
            

PAPER • OPEN ACCESS

Active colloidal chains with cilia- and flagella-like
motion
To cite this article: S Gonzalez and R Soto 2018 New J. Phys. 20 053014

 

View the article online for updates and enhancements.

Related content
Emergent behavior in active colloids
Andreas Zöttl and Holger Stark

-

Physics of microswimmers—single particle
motion and collective behavior: a review
J Elgeti, R G Winkler and G Gompper

-

The hydrodynamics of swimming
microorganisms
Eric Lauga and Thomas R Powers

-

This content was downloaded from IP address 200.89.68.74 on 07/06/2018 at 22:10

https://doi.org/10.1088/1367-2630/aabe3c
http://iopscience.iop.org/article/10.1088/0953-8984/28/25/253001
http://iopscience.iop.org/article/10.1088/0034-4885/78/5/056601
http://iopscience.iop.org/article/10.1088/0034-4885/78/5/056601
http://iopscience.iop.org/article/10.1088/0034-4885/72/9/096601
http://iopscience.iop.org/article/10.1088/0034-4885/72/9/096601


New J. Phys. 20 (2018) 053014 https://doi.org/10.1088/1367-2630/aabe3c

PAPER

Active colloidal chains with cilia- and flagella-like motion

SGonzalez andR Soto1

PhysicsDepartment, FCFM,Universidad deChile, Santiago, Chile
1 Author towhomany correspondence should be addressed.

E-mail: rsoto@dfi.uchile.cl

Keywords: active colloids, self-propelled particles,flagella, cilia

Supplementarymaterial for this article is available online

Abstract
It has been shown that self-assembled chains of active colloidal particles can present sustained
oscillations. These oscillations are possible because the effective diffusiophoretic forces thatmediate
the interactions of colloids do not respect the action–reaction principle and hence, aHopfbifurcation
is possible even for overdamped dynamics. Anchoring the particles in one extreme breaks the head–
tail symmetry and the oscillation is transformed into a travelingwave pattern, and thus the chain
behaves like a beating cilium. The net force on the anchor, estimated using the resistive force theory,
vanishes before the bifurcation and thereafter grows linearly with the bifurcation parameter. If the
mobilities of the particles on one extreme are reduced tomimic an elongated cargo, the traveling wave
generates a net velocity on the chain that nowbehaves like amoving flagellum. The average velocity
again grows linearly with the bifurcation parameter. Our results demonstrate that simplified systems,
consisting only of a few particles with non-reciprocal interaction and head–tail asymmetry, show
beatingmotion and self-propulsion. Both properties are present inmany non-equilibriummodels
thusmaking our results a general feature of activematter.

1. Introduction

Cilia andflagella aremicroscopic hair-like structures present inmany biological systems. They are used for
propulsion and to stir the surrounding fluid for various vital tasks in the cell [1–4], all taking place at low
Reynolds number. In a nutshell, they are flexiblefilaments that bend periodically by the action ofmotors [5–7].
For bacteria and other systems, themotors are located on one extreme, in the cellmembrane, and the bending of
theflagella results from the competition of the viscous and elastic forces. In the case of cilia, the bending is
produced bymolecularmotors situated along all thefilament extension, which produce shear stresses that
alternate in direction. In both cases, the result is a travelingwave along the filament. Thismotion is non-
reciprocal,meaning that it does not correspond to a rigid body oscillation and hence, it allows propulsion or
stirring in the lowReynolds number regime [8].

Active Janus colloids have emerged as prototypes of non-biologicalmicroscopic self-propelling particles.
When immersed in awater peroxide solution, catalytic reactions take place at their surfaces, generatingmotion
on the colloid due to phoretic forces [9]. Recent studies in chains of Janus particles demonstrate the ability of
colloidal chains to beat periodically and self-propel. This has been observed experimentally in externally [10]
and internally driven [11] systems. These results suggest a newpropulsionmechanism to be synthetically
realized: cilia- and flagella-likemicro-motors. However, the use of polar particles provides an additional
difficulty as they aremore complex tomanufacture and assembly than isotropic particles.

