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User interfaces based on touchless hand gestures have advantages over conventional user interfaces in a
variety of scenarios. However, they still have challenging problems to be researched, such as the design
and evaluation of them in order to obtain satisfactory results. The classical approach of involving users to
choose gestures or analyze interface designs needs to be complemented with predictive evaluations for
cases in which those user-based methods are inapplicable or expensive to do. Thus quantitative user
models are needed to perform those evaluations. THGLM is a model based on KLM and gesture units, but
its first formulation needs to be improved. This paper completes the model by analyzing its performance
in several user studies. In particular, we found out that THGLM forecasts performance time in doing tasks
on Uls based on touchless hand gestures (THG) in an acceptable way (prediction error = 12%, R? > 0.9).
The paper also reports a study concerning the model utility to analyze and compare interface designs.
Moreover, the model utility was confirmed by independent designers who were invited to participate in
a study. Finally, the initial model was extended by introducing several new operators. As a conclusion,
the present model has some intrinsic limitations which are discussed, but the results confirm the general
hypothesis that it can be used to analyze Uls based on touchless hand gestures.

Relevance to industry: THGLM should become a useful tool for Ul designers to perform usability as-
sessments, improve interface designs, and develop good software applications using THG. This is espe-
cially useful in situations where it is difficult to conduct tests with users or as a preliminary step in the
process of developing software.
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1. Introduction where it is not possible or advisable to touch a display (Hinrichs

et al., 2013), and classrooms to enhance the quality of education

Current availability of both new body-tracking devices and
high-resolution displays has contributed significantly to develop
applications that go beyond only entertainment. Inexpensive de-
vices like Kinect, Intel RealSense, or Leap Motion can capture ges-
tures people make with their hands without haptical contact.
Therefore, instead of a traditional user interface (Ul) based on mice
and keyboards we could use an interface based on touchless hand
gestures (THG) captured and interpreted by the computer system.
Interfaces of this type may be considered as a new class of Natural
User Interfaces (NUI) (Wigdor and Wixon, 2011; Webb and Ashley,
2012), and can be advantageous (de la Barré et al., 2009; Walter
et al,, 2013) in various scenarios. A few examples are sterile envi-
ronments (e.g., operating rooms (Gallo et al., 2011)), public places
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(Jagodzinski and Wolski, 2015). Despite interfaces of this type may
have great advantages, there are still challenges to address
(Norman, 2010). One of these challenges is the design and evalu-
ation of interfaces based on THG in order to develop successful
software products; this is the subject of this article.

Designers typically involve users to design and evaluate Uls
based on THG. Some of the currently available methods allow
choosing gesture sets (Wobbrock et al., 2009; Vatavu, 2012; Nielsen
et al., 2004) and understanding interactions with systems (Barclay
et al., 2011; Hincapié-Ramos et al., 2014) by considering features
like user preferences, memory, or fatigue. These methods allow
quantitative evaluation of interfaces based on THG, but this
approach requires dealing with the logistic difficulties of doing
tests with real users, regarding planning, timing, laboratory setup,
recruiting subjects, and conducting experiments. Consequently, a
reasonable assumption is that Ul designers may find value by
adopting predictive evaluations instead of recruiting users,
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especially at early design stages (Erazo et al., 2015) due to the cost
of collecting and analyzing data (MacKenzie, 2003; Kieras, 2003).

Given this problem with user testing, designers can use pre-
dictive evaluation instead of assessing interfaces by quantifying
human performance. Simulation of the biomechanics of human
motion (Nunes et al., 2015) is a method which is gaining attention
for measuring performance of Ul (Bachynskyi et al., 2014). It allows
obtaining rich descriptions of users’ movements with low cost
(Bachynskyi et al., 2014). Moreover, biomechanical simulation has
been made more accessible by clustering user muscle activations in
interactive tasks (Bachynskyi et al., 2015). These clusters can help
designers to estimate muscle loads and user performance in
pointing with the arm (Bachynskyi et al., 2015). Another approach
that may allow studying more than pointing tasks is the use of
predictive models (MacKenzie, 2013) to quantify human perfor-
mance particularly in terms of time (the period a user takes to
accomplish a set of tasks (Card et al., 1980)), which is the focus of
this work.

Model-based evaluation has been widely used to analyze
interaction problems in HCI especially due to its advantages such as
analyzing interface designs and making changes without imple-
menting a real system (MacKenzie, 2003, 2013; Kieras, 2003).
Nevertheless, previous models are insufficient to evaluate Uls
based on THG due to any of the following causes: they were
formulated for other interaction styles (e.g (Card et al., 1980; Cao
and Zhai, 2007; Isokoski, 2001)); the extended versions of these
models are not applicable to THG (e.g (Holleis et al., 2007; Luo and
John, 2005; Lee et al., 2015)), or the feasibility of applying them has
not been verified yet (as in the case of (Card et al., 1980; Cao and
Zhai, 2007; Isokoski, 2001)); they are constrained to certain type
of tasks (e.g. the main use of Fitts’ Law (Fitts, 1954) is to analyze
tasks of pointing and selecting in the air using a hand (Schwaller
and Lalanne, 2013; Pino et al.,, 2013; Polacek et al., 2012; Zeng
et al., 2012) and to compare devices such as Kinect and Wii
(Sambrooks and Wilkinson, 2013; Pino et al., 2013; Polacek et al.,
2012)). Therefore, new models to evaluate Uls based on THG are
necessary. To tackle this problem, some authors have adapted
previous models for drawing gestures (Erazo et al., 2015) and
derived new ones for optimizing gesture sets based on multi-finger
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Fig.1. Example of using THGLM (Erazo and Pino, 2015) which is a model based on KLM
(Card et al., 1980) and gesture units (McNeill, 1992; Kendon, 2004) to analyze NUIs
based on gestures. The task consists of selecting a button performing a push gesture,
departing from a resting position and returning to it. The upper part illustrates the task
execution, and the lower part shows the task modeled using THGLM.

gestures (Sridhar et al., 2015). However, taking into account we are
not considering fingers as a first step, Touchless Hand Gesture Level
Model (THGLM) (Erazo and Pino, 2015) is an alternative. THGLM is a
predictive model based on the assumptions of KLM (Keystroke-
Level Model) (Card et al., 1980)—which is a well-known, well
validated and relatively easy to use model. THGLM allows fore-
casting the time to execute a task given a method (expressed using
gesture-units (McNeill, 1992; Kendon, 2004) and THG-level actions
as illustrated in Fig. 1) and computed using the corresponding
formulas. The current state of THGLM is that of a promising model
but with incomplete results. Its authors noted that further valida-
tion was needed and other operators should be included in order to
complete the model (Erazo and Pino, 2015).

Given this landscape, the generic goal of this paper is to com-
plete the initial THGLM proposal (Erazo and Pino, 2015) and study
its performance. Our basic research hypothesis to reach this goal is
that the final model is a practical tool to help designers in the
analysis and design of Uls based on THG. The verification of this
general hypothesis relies on the validity of three specific ones: (H1)
THGLM predicts performance time with acceptable quality, i.e., the
values of the used metrics are consistent with those ones reported
in the field for similar models; (H2) the model allows analyzing Ul
designs and comparing two or more design options; (H3) model
predictions remain stable when they are computed by independent
designers. If these hypotheses are validated, then THGLM should
allow designers of Uls based on THG to predict the performance
time required to complete tasks without users’ participation, and
next, use that value as a metric to assess a user interface. This
approach is especially useful in interface evaluations where it is
difficult to conduct tests with users or as a preliminary step.
Therefore, we expect the model becomes a useful tool for software
designers to carry out usability assessments, improve interface
designs, and develop better software applications using interfaces
based on THG. The main contribution of the paper is then to present
a valid and usable model for predicting execution time of hand
gestures by adult novice users, provided the hypotheses are
confirmed.

The article starts providing the background (section 2) and
summarizing the model (section 3). We give further details about
THGLM in section 4, especially those related to the use of the
mental operator. Then, the model validity is studied in further
detail to confirm it makes good predictions (section 5). The use of
the model as a tool to analyze interface designs is also included as
part of the validation. Section 6 studies the stability of THGLM
predictions when independent designers use the model. Next,
several operators to be incorporated in the model with their esti-
mated values are described in section 7; also, other operators that
may be included in the future are suggested. The article ends with a
discussion and the conclusions.

