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Abstract In this note, by solving a variational inequality at each iteration, we study
the existence of solutions for a class of sweeping processes with velocity in themoving
set, originally introduced in a recent paper (Adly et al. inMathProgramSerB148(1):5–
47, 2014). Our aim is to improve Adly et al. (2014, Theorem 5.1) to allow possibly
unbounded moving sets. The theoretical result is supported by some examples in
nonregular electrical circuits.

Keywords Sweeping processes · Unbounded moving sets · Semicoercive variational
inequalities

1 Introduction

Sweeping processes were introduced and thoroughly studied in the seventies by Jean-
JacquesMoreau in his serial seminars at the University of Montpellier [9,10] to model
quasi-static evolution in elastoplasticity, contact dynamics, friction dynamics, granu-
lar material, which was the original motivation. Nowadays, abundant applications of
sweeping processes can be also found in nonsmooth mechanics, convex optimization,
mathematical economics, dynamic networks, switched electrical circuits, modeling of
crowd motion . . . (see, e.g., [1,2,4,7]). The simplest sweeping process has the form
of a differential inclusion defined as follows
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{
u̇(t) ∈ −NC(t)(u(t)) a.e. t ∈ [0, T ],
u(0) = u0 ∈ C(0),

(1)

where the right-hand side is the normal cone of a moving closed convex set C(t) at
the state u(t) in a Hilbert space H . Implicitly the constraint u(t) ∈ C(t) is satisfied
for almost every t ∈ [0, T ]. The following interpretation [9,10] justifies the name
“sweeping process” and arises for the way how the point u(t) is “sweept” by the set
C(t): as long as the point u(t) lies in the interior of C(t) (assumed to be nonempty),
the normal cone NC(t)(u(t)) is reduced to zero, so u(t) does not move. When the
point is “caught up” by the boundary of C(t) it moves, subject to an inward normal
direction, as if pushed by this boundary. There exist in the literature many variants
of the sweeping process. Recently in [2], the authors proposed a new variant with
velocity in the moving set and gave various examples in electrical circuits which can
be recast into the following form

(S)

{
A1u̇(t) + A0u(t) − f (t) ∈ −NC(t)(u̇(t)) a.e. t ∈ [0, T ],
u(0) = u0,

where A1, A0 : H → H are two bounded symmetric linear semi-definite operators
and f : [0, T ] → H is a continuous mapping. Let us mention that the system (S)

is equivalent to the following evolution variational inequality which consists to find
u : [0, T ] −→ H, with u(0) = u0 ∈ H such that u̇(t) ∈ C(t) a.e. t ∈ [0, T ] and

a0(u(t), v − u̇(t)) + a1(u̇(t), v − u̇(t)) ≥ 〈 f (t), v − u̇(t)〉, for all v ∈ C(t). (2)

Here a0(·, ·) and a1(·, ·) are real bilinear, bounded and symmetric forms associated to
the operators A1 and A0 respectively, f ∈ W 1,2([0, T ], H).
The evolution variational inequalities of type (2) are widely used in applied mathe-
matics, unilateral mechanics and various fields of sciences and engineering such as
for instance traffic networks, energy market, transportation, elastoplasticity etc…(see
e.g. [5]). In nonsmooth mechanics, the moving set is usually expressed in the form of
inequality as follows

C(t) := {x ∈ H : gi (t, x) ≤ 0, i = 1, 2, . . . ,m} (3)

for some regular convex functions gi : [0, T ] × R
n → R, (i = 1, 2, . . . ,m). Tradi-

tionally the above inequalities correspond to the so-called unilateral constraint (that
is, one-sided constraint). An interesting case also in applications is given when the set
C(t) is polyhedral, i.e.