In this article we take inspiration from self-assembledmoleculesmade of isotropic active colloids [12] to
investigate the possibility of beatingmotion for a systemof non-polar particles.We ask the question of whether
it is possible that self-assembled structures can behave as beatingmotors and under what constrains this is
possible. The answer is affirmative andwe explain what is themechanismbehind it: aHopf transition similar to
the one found on activefilaments [13]. However, in contrast to those, there is no time dependent activity nor
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elastic force between the composing particles. The beating dynamics emerge from static force interactions due to
diffusiophoresis and the geometry of our chains, and produce sustained periodic beating for awide range of
parameters in a very simple system. By showingwhat are theminimal requirements to produce sustained
beating in an active colloidal system,we hope to give a step in the understanding of synthetic swimmers that
mimic yet another feature of biological systems.

2. Colloidalmodel

For the construction of the cilia and flagella-like structures, we consider a simplemodel of active particles, which
do not present self-propulsion on their own, but rather activity emerges as a result of their interactions. Active
colloidal particles, for example gold or platinumparticles in awater peroxide solution, generate or consume
solutes at their surfaces, which later diffuse in the fluid. Formicron sized particles, the contrast of diffusivities
between the solute and colloidal particles is large.Hence, the solute concentration profiles are completely
enslaved to the instantaneous positions of the colloids


ri and the production rates at their surfacesαi [14]. In

presence of concentration inhomogeneities, a colloid experiences a phoretic drift which is well described by a
velocity proportional to the concentration gradient times amobility coefficientμi [15]. In the far field
approximation, the interaction between two colloids decays as the distance squared and the resulting
diffusiophoretic velocity of the colloid i interactingwith colloid k is m a=


ˆV U r ri i k ki ki0

2 , where
= = -

  ˆr r r r rki ki ki i k is the vector that joins the centers of the particles andU0 depends on the radius of the
particles and the diffusion coefficient of solutes [12]. Notably, the interaction between two dissimilar particles is
not symmetric, violating the action–reaction principle. This is possible by the presence of the supporting fluid
that takes away or providesmomentum. Besides this interaction, colloidal particles display steric repulsion,
whichwemodel as a soft-sphere potential, resulting in the following equations ofmotion
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whereU1measures the intensity of the repulsive potential. The combination of these two interactions allow that
stable clusters self-assemble. For simplicity, no Brownian noise is added.

In [12] the case of a binarymixture (of typesA andB)was studied in detail. Characterizing the
diffusiophoretic chargesα andμ by their signs, it was shown that a particularly interesting case occurs whenαA,
μA>0 andαB,μB<0. Consequently, equal particles repel and dissimilar particles attract with an intensity that
depends on the values of their charges. Under appropriate conditions, this attraction allows the formation of
clusters whereA andB particles alternate forming chains. As neighbor particles are different, the effect of the
violation of action–reaction is stronger and it ismore possible that activity emerges. In the cases when the chain
presents a head–tail asymmetry (for example, in the trivialAB cluster), activity takes the formof self-propulsion.
Normally, unless the chain is perfectly symmetric, a residual propulsion velocity will result, given by the
combination of the geometry and the values of the charges. Also, if the chain presents some chiral asymmetry it
will spontaneously rotate [12].

Although the equations are derived, and valid, for a three-dimensional system, we restrict themovement to
two dimensions for two reasons: first,most of the experimental realizations of colloidal systems are not density
matched, thus the particles tend to sediment and their finalmotion occurs in a plane [16, 17]. Secondly, the
analysis of the geometrical structures that are formed is simpler in two dimensions, without unnecessary
complications from the increased number of degrees of freedom in three dimensions. Nevertheless, the
principles and qualitative results obtained here are applicable also in three dimensions.