2. Background
2.1. Model-based evaluation

One way to support design and evaluation of Uls is to use model-
based evaluation (MacKenzie, 2003, 2013; Kieras, 2003). It is a
valuable supplement to conventional usability evaluation that is
especially useful for designing, evaluating, or providing a basis to
understand interfaces (MacKenzie, 2003), especially at early design
stages, before starting to develop the real Ul or testing with
humans. Model-based evaluation implies using models of how
humans would interact with applications. Models can be either
descriptive or predictive depending on detail and complexity
(MacKenzie, 2013). Descriptive models give designers a framework
to describe and reflect on problems qualitatively, whereas
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predictive models are based on mathematical expressions for pre-
dicting user performance (MacKenzie, 2003).

Performance can be measured using various dimensions (Card
et al.,, 1980), but we are just interested in time. Performance time
is the required period to accomplish a set of tasks using a system
(Card et al., 1980).

Some notable models have been proposed in the research
literature to design and assess Uls by producing numerical pre-
dictions of users' performance time. One of the most influential
contributions on modeling is the Card, Moran and Newell's book
(Card et al., 1983), in which they described several models that have
been widely used afterwards; they also proposed a theoretical basis
to build new models. MHP (Model Human Processor) and GOMS
are two of those models. The main assumption of MHP is that the
human mind is an information processing system described by
three processors (perceptual, cognitive, and motor), two memories
(working memory and long-term memory), and operation princi-
ples (Card et al., 1983). Processors operate in series and have cycle
times, and operating principles are provided to describe and fore-
cast performance. On the other hand, GOMS uses goals, operators,
methods and selection rules to model and analyze user's behavior
while interacting with a system (Card et al., 1983). GOMS is in fact a
general term used to refer to a family of models, in which KLM is a
variant.

KLM (Card et al., 1980) is one of the most comprehensive models
in the area (MacKenzie, 2013). Despite it was introduced in 1980, it
is still one of the most useful models in the field. KLM predicts the
time to execute a task by expert users given the method, which
must be specified in detail at the level of keystrokes, and the per-
formance must be error-free. KLM states that the execution part of a
task is described in terms of operators. (A unit task has two parts:
acquisition and execution of the task (Card et al., 1980). Acquisition
time is beyond the scope of the proposed model.) Operators, which
in most cases are assumed to take constant times, are actions (e.g.,
pressing keys/buttons or pointing to targets) that users should
follow to perform tasks. Then, the time to accomplish a task is
computed by summing up the times required by such actions.
Furthermore, many authors have used the KLM method over the
years to propose extensions and/or new models to analyze other
interaction styles, e.g., mobile phones (Holleis et al., 2007), hand-
held devices (Luo and John, 2005), and touchscreens (Lee et al.,
2015). This fact demonstrates the strength and usefulness of KLM,
but both the original KLM and its variants do not provide operators
applicable to THG (Erazo and Pino, 2015).

Fitts' Law (Fitts, 1954) is another of the most widely cited and
used models in HCI. Despite the initial Fitts' work was published in
1954, it is still used to make predictions with various types of in-
terfaces. Ul designers normally use Fitts' Law to compute the time it
takes to click or select objects on a screen, e.g., using an input device
such as a mouse. Mathematically, the time to rapidly move the
cursor to a target is a logarithmic function of the corresponding
distance and the target size; i.e., if a target gets smaller and/or
further away, it takes longer to reach that target. Although fairly
accurate values for optimal results can be calculated by applying
Fitts' Law, it is necessary to know its applicability to the intended
interaction style. For instance, the utility of this model has been
verified with new interaction styles (e.g., those based on
touchscreens (MacKenzie and Teather, 2012), and head mounted
displays (Lubos et al., 2014)), also including touchless hand gestures
(Schwaller and Lalanne, 2013; Pino et al., 2013; Polacek et al., 2012;
Zeng et al., 2012; Sambrooks and Wilkinson, 2013; Jude et al., 2014).
Consequently, Fitts’ Law can be used to analyze interfaces based on
THG, but its usefulness is constrained mainly to pointing tasks.

Since models must be validated, several metrics can be used to
confirm whether they make good predictions or not. The R? value is

a common validity metric (Cao and Zhai, 2007) reflecting the
strength of the relationship between predicted and observed times.
The percentage root mean square error (%RMSE) is another metric
showing the percentage difference between predicted and
observed values. Both metrics can be used to consider THGLM has
acceptable quality as long as their values are similar to typical
values in the field. As a consequence, there should be strong posi-
tive correlation between predicted and observed times (i.e., high
R?), and error percentages should be close to those reported in
previous works (e.g., (Holleis et al., 2007; Luo and John, 2005; Lee
et al., 2015), and particularly the original KLM (Card et al., 1980))
in order to verify our hypothesis H1.

2.2. Gestures

Although gestures generally refer to movements performed
with the hands or other body parts to convey some meaning, their
definition may change depending on the study field. One of the
most accepted definitions in HCI (Webb and Ashley, 2012) was
proposed by Kurtenbach and Hulteen (Kurtenbach and Hulteen,
1990):

“A gesture is a motion of the body that contains information.
Waving goodbye is a gesture. Pressing a key on a keyboard is not a
gesture because the motion of a finger on its way to hitting a key is
neither observed nor significant. All that matters is which key was
pressed.”

This definition could be applied to gestures executed with
various body parts, for example, nodding the head, forming a “T”
with the whole body, or pushing with a hand (Fig. 1, top). Never-
theless, this work only studies “hand gestures” without considering
those ones performed with one or more fingers (e.g.,
fingerspelling).

Previous studies about human hand gestures have proposed to
analyze gestures by considering their temporal structure. Gestures
are defined in terms of gesture units (G-units), gesture phrases (G-
phrases) and phases according to this approach (upper part of Figs. 1
and 2) (McNeill, 1992; Kendon, 2004). A G-unit is the entire
“excursion” between successive rests of the limbs from the moment
the limbs begin to move until reaching a resting position again. We
may distinguish one or more G-phrases within the course of a G-
unit. Similarly, a G-phrase (or a gesture) is comprised of one or
more phases. Preparation is the first—and optional—phase in which
the hand is moved away from its resting position to the position
where a stroke starts. The gesture meaning is expressed in the
stroke phase which is the only obligatory phase. Also, a G-phrase
may have two optional hold phases preceding or following a stroke
(called pre-stroke hold and post-stroke hold (Kita et al., 1998)
respectively), but these phases are not used in THGLM (Erazo and
Pino, 2015). The final phase, retraction, is not considered to be
part of any G-phrase. It may happen when the hand relaxes and
returns to some resting position or to the original one. In addition,
two types of phrases are distinguished—hold-phrase (H-phrase) and
stroke-phrase (S-phrase) (Erazo and Pino, 2015; Neff et al., 2008)—
because some gestures can have a single meaningful still phase

G-unit = {G-phrases} + [Retraction]
G-phrase = S-phrase | H-phrase
S-phrase = [preparation] + Stroke
H-phrase = [preparation] + Hold

Fig. 2. G-units, G-phrases and phases (based on (McNeill, 1992; Kendon, 2004; Kita
et al.,, 1998; Erazo and Pino, 2015)).
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(called independent hold (Kita et al., 1998)) instead of a stroke for
static gestures (or hold gestures (Neff et al., 2008)).

Although the main application of G-units is the analysis of
gestures performed as part of humans’ conversations or speeches,
they have also been used in our area (e.g. to produce gestures of
animated characters (Neff et al., 2008)). The advantage of using G-
units is that they allow analyzing continuous production of gestures
(Kita et al., 1998).

3. Touchless hand gesture level model (THGLM)

THGLM is a model based on KLM (Card et al., 1980) and gesture
units (McNeill, 1992) whose goal is to estimate the time to
accomplish a task using a NUI based on THG (Erazo and Pino, 2015).
It assumes that the method to execute the task is known, executed
without errors, and completely specified at the level of THG using a
set of operators. The set of operators used by THGLM is different
than the corresponding ones used by KLM because gestures are
more complex than keystrokes, making it necessary to analyze
them in a different way (i.e., using gesture units) (Erazo and Pino,
2015). Besides, it is necessary to make some assumptions so that
the model is restricted to gestures performed by young adults in
normal health conditions, with basic or no experience with
touchless interactions, and using the whole hand (fingers are not
considered). Though other simplifications may be needed to build
or extend the model, it has an acceptable quality making these
assumptions (Erazo and Pino, 2015).