C(t) = {x ∈ R
n : 〈ai (t), x〉 ≤ bi (t), i = 1, 2, . . . ,m}, (4)

with ai (·) and bi (·) are some given functions. In [2], the moving set is supposed to
move in an continuous way with bounded initial position C(0). Consequently, it is
easy to see that C(·) is bounded on [0, T ]. The boundedness of the moving set limits
the applications for the new variant. However, without additional assumption, the
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unboundedness of C(·) can make the differential inclusion (S) having no absolutely
continuous solutions, even in one-dimensional space, as showed in the beginning of
[2, Section 5]. In this note, we relax the boundedness condition by a constraint on the
operator A1 andC(0), which covers the case considered in [2] and allows the possibly
unbounded moving set.

The note is organized as follows. In Sect. 2, we recall some standard notations
used in the sequel. The main result about existence of solutions for (S) is provided in
Sect. 3. We end the paper in Sect. 4 with some conclusions and perspectives.

2 Notations and preliminaries

We begin with some notations used throughout the paper. Let H be a separable Hilbert
space. Denote by 〈·, ·〉 , ‖ · ‖ the scalar product and the corresponding norm in H .
Denote by B the unit ball and Br := rB, Br (x) := x + rB. The distance from a point
s to a set C is denoted by d(s,C) or dC (s) and

d(s,C) := inf
x∈C ‖s − x‖.

The projection of s onto C is the set of all points in C that are nearest to s, denoted
by

PC (s) := {x ∈ C : ‖s − x‖ = d(s,C)}.

The Hausdorff distance between two sets C1 and C2 is defined by

dH (C1,C2) := max

{
sup
x1∈C1

d(x1,C2), sup
x2∈C2

d(x2,C1)

}
.

We define the indicator function iS(·), the characteristic function 1S(·) and the
support function σ(S, ·) of a given set S as follows

iS(x) :=
{
0 if x ∈ S,

+∞ if x /∈ S,
1S(x) :=

{
1 if x ∈ S,

0 if x /∈ S.
and σ(S, x) := sup

ξ∈S
〈x, ξ 〉.

Let ϕ : H → R ∪ {+∞} be a proper, convex, lower semicontinuous function. The
Legendre − Fenchel conjugate of ϕ is defined as

ϕ∗(x∗) := sup
x∈H

{〈x∗, x〉 − ϕ(x)}.

For ϕ(x) finite, one has

x∗ ∈ ∂ϕ(x) ⇔ ϕ(x) + ϕ∗(x∗) = 〈x∗, x〉 (5)
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834 S. Adly, B. K. Le

where ∂ϕ(x) denotes the subdifferential of ϕ at x ,

∂ϕ(x) := {x∗ ∈ H : 〈x∗, y − x〉 ≤ ϕ(y) − ϕ(x), ∀y ∈ H}. (6)

In particular, ∂ϕ is surjective if and only if ϕ∗ is surjective. The normal cone of a
closed convex set S is defined as follows

NS(x) := ∂iS(x) = {x∗ ∈ H : 〈x∗, y − x〉 ≤ 0, ∀y ∈ S}.

It is easy to see that

x∗ ∈ NS(x) ⇔ σ(S, x∗) = 〈x∗, x〉 and x ∈ S. (7)

Let D : H → H be a linear bounded operator. It is said to be coercive if there exists
c > 0 such that

〈Dx, x〉 ≥ c‖x‖2, for all x ∈ H.

It is said to be semi-coercive if there exists c > 0 such that

〈Dx, x〉 ≥ c‖Qx‖2 for all x ∈ H,

where Q = I−Pker(D+DT ), I is the identity operator and Pker(D+DT ) is the orthogonal
projection onto ker(D + DT ). It is said to be semi-positive definite if

〈Dx, x〉 ≥ 0 for all x ∈ H.

It is known that [6] if the linear bounded operator D is monotone and Im (D+ DT ) is
closed, then D is semi-coercive. In particular a semi-positive definite matrix in Rn×n

is semi-coercive.

3 Main results

In this section, we study the existence of solutions for (S) by using a discretization
technique. It is an improvement of [2, Theorem 5.1] to relax the boundedness of the
moving set by using only, for example, the boundedness of the projection ofC(0) onto
ker(A1). Let us assume the following two assumptions.

