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Abstract

It has been shown that self-assembled chains of active colloidal particles can present sustained
oscillations. These oscillations are possible because the effective diffusiophoretic forces that mediate
the interactions of colloids do not respect the action—reaction principle and hence, a Hopf bifurcation
is possible even for overdamped dynamics. Anchoring the particles in one extreme breaks the head—
tail symmetry and the oscillation is transformed into a traveling wave pattern, and thus the chain
behaves like a beating cilium. The net force on the anchor, estimated using the resistive force theory,
vanishes before the bifurcation and thereafter grows linearly with the bifurcation parameter. If the
mobilities of the particles on one extreme are reduced to mimic an elongated cargo, the traveling wave
generates a net velocity on the chain that now behaves like a moving flagellum. The average velocity
again grows linearly with the bifurcation parameter. Our results demonstrate that simplified systems,
consisting only of a few particles with non-reciprocal interaction and head—tail asymmetry, show
beating motion and self-propulsion. Both properties are present in many non-equilibrium models
thus making our results a general feature of active matter.

1. Introduction

Cilia and flagella are microscopic hair-like structures present in many biological systems. They are used for
propulsion and to stir the surrounding fluid for various vital tasks in the cell [1-4], all taking place atlow
Reynolds number. In a nutshell, they are flexible filaments that bend periodically by the action of motors [5-7].
For bacteria and other systems, the motors are located on one extreme, in the cell membrane, and the bending of
the flagella results from the competition of the viscous and elastic forces. In the case of cilia, the bending is
produced by molecular motors situated along all the filament extension, which produce shear stresses that
alternate in direction. In both cases, the result is a traveling wave along the filament. This motion is non-
reciprocal, meaning that it does not correspond to a rigid body oscillation and hence, it allows propulsion or
stirring in the low Reynolds number regime [8].

Active Janus colloids have emerged as prototypes of non-biological microscopic self-propelling particles.
When immersed in a water peroxide solution, catalytic reactions take place at their surfaces, generating motion
on the colloid due to phoretic forces [9]. Recent studies in chains of Janus particles demonstrate the ability of
colloidal chains to beat periodically and self-propel. This has been observed experimentally in externally [10]
and internally driven [11] systems. These results suggest a new propulsion mechanism to be synthetically
realized: cilia- and flagella-like micro-motors. However, the use of polar particles provides an additional
difficulty as they are more complex to manufacture and assembly than isotropic particles.

In this article we take inspiration from self-assembled molecules made of isotropic active colloids [12] to
investigate the possibility of beating motion for a system of non-polar particles. We ask the question of whether
itis possible that self-assembled structures can behave as beating motors and under what constrains this is
possible. The answer is affirmative and we explain what is the mechanism behind it: a Hopf transition similar to
the one found on active filaments [13]. However, in contrast to those, there is no time dependent activity nor
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elastic force between the composing particles. The beating dynamics emerge from static force interactions due to
diffusiophoresis and the geometry of our chains, and produce sustained periodic beating for a wide range of
parameters in a very simple system. By showing what are the minimal requirements to produce sustained
beating in an active colloidal system, we hope to give a step in the understanding of synthetic swimmers that
mimic yet another feature of biological systems.

2. Colloidal model

For the construction of the cilia and flagella-like structures, we consider a simple model of active particles, which
do not present self-propulsion on their own, but rather activity emerges as a result of their interactions. Active
colloidal particles, for example gold or platinum particles in a water peroxide solution, generate or consume
solutes at their surfaces, which later diffuse in the fluid. For micron sized particles, the contrast of diffusivities
between the solute and colloidal particles is large. Hence, the solute concentration profiles are completely
enslaved to the instantaneous positions of the colloids 7 and the production rates at their surfaces «; [14]. In
presence of concentration inhomogeneities, a colloid experiences a phoretic drift which is well described by a
velocity proportional to the concentration gradient times a mobility coefficient y; [15]. In the far field
approximation, the interaction between two colloids decays as the distance squared and the resulting
diffusiophoretic velocity of the colloid i interacting with colloid k is Vi = U, 1 O T / rf, where

