold cross validation scheme.
Briefly, all phenotyped and genotyped animals (n= 963) were ran-
domly divided into five validations sets (20% of the dataset;
mean=192 and SD=4 animals), which were predicted one at a time
by masking their phenotypes and using the remaining animals as a
training set (80% of the dataset; n= 771 and SD=4 animals) to esti-
mate the marker effects. Prediction accuracies were calculated in the
validation sets using the following formula:

=r
r

h
,GEBV,BV

GEBV,y

where rGEBV, y is the correlation between the EBV or GEBV of a given
model (predicted for the validation set using information from the
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training set) and the phenotypic record, while h is the square root of the
pedigree-based estimate of heritability.

3. Results

3.1. Accuracy of genotype imputation

A total of 37,259 SNPs and 1122 samples passed the filtering cri-
teria. We observed that genotype imputation accuracy increased with
increasing marker density of the LD genotyping panels and with in-
creasing proportions of close ancestors having high-density genotypes
(Table 1). For all cases, imputation accuracy decreased with reduced
marker density going from 6 K to 0.5 K (Table 1). The largest increase in
imputation accuracy occurred when increasing SNP density from 0.5 K
to 3 K (rather than from 3 K to 6 K), indicating that the 3 K panel would
provide highly accurate imputed genotypes, with similar imputation
accuracies than the 6 K panel.

The lower number of animals in Group B reference set resulted in
lower imputation accuracies compared to Group A, with the difference
being more evident when fewer number of ancestors were used as re-
ference set (Scenarios A1 vs A5 and B1 vs B5). In addition, the largest
changes in accuracy between genotyping scenarios were observed for
the SNPs chips with the lower density, LD0.5 K. In the case where
genotyping both parents is not possible, we observed that the sire's
genotype information (B2) is more important to obtain better imputa-
tions accuracies than just the dam's genotype information (B3) for
Group B (Table 1). For both Groups A and B, the HD genotype in-
formation of both parents is more critical to achieve high imputation
accuracy than only sibs' information, especially for LD0.5 K panels, but
this relevance decreased with increasing SNP density of the LD panel.

Figs. 1 and 2 show imputation accuracy in chromosome 1 for Group
A and B, respectively, for Scenario 1 and 5 (for all chromosomes see
Supplementary material). Imputation accuracy was not consistent
across the chromosomes and depended on physical position of imputed
SNP and location of low-density SNP. The largest differences were ob-
served for LD0.5 K panel in both Group A and B (Figs. 1 and 2, re-
spectively). The imputation accuracy decreased greatly at chromosomal
ends, especially for LD0.5 K panel. Increasing SNP density of the LD
panel form 0.5 K to 3 K or 6 K substantially improved imputation ac-
curacy at chromosome ends.

3.2. Accuracy of genomic predictions using imputed genotypes

The genomic prediction accuracy using imputed genotypes, were

identical or very similar among the scenarios and low-density panel
tested compared to the use of the real 50 K SNP genotypes (Fig. 3). As
expected, the lowest genomic prediction accuracy was observed for the
scenario and SNP panel with lowest imputation accuracy (i.e. Scenario
B5 and LD0.5 K panel), which resulted in an accuracy slightly lower
compared to the use of the real 50 K SNP panel (0.71 vs 0.73, respec-
tively). All other SNP panel densities from Scenario B1 and B5 resulted
in genomic prediction accuracy higher than pedigree-based method
(0.66) and identical to the use of a 50 K SNP panel. The prediction
accuracy improved 11% and 8% for the best and worst Scenario (Sce-
nario B1 and Scenario B5/LD0.5 K, respectively) compared to the
pedigree-based method.

4. Discussion

The imputation method used by FImpute is based on the concept
that close relatives share long haplotypes and the imputation is carried
out using overlapping sliding windows starting with long haplotypes
and moving towards short haplotypes (Sargolzaei et al., 2014). Ac-
cording to previous studies, the method results in high imputation ac-
curacy when close relatives of targeted individuals are present in the
reference group and computing requirements are considerably lower
than other software used for imputation (Carvalheiro et al., 2014;
Larmer et al., 2014; Sargolzaei et al., 2014).