THGLM is an additive model which is an important character-
istic and one of the reasons to be considered relatively easy to use.
In other words, the time to execute a task is equal to the sum of all
G-units needed to describe that task (formula 1 below (Erazo and
Pino, 2015)). The number of G-units depends on the times the
user's hand begins to move and reaches a position of relaxation
again, i.e., a G-unit is counted each time the hand departs from a
resting position until the moment it returns to a resting position or
the initial position (Erazo and Pino, 2015). For example, the period
of time a user takes to raise the hand toward the interaction space,
navigate through some pictures (e.g., using swipes or selecting
buttons), and return to a resting position, is equivalent to a gesture
unit. A G-unit time in turn is computed by summing up all G-
phrases plus an optional retraction time because a G-unit can have
one or more G-phrases (formula 2 (Erazo and Pino, 2015)). For
example, a drag and drop task could consist of one G-unit with
three G-phrases: grip, move and release an object (Erazo and Pino,
2015). The number of G-units and G-phrases also depends on the
complexity of tasks and interface designs.

A G-phrase time is computed adding an optional preparation
time with H-phrase time or S-phrase time as appropriate (formula
3; bear in mind two G-phrases are distinguished) (Erazo and Pino,
2015). H-phrase time is equal to the sum of feedback time plus exit
time (formula 4 and according to (Miiller-Tomfelde, 2007; Erazo
and Pino, 2015)). (Feedback time is the time established by de-
signers that users must hold the hand to consider the action valid;
exit time is the time the user's hand remains in the same position or
pose after feedback time is completed and the hand moves away
(Miiller-Tomfelde, 2007).) S-phrase time is computed in a way
similar to KLM as proposed in the original version of THGLM
(formula 5); i.e., summing up the times of each of the needed
stroke-phrase operators (Erazo and Pino, 2015).

m
Texecute = Y Teunit (1)
s

n
Tounit = Z TGphrasej +[T7] (2)
=1
TGphrase = {TP} + {Tstroke | Thold} (3)
Thoia = feedback_time + exit_time (4)
Tstroke = Z n*op (5)
opeOP

Three groups of operators derive from the previous model
formulation: movement operators, expressive operators and gen-
eral operators (Erazo and Pino, 2015) (Table 1). The first group is
composed of four operators. There are two optional operators for
preparation (Pr) and retraction (Re). Pr (moving the hand from a
resting position to the position where a stroke begins) should be
used each time the user needs to physically prepare the hand to
perform a gesture, which is different than mental preparation. Re
should be used to represent the movement of the hand from the
position where a stroke or hold finishes to a resting position. The
third operator, P, is for pointing to targets on a display with the
hand in the air. This operator can take a constant value or its value
can be computed using Fitts’ Law. Additionally, the THGLM authors
suggest being careful when placing P and Pr operators together to
avoid redundancy. Furthermore, P only provides the time to point a
target (Card et al., 1980), and hence, an expressive operator must be
used for the following sub-action. Finally, an alternative operator
for preparing the hand when performing swipes is included in
THGLM. Actually, two other options to distinguish between hori-
zontal and vertical swipes were proposed.

As suggested above, there are two kinds of expressive operators:
H-phrase and S-phrase operators (Erazo and Pino, 2015). There are
various operators that could be included in each category. Thus,
Erazo and Pino performed a systematic literature review with the
aim of finding “the most used (and/or suitable to use) gestures in
NUIs based on THG or touchless interaction”. As a result, four op-
erators were initially selected as S-phrase operators, and one as H-
phrase. The H-phrase operator (H, Holding) is used with static
gestures or holds a hand on a target, position or pose a pre-set time.
The selected S-phrase operators are (1) push the hand toward the
front (T, Tapping); (2) move a hand from right to left or vice versa
(horizontal swipe, Sh), from top to bottom or vice versa (vertical
swipe, Sv), or swipe in general (S, swiping); (3) close the hand (G,
gripping); (4) open the hand (R, releasing). The values for these
operators were estimated by conducting a user study, which also
allowed estimating the values for Pr and Re operators.

Drawing gestures (air figures of letters, numbers, and shapes)
can also be included in THGLM as S-phrase operators, but no for-
mula (or value) was provided for this operator (Erazo and Pino,
2015). However, this type of gestures was studied in detail in
another work. Specifically, three models—developed for other
interface types—were assessed in that study with the aim of
extending them to estimate the production time of touchless hand
drawing gestures (THDG) (Erazo et al, 2015). The authors
concluded that the three models can be used with THDG.
Furthermore, they provided new or updated formulas and empir-
ical constants needed to use the models. Therefore, we select the
model (formula 6) that corresponds to the best evaluated one to be
included in THGLM as drawing operator, which is a variant of the D
operator of KLM.
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Overview of the proposed operators with the corresponding values (based on (Erazo and Pino, 2015)).  This value corresponds to the total time of holding (i.e., 1 s). ? According
to (Erazo et al., 2015) and as discussed in the text.

Operators Description Time (s) SD (s)
Expressive H-phrase H, Holding Perform static gestures or holding a hand on a 0.500 + feedback_time 0.103¢
target, position, or pose, a pre-set time.
S-phrase T, Tapping Pushing the hand toward the front. 1.108 0.370
S, Swiping Mean Moving the hand from right to left or vice versa 0.553 0.211
Horizontal (Sh) (horizontal swipe), from top to bottom or vice 0.613 0.208
Vertical (Sv) versa (vertical swipe), one time and returning to 0.493 0.198
the starting position.
G, Gripping Closing the hand. 0.586 0.152
R, Releasing Opening the hand. 0.520 0.172
D, Drawing ?, D¢(np, Ip, n¢) “Drawing” shapes, numbers, etc. in the air. anp+blp+cne N/A
Movement Pr, Preparation (Optional) Moving the hand from a resting 0.452 0.103
position to the position where a stroke begins. It
should be used each time the user needs to
physically prepare the hand to perform a
gesture, which is different than mental
preparation.
Re, Retraction (Optional) Moving the hand from the position 0.746 0.106
where a stroke or hold finishes to a resting
position.
Sp, Swipe preparation Mean Preparing the hand for next swipe. 0.624 0.325
Horizontal 0.562 0.361
Vertical 0.685 0.274
P, Pointing Pointing to a target on a display with the hand 1.046 N/A
in the air. A constant time is proposed, but Fitts'
Law may be used instead. Be careful when
placing the P and Pr operators together to avoid
redundancy.
General M, Mentally prepare Mentally preparing to execute subsequent 0.927 0.116
physical operations. (See next section.)
SR(t), Response Time The time the system needs to respond to user t N/A
input.
operator, must be revised to make the necessary interpretations.
De(np, Ip, nc) = anp +blp +cne (6)  Thus, this section contains that revision and some
recommendations.

where np = number of segments, Ip = total length of all segments,
nc = number of corners, a = 0.223, b = 0.297, ¢ = 0.173.

The operators that belong to the third category, general opera-
tors, are the same ones introduced in the original KLM (Card et al.,
1980) and used in other KLM extensions (Holleis et al., 2007; Luo
and John, 2005; Lee et al.,, 2015). The response time operator
(SR(t), the time the system needs to respond to user input) remains
unchanged, and the M operator in turn is defined similarly but with
avalue different than the original one (i.e., 0.927 s instead of 1.35 s)
(Erazo and Pino, 2015). This value was also estimated in the user
study to compute the times for the other THGLM operators. It is
lower than the one proposed by Card et al. (Card et al., 1980), but it
is in the range of 0.6—1.35 s suggested by Kieras (2001). Further-
more, although some authors have used the original value (Holleis
et al,, 2007; Luo and John, 2005; Lee et al., 2015), other authors
advocate to update this operator (MacKenzie, 2013)(p. 272).
Consequently, the THGLM authors computed their own value, and
emphasized the need of studying this operator in further detail
(Erazo and Pino, 2015).

4. Using THGLM
4.1. Including mental operators

Mentally Prepare is an operator that needs special attention. As
noted by Kieras (2001), including mental operators is tricky; it re-
quires a lot of judgment, and it is necessary to hypothesize on how
users think about tasks rather than only which movements they
have to perform. Moreover, the set of heuristic rules, which was
provided with the original KLM and should be followed to use this

4.1.1. Heuristic rules for placing M operators

Fig. 3 shows the THGLM heuristics with the corresponding ex-
amples. These heuristics have been revised and/or adapted from
the original KLM heuristics (Card et al., 1980) and taking into ac-
count Kieras’ suggestions (Kieras, 2001). Bear in mind that OPs refer
to both S-phrase and H-phrase operators in this section.