T = nify = 1. — 1 is the vector that joins the centers of the particles and U, depends on the radius of the
particles and the diffusion coefficient of solutes [ 12]. Notably, the interaction between two dissimilar particles is
not symmetric, violating the action—reaction principle. This is possible by the presence of the supporting fluid
that takes away or provides momentum. Besides this interaction, colloidal particles display steric repulsion,
which we model as a soft-sphere potential, resulting in the following equations of motion

dz7 R
dt
with
. Pri Pri
V=UY ok + U Y, ®)
k=i Tki k=i Tki

where U; measures the intensity of the repulsive potential. The combination of these two interactions allow that
stable clusters self-assemble. For simplicity, no Brownian noise is added.

In [12] the case of a binary mixture (of types A and B) was studied in detail. Characterizing the
diffusiophoretic charges v and 4 by their signs, it was shown that a particularly interesting case occurs when a4,
a > 0and agp, up < 0. Consequently, equal particles repel and dissimilar particles attract with an intensity that
depends on the values of their charges. Under appropriate conditions, this attraction allows the formation of
clusters where A and B particles alternate forming chains. As neighbor particles are different, the effect of the
violation of action—reaction is stronger and it is more possible that activity emerges. In the cases when the chain
presents a head—tail asymmetry (for example, in the trivial AB cluster), activity takes the form of self-propulsion.
Normally, unless the chain is perfectly symmetric, a residual propulsion velocity will result, given by the
combination of the geometry and the values of the charges. Also, if the chain presents some chiral asymmetry it
will spontaneously rotate [12].

Although the equations are derived, and valid, for a three-dimensional system, we restrict the movement to
two dimensions for two reasons: first, most of the experimental realizations of colloidal systems are not density
matched, thus the particles tend to sediment and their final motion occurs in a plane [16, 17]. Secondly, the
analysis of the geometrical structures that are formed is simpler in two dimensions, without unnecessary
complications from the increased number of degrees of freedom in three dimensions. Nevertheless, the
principles and qualitative results obtained here are applicable also in three dimensions.

In a chain another kind of activity can appear besides self-propulsion and rotation, and is the subject of this
article. Despite the fact that the particle dynamics is overdamped, that is without inertia (equation (2)), as the
interactions are not symmetric the global dynamics is not necessarily variational. When the linear stability of a
colloidal molecule is studied, the violation of the action—reaction principle produces an interaction matrix that is
not symmetric and complex conjugate eigenvalues can appear. Thus, it is possible that by moving the interaction
parameters the molecule becomes unstable via a Hopf bifurcation [18]. The system then evolves toward a limit
cycle, oscillating periodically. In [19], the case of a symmetric oscillator was studied, showing that there is even a
route for self-assembly and that the oscillation is robust under thermal noise.

Here, we consider linear chains as those presented in figure 1, which are labeled by the number of units k,
being composed of 3(k + 1) particles. These chains are stable for a wide range of parameters with the
combinations of charge signs described above. It is possible to absorb the dimensions of « and p into Uy,
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Figure 1. Reference chain configuration for different values of k. Color indicates the type of the particles: A in magenta and B in cyan.
For k = 2, the particles with lowered mobility are labeled with black dots and the arrows indicate the soft degrees of freedom.

allowing us to chose ay = —land up = —1, leaving vy and i as free variables. Also, time and space units can
be chosen such that Uy = U; = 1, implying that the minimal distance between particles that attract is order
one, fixing therefore the hard-core diameter.

Due to their symmetry, these chains cannot self-propel. Also, when the Hopf bifurcation is crossed, the limit
cycle corresponds to a global phase and the chain oscillates in a normal mode form (in [19] the case with k = 3 s
studied). Here, we aim to introduce a simple asymmetry which can generate traveling waves along the chain,
and, eventually the possibility of motion or thrust on a cargo, similarly to the oscillation of flagella and cilia. To
create a head—tail asymmetry in the chain, we keep the geometry and distribution of phoretic charges and change
only the mobility of the colloids on one extreme (see figure 1).