Here we found that, in general, the imputation accuracy decreased
in a non-linear manner from 6 K to 0.5 K, which is in accordance with
the results obtained by Habier et al. (2009) and Hickey et al. (2012),
who also observed that the higher the proportion of genotypes to be
imputed, the lower is the imputation accuracy. This can be due to the
fact that panels with few SNPs could present low linkage and linkage
disequilibrium between the markers, increasing imputation errors. The
similarly high imputation accuracy between 3 and 6 K SNP panels are in
agreement with studies carried out with pigs (Duarte et al., 2013;
Cleveland and Hickey, 2014), cattle (Druet et al., 2010; Zhang and
Druet, 2010; Carvalheiro et al., 2014), sheep (Hayes et al., 2012) and
Atlantic salmon (Kijas et al., 2016; Tsai et al., 2017). The 500 SNP panel
showed the lowest imputation accuracies for the different scenarios
tested; however, it is most likely to be considerably much cheaper than
any 3 K and 6 K SNP panel, thus cost-effectiveness must be carefully
evaluated, taking genotyping cost and imputation and genomic pre-
diction accuracies into account.

Based on the results from different scenarios for Group A and B, the
effect of the number of genotyped individuals with the reference SNP
panel seems to be smaller than the influence of the number of SNPs in

Table 1
Imputation accuracy from low-density (LD) to high-density (HD) panel in Atlantic salmon using groups with different numbers of animals in reference and validation set and different
scenarios of available genotypic information.

Scenario Reference Size Validationb LD0.5 K LD3 K LD6 K

Sires
n= 19

Dams
n=34

Sibsa Mean Mean Mean

Group A
A1 HD HD HD 1015 LD 0.948 0.980 0.983
A2 HD – HD 981 LD 0.863 0.967 0.973
A3 – HD HD 996 LD 0.864 0.962 0.971
A4 – – HD 962 LD 0.851 0.976 0.982
A5 HD HD – 53 LD 0.829 0.942 0.951

Group B
B1 HD HD HD 159 LD 0.940 0.974 0.977
B2 HD – HD 125 LD 0.820 0.944 0.955
B3 – HD HD 140 LD 0.786 0.932 0.948
B4 – – HD 106 LD 0.737 0.936 0.950
B5 HD HD – 53 LD 0.736 0.943 0.952

a 963 and 106 offsprings with HD in reference set for Group A and B, respectively.
b 106 and 963 offsprings with LD in the validation set for Group A and B, respectively.
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LD panel. The size of the reference population should be large enough
and not be a major factor influencing imputation accuracy using small
panels for a portion of the population. The main benefit of increasing
number of reference individuals will be obtained through increasing
genotyping of highly related individuals between target and reference
individuals (Zhang and Druet, 2010).

Here we also found that imputation accuracy was higher by using
HD genotypes from sires instead of HD genotypes from dams, when HD
genotypes from only one parent were available. These differences are
more evident for Group B. The large paternal full-sib sample structure
(~56 offspring per sire) could contribute for a better haplotype re-
construction than just using maternal full-sib samples (~31 offspring
per dam). In addition, Gilbey et al. (2004); Lien et al. (2011) and Moen
et al. (2004) suggested that there are large differences in recombination
rates between sexes in Salmo salar, in a ratio ranging from 1.38:1 to
8.26:1 (female:male). A slow decay in linkage disequilibrium could be a
consequence of low recombination rates in males which resulted in
higher accuracy of imputation when compared to females.

The lower accuracy found around the beginning and end of the
chromosomes could be due to the fact the recombination is known to be
higher around the telomeres, which would decrease the precision of
haplotype reconstruction and imputation accuracy (Chowdhury et al.,
2009; Tortereau et al., 2012). Low imputation accuracies in centromere
regions might be attributed to incorrect order of markers on the re-
ference genome in regions difficult to assemble.