4.1.2. Other recommendations for placing M operators

As we mentioned above, Kieras (2001) provided some recom-
mendations to use the M operator. The following is a summary of
some of those recommendations —with the needed adaptations
and examples— for activities that take an M.

1. Pausing before initiating a task or performing a sequence of
actions.

2. Stopping and thinking to make a strategy decision; e.g.,
choosing one from two or more options.

3. Retrieving a cognitive unit from memory; e.g., remembering the
gesture to execute a command.

4. Pausing to scan and find something on the screen; e.g., a button
that should be pressed to perform the next step.

5. Pausing to check an action or entry; e.g., verifying the actual
element after performing a swipe.

6. Pausing to check the result when the screen changes in response
to user input; e.g., performing a swipe when browsing a map.

Additionally, it is necessary to make distinctions of using M
operators between novice and expert users. It is expected new NUI
users would become experts with little to no training (Wigdor and
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*Place Ms in front of all OPs. Also, place Ms in front of Pr, Sp and P
operators.

*Example: PrPT> MPrMPMT

«If an operator following an M is anticipated in the operator before M, delete
the M.

*Example: MPMT> MPT

«If a string of M OPs belongs to a G-phrase or a cognitive unit (e.g.,
performing N swipes), delete all Ms but retain the first one.

« Example: n*(M Pr Sh) > M n*(Pr Sh), where n = number of swipes

*Do not use this rule for novice users because they would stop and check
every step.

«If an OP is a redundant terminator (e.g., a release immediately following a
grip or a double-tap to select a button), delete the M in front of the OP.
*Example: MGMR> MGR

«If a P follows a Pr, delete the M in front of the Pr.
*Example: MPrMP > PrM P

«If you are unsure, emphasize the number more than the placement of the
occurrences of the Ms.

Fig. 3. Set of updated heuristics for placing M operators (based on (Card et al., 1983; Kieras, 2001)).
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Wixon, 2011), but designers could want/need to consider both
options especially because today there are still few users with
extensive experience with Uls based on THG. The following rec-
ommendations (again, adapted from (Kieras, 2001)) may be applied
in this case.

> New users will stop to verify every step or check feedback.
Consequently, the recommendations (4), (5) and/or (6) would
not be applicable to experienced users.

> New users have small cognitive units, whereas expert users have
large cognitive units. Therefore, an experienced user could
perform a task requiring one G-phrase and the same task could
require several G-phrases for a novice user.

> Experienced users may overlap Ms with physical operators. For
instance, a user may think about the next step or locate a button
on the screen while s/he is performing a stroke.

Finally, consistency is important in placement of M operators
(i.e., apply the same rules to all designs).

4.2. A procedure to apply THGLM

In addition to the model formulation, a procedure to apply it
would be useful to achieve good predictions. Fig. 4 describes the
steps needed to be taken to apply THGLM. In general, this pro-
cedure is similar to the one to apply KLM taking into account that
THGLM is based on the first one. Thus, we reproduce the procedure
from (Kieras, 2001) with the corresponding changes or additions,

taking also into account the modifications made in (Holleis, 2009).

5. Validation of THGLM

An inevitable question arises after building the model: Are the
predictions made using THGLM acceptable? In other words, we
want to know whether predicted times to perform tasks on Uls
based on THG are close to the corresponding ones observed when
users perform such tasks. Therefore, an empirical validation (Card
et al., 1980) is needed to know it.

THGLM has been validated using three applications (Erazo and
Pino, 2015). The first one (called NUIPy) allows solving a kind of
puzzles that represent basic programs written in Python. If a user
selects a statement in the right order, it is executed in Python IDLE.
The second application (called OctaNUI) allows interacting with
Octave—which is a high level interpreted language for numerical
computations, similar to Matlab—to run basic commands. Users
have to select and execute a command with a dataset. Furthermore,
InteractionGallery and KinectPaint were used by new participants
as part of the validation, but the authors only processed the data
collected with InteractionGallery. Despite the results achieved in
this evaluation were acceptable, the authors noted there are some
limitations being necessary to perform further evaluation (Erazo
and Pino, 2015).

On the other hand, the experiments performed to validate the
model were focused only on determining the model performance,
and hence, they did not include other options that should be
evaluated. These options are the use of the model to compare
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« Given the design of a Ul based on gestures, choose one or more task scenarios.

1
»Have the design specified to the point that THG-level actions can be listed for the specific task
2 scenarios.
*For each task scenario, figure out the best way to do the task, or the assumed way that users
3 will do it.
«List the THG-level actions, identify the G-units and G-phrases, and list the corresponding
4 physical operators (expressive and movement operators) involved in doing the task.
X «If necessary, include operators for when users must wait for the system to respond, SR(t).
4 «Insert M operators according to the heuristics .
*Look up the execution time for each operator. If these operators are parameterized (e.g. system
response time) or exist in various manners (e.g., swipe) then find the values appropriate to your
7 application.

* Apply the corresponding formulas, i.e., add up the execution times for the operators, G-phrases

8 and G-units.

* The total is the estimated time to complete the task.

Fig. 4. Procedure to apply THGLM (based on (Kieras, 2001; Holleis, 2009)).

various designs and ask Ul designers to use the model.

Given this fact, we decided to perform the missing evaluation.
We started processing the data collected and not analyzed in the
initial evaluation and performing the corresponding analysis.
Additionally, two new applications were used to confirm whether
the model makes good predictions or not. Moreover, another
experiment was conducted with the aim of using the model to
compare several interface designs. All of these experiments are
described in this section, except the experiment involving de-
signers which is described in section 6.

5.1. Further model validation

5.1.1. Method

5.1.1.1. Apparatus. Two apparatuses were used in order to collect
data of participants interacting with three applications. The first
one was the apparatus employed in (Erazo and Pino, 2015) for the
initial model validation. It consisted of a notebook, a projected
display, and a Kinect sensor. The application used in this case was
KinectPaint, which allows painting on a canvas and selecting but-
tons or options using holding gestures.

The hardware setup of the new apparatus (introduced in this
work) consisted of a display (24 inches, 1920 x 1080 pixels of
resolution), a computer (equipped with an Intel Core i7 processor,
16 GB of RAM), and a Leap Motion (LM). Both the display and the LM
were placed on a desk at a height of 75 cm. The participants sat on a
chair with armrests in front on the display (at about 1 m.); and both
the height of the display and the chair were adjusted according to
each participant needs until reaching a comfortable position.
Moreover, two applications were used with this setup, which were
named Bmog and Gester. Bmog allows browsing genre and movies

projected on the display, and watching a trailer and/or getting in-
formation about the selected movie. It has four buttons to go for-
ward and backward, select a movie, and cancel the process. Gester
is a game in which users have to “catch” the letters of a word by
performing a gesture. The used words were data types such as int,
char, etc. The letters appeared in the same position for each
participant, but in different positions for each word. After selecting
the “start button”, the first letter of the word appears, and when the
user selects it, it disappears and the next letter is shown until
catching all the letters. Furthermore, we decided to develop these
applications using Scratch with the aim of performing the tests
with a different platform from previous experiments and encour-
aging participants to try developing their own applications in a
near future. Also, Hover gestures were used in Bmog to make se-
lections, whereas Grip gestures were used in Gester.

5.1.1.2. Participants. Seventeen volunteers performed the tasks
using the three applications. Nine participants (mean age 19 years,
o = 1; 8 right-handed; 4 male) interacted with Bmog and Gester,
and the remaining eight participants tried KinectPaint (according
to (Erazo and Pino, 2015)). Also, six participants that used Bmog and
Gester self-declared to have some previous experience on gaming
using touchless interaction (e.g., Kinect for playing games).

5.1.1.3. Procedure and tasks. The experiment (using the new
apparatus) consisted of a practice session and two repetitions of
two tasks (one with each application). Participants performed the
practice after receiving verbal instructions from the experimenter.
They tried the corresponding application in a free way for a couple
of minutes during the practice. Next, participants performed the
task using that application. This process was repeated for the other
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task but alternating the order of applications. Participants had to
“catch” the letters of the word “char” using Gester, and play the
trailer of a movie (specifically, the fifth genre, and the third movie)
with Bmog, using their dominant hands. The tasks performed with
all applications were video recorded and segmented manually by
using VirtualDub (a free video tool for basic editing, mainly geared
to AVI files) to compute duration times.