In a chain another kind of activity can appear besides self-propulsion and rotation, and is the subject of this
article. Despite the fact that the particle dynamics is overdamped, that is without inertia (equation (2)), as the
interactions are not symmetric the global dynamics is not necessarily variational.When the linear stability of a
colloidalmolecule is studied, the violation of the action–reaction principle produces an interactionmatrix that is
not symmetric and complex conjugate eigenvalues can appear. Thus, it is possible that bymoving the interaction
parameters themolecule becomes unstable via aHopfbifurcation [18]. The system then evolves toward a limit
cycle, oscillating periodically. In [19], the case of a symmetric oscillatorwas studied, showing that there is even a
route for self-assembly and that the oscillation is robust under thermal noise.

Here, we consider linear chains as those presented infigure 1, which are labeled by the number of units k,
being composed of 3(k+1) particles. These chains are stable for awide range of parameters with the
combinations of charge signs described above. It is possible to absorb the dimensions ofα andμ intoU0,
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allowing us to choseαB=−1 andμB=−1, leavingαA andμA as free variables. Also, time and space units can
be chosen such thatU0=U1=1, implying that theminimal distance between particles that attract is order
one,fixing therefore the hard-core diameter.

Due to their symmetry, these chains cannot self-propel. Also, when theHopf bifurcation is crossed, the limit
cycle corresponds to a global phase and the chain oscillates in a normalmode form (in [19] the case with k=3 is
studied). Here, we aim to introduce a simple asymmetry which can generate travelingwaves along the chain,
and, eventually the possibility ofmotion or thrust on a cargo, similarly to the oscillation offlagella and cilia. To
create a head–tail asymmetry in the chain, we keep the geometry and distribution of phoretic charges and change
only themobility of the colloids on one extreme (seefigure 1).

3. Anchored chains: cilium-likemotion

As afirst case, we reduce themobility of the two leftmost colloids to zero,modeling a chain that is rigidly
anchored (for example using optical traps). Alternatively, this could be realized, for example, by using afixed
Janus particle as the head of the structure. Note that it is not enough to anchor one colloid as the chainwould
have kept a global rotational degree of freedom that obscures the analysis. Although in a chain there aremany
degrees of freedom,most of them are frozen by the balance of the attraction by the phoretic forces and the hard-
core repulsion. These hard degrees of freedom are almost fixed to the equilibriumdistance and can be treated as
constrains [19]. The rest are softmodes, which for the chains correspond to rotations as presented infigure 1.
The number of soft degrees of freedom is g=k+1.

To obtain stable oscillations via aHopf bifurcation, a pair of complex conjugate eigenvalues with positive
real partmust exist when the linear stability analysis of the chain is performed. For this, it is necessary to have at
least two soft degrees of freedom,which in our case is obtained even for k=1, as it is indeed the case, see
figure 4. Figure 2 presents the phase diagram, in theαA−μA space for k=2, obtained by analyzing thefinal state
of chains prepared initially in the linear configuration plus a small perturbation. Various states are obtained: for
small values ofαA (region I) the chains are unstable by disintegration due to the large phoretic repulsion between
equal particles, in region II the chains are stable in their linear configuration, and in region III stable oscillations
take place. The amplitude of the oscillations growswhenmoving from region II to III, as the square root of the
bifurcation parameter (see below).When this amplitude becomes large enough, the chain can fold into itself and
collapses into a compact cluster, which no longer oscillates (region IV). Analogous behaviors are obtained for
other values ofk.

In order to analyze inmore detail the properties of the oscillators, we extend their stability by adding springs
between colloids that are initially neighbors (i.e., in the linear configurations displayed infigure 1). In
equation (2) appropriate terms of the form -

ˆ ( ∣ ∣)r r rki ki0 are added, where r0 are the equilibriumdistances,

Figure 1.Reference chain configuration for different values of k. Color indicates the type of the particles: A inmagenta andB in cyan.
For k=2, the particles with loweredmobility are labeledwith black dots and the arrows indicate the soft degrees of freedom.
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reinforcing the hard degrees of freedombut not altering the soft ones. In this way, under large oscillations, the
phoretic forces are not able to break or fold the chain, which keeps its structure.With thismethod, region IV
disappears and stable oscillations are obtained instead. At this point, it is worthmentioning that although here
the analysis is done for the case of diffusiophoretic forces, the principles described in this article are valid for any
systempresenting effective interactions that do not satisfy the action–reaction principle. This is the case, for
example, of interactionsmediated bywakes, shadows or complex solvents, or even for Casimir-like forces (see
[20] and references therein). Under these conditions activity emerges naturally as a result of interactions. In this
context, the addition of the cohesive spring forcesmust be understood as any effective or direct interaction that
can keep the structures stable. Experimentally, at least onemethod exists to create elastic bonds between the
Janus particles: using electric fields to stabilize the geometry, a heating step to bond the chains and finally sterical
stabilization tomake them flexible [11, 21].