3. Anchored chains: cilium-like motion

As afirst case, we reduce the mobility of the two leftmost colloids to zero, modeling a chain that is rigidly
anchored (for example using optical traps). Alternatively, this could be realized, for example, by using a fixed
Janus particle as the head of the structure. Note that it is not enough to anchor one colloid as the chain would
have kept a global rotational degree of freedom that obscures the analysis. Although in a chain there are many
degrees of freedom, most of them are frozen by the balance of the attraction by the phoretic forces and the hard-
core repulsion. These hard degrees of freedom are almost fixed to the equilibrium distance and can be treated as
constrains [19]. The rest are soft modes, which for the chains correspond to rotations as presented in figure 1.
The number of soft degrees of freedomisg = k + 1.

To obtain stable oscillations via a Hopf bifurcation, a pair of complex conjugate eigenvalues with positive
real part must exist when the linear stability analysis of the chain is performed. For this, it is necessary to have at
least two soft degrees of freedom, which in our case is obtained even for k = 1, asitis indeed the case, see
figure 4. Figure 2 presents the phase diagram, in the a4 — 14 space for k = 2, obtained by analyzing the final state
of chains prepared initially in the linear configuration plus a small perturbation. Various states are obtained: for
small values of a4 (region I) the chains are unstable by disintegration due to the large phoretic repulsion between
equal particles, in region II the chains are stable in their linear configuration, and in region I stable oscillations
take place. The amplitude of the oscillations grows when moving from region IT to III, as the square root of the
bifurcation parameter (see below). When this amplitude becomes large enough, the chain can fold into itself and
collapses into a compact cluster, which no longer oscillates (region IV). Analogous behaviors are obtained for
other values of k.

In order to analyze in more detail the properties of the oscillators, we extend their stability by adding springs
between colloids that are initially neighbors (i.e., in the linear configurations displayed in figure 1). In
equation (2) appropriate terms of the form 7; (r, — |7;|) are added, where r are the equilibrium distances,
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Figure 2. Phase diagram for anchored chains (left) and chains with a cargo (right) in the cvy—14 space for k = 2. Four phases are
identified: chains can be unstable by disintegration (I, pink), linear chains are stable (II, green), linear chains oscillate periodically (I11,
blue), and chains are unstable by collapse (IV, yellow).

reinforcing the hard degrees of freedom but not altering the soft ones. In this way, under large oscillations, the
phoretic forces are not able to break or fold the chain, which keeps its structure. With this method, region IV
disappears and stable oscillations are obtained instead. At this point, it is worth mentioning that although here
the analysis is done for the case of diffusiophoretic forces, the principles described in this article are valid for any
system presenting effective interactions that do not satisfy the action—reaction principle. This is the case, for
example, of interactions mediated by wakes, shadows or complex solvents, or even for Casimir-like forces (see
[20] and references therein). Under these conditions activity emerges naturally as a result of interactions. In this
context, the addition of the cohesive spring forces must be understood as any effective or direct interaction that
can keep the structures stable. Experimentally, at least one method exists to create elastic bonds between the
Janus particles: using electric fields to stabilize the geometry, a heating step to bond the chains and finally sterical
stabilization to make them flexible [11, 21].

Figure 4 presents the beating patterns for anchored chains with k = 1to k = 9, where springs have been
used for k = 7and k = 9 to keep stable the structures for such high amplitudes. An important feature is that the
chains do not oscillate as rigid bodies neither as a normal mode, and the back and forth patterns are not
reciprocal. Instead, due to the head—tail asymmetry, a traveling wave appears. Supplementary video 1, available
online at stacks.iop.org/NJP/20/053014/mmedia, shows the movement of these chains. For large k, the
existence of this wave is more evident in a spatio-temporal diagram of the vertical displacements, as shown in
figure 5, where it is clear that a wave propagates outward. Essentially, the wavelength is fixed by the chain length,
except that for k > 9 itis possible to see that the rightmost particles oscillate at a higher frequency, reflecting the
existence of higher harmonics in the limit cycle. For small chains, the existence of the traveling wave is more clear
when the evolution of the soft degrees of freedom is analyzed. For example, for k = 1, the two bending angles
converge to a limit cycle, with a phase shift that in this case represents also a wave that travels in the outward
direction (not shown).