5.1.2. Results

Using the three aforementioned applications, the times to
accomplish five tasks were observed and used to analyze and
confirm how well the model works. The times for all tasks were
estimated using the model with the proposed operator times
(Table 1). These values were compared against the observed ones as
shown in Fig. 5. About 14% of observed values, that corresponded to
task instances with significant errors or in which participants did
not follow the prescribed method, were discarded (according to
(Card et al., 1980)). The reached RMSE is 16.3%, while the average of
the absolute prediction error is 15.3% (min: 7.2%, max: 24%). The
worst value corresponds to the task performed using Gester which
may be due to the mental act to reach the next target is approxi-
mate to a simple reaction, and hence, the M operator should have a
smaller value in this case. (This idea is discussed in further detail
below).

5.2. Using the model to analyze interface designs

We conducted another user study in order to verify the use-
fulness of the model as a tool to analyze Ul designs of applications.
The chosen application should allow a user to take a photo after
selecting the desired background/wallpaper picture. (Other func-
tionalities could be included as part of this application, but we
consider the proposed ones are enough for the goals of this work.)
The study consisted on analyzing three design options for this
application to select the best one. The first option (D1) uses buttons
to interact with the application by holding the hand during one
second over them (one button for going forward, one button for
going backward, and another to take photos). Users hold the hand
over the desired button for one second to select it. The application
uses no buttons as a second design option (D2) because swipe
gestures are used to navigate through pictures and a combination
of grip and tap gestures should be performed to take photos. The
final option (D3) is a variation of the second one, that is, the gesture
to take photos is replaced by drawing a check.

il
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Fig. 5. Comparison of observed and predicted times for the five tasks. Error bars
indicate 1 SD. KP = Kinect Paint.

5.2.1. Method

5.2.11. Apparatus. The three design options were implemented
using Microsoft Visual C# and Kinect for Windows SDK V1.8 on
Windows 7. Hand movements, joint positions, and $1 algorithm
(Wobbrock et al., 2007) were used for gesture recognition. More-
over, the application logged the duration times of each task, and the
researcher recorded entries in a log on the wrong tasks.

On the other hand, the hardware setup consisted of the same
display and computer described in the previous experiment, but we
used a Kinect sensor instead of the LM. The Kinect was placed at a
height of 1 m and used with a refresh rate of 30 fps. Participants
stood 2.5 meters away from the Kinect while performing the tasks.

5.2.1.2. Participants. Eight volunteers (mean age 28 years, ¢ = 8; all
right-handed; 5 male) were recruited to take part in this experi-
ment. Six of them had some previous experience on gesture in-
terfaces such as playing games with Wii and/or Kinect.

5.2.1.3. Procedure and tasks. The study started with a verbal
explanation about the application goal and general instructions.
Next, each participant had to perform three tasks: one task using
each design option. To do it, participants received the instructions
concerning the gesture to use with each option, and then, they
were allowed free practice for a couple of minutes. They accom-
plished each task for data collection after this period of practice.
The task consisted on taking a photo of him/her with the fifth
background executing the proper gestures. Moreover, the order of
design options was determined by applying Latin squares as a
within-subject design was used.

5.2.2. Results

The three design options were compared following the same
procedure to analyze the model quality described above (Fig. 6),
which included discarding about 25% of wrong task instances. Ac-
cording to the estimated vales, the order of design options from
best to worst is: D2, D3, D1. Observed values confirmed this order.
In other words, the comparison made to choose the best design
option gave the same results using the model and observing users
while interacting with the prototype. Furthermore, the prediction
errors of the three designs remain below the baseline.

5.3. Discussion

We have described two studies in this section in order to verify
both whether THGLM makes good predictions and whether it can
be used as a design tool (hypotheses HI and H2 respectively).
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Fig. 6. Observed and predicted times for the three design options (D). Error bars
indicate 1 SD.



130 0. Erazo, J.A. Pino / International Journal of Industrial Ergonomics 65 (2018) 122—138

Precisely, the results from the first study confirm the model has an
acceptable quality. Though the reached RMSE is higher than the one
reported in the initial validation of THGLM (RMSE = 10.1%) (Erazo
and Pino, 2015), it is still lower than the baseline (21% Card
etal.’s error (Card et al., 1980)). In addition, we calculated the global
model performance based on the selected metrics. In other words,
the %RMSE and the R?> were computed using the data from the
initial model evaluation reported in (Erazo and Pino, 2015) and the
new validation reported here. The resulting metric values using six
applications and nineteen tasks are as follows: ¥RMSE = 12.1%,
R* = 0.917. Fig. 7 plots the correlation between estimated and
observed execution times.

We took the next step based on those metric values, which is
independent designers used the model to compare several design
options. The results support the hypothesis (H2) that the model can
be used to compare two or more Ul designs and choose the best
one. This fact allows suggesting THGLM can be used by designers as
a tool to assess or analyze Uls based on THG.

6. Validation with designers

We have shown in the previous section that THGLM has an
acceptable performance, though it is not enough to use the model
with confidence. The model performance was determined using
the estimations made by one of the researchers. This process is
acceptable to evaluate the model, but it does not allow knowing
whether estimated values are stable across Ul designers. In other
words, the values predicted by the researchers should be consistent
with the ones predicted by one or more designers to conclude the
model is valid or not (Stanton and Young, 2003).

Given that THGLM is based on KLV, it is arguable that its esti-
mations are consistent across predictions. As mentioned above, a
large body of research demonstrates the original KLM is a well
validated model. Moreover, several researchers have verified the
validity of KLM when numeric predictions are produced by inde-
pendent designers including novices (Stanton and Young, 2003;
John et al., 2004). However, THGLM adds not only new operators
to allow using THG; it involves modeling at a gesture level instead
of keystrokes and using other concepts (G-units and G-phrases).
Furthermore, the heuristics to place M operators have been revised
and adapted, making it necessary to evaluate whether designers
can apply them consistently or not. Therefore, the THGLM pre-
dictions should be tested with UI designers.

An empirical study was conducted in order to assess the model
predictions with designers’ participation. Specifically, this study
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Fig. 7. THGLM prediction.

addressed the question:

Are THGLM predictions consistent when computed by inde-
pendent designers to forecast performance time on Uls based on
THG?

The study to answer the question had two parts. The first one
was performed with the aim of gathering predicted values from Ul
designers using the model. Times to execute the corresponding
tasks using the application prototype were collected from users in
the second part of the study. Predictions made by both a researcher
and designers using the model, and observed values, were
compared to finally determine the model consistency. This study
and results are explained in this section with further detail.

6.1. Method

6.1.1. Part 1: model predictions

The first part of the study was collecting data from Ul designers.
Thus, we asked participants to analyze a Ul of a “hypothetical”
application using the model. The goal of the proposed application
was to do brainstorming using THG, using only the gestures
included in THGLM as operators. Also, designers were provided
with an initial Ul design (Fig. 8) and the needed files (explained
below).

6.1.1.1. Participants. Eight Computer Science undergraduate stu-
dents participated in the study as UI designers. All of them were
senior university students and had attended a course on HCI pre-
viously, but none had previous experience on model-based evalu-
ation. An instructor invited them to take part in the study and gave
them class credit points for the participation.

6.1.1.2. Procedure and tasks. After the designers accepted partici-
pation in the study, a researcher emailed them the study in-
structions and the needed files (five files in total) to accomplish the
tasks. The students used the model according to the instructions to
do the tasks and handed the required documents before the due
date.

The instructions, described in a pdf file and composed of six
steps, started with a short introduction about models, gestures, and
the proposed application. In the first step, we asked the designers
to get acquainted with the model by reading the pdf file that con-
tained the model description (a simplified version of section 3), a
procedure to apply it (similar to section 4), and several examples of
the use of the model. These examples were also provided in a
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Fig. 8. User interface used in the study.
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spreadsheet with the operator values and the needed formulas to
make the estimations. When the designers considered they had
learned to use the model, they had to register the spent time to do it
using another file (a doc file).

We provided the initial Ul (Fig. 8) and the corresponding
explanation of its components in the second step. Moreover, in this
step, we asked the participants to watch a Power Point presentation
that contained a simulation of the application behavior.

Next, the designers applied the model in steps 3 and 4 to analyze
three tasks using the initial design and a modified version respec-
tively. “Add a topic” (add a topic, show the keyboard, type a text,
and connect the topic to a previous one), “change topic colors”
(select a topic, change border and fill colors) and “delete a topic”
(select a topic and delete it) were the used tasks. Designers were
instructed to use only hover gestures to analyze the tasks with the
initial design (design D1) in step 3. In step 4, designers had to use
tap gestures to make selections and grip & release to connect topics
instead of using hover gestures (design D2), and the button to show
the keyboard was discarded (i.e., the keyboard would appear
automatically). After applying the model, the designers had to
make a comparative analysis of both designs. As a final point, they
had to record the required time to analyze each task. (In fact, we
emphasized since the beginning of the instructions that designers
had to record the required time for each part.)