Figure 4 presents the beating patterns for anchored chains with k=1 to k=9, where springs have been
used for k=7 and k=9 to keep stable the structures for such high amplitudes. An important feature is that the
chains do not oscillate as rigid bodies neither as a normalmode, and the back and forth patterns are not
reciprocal. Instead, due to the head–tail asymmetry, a travelingwave appears. Supplementary video 1, available
online at stacks.iop.org/NJP/20/053014/mmedia, shows themovement of these chains. For large k, the
existence of this wave ismore evident in a spatio-temporal diagramof the vertical displacements, as shown in
figure 5, where it is clear that awave propagates outward. Essentially, thewavelength isfixed by the chain length,
except that for k� 9 it is possible to see that the rightmost particles oscillate at a higher frequency, reflecting the
existence of higher harmonics in the limit cycle. For small chains, the existence of the travelingwave ismore clear
when the evolution of the soft degrees of freedom is analyzed. For example, for k= 1, the two bending angles
converge to a limit cycle, with a phase shift that in this case represents also awave that travels in the outward
direction (not shown).

The existence of a travelingwave implies that themotion is not reciprocal and propulsion can take place
(see [8] for a discussion on the role of non-reciprocalmotions to generate thrust and net displacement in the low
Reynolds regime). As the head is anchored, it is not possible for the chain to self-propel but rather it can exert a
net force on the head. To estimate this force, we use the resistive force theory [22–24]. For this, a spline curve of
degree 2 is generated at each instant using the centers of particlesA. This curve is then divided in 100 intervals,
and on each, the perpendicular and tangential vectors to the curve are computed, allowing to project the velocity
of each interval into this base. The force in the infinitely thin approximation is computed as
= å +

  ( )F R v v2n n n0
perp tang , where the sum runs over all the intervals andR0 is the unitary resistance, which is

proportional to thefluid viscosity. Finally, this force is averaged over a full cycle. Figure 6 presents the net force
on the head as a function ofαA. The force is proportional to the oscillation amplitude squared and takes negative
values, that is pointing towards the head. This result is consistent with analytic calculations for the force
generated by a sinusoidal wave traveling outward on aflagellum,which also scales with the amplitude squared
and points to the head [22]. An important feature, which is part of the design of the chain, is that the force
vanishes by symmetry when the chain is in equilibrium and it pushes only as a result of the oscillations. Notably,
the oscillations are not driven by an externalmotor, but rather they are spontaneously generated by the chain
when parameters aremoved.

Figure 2.Phase diagram for anchored chains (left) and chainswith a cargo (right) in theαA–μA space for k=2. Four phases are
identified: chains can be unstable by disintegration (I, pink), linear chains are stable (II, green), linear chains oscillate periodically (III,
blue), and chains are unstable by collapse (IV, yellow).
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The oscillation period is almost independent of the control parametersαA andμA. This is consistent with the
fact that the oscillation results from aHopfbifurcation, where the real part of a pair of eigenvalues change sign,
but the imaginary part is a smooth function of the parameters, with no qualitative change at the transition [18].
The evolution of the eigenvalues for k=1 is shown infigure 3 and has been previously reported for k=3 in
figure 2 from [12].