Assumption 1 The set-valuedmappingC : [0, T ] ⇒ H has nonempty closed convex
values and is continuous in the sense that there is some continuous function v :
[0, T ] → R such that

dH (C(s),C(t)) ≤ |v(s) − v(t)|, ∀s, t ∈ [0, T ]. (8)
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On semicoercive sweeping process with velocity constraint 835

Assumption 2 Let A1, A0 : H → H be two bounded symmetric linear semi-definite
operators and f : [0, T ] → H be a continuous mapping. Assume that there exist
α > 0 and β > 0 such that

〈A1x, x〉 ≥ α‖x‖2 − β, ∀ x ∈ C(0). (9)

Remark 1 (i) Since C(·) moves in a continuous way, it is equivalent to consider the
inequality in (9) for all x ∈ C(t), t ∈ [0, T ]. Obviously, the condition (9) holds
if A1 is coercive.

(ii) If C(0) ⊂ γB, then the condition (9) is satisfied with α = 1 and β = γ 2. Thus
Theorem 1 covers the case considered in [2, Theorem 5.1].

(iii) If the projection ofC(0) onto ker(A1) is bounded by some γ > 0 and A1 is semi-
coercive then (9) also holds. Indeed, there exists α > 0 such that for all x ∈ C(0)
one has 〈A1x, x〉 ≥ α‖x − Pker(A1)x‖2 ≥ α‖x‖2 − αγ 2, where Pker(A1)x is
the projection of x onto ker(A1). Consequently, in finite dimensional spaces, we
only need the boundedness of the projection of C(0) onto ker(A1).

The following lemmas will be useful.

Lemma 1 Let Assumptions 1 and 2 hold. Then for each fixed t ∈ [0, T ], the set-valued
mapping x �→ NC(t)(x) + A1x is surjective.

Proof Note that the set-valued mapping NC(t) + A1 = ∂(iC(t) + ϕA1) = ∂ϕ, where
ϕA1(x) := 1

2 〈A1x, x〉 and ϕ := iC(t) + ϕA1 is a proper convex function from H to
R ∪ {+∞}. Thus in order to prove the surjection of NC(t) + A1, it is enough to show
that dom(ϕ∗) = H . Let x∗ ∈ H , by using Assumption 1 and Remark 1(i), one has

ϕ∗(x∗) = sup
x∈C(t)

{〈x∗, x〉 − ϕA1(x)}

≤ sup
x∈C(t)

{
〈x∗, x〉 − α

2
x2 + β

2

}

≤ ‖x∗‖2
2α

+ β

2
< +∞,

which implies that x∗ ∈ dom(ϕ∗). ��
Lemma 2 There exists a constant c > 0 which depends only on the initial data such
that for all t ∈ [0, T ], we can find some yt ∈ C(t) satisfying that ‖yt‖ ≤ c.

Proof Fix some y0 ∈ C(0). Let yt := projC(t)(y0). From Assumption 1, one has

‖yt − y0‖ = d(y0;C(t)) ≤ dH (C(0),C(t)) ≤ |v(t) − v(0)| ≤ |v(0)| + max
t∈[0,T ] |v(t)|.

By choosing c := |v(0)| + max
t∈[0,T ] |v(t)| + ‖y0‖, the conclusion follows. ��

Now, we are ready to state the main result.