In addition to the previous tasks, we requested designers to
answer a questionnaire to evaluate the model and the procedure to
apply it (step 5). They rated five questions (using a scale from 1 to 7,
from low or totally disagree to high or totally agree respectively)
regarding model explanation, heuristics for mental operations,
procedure to apply the model, examples, and general evaluation.

The designers handed two files as a final step: the questionnaire
as a doc file, and a spreadsheet with the analysis of all tasks. Thus,
the results reported below are based on these files.

6.1.2. Part 2: observed values

6.1.2.1. Apparatus. The application prototype used the interface
described in the previous section (Fig. 8) in order to ask users to
perform the three aforementioned tasks. In fact, the application
had two versions, one for each analyzed design. The application
was developed using MS Visual C# and Leap Motion SDK 2.2.5 on
Windows 7.

The hardware setup consisted of a desktop computer, a display,
and a gesture input device, mounted in a laboratory in our uni-
versity campus. The computer was equipped with an Intel Core i7
processor, 16 GB of RAM. A LM was connected to the computer to
track participants' hand and recognize gestures. Also, the LM was
placed on a desk (at a height of 75 cm), between the participant and
the display. The display, which had a resolution of 1920 x 1080
pixels, was also placed on the desk at 0.9 m from the user. The
participants sat in front of the display (with a white wall behind it)
on a chair with armrests. All the display, the chair, and the armrests
heights were adjusted according to each participant's height and
preferences until she/he was in a comfortable position.

6.1.2.2. Participants. Ten healthy undergraduate students, five male
and five female (mean age 21 years, ¢ = 5; nine participants were
right-handed), took part in the study. Seven participants had some
basic experience on touchless interaction, such as using Microsoft
Kinect for playing games, whereas the other three had no prior
touchless interaction experience. All participants self-declared
their experience on THG and other demographic characteristics in
a final questionnaire. Additionally, the University approved the
study with students, and written informed consent was obtained
from all participants.

6.1.2.3. Procedure and tasks. The experiment started with a re-
searcher's explanation about the application and tasks. Initially, the
participants carried out a practice session by using the application
for a couple of minutes in the way they considered appropriate.
When they learned how to use the application, the researcher
explained the tasks. The performed tasks were the same ones
analyzed by designers, that is, add a topic, change colors, and delete
a topic, and using both design options. Each task was executed
twice for each design using Latin squares to determine the order.
Likewise, the order of design options was interchanged between
participants. Also, the application logged the time of each task, and
the researcher took notes about wrong tasks.

6.2. Results

Fig. 9 shows a comparison between observed times and the
times calculated by both a researcher and independent designers.
About 27% of observed values that correspond to task instances
with significant errors were excluded from the analysis. In general,
this analysis consists of three comparisons. The first one is the
“classical” comparison we have described previously, i.e., observed
values vs. values estimated by a researcher. The percentage differ-
ence between these values remains near to the ones reported
above. The comparison of the estimations made by designers is
very interesting. Fig. 9 reveals that the means of values predicted by
designers are approximate to the values computed by the
researcher. Likewise, designers’ times are similar to the observed
values.

These comparisons give a general idea of the consistency of
THGLM, but it is also necessary to consider the individual designers'
values to confirm it. With this aim, we computed the percentage
difference between researcher's times and designers' times, and
between observed times and designers' times. The average %RMSE
in the first case is 12%, whereas 18.3% in the second case. Similarly,
the strength of the relationship between values estimated by the
researcher and designers is R> = 0.929; and R* = 0.892 for de-
signers' values and observed values. Furthermore, 79.2% of the
designers' estimations followed the same pattern than the re-
searcher’s ones doing either overpredictions or underpredictions.

Fig. 9 reveals another aspect that deserves attention as well. The
study was designed in a way that allows comparing two interface
designs (D1 and D2 in Fig. 9). D2 should be preferred to D1 ac-
cording to the researcher's and designers' analysis, and the
observed times.

Regarding the data self-reported by designers, they suggested
they had no problems to learn to use the model. Fig. 10 shows the
obtained scores of the five questions to evaluate the clearness and

T1-D1 T2-D1 T3-D1 T1-D2 T2-D2 T3-D2
Tasks-Designs

mObserved mResearcher Designers

Fig. 9. Comparison of observed times and times predicted by a researcher and de-
signers. T = Tasks, D = Designs. Error bars indicate 1 SD.
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Fig. 10. Designers' opinions about the procedure to apply THGLM. Error bars indicate 1
SD.

ease of explanations and the procedure to understand and use the
model. Although the heuristics use/explanation got the lowest
value (5.3 out of 7), the remaining scores are above 6. It may be
related to the fact that four designers mentioned they got slightly
confused while reading the heuristics explanation. In addition, the
mean time reported by designers to read the document, know/
understand the model, and apply the model to produce the
numeric predictions for all tasks was 65 min (¢ = 40, min: 36, max:
140). Actually, the designer who reported the shortest time to do
everything called our attention because he made the worst esti-
mations. Consequently, we repeated the analysis after excluding
this designer, and the metric values related to the model stability
improved (%RMSE = 8.7%, R? = 0.956, between researcher’s times
and designers' times; $RMSE = 17.9%, R? = 0.917, between observed
times and designers' times; 85.7% of cases followed the researcher’s
pattern).

6.3. Discussion

The results described in this section give a general idea of the
consistency of THGLM when it is used by independent modelers.
This study is not an exhaustive evaluation of the model predictions
produced by designers because other aspects can be considered
(e.g., involving designers with wide experience on model-based
evaluation). However, this study constitutes another evaluation of
the model validity that gives further evidence for the previous
findings and supports hypothesis H3.

Beyond the possible limitations of this study, THGLM is a valid
method to be used by Ul designers according to the results. We
reach this conclusion because the predictions were made by in-
dependent designers and compared against user trials performed
by other subjects. The designers' predictions remain acceptable in
both cases, i.e., comparing them with the researcher's predictions
and with the observed values. Moreover, the results confirm the
model validity as a tool to analyze or compare Ul designs.

The designers also reported no problems on understanding and
using the model despite they had no prior experience with HCI
models. In fact, they only suggested a better explanation on the use
of heuristics. However, it is expected novice designers have some
problems applying heuristic rules (e.g., novice designers may
include more Ms than experts (John et al., 2004)) because including
mental operators may be tricky and it takes a lot of judgment as
Kieras suggests (Kieras, 2001). Despite this difficulty, the designers
provided high scores concerning the explanation and use of the
model from which it is possible to infer the model is relatively easy
to use. This ease of use may be confirmed by the relatively short

times required to learn to use and apply the model. These times are
also comparable with times reported in previous works such as
(John et al., 2004). Finally, these small values support the economic
benefits of THGLM. Numeric predictions can be produced in an easy
and quick way in comparison with the logistic difficulties and costs
of doing tests with real users (i.e., planning, timing, laboratory
setup, recruiting subjects, and conducting experiments).

7. Extending THGLM

THGLM does not include all operators that may be used to
analyze interface designs, but it is not a major limitation because
the model is extensible following the inspiration of KLM (Erazo and
Pino, 2015). For this aim, it is necessary to define the operator that
will be included in the model, and then, estimate the value of that
operator or find the equation(s) to compute its value. It is expected
most of the new operators will correspond to gesture strokes, and
hence, they will be included as S-phrase operators. The Drawing
operator is an example of a new S-phrase operator that was added
to the original model, as described in previous sections. Finding all
candidate operators that may be incorporated to the model is
beyond the scope of this work, but we introduce in this section
several operators that should be useful.

7.1. The candidate operators

7.1.1. Mentally prepare

The first analyzed operator, to possibly be improved, is Mentally
Prepare (M). It was introduced in the original KLM (Card et al.,
1980), and the authors noted: “the use of a single mental oper-
ator is a deliberate simplification” (Card et al., 1980). For this and
other reasons, MacKenzie (2013) advocates updating the M oper-
ator by replacing it with a set of operators, though this operator has
been successfully used in other works using the original value (e.g.,
(Luo and John, 2005; Holleis et al., 2007; Lee et al., 2015)).