4. Chainswith a cargo:flagellum-likemotion

Wenow aim to generate a chain that can self-propel when oscillations start but otherwisewould remain at rest
when it is at the equilibrium shape. For this, we lower themobility of the two leftmost particles in order tomimic
a cargo, like the head of aflagellatedmicroorganism [7]. Again, as in the case of the cilia-likemovement we need
that the first two particles have reducedmobility to avoid the appearance of a global rotationalmode. For an
elongated cargo alignedwith the principal axis of the chain, the longitudinal and transversalmobilities satisfy

=M M2l t andwe are free to choseMl, whichwe take equal to 0.2 representing a large head. Then, the equations
ofmotion(1) for thefirst two particles aremodified to

= + -
 

[ ˆ ˆ ( ˆ ˆ)] · ( )r

t
M nn M I nn V

d

d
, 3i

l t i

where =ˆ ˆn r12, while we keep the formof


Vi in equation (2). Videos of the dynamics due to differentmobilities
are found in supplementary videos 2, 3 and 4.

Releasing thefirst two colloids, that nowcanmove, adds threenewdegrees of freedom.However, these are not
relevant for producing additional bifurcations or complexifying the attractors inphase space, because they are
associated to a global rotation and translationof the chain. In summary, for these chainswith cargo, the number of
soft degrees of freedom is again g=k+1 andoscillations can emerge viaHopfbifurcations at k=1. Simulations
of the system showaphase diagramvery similar to that of the anchored chain, with the difference that oscillations
are accompaniedwith a net translation (seefigure 2). Notably, the average velocity due to the phoretic drift is
positive and the chainmoves towards the tailwith a velocity that grows as the amplitude squared.Again, by
symmetry, if the chain is not oscillating, there is nonet velocity. If hydrodynamic interactions are included and
modeledwith the resistive force theory, a net force toward the head is generated as shown in the previous section
whichwould give rise to a velocity in that direction. Both velocities are proportional to the amplitude squared but
point in opposite directions. The net velocity on an experimental conditionwould dependon the balance of the
phoretic charges, the viscosity and theparticle sizes. As this is a proof of concept proposal, wheremanydetails
which dependon the particular realization for the experiment cannot be foreseen, it is futile to predict the direction
ofmotion.Note, however, that as both velocities have the samedependencewith the amplitude, it is not expected
that a crossover takes over in the vicinity of the bifurcation line.

Figure 6 shows the velocity of displacement for a cargomadewith k=2 andμA=0.5 and varyingαA. The
Hopfbifurcation for the flagellum and cilium cases take place at very similar values ofαA≈1.41. For both
cases, the amplitude of oscillation increases as the square root of the bifurcation parameter, however for the
flagellum case, a secondary oscillation appears atαA 1.6 andmakes the amplitude of oscillation larger (see
figure 7). Itmust be noted that the frequency of oscillation is almost constant while varyingα (see figure 8) so the

Figure 3.Real and imaginary parts of eigenvalues associated to the softmodes for an anchored chainwith k=1, whenαA is varied in
the range [1.62,1.72] (indicated by an arrow) andμA=1 isfixed. The critical value for the transition, when the real parts become
positive, isαAc;1.67. At the inset, the associated eigenmode is depictedwith arrows. There are other six eigenvalues, which are
purely negative and real, and ofmuch highermagnitudes, representing the relaxation of the hard degrees of freedomof the chain. To
compute the eigenvalues, for eachαA the equilibrium (eventually unstable) configuration is found by relaxing for a finite time a
perfectly symmetric chain. Then, the forcematrix is computed by performing linear perturbations to all degrees of freedom.
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increase in speed is only due to the shape of the beating pattern that changes withαA. Figure 8 shows that, just as
for the anchored chain, the cargoʼsmain beating frequency (largest peak) only slightly increases as increasingαA.
The secondary slow oscillation, in contrast, is inexistent forαA=1.55 and increases for largerαA.

Figure 4.Geometry of theflagellar beating patterns of anchored chains for different values of k, with lines joining the backbone
particles. Colors indicate different time instants covering one period, with time increasing in the sequence: green, cyan, blue,magenta,
red, yellow, and back to green again. The parameters in all cases areμA=0.5 andαA=1.5 except for k=9, whereμA=0.25. For all
chains, by decreasingμA the amplitude and frequency of oscillation grow and in the case of the k=9 chain a secondary oscillation is
produced, possibly due to a secondaryHopfbifurcation. For k=7, black dots on the last particle help to visualize the non-reciprocal
motion. For k=9, the sampling rate has been increased to highlight the fast oscillation of the rightmost particles. (See supplementary
video 1.)