Theorem 1 Let Assumptions 1 and 2 hold. Then for any initial condition, problem
(S) has at least one Lipschitz solution.
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836 S. Adly, B. K. Le

Proof Let be given some positive integer n, define hn := T/n and tni := ih for
0 ≤ i ≤ n. For 0 ≤ i ≤ n − 1 and given uni , we want to find vni+1, u

n
i+1 such that

{
A1v

n
i+1 + A0uni ∈ −NC

(
tni+1

) (
vni+1

) + f ni ,

uni+1 = uni + hnvni+1,
(10)

where f ni = f (tni ). It is easy to see that the first line of (10) can be rewritten as follows

f ni − A0u
n
i ∈

(
NC

(
tni+1

) + A1

) (
vni+1

)
. (11)

The mapping A1 + NC(tni+1)
is surjective thanks to Lemma 1. Thus, we can choose

vni+1 ∈ (NC(tni+1)
+ A1)

−1( f ni − A0uni ). We have the following algorithm to construct
the sequences (uni )

n
i=0, (v

n
i )

n
i=0, ( f

n
i )ni=0 which are well-defined.

Modified catching-up algorithm:

– un0 = u0, f n0 = f (0).

For 0 ≤ i ≤ n − 1:

– Find vni+1 by solving the following variational inequality

vni+1 ∈
(
NC(tni+1)

+ A1
)−1 (

f ni − A0u
n
i
)
and set uni+1 = uni + hnvni+1, f ni+1 = f

(
tni+1

)
.

Next we prove that the sequences (uni )
n
i=0, (vni )

n
i=0 are uniformly bounded. Indeed,

from (11) and the convexity of C(tni+1), one has

〈A1v
n
i+1 − (

f ni − A0u
n
i

)
, y − vni+1〉≥ 0, ∀y ∈ C

(
tni+1

)
. (12)

Since we can choose some y ∈ C(tni+1)which is bounded by some constant depending
only on initial data, the inequalities (12) and (9) imply the existence of some constant
a > 0 such that

‖vni+1‖ ≤ a
(‖uni ‖ + 1

)
. (13)

Hence,

‖uni+1‖ + 1 ≤ ‖uni ‖ + 1 + hn‖vni+1‖ ≤ (1 + hna)
(‖uni ‖ + 1

)
. (14)

By induction, one has

‖uni ‖ + 1 ≤ (1 + hna)n (‖u0‖ + 1) ≤ eaT (‖u0‖ + 1). (15)

It follows that

‖uni ‖ ≤ eaT (‖u0‖ + 1) − 1 and ‖vni ‖ ≤ aeaT (‖u0‖ + 1) ∀n, i. (16)
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Consequently, the sequences (uni )
n
i=0, (vni )

n
i=0, ( f

n
i ) are uniformly bounded by some

real number M > 0, where

M := max

{
eaT (‖u0‖ + 1) − 1, aeaT (‖u0‖ + 1), sup

t∈[0,T ]
‖ f (t)‖

}
. (17)

We construct the sequences of functions (un(·))n, ( fn(·))n : [0, T ] → H and
(θn(·))n, (ηn(·))n : [0, T ] → [0, T ] as follows: un(0) = u0, fn(0) = f (0) and
on (tni , tni+1] for 0 ≤ i ≤ n − 1, we set

un(t) := uni + uni+1 − uni
hn

(
t − tni

)
, fn(t) := f ni , θn(t) := tni , ηn(t) := tni+1.

Then, for all t ∈ (tni , tni+1)

u̇n(t) = uni+1 − uni
hn

= vni+1 ∈ C
(
tni+1

)
,

and

max

{
sup

t∈[0,T ]
|θn(t) − t |, sup

t∈[0,T ]
|ηn(t) − t |

}
≤ hn → 0 as n → +∞. (18)

It is easy to see that the sequence of functions (un(·))n is bounded in norm and
variation. By using [8, Theorem 0.2.1], there exist some bounded variation function
u : [0, T ] → H and a subsequence, still denoted by (un(·))n such that
– un(t) converges weakly to u(t) for all t ∈ [0, T ];
– u̇n(·) converges weakly to some ξ(·) in L2(0, T ; H).

Clearly, u(0) = u0 and u(·) is M-Lipschitz continuous since for all s, t ∈ [0, T ], one
has

‖u(t) − u(s)‖ ≤ lim inf
n→+∞ ‖un(t) − un(s)‖ ≤ M |t − s|.