Based on (Card et al., 1983), MacKenzie (2013) (pp. 272—274)
proposes to use five M operators depending on the required mental
operation for simple decision tasks. These tasks are: simple reac-
tion (Mg, the user is attending to the application, and s/he reacts by
doing an action when the stimulus appears), physical matching
(Mp, the user executes the action if the stimulus matches to a code
stored in short-term memory), name matching (My, similar to Mp
but the user must abstract the stimulus in some way), class
matching (Mg, the user has to access the long-term memory before
doing the action), choice reaction (Mg, the user has to make a choice
from several responses; Hick-Hyman Law (Hick, 1952; Hyman,
1953) is usually applied to analyze it), and visual search (My, the
user searches for a number of choices on the screen). Additionally,
MacKenzie (2013) provides the estimated values for the operators,
except for Mc; and he also makes a comparison with the values
computed by Card et al (Card et al., 1983) (who in turn did not
provide a value for My). However, these values were computed
using an interaction style different than touchless interaction; in
fact, MacKenzie's work (MacKenzie, 2013) used keystrokes to es-
timate those values. Consequently, it is necessary to verify what
will happen when using THG instead of keystrokes in order to use
more than one M operator.

7.1.2. Hand preference (Hp)

The next operator of interest refers to handedness (hand
dominance or hand preference) since users may prefer to interact
using either their dominant (DH) or non-dominant hand (NDH). In
this sense, the following question arises: Is touchless interaction
natural enough to be used with the preferred and non-preferred
hand in a similar way? Answering this question should lead to
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determine whether there is a difference between hands, and in
which level both hands differ.

In general, prior research suggests there is a difference between
hands using a computer, but the NDH can be as good as the DH for
some tasks such as pointing or motion (Kabbash et al., 1993).
Actually, Peters and Ivanoff demonstrated the difference between
hands is small using a mouse by analyzing several performance
metrics (Peters and Ivanoff, 1999). Furthermore, though perfor-
mance with the DH can be better than with the NDH in tasks that
require visual control, there are occasions on which subjects may
perform some tasks better with their NDHs, which could be due to
cerebral organization (Hoffmann, 1997).

These previous findings are similar for touchless interaction in
some degree as noted by Jude et al. (Jude et al., 2014). They calcu-
lated the increase in movement time (MT, the time to reach a
target) for pointing tasks and found there is 11% degradation be-
tween hands. This work could be an initial step towards introducing
an operator for hand preference, but there is a limitation: the au-
thors only used hovering gestures to make selections. In other
words, the computed degradation may apply only to pointing tasks
based on Fitts’ Law and hover gestures. Consequently, it is neces-
sary to verify whether this difference is the same using other
gesture strokes.

In addition, it is insufficient to analyze several strokes to intro-
duce an Hp operator because other aspects should be considered.
We refer to the relation between reaction time and handedness.
Though it is expected “there is hardly any difference between the
simple reaction times of the dominant and non-dominant hand”
(Rosenbaum, 2009)(p. 280), Peters and Ivanoff reported shorter
times for the dominant hand (Peters and Ivanoff, 1999) (in fact, the
reported difference is, at most, in the order of 10%). Thus, reaction
time should be taken into account in the handedness analysis,
especially trying to make a relation with mental operations previ-
ously described.

7.1.3. Other stroke operators

THGLM includes a set of S-phrase operators that were selected
by performing a literature search (Erazo and Pino, 2015), which is
also consistent with the gestures set proposed by Walter et al
(Walter et al., 2014) to select items on interactive public displays.
However, Erazo and Pino (Erazo and Pino, 2015) only proposed the
values for some S-phrase operators, and as they noted, these op-
erators may be used to analyze some applications functionalities,
though there are other options that have not been included in the
model yet. Namely, two options are pulling (move the hand to-
wards the back) and waving (wave the hand) gestures. Other S-
phrase operators may be included, but it is beyond the scope of this
work because the main goal is to illustrate how to extend THGLM
by introducing several operators.

7.2. User study for time measurements

Given the aforementioned candidate operators, we conducted
an experiment to estimate the values of the selected operators.
First, we decided to use hand preference as a baseline to design the
experiment. In other words, the experiment was designed to
analyze hand preference but taking into account the operators of
interest to make the needed measures. On the one hand, we
analyzed two types of simple decision tasks, which correspond to
the Ms and Mp operators, but the definition of Mp was modified
slightly. The user matches the used hand to the stimulus for our
physical matching, but the stimulus is presented on the left or right
sides of the screen. In other words, the user employs the hand that
corresponds to the same side of the screen where the stimulus
appears. These two operators were considered as a starting point

towards the analysis of diverse interactions requiring user attention
and cognition on Uls based on THG. On the other hand, the time to
perform several strokes using both hands was measured, including
pulling (U operator). This allowed us to introduce a new S-phrase
operator and determine the consistency with some previously
found values. As a result, four new operators are available to be
included in the model.

7.2.1. Method

7.2.1.1. Procedure and tasks. In general, the experiment consisted
on performing several gestures using both hands in two phases.
Participants had to execute twelve times a gesture using only one
hand in the first phase (P1). Next, they repeated the process using
the other hand. This process was repeated for all four gesture
strokes (pull, tap, grip, and release), which were selected from
(Erazo and Pino, 2015; Walter et al., 2014). Though we could use
other gestures, we selected those ones considered representative/
adequate for this experiment. For example, Hold was considered
not adequate for this case due to its nature; i.e., “hold” a hand a
constant time on a button to be recognized. The same gestures were
performed in the second phase (P2), but participants used both
hands; that is, they randomly selected the hand they had to use to
execute the gesture. Each gesture was repeated twelve times using
each hand in a way similar to the first phase.

Taking into account handedness plays a special role in the
experiment, we first asked participants to accomplish an Edinburgh
Handedness Inventory questionnaire for hand dominance assess-
ment (Oldfield, 1971). They answered questions about their degree
of preference toward a hand to do ten common tasks such as
writing, drawing, etc.

The experiment started with written instructions about the
tasks participants had to perform. The instructions consisted on an
explanation about the way the application worked, the gestures to
execute and the way to do it. When the participant was ready to
start, we asked him/her to adopt the right position before starting a
practice session. Four trials were performed (with each gesture) as
part of the practice session in order to allow participants knowing
the software and the gestures. This practice was only performed
during one phase (the corresponding one according to task order)
for all gestures since participants knew the protocol when it was
the turn of the other phase.

The task consisted on performing a gesture to select a square
button centered in the screen in phase P1. A trial began with the
presence of a beige button which changed to gold when the cursor
was placed over it. Next, the button turned red (preparatory stim-
ulus (Jensen, 2006)) when the software detected the participant's
hand was still. This change alerted the subject to the impending
reaction stimulus and started the preparatory interval (Jensen,
2006). The preparatory interval, which is the time between the
preparatory stimulus and the reaction stimulus, was in the range
1-3 s according to Jensen's (Jensen, 2006) suggestion. Participants
were instructed to avoid moving the hand until the button turned
green, which is the reaction stimulus (Jensen, 2006). The participant
had to execute the gesture as quickly as possible after the reaction
stimulus appeared and trying to balance speed and precision. If the
application interpreted the gesture as correct, then the percentage
of progress was displayed. If not, then the participant had to repeat
the trial. Next, the same process was repeated employing the other
hand. The task continued with next gesture after having a short
rest. When the participant accomplished the four gestures using
both hands, the second phase started.

Phase P2 was similar to phase P1, but two buttons, two cursors
and both hands were used at the same time instead of one. Each
button appeared at the center of the left and right half of the screen,
separated 280 pixels horizontally, and at the same height. A button
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could only be selected using one cursor as each cursor was linked to
each hand. Also, both buttons changed their colors as described for
phase P1, but only one button turned green in each trial. In other
words, if the left button color changed to green, then the partici-
pant had to use the left hand to perform the gesture, and likewise,
use the right hand if the button on the right turned green.

Furthermore, we collected some data about demographics,
computer use, and THG experience at the end of the experiment.
The whole experiment lasted 50 min on the average.

7.2.1.2. Apparatus. The hardware setup was the same used in the
experiment to validate the model with UI designers (described in
section 6.1.2), but a new custom application was developed. The
application interface is inspired on (MacKenzie, 2013), but making
the needed adaptations as that application is intended for key-
strokes whereas our application is based on THG. Thus, the appli-
cation controls stimulus presentation (change of colors) and times
(delays) as needed, and logged the required data.