Figure 5. Spatio-temporal diagramof the vertical displacement of the backbone particles for an anchored chain of k=9,αA=1.5,
andμA=0.25.Note howhigher harmonics are evident in themotion of particles close to the free end (high particle index).
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5.Discussion

Wehave shown a series of chain-like structures composed of spherical active colloids that can behave either as a
cilia or a flagella. These structures can in principle self-assemble, and in fact the ‘reaction path’ for at least one of
them is known [19]. The (self-assemblable) chains are stable in awide range of the parameter space and for
which the building blocks (dimers and trimers)have been already experimentally realized [17]. These building

Figure 6. Left: oscillation amplitude as a function ofαA for an anchored chain (open black squares) and for a chainwith a cargo (solid
red circles). The critical charge for the anchored chain is a = 1.406A

c and for the chainwith a cargo is a = 1.413A
c . The amplitude is

computed for the vertical component of the center ofmass as the difference between the highest and lowest point of its trajectory after
have reached the steady state. Right: average force on the head for an anchored chain (open black squares) and average velocity for a
chainwith a cargo (solid red circles) as a function of the respective amplitudes squared. In all cases, k=2 andμ2=0.5. Note that the
amplitude grows as the square root of the transition parameter a a-A A

c , until the secondary oscillation appears aroundαA=1.65;
see figure 7.

Figure 7.Geometry of theflagellar beating patterns of a chainwith a cargo forαA=1.6 (top) andαB=1.7 (bottom), where a
secondary instability takes place in the formof a low-frequency oscillation. Lines join the backbone particles, with colors indicating
the different time instants covering one period of the low-frequency oscillation, with time increasing in the sequence: red, yellow
green, cyan, blue,magenta, and back to red again. In black, the position of the leftmost particle (flagellumʼs head). ForαA=1.7, the
oscillation frequency is slightly higher, resulting in a larger displacement for the same time. The secondary oscillation for this case is
fully developed.
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blocks, in particular the trimers, are akin tomechanical joints in the chain. The joints are completely reversible,
in the sense that if there is no fuel for the particles there is no joint and hence no beating structures.This could
point towards self-assemblablemicro-robots that can act in an environment-dependentmanner.

The inclusion of hydrodynamic interactions, which is not present in ourmodel, is expected to change only
quantitatively the results because they respect the action–reaction symmetry and by their own generate
equilibrium states. The instability that generates the steady oscillations is due to the activity of the chain. In our
case it comes from the phoretic interaction that breaks the action–reaction symmetry, but it could emerge in
other systemswith non-equilibrium interactions. A nice example of such oscillatory behavior is themagnetic
chain studied in [25], which also included hydrodynamic interactions.

To consider systemswith full three-dimensionalmotion, chains composed ofmore complex, three-
dimensionalmonomerswould be better candidates for steady stable oscillations. This, however, goes beyond the
scope of the present paper.

We believe self-assemblable structures pose a significant advantage over polar particles, in regard to their
ease of assembly, overcoming one of the reasons of their hindered experimental exploration [10] . One can think
ofmicrofluidics systems coupledwith externalfields that harvest the self-assembly of smaller structures to

Figure 9.Varieties of beating for differentmobilities, charges andnumber of composing particles. Same color schemeas inprevious
figures however the timeof simulation varies from1000 to 4000 timeunits to show representative dynamics of the different chains. The
different resultingmovements go fromcircular trajectories, to translation inbothhorizontal directions, to purely transversal and space
filling patterns.Upper row: left, k=2,αA=1.5,μA=0.5,Ml=Mt=0.2; center a m= = = = =k M M2, 1.5, 0.5, 2 0.4;A A l t

right k=2,αA=1.5,μA=0.25,Ml=Mt=0.5. Lower row: left, k=2,αA=1.5,μA=0.5,Ml=0,Mt=0.2; center k=3,
αA=1.5,μA=0.25,Ml=0.25,Mt=0.1875; right a m= = = = =k M M3, 1.5, 0.25, 2 0.25A A l t .