��
Consequently, u(·) is differentiable almost every t ∈ [0, T ]. Fix t ∈ [0, T ] and let
z := u(t) − u0 − ∫ t

0 ξ(s)ds. We have

〈
z, u(t) − u0 −

∫ t

0
ξ(s)ds

〉
= lim

n→+∞

〈
z, un(t) − u0 −

∫ t

0
ξ(s)ds

〉

= lim
n→+∞

〈
z,

∫ t

0
(u̇n(s) − ξ(s))ds

〉

= lim
n→+∞

∫ T

0
〈1[0,t](s)z, u̇n(s) − ξ(s)〉ds = 0.
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838 S. Adly, B. K. Le

It implies that u(t) = u0 + ∫ t
0 ξ(s)ds for all t ∈ [0, T ] and hence u̇(t) = ξ(t) for

almost every t ∈ [0, T ]. Next, let us prove that u̇(t) ∈ C(t) for almost every t ∈ [0, T ].
Indeed, given any t such that u̇(t) exists, we have

u̇n(t) ∈ C(ηn(t)) ⊂ C(t) + |v(t) − v(ηn(t))|B ⊂ C(t) + ω(hn)B, (19)

where ω(·) : R+ → R+ denotes the modulus of continuity of v(·), defined by

ω(h) := sup
|x−y|≤h

|v(x) − v(y)|.

Let

D := {w ∈ L2(0, T ; H) : w(t) ∈ C(t) a.e. t ∈ [0, T ]}.

Then D is a closed, convex subset of L2(0, T ; H). Note that u̇n(·) converges weakly
to u̇(·) in L2(0, T ; H). In addition, from (19), it is easy to see that

u̇n ∈ D + εnBL2 ,

where εn := ω(hn)
√
T → 0 as n → +∞ and BL2 denotes the closed unit ball

in L2(0, T ; H). Using [7, Lemma 2], one deduces that u̇ ∈ D, which means that
u̇(t) ∈ C(t) for almost every t ∈ [0, T ]. Finally, we show that

A1u̇(t) + A0u(t) − f (t) ∈ −NC(t)(u̇(t)) a.e. t ∈ [0, T ]. (20)

Indeed, from (10), one obtains for almost every t ∈ [0, T ] that

zn(t) := −A1u̇n(t) − A0un(θn(t)) + fn(t) ∈ NC(ηn(t))(u̇n(t)), (21)

which is equivalent to

σ(C(ηn(t)); zn(t)) + 〈A1u̇n(t) + A0un(θn(t)) − fn(t), u̇n(t)〉 ≤ 0.

Thus,

∫ T

0
σ(C(ηn(t)); zn(t))dt+

∫ T

0
〈A1u̇n(t)+A0un(θn(t))− fn(t), u̇n(t)〉dt ≤ 0. (22)

It is easy to see that the function x �→ ∫ T
0 〈A1x(t), x(t)〉dt is weakly lower semicon-

tinuous on L2(0, T ; H) since it is convex and continuous on L2(0, T ; H). Note that
u̇n converges weakly to u̇ in L2(0, T ; H). Therefore

∫ T

0
〈A1u̇(t), u̇(t)〉dt ≤ lim inf

n→+∞

∫ T

0
〈A1u̇n(t), u̇n(t)〉dt. (23)
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On the other hand,

∫ T

0
〈A0u(t), u̇(t)〉dt = 1

2
〈A0u(T ), u(T )〉 − 1

2
〈A0u(0), u(0)〉

≤ lim inf
n→+∞

(
1

2
〈A0un(T ), un(T )〉 − 1

2
〈A0un(0), un(0)〉

)

≤ lim inf
n→+∞

∫ T

0
〈A0un(t), u̇n(t)〉dt,

and
∣∣∣∣lim inf
n→+∞

∫ T

0
〈A0un(t) − A0un(θ(t)), u̇n(t)〉dt

∣∣∣∣ ≤ lim inf
n→+∞ M2‖A0‖hnT = 0.