The existence of a traveling wave implies that the motion is not reciprocal and propulsion can take place
(see [8] for a discussion on the role of non-reciprocal motions to generate thrust and net displacement in the low
Reynolds regime). As the head is anchored, it is not possible for the chain to self-propel but rather it can exert a
net force on the head. To estimate this force, we use the resistive force theory [22—24]. For this, a spline curve of
degree 2 is generated at each instant using the centers of particles A. This curve is then divided in 100 intervals,
and on each, the perpendicular and tangential vectors to the curve are computed, allowing to project the velocity
of each interval into this base. The force in the infinitely thin approximation is computed as
F =R, >, (2VPP + y1278) where the sum runs over all the intervals and Ry is the unitary resistance, which is
proportional to the fluid viscosity. Finally, this force is averaged over a full cycle. Figure 6 presents the net force
on the head as a function of a4. The force is proportional to the oscillation amplitude squared and takes negative
values, that is pointing towards the head. This result is consistent with analytic calculations for the force
generated by a sinusoidal wave traveling outward on a flagellum, which also scales with the amplitude squared
and points to the head [22]. An important feature, which is part of the design of the chain, is that the force
vanishes by symmetry when the chain is in equilibrium and it pushes only as a result of the oscillations. Notably,
the oscillations are not driven by an external motor, but rather they are spontaneously generated by the chain
when parameters are moved.
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Figure 3. Real and imaginary parts of eigenvalues associated to the soft modes for an anchored chain with k = 1, when o is varied in
the range [1.62,1.72] (indicated by an arrow) and j4 = 11is fixed. The critical value for the transition, when the real parts become
positive, is ay. = 1.67. At the inset, the associated eigenmode is depicted with arrows. There are other six eigenvalues, which are
purely negative and real, and of much higher magnitudes, representing the relaxation of the hard degrees of freedom of the chain. To
compute the eigenvalues, for each o4 the equilibrium (eventually unstable) configuration is found by relaxing for a finite time a
perfectly symmetric chain. Then, the force matrix is computed by performing linear perturbations to all degrees of freedom.

The oscillation period is almost independent of the control parameters o4 and p14. This is consistent with the
fact that the oscillation results from a Hopf bifurcation, where the real part of a pair of eigenvalues change sign,
but the imaginary part is a smooth function of the parameters, with no qualitative change at the transition [18].
The evolution of the eigenvalues for k = 1is shown in figure 3 and has been previously reported for k = 3 in
figure 2 from [12].

4. Chains with a cargo: flagellum-like motion

We now aim to generate a chain that can self-propel when oscillations start but otherwise would remain at rest
when it is at the equilibrium shape. For this, we lower the mobility of the two leftmost particles in order to mimic
acargo, like the head of a flagellated microorganism [7]. Again, as in the case of the cilia-like movement we need
that the first two particles have reduced mobility to avoid the appearance of a global rotational mode. For an
elongated cargo aligned with the principal axis of the chain, the longitudinal and transversal mobilities satisfy
M; = 2M; and we are free to chose M, which we take equal to 0.2 representing a large head. Then, the equations
of motion (1) for the first two particles are modified to

dr;

dt
where 71 = fi,, while we keep the form of Viin equation (2). Videos of the dynamics due to different mobilities
are found in supplementary videos 2, 3 and 4.

Releasing the first two colloids, that now can move, adds three new degrees of freedom. However, these are not
relevant for producing additional bifurcations or complexifying the attractors in phase space, because they are
associated to a global rotation and translation of the chain. In summary, for these chains with cargo, the number of
soft degrees of freedom is again g = k + 1 and oscillations can emerge via Hopf bifurcationsatk = 1. Simulations
of the system show a phase diagram very similar to that of the anchored chain, with the difference that oscillations
are accompanied with a net translation (see figure 2). Notably, the average velocity due to the phoretic drift is
positive and the chain moves towards the tail with a velocity that grows as the amplitude squared. Again, by
symmetry, if the chain is not oscillating, there is no net velocity. If hydrodynamic interactions are included and
modeled with the resistive force theory, a net force toward the head is generated as shown in the previous section
which would give rise to a velocity in that direction. Both velocities are proportional to the amplitude squared but
point in opposite directions. The net velocity on an experimental condition would depend on the balance of the
phoretic charges, the viscosity and the particle sizes. As this is a proof of concept proposal, where many details
which depend on the particular realization for the experiment cannot be foreseen, it is futile to predict the direction
of motion. Note, however, that as both velocities have the same dependence with the amplitude, it is not expected
thata crossover takes over in the vicinity of the bifurcation line.