Figure 8.Power spectrumof the vertical center ofmass coordinate forαA=1.50, 1.55, 1.60, and 1.65, increasing as indicated by the
arrows. The simulations last 10 000 time units and are sampled every time unit. The primary oscillation (largest peak on the right)
shifts towards higher values, i.e. shorter periods, asαA increases, and another slow frequency peak atω∼30 appears forαA1.6,
with an amplitude that increases withαA.
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produce colloidal chains in an assembly-line-like system.We are currently working on this idea and it will be the
subject of a future publication.

The few examples of beating presented in this article are by far not exhaustive. Several other chain-like structures
have been found in the explorative stage of this researchbutwhichwedecidednot so to study here for the sake of
simplicity, seefigure 9 for some examples. They all share the same twobasic principles: there is a head–tail
asymmetry and enough soft degrees of freedom to sustain oscillations. This canbemade inmanyways, anddifferent
structures present different quantitative behaviors. For example, for a beaterwith a certain shape and frequency, it
canbe designed via choosing the right size particles, chemical compositionof the solute and the geometry of the
chain. Furthermore,wehave shown that the force exerted by these cargos is in principle tunable. This couldhave
important implications in thedesign ofmicrorobots for drugdelivery, for example. Although the simulations have
beendonewithoutBrowniannoise, it iswell known that theHopfbifurcation and the periodic oscillations that
result are robust undernoise [18].Hence, themechanismwepropose for generating beatingfilamentswill continue
workingunder experimental conditions subject to thermal noise or other source offluctuations.

Another point worthmaking is the implications for our understanding of biological flagella: since the
seminal work ofMachin [26], the biological community has understood themovement of the spermflagellum
due to a time dependent activity of its internalmotors, see [27] for a recent example. The current results from
colloidal systems (here and otherwise [10, 11, 13]) show that this needs not to be the case: it is perfectly possible
that a constant activity creates an oscillatory behavior in afilament, thusmaking unnecessary to assume that the
motors know a priori the oscillation frequency for a sperm. This is amuch simpler principle and its
consequences need to be fully understood.

Acknowledgments

SG thanksVeikkoFGeyer for the enlighteningdiscussions on the spermflagellum thatmotivated this research.This
researchwas supportedby theFondecytGrantsNo.1140778 and3160481, and theMillenniumNucleus ‘Physics of
activematter’of theMillenniumScientific Initiative of theMinistry of Economy,Development andTourism (Chile).

References

[1] BrayD 2001CellMovements: FromMolecules toMotility (NewYork: Garland)
[2] FulfordG andBlake J 1986 J. Theor. Biol. 121 381–402
[3] Nonaka S, ShiratoriH, Saijoh Y andHamadaH2002Nature 418 96–9
[4] SawamotoK et al 2006 Science 311 629–32
[5] Gibbons I 1981 J. Cell. Biol. 91 107s–24s
[6] FawcettD 2014Cell 2 217–98
[7] Lauga E and Powers TR 2009Rep. Prog. Phys. 72 096601
[8] Purcell EM1977Am. J. Phys. 45 3–11
[9] PaxtonWF, Sundararajan S,MalloukT E and SenA 2006Angew. Chem., Int. Ed. 45 5420–9
[10] NishiguchiD et al 2018New J. Phys. 20 015002
[11] VutukuriHR, Bet B, van Roij R, DijkstraM andHuckWTS 2017 Sci. Rep. 7 16758
[12] SotoR andGolestanianR 2014Phys. Rev. Lett. 112 068301
[13] Camalet S, Jülicher F and Prost J 1999Phys. Rev. Lett. 82 1590–3
[14] GolestanianR, Liverpool TB andAjdari A 2007New J. Phys. 9 126
[15] Anderson J L 1989Ann. Rev. FluidMech. 21 61–99
[16] Simmchen J, Katuri J, UspalWE, PopescuMN,TasinkevychMand Sánchez S 2016Nat. Commun. 7 10598
[17] NiuR, Palberg T and Speck T 2017Phys. Rev. Lett. 119 028001
[18] Marsden J E andMcCrackenM2012TheHopf Bifurcation and its Applications vol 19 (Berlin: Springer)
[19] SotoR andGolestanianR 2015Phys. Rev.E 91 052304
[20] Ivlev AV, Bartnick J,HeinenM,DuCR,NosenkoV and LöwenH2015Phys. Rev.X 5 011035
[21] VutukuriHR,Demirörs A F, Peng B, vanOostrumPD J, Imhof A and vanBlaaderen A2012Angew. Chem., Int. Ed. 51 11249–53
[22] Lighthill J 1976 SIAMRev. 18 161–230
[23] BrennenC andWinetH1977Ann. Rev. FluidMech. 9 339–98
[24] JohnsonR andBrokawC1979Biophys. J. 25 113–27
[25] Babel S, LöwenH andMenzel AM2016Europhys. Lett. 113 58003
[26] MachinKE 1958 J. Exp. Biol. 35 796–806
[27] Riedel-Kruse IH,Hilfinger A,Howard J and Jülicher F 2007HFSP J. 1 192–208