Hence, ∫ T

0
〈A0u(t), u̇(t)〉dt ≤ lim inf

n→+∞

∫ T

0
〈A0un(θ(t)), u̇n(t)〉dt. (24)

One also has ∫ T

0
〈 f (t), u̇(t)〉dt = lim

n→+∞

∫ T

0
〈 fn(t), u̇n(t)〉dt, (25)

since fn converges strongly to f and u̇n converges weakly to u̇ in L2(0, T ; H). From
(23), (24) and (25), one obtains that

∫ T

0
〈A1u̇(t) + A0u(t) − f (t), u̇(t)〉dt

≤ lim inf
n→+∞

∫ T

0
〈A1u̇n(t) + A0un(θn(t)) − fn(t), u̇n(t)〉dt. (26)

Let us recall that the convex mapping x �→ ∫ T
0 σ(C(t), x(t))dt is weakly lower

semicontinuous on L2(0, T ; H) ([11], see also [2]) and zn = −A1u̇n − A0un ◦θn + fn
converges weakly to z := −A1u̇ − A0u + f in L2(0, T ; H). Consequently, one has

∫ T

0
σ(C(t), z(t))dt ≤ lim inf

n→+∞

∫ T

0
σ(C(t), zn(t))dt. (27)

Since C(t) ⊂ C(η(t)) + |v(η(t)) − v(t)|B and ‖zn(t)‖ ≤ (‖A1‖ + ‖A0‖)M for all
t ∈ [0, T ], we deduce that

lim inf
n→+∞

∫ T

0
σ(C(t), zn(t))dt ≤ lim inf

n→+∞

∫ T

0
σ(C(η(t)), zn(t))dt

+(‖A1‖ + ‖A0‖)M lim inf
n→+∞

∫ T

0
|v(η(t)) − v(t)|dt

= lim inf
n→+∞

∫ T

0
σ(C(η(t)), zn(t))dt. (28)
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From (27) and (28), we obtain that

∫ T

0
σ(C(t), z(t))dt ≤ lim inf

n→+∞

∫ T

0
σ(C(η(t)), zn(t))dt. (29)

From (22), (26) and (29), one has

∫ T

0
σ(C(t), z(t))dt +

∫ T

0
〈A1u̇(t) + A0u(t) − fn(t), u̇(t)〉dt ≤ 0, (30)

which implies that

σ(C(t), z(t)) + 〈A1u̇(t) + A0u(t) − f (t), u̇(t)〉 = 0 a.e. t ∈ [0, T ],

or equivalently,

A1u̇(t) + A0u(t) − f (t) ∈ −NC(t)(u̇(t)) a.e. t ∈ [0, T ],

which shows that u is a solution of (S). The proof of Theorem 1 is thereby completed.
��

Remark 2 The construction of the existence of a solution is based on solving at each
iteration the variational inequality (11). From a numerical point of view, there exist
tremendous algorithms for solving such problems depending on the structure of the
constraint set C(t). If for each t , C(t) is a closed convex cone, then complementarity
problems algorithms can be used to solve (11). Numerical optimization algorithms,
like interior points methods or SQP, can be used in the case C(t) is of the form of
inequalities constraints (3).

Example 1 Let us consider H = R
2 with T = 1, some continuous function f :

[0, 1] → R
2 and

A1 = A0 =
(
1 0
0 0

)
, C(t) = [t,+∞) × [0, 1].

Clearly, all the assumptions of Theorem 1 are satisfied. Then for any initial condition,
there exists at least one Lipschitz continuous solution for problem (S1). However, if
we consider C(t) = [t,+∞) × [0,+∞) with f (t) = (0 1)T for all t ∈ [0, 1], then
for any initial condition, there are no solutions for problem (S1). It is easy to see in
this case, that condition (9) is not satisfied.