Figure 6 shows the velocity of displacement for a cargo made with k = 2 and p14 = 0.5 and varying cs. The
Hopf bifurcation for the flagellum and cilium cases take place at very similar values of ay = 1.41. For both
cases, the amplitude of oscillation increases as the square root of the bifurcation parameter, however for the
flagellum case, a secondary oscillation appears at .4 2 1.6 and makes the amplitude of oscillation larger (see
figure 7). It must be noted that the frequency of oscillation is almost constant while varying « (see figure 8) so the

= [Miiifi + M, (I — #A)] - Vi, 3
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Figure 4. Geometry of the flagellar beating patterns of anchored chains for different values of k, with lines joining the backbone
particles. Colors indicate different time instants covering one period, with time increasing in the sequence: green, cyan, blue, magenta,
red, yellow, and back to green again. The parameters in all cases are yi4 = 0.5and oy = 1.5 except for k = 9, where 114 = 0.25. Forall
chains, by decreasing 114 the amplitude and frequency of oscillation grow and in the case of the k = 9 chain a secondary oscillation is

produced, possibly due to a secondary Hopf bifurcation. For k = 7, black dots on the last particle help to visualize the non-reciprocal
motion. For k = 9, the sampling rate has been increased to highlight the fast oscillation of the rightmost particles. (See supplementary

video 1.)
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Figure 5. Spatio-temporal diagram of the vertical displacement of the backbone particles for an anchored chain ofk = 9, a4 = 1.5,
and 4 = 0.25. Note how higher harmonics are evident in the motion of particles close to the free end (high particle index).

increase in speed is only due to the shape of the beating pattern that changes with «4. Figure 8 shows that, just as
for the anchored chain, the cargo’s main beating frequency (largest peak) only slightly increases as increasing cv4.
The secondary slow oscillation, in contrast, is inexistent for ay = 1.55 and increases for larger a4.
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Figure 6. Left: oscillation amplitude as a function of a4 for an anchored chain (open black squares) and for a chain with a cargo (solid
red circles). The critical charge for the anchored chainis o, = 1.406 and for the chain with a cargois oy = 1.413. The amplitude is
computed for the vertical component of the center of mass as the difference between the highest and lowest point of its trajectory after
have reached the steady state. Right: average force on the head for an anchored chain (open black squares) and average velocity for a
chain with a cargo (solid red circles) as a function of the respective amplitudes squared. In all cases, k = 2 and p1, = 0.5. Note that the
amplitude grows as the square root of the transition parameter a4 — o, until the secondary oscillation appears around oy, = 1.65;
see figure 7.

Figure 7. Geometry of the flagellar beating patterns of a chain with a cargo for vy = 1.6 (top) and ay = 1.7 (bottom), where a
secondary instability takes place in the form of alow-frequency oscillation. Lines join the backbone particles, with colors indicating
the different time instants covering one period of the low-frequency oscillation, with time increasing in the sequence: red, yellow
green, cyan, blue, magenta, and back to red again. In black, the position of the leftmost particle (flagellum’s head). For vy = 1.7, the
oscillation frequency is slightly higher, resulting in a larger displacement for the same time. The secondary oscillation for this case is
fully developed.