9

New J. Phys. 20 (2018) 053014 SGonzalez andR Soto

https://doi.org/10.1016/S0022-5193(86)80098-4
https://doi.org/10.1016/S0022-5193(86)80098-4
https://doi.org/10.1016/S0022-5193(86)80098-4
https://doi.org/10.1038/nature00849
https://doi.org/10.1038/nature00849
https://doi.org/10.1038/nature00849
https://doi.org/10.1126/science.1119133
https://doi.org/10.1126/science.1119133
https://doi.org/10.1126/science.1119133
https://doi.org/10.1083/jcb.91.3.107s
https://doi.org/10.1016/B978-0-12-123302-0.50011-3
https://doi.org/10.1016/B978-0-12-123302-0.50011-3
https://doi.org/10.1016/B978-0-12-123302-0.50011-3
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1119/1.10903
https://doi.org/10.1119/1.10903
https://doi.org/10.1119/1.10903
https://doi.org/10.1002/anie.200600060
https://doi.org/10.1002/anie.200600060
https://doi.org/10.1002/anie.200600060
https://doi.org/10.1088/1367-2630/aa9b48
https://doi.org/10.1038/s41598-017-16731-5
https://doi.org/10.1103/PhysRevLett.112.068301
https://doi.org/10.1103/PhysRevLett.82.1590
https://doi.org/10.1103/PhysRevLett.82.1590
https://doi.org/10.1103/PhysRevLett.82.1590
https://doi.org/10.1088/1367-2630/9/5/126
https://doi.org/10.1146/annurev.fl.21.010189.000425
https://doi.org/10.1146/annurev.fl.21.010189.000425
https://doi.org/10.1146/annurev.fl.21.010189.000425
https://doi.org/10.1038/ncomms10598
https://doi.org/10.1103/PhysRevLett.119.028001
https://doi.org/10.1103/PhysRevE.91.052304
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1002/anie.201202592
https://doi.org/10.1002/anie.201202592
https://doi.org/10.1002/anie.201202592
https://doi.org/10.1137/1018040
https://doi.org/10.1137/1018040
https://doi.org/10.1137/1018040
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1146/annurev.fl.09.010177.002011
https://doi.org/10.1016/S0006-3495(79)85281-9
https://doi.org/10.1016/S0006-3495(79)85281-9
https://doi.org/10.1016/S0006-3495(79)85281-9
https://doi.org/10.1209/0295-5075/113/58003
https://doi.org/10.2976/1.2773861
https://doi.org/10.2976/1.2773861
https://doi.org/10.2976/1.2773861

	1. Introduction
	2. Colloidal model
	3. Anchored chains: cilium-like motion
	4. Chains with a cargo: flagellum-like motion
	5. Discussion
	Acknowledgments
	References