4 Application in nonregular electrical circuits

Let us consider the following complementarity system with a velocity constraint:

⎧⎨
⎩
g
(
t, x(t), ẋ(t), λ(t), u(t)

) = 0
y(t) = h

(
t, x(t), ẋ(t), λ(t), u(t)

)
0 ≤ λ(t) ⊥ y(t) ≥ 0,
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On semicoercive sweeping process with velocity constraint 841

where g : [0, T ]×R
n×R

n×R
m×R

n → R
n , h : [0, T ]×R

n×R
n×R

m×R
n → R

m

are two given functions andλ(t) ⊥ y(t)means thatλ(t)T y(t) = ∑m
i=1 λi (t)yi (t) = 0.

A particular interesting case in applications is given when g and h are linear, and
is known in the literature as Linear Complementarity Systems, i.e.

(LCS)

⎧⎨
⎩

A1 ẋ(t) + A0x(t) = Bλ(t) − Eu(t)
y(t) = C0x(t) + C1 ẋ(t) + Dλ(t) + Gu(t) + F(t)
0 ≤ λ(t) ⊥ y(t) ≥ 0,

where A1, A0, B, E,C0,C1, D,G are given matrices with suitable dimensions and
F : [0, T ] → R

m is a given function. If we suppose that C0 = 0 and D = 0, then
y(t) = C1 ẋ(t) + Gu(t) + F(t).

Let us assume that there exist a symmetric and positive definitematrix P = PT > 0
such that

P2B = CT
1 . (31)

The assumption (31) is linked with the well-known Kalman–Yakubovich–Popov
Lemma (see e.g. [3] and references therein). By setting z = Px , we show that the
system (S) is equivalent to

PA1P
−1 ż(t) + PA0P

−1z(t) + PEu(t) ∈ −NC(t)(ż(t)), (32)

where

C(t) = {
Px : C1x + Gu(t) + F(t) ∈ R

n+
}
.

It is easy to see that problem (32) is of the form (S) (see [3] for more details).
Let us mention that many problems in electrical and mechanical engineering can
be modeled by linear (or more generally nonlinear) complementarity systems of the
(LCS).

Example 2 Let us consider the following electrical circuit depicted in Fig. 1 which
involves a load resistance R > 0, capacitors C1, C2 > 0, two diodes D1, D2 and two
current sources c1(·), c2(·).
Using Kirchhoff’s laws, we have

{
VR + VC1 + VC2 = −VD1

VC1 − VC2 = −VD2 .

Let us assume the Ampere-Volt characteristics of the two diodes D1 and D2 are given
by:

VD1 ∈ NR+(i1) and VD2 ∈ −N[a,b](i2),

where VDk and ik are respectively the voltage and the current across the diode Dk

(k = 1, 2) and a, b ∈ R.
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Fig. 1 A RLCD electrical circuit

Therefore the dynamics of this circuit is given by

A1︷ ︸︸ ︷(
R 0
0 0

) q̇︷ ︸︸ ︷(
q̇1
q̇2

)
+

A0︷ ︸︸ ︷(
1
C1

+ 1
C2

− 1
C2− 1

C2

1
C1

+ 1
C2

) q︷ ︸︸ ︷(
q1
q2

)
∈ −NC(t)(q̇(t)), (33)

with C(t) = [c1(t),+∞[×[−c2(t) + a,−c2(t) + b] and q̇i (t) = xi (t), i = 1, 2. We
note that the moving set C(t) is unbounded in R2 and that the matrix A1 is symmetric
and semi-coercive while the matrix A0 is symmetric and positive definite. It is easy
to check that ker(A1) ∩ C(t) is bounded if the function t �→ c2(t) is bounded in R.
Then, all assumptions of Theorem 1 are satisfied. Hence, problem (33) has at least one
solution. We can take D2 as an ideal diode like D1, however in this case we can add
a resistor R2 > 0 which will force ker(A1) = {0} like in the example of [2].
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