5. Discussion

We have shown a series of chain-like structures composed of spherical active colloids that can behave either as a
cilia or a flagella. These structures can in principle self-assemble, and in fact the ‘reaction path’ for at least one of
them is known [19]. The (self-assemblable) chains are stable in a wide range of the parameter space and for
which the building blocks (dimers and trimers) have been already experimentally realized [17]. These building
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Figure 8. Power spectrum of the vertical center of mass coordinate for ay = 1.50, 1.55, 1.60, and 1.65, increasing as indicated by the
arrows. The simulations last 10 000 time units and are sampled every time unit. The primary oscillation (largest peak on the right)
shifts towards higher values, i.e. shorter periods, as «4 increases, and another slow frequency peak atw ~ 30 appears for ay = 1.6,
with an amplitude that increases with 4.
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Figure 9. Varieties of beating for different mobilities, charges and number of composing particles. Same color scheme as in previous
figures however the time of simulation varies from 1000 to 4000 time units to show representative dynamics of the different chains. The
different resulting movements go from circular trajectories, to translation in both horizontal directions, to purely transversal and space
filling patterns. Upper row:left, k = 2,y = 1.5, g = 0.5,M; = M, = 0.2;center k = 2, ay = 1.5, jy = 0.5, 2M; = M, = 0.4;
rightk = 2,4 = 1.5, 4 = 0.25,M; = M, = 0.5. Lower row: left, k = 2, a4 = 1.5, u4 = 0.5, M; = 0, M, = 0.2; centerk = 3,

oy = 1.5, 14 = 0.25,M; = 0.25,M, = 0.1875; right k = 3, ay = 1.5, p, = 0.25, M; = 2M, = 0.25.

blocks, in particular the trimers, are akin to mechanical joints in the chain. The joints are completely reversible,
in the sense that if there is no fuel for the particles there is no joint and hence no beating structures. This could
point towards self-assemblable micro-robots that can act in an environment-dependent manner.

The inclusion of hydrodynamic interactions, which is not present in our model, is expected to change only
quantitatively the results because they respect the action—reaction symmetry and by their own generate
equilibrium states. The instability that generates the steady oscillations is due to the activity of the chain. In our
case it comes from the phoretic interaction that breaks the action—reaction symmetry, but it could emerge in
other systems with non-equilibrium interactions. A nice example of such oscillatory behavior is the magnetic

chain studied in [25], which also included hydrodynamic interactions.

To consider systems with full three-dimensional motion, chains composed of more complex, three-
dimensional monomers would be better candidates for steady stable oscillations. This, however, goes beyond the

scope of the present paper.

We believe self-assemblable structures pose a significant advantage over polar particles, in regard to their
ease of assembly, overcoming one of the reasons of their hindered experimental exploration [10] . One can think
of microfluidics systems coupled with external fields that harvest the self-assembly of smaller structures to

8
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produce colloidal chains in an assembly-line-like system. We are currently working on this idea and it will be the
subject of a future publication.

The few examples of beating presented in this article are by far not exhaustive. Several other chain-like structures
have been found in the explorative stage of this research but which we decided not so to study here for the sake of
simplicity, see figure 9 for some examples. They all share the same two basic principles: there is a head—tail
asymmetry and enough soft degrees of freedom to sustain oscillations. This can be made in many ways, and different
structures present different quantitative behaviors. For example, for a beater with a certain shape and frequency;, it
can be designed via choosing the right size particles, chemical composition of the solute and the geometry of the
chain. Furthermore, we have shown that the force exerted by these cargos is in principle tunable. This could have
important implications in the design of microrobots for drug delivery, for example. Although the simulations have
been done without Brownian noise, it is well known that the Hopf bifurcation and the periodic oscillations that
result are robust under noise [ 18]. Hence, the mechanism we propose for generating beating filaments will continue
working under experimental conditions subject to thermal noise or other source of fluctuations.

Another point worth making is the implications for our understanding of biological flagella: since the
seminal work of Machin [26], the biological community has understood the movement of the sperm flagellum
due to a time dependent activity of its internal motors, see [27] for a recent example. The current results from
colloidal systems (here and otherwise [10, 11, 13]) show that this needs not to be the case: it is perfectly possible
thata constant activity creates an oscillatory behavior in a filament, thus making unnecessary to assume that the
motors know a priori the oscillation frequency for a sperm. This is a much simpler principle and its
consequences need to be fully understood.
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