In some chromosome regions, a notably low imputation accuracy is
evident (e.g. chromosome 8 and 17 in Scenario 5, Supplementary ma-
terial 1D and 2D). This suggests errors in the SNP position given by an
incorrect anchoring of these markers to the genome or errors in the
current reference genome assembly. These regions had markers with
very low levels of linkage disequilibrium with neighboring markers,
resulting in very low imputation accuracies (Carvalheiro et al., 2014;
Druet et al., 2010). Sun et al. (2012) observed that imputation accuracy
was positively associated with chromosome size due to the fact that
longer chromosomes harbour more markers, and hence providing more
information for inferring unknown haplotypes and imputing missing
genotypes. In longer chromosomes, the problem of low imputation
accuracy at the beginning and end of the chromosomes are relatively
less important than in shorter chromosomes.

The imputation accuracy improved when Erbe et al. (2012) re-
mapped the SNPs with high errors rates using linkage disequilibrium.
However, they still found poorly imputed SNPs after remapping,

suggesting that recombination hot spots or regions on the panel with
lower SNP density, could result in the high imputation error rates for
some SNPs (Hozé et al., 2013). In our study, some of the markers with
low imputation accuracy were removed before imputation (~3% of all
SNPs in Scenario A5 and B5) to try to improve the accuracy. Only a
marginal gain was observed, ranging, for example, from 0.83 to 0.86
and 0.74 to 0.77 for LD0.5 K panel in Scenario A5 and B5, respectively,
which were the scenarios with the highest accuracy gain. This result is
most likely due to the small proportion of discarded markers. However,
for genome wide association studies could be preferable to treat these
markers with high error rates with caution, to avoid the negative im-
pact of imputation errors in the QTL detection.

To test the impact of genotype imputation errors in genome-enabled
selection methods, we estimated the accuracy of genomic predictions
for body weight using the worst and the best scenarios for Group B,
based on imputation accuracy. The present results are in accordance to
previous studies carried out in aquaculture (Tsai et al., 2017) and li-
vestock species (Berry and Kearney, 2011; Erbe et al., 2012), in which
genomic prediction accuracies using imputed genotypes were always
higher than those obtained using pedigree-based BLUP and not much
lower than using HD genotypes.

The present study showed that the genomic prediction accuracy
using imputed genotypes, for all densities of LD SNP panels, out-
performed the pedigree-based method in the best and the worst sce-
narios of imputation accuracy (B1 and B5). In addition, the genomic
prediction accuracies when genotyping both parents and a proportion
of the progeny (10%) with the HD panel (Scenario B1), along the three
low density panels used in the validation population, were identical to
the accuracies obtained by using the 50 K SNP panel. The same result
was observed for LD panels of 3 K and 6 K when both parents were
genotyped with the HD panel (Scenario B5). As expected, the lowest
genomic prediction accuracy was observed for the scenario and SNP
panel with lowest imputation accuracy (i.e. Scenario B5 and LD0.5 K
panel), which resulted in an accuracy slightly lower compared to the
use of the real 50 K SNP panel (0.71 vs 0.73, respectively). These results
indicate that the use of an appropriate genotyping strategy combining
the genotyping of both parents and a percentage (10%) of the total
progeny using a HD panel and a greater proportion (90%) of the pro-
geny with a LD panel (500 SNPs), represents an alternative to reach
similar accuracy to that achieved by genotyping all animals with a HD
panel. These results may be used to plan genotyping strategies to reduce
the costs for the practical implementation of genomic selection in

Fig. 3. Accuracy of genomic prediction for body weight using the pedigree-based method (PBLUP), true 50 K genotypes (50 K) and imputed genotypes to Scenarios 1B and 5B, under
different low-density panels (0.5, 3 and 6 K) for Salmon salar.
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Atlantic salmon.
Supplementary data to this article can be found online at https://

doi.org/10.1016/j.aquaculture.2018.03.004.
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