Leap Motion was used as input device to track user hands and
recognize gestures. This decision was made taking into account the
high sensor accuracy (below 0.2 mm) stated by the manufacturer
and confirmed in studies that evaluated the sensor (Weichert et al.,
2013; Guna et al., 2014). These advantages allow the application to
detect when the hand (or both hands) is not moving to enter into
preparatory interval. Also, hand tremor, which was set to 0.2 mm
for young and healthy people according to previous studies
(Sturman et al., 2005; Weichert et al., 2013), was used to avoid
detecting false movements. On the other hand, hand positions and
thresholds were used to recognize gestures as follow: move the
hand forward or backward 15 cm to detect tapping or pulling
respectively; hand open or close at 95% for gripping and releasing
(according to Leap.Hand.GrabStrength property provided with LM
SDK). In addition, while users were performing a gesture, the cur-
sors turned blue varying the color intensity according to the gesture
progress (i.e., from light blue to dark blue) with the aim of
providing feedback. The same feedback was provided for all ges-
tures to prevent a possible feedback effect.

As mentioned above, the graphical interface consisted of one or
two buttons and cursors (depending on the phase). Button sizes
were set to 120pixels per side (consistent with (Jude et al., 2014))
and have neither labels nor images. The cursors were white circles,
with black border, 50pixels diameter, and controlled with hand
movements. The cursors were only shown inside a white rectangle
of 800 x 600 pixels. This rectangle was mapped to the interaction
space in which subjects move their hands. The background of the
remaining area was set to black as suggested by participants in pilot
trials.

7.2.1.3. Participants. The participants in the experiment were Uni-
versity students (20 in total, 19 right-handed, 10 female, 13 un-
dergraduate students, aged between 18 and 37 years) invited by
email and social networks. They self-declared to use computers at
least 10 h per week, and thirteen had some basic experience on
touchless interaction, such as using Wii remote or Microsoft Kinect
for playing games. The other seven participants had no prior
touchless interaction experience. The participants were not paid for
their participation and signed a written informed consent before
starting the study.

7.2.2.4. Design. A within-subjects design was used where each
participant performed 96 gesture-trials per phase in total (4 gesture
strokes x 2 hands x 12 trials). The initial hand and phase were
counterbalanced across participants; Latin squares were used to
determine gestures order; and the preparatory interval was ran-
domized to prevent participants from anticipating the onset

stimulus (MacKenzie, 2013) (p. 57). Moreover, we followed Kosinski
and Cummings’ suggestion regarding the minimum reaction times
per person and per treatment to be collected (Kosinski and
Cummings, 1999).

Given this scenario, we gathered data of reaction time (RT) and
stroke time (ST). RT is the delay between a fixed (or reaction)
stimulus and the initiation of a response (e.g., a detectable move-
ment) (Jensen, 2006; MacKenzie, 2013). In some cases, it is also
named response time, but the latter should be preferred in exper-
iments in which speed is neither emphasized nor mentioned in
instructions (Jensen, 2006). In this study, RT is the elapsed time
since the button turns green and a participant starts moving the
hand to perform a gesture. On the other hand, ST is the interval
between participants start performing the gesture until the gesture
is recognized.

7.2.2. Results

The collected data was used to estimate the values of the four
selected operators: RT data was utilized to estimate the values of
the Ms and Mp operators; ST and RT data were used to analyze the
Hp operator value; and the U operator value was obtained using the
times of pulling gestures. Table 2 summarizes the obtained times.

The first operator in Table 2, Pulling, is an S-phrase operator that
belongs to the group of expressive operators. Its value was
computed as the period of time since a participant started to move
the hand towards the back until the hand was moved 15 cm (i.e.,
using ST). Values of trials performed with the DH in both phases
were used to compute the stroke time because the difference be-
tween phases was not statistically significant (Fj19 = 0.709, ns).

Ms and Mp operators were estimated using the data from both
phases, P1 and P2, respectively. Their values correspond to the
participants’ reaction times; that is, the period of time between the
response stimulus appeared until a participant started to move the
hand (i.e., execute the gesture). In general, the analysis was per-
formed following the general recommendations for analyzing RT
data described in (Jensen, 2006; Whelan, 2008), such as cutoff
values (e.g., exclude values greater than three standard deviations
above the mean), use arithmetic mean, etc. The analysis of vari-
ances using these values revealed the main effect of gesture strokes
on RT was statistically significant in both phases (F357 = 3.755,
p <0.05in P1; F3 57 = 5.406, p < 0.05 in P2), but differences between
gestures were small (less than 5% on the average for both phases).
Moreover, the main effect of used hand was not statistically sig-
nificant in both phases (Fy19 = 1.291, p > 0.05 in P1; F119 = 0.387, ns
in P2), and no significant gesture x hand interaction effects were
found (F357 = 0.701, ns in P1; F357 = 1.013, p > 0.05 in P2).
Consequently, we decided to keep only one value per operator in
order to not increase the model complexity.

Given that other authors have analyzed MT using THG and based
on Fitts’ Law, we concentrated just on RT and ST. Similarly to RT, the
analysis of variances revealed the main effect of gesture on ST was
statistically significant in both phases (F3 57 = 6.160, p < 0.01 in P1;
F357 =4.761, p < 0.01 in P2), whereas the main effect of hand was
not significant also in both phases (Fij9 = 0.209, ns in P1;
Fi19 = 0.184, ns in P2). Likewise, there were no significant
gesture x hand interaction effects in both cases (F3 57 = 0.344, ns in
P1; F357 = 1.137, p > 0.05 in P2). These results suggest there is no
difference between hands when the analyzed strokes are produced.
Thus, we infer the difference between hands is present during the
movement phase to reach the target (i.e., in the pointing phase). In
other words, the degradation between DH and NDH should be
applied to the P operator and not to the T, G, R, and U operators.
Nevertheless, we did not analyzed MT, and hence, it is necessary to
use some related work. Specifically, Jude et al (Jude et al., 2014)
found the degradation in MT to be about 11%. This value could be
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Table 2

Overview of the proposed times for the new operators. * Only for P operator (see text for details).
Operator Group (type) Time (in seconds if not specified) SD (s)
U, Pulling Expressive — S-phrase 0.941 0.121
Mg, Simple reaction General 0.375 0.076
Mp, Physical matching General 0.388 0.065
Hp, Hand preference Movement 11%* N/A

used for the Hp operator. Consequently, if the analysis considers the
task will be performed with the NDH, then the P operator will
change to “Hp P”, that is to say, 1.11*P (or 1.161s using the constant
value suggested in Table 1, which is lower than the average value
reported in (Jude et al., 2014), but it falls into the computed
intervals).

Finally, we made a comparison between the current and the
previously proposed times (Table 1) for the T, G, and R operators
taking into account that the corresponding strokes were used in the
present experiment. Both set of values are very similar as shown in
Fig. 11 (the mean difference between the three operators is 6%),
though in fact, all the differences between each pair of values were
not statistically significant. These results allow us being more
confident about the values for these operators.

7.2.3. Using the new operators

After estimating the new operator times, we decided to go
beyond and perform a short test with the aim of using some of
these operators. One application previously used, Gester, was
chosen to perform the test. Five participants that took part in the
experiment interacting with Gester using the DH were still avail-
able. They then performed the same task but using the NDH. On the
other hand, the same procedure was followed to produce the
numeric predictions. However, the Hp operator was used on this
occasion. The resulting prediction error using the observed and
estimated values is similar to the one obtained for the DH (about
23%). This result allows inferring the Hp operator worked well, but
the error remains higher than expected.

As suggested above, the task using Gester requires users react
quickly when the next letter (target) is shown in order to “catch” it.
This means that the required mental act could be a simple reaction
(Ms operator) and not a mental preparation (M operator) that
subsumes several cognitive processes into one. Therefore, this task
should include an M for selecting the “start button” and one Mg for
each letter that users must “catch”.

In fact, the predictions doing the suggested changes are better
than the previous ones. The prediction error decreased to about 11%
for both the DH and NDH. This analysis and results constitute evi-
dence that the M should be updated according to MacKenzie's
suggestion (MacKenzie, 2013).
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Fig. 11. Comparison of current and previous times for three operators.

7.3. Further model extensions

Four operators have been proposed with the aim of extending
THGLM, but more operators can be included. However, there is a
trade-off concerning the number of operators because the model
may turn complex if it has many operators (Holleis, 2009)(p. 53).
Conversely, having a too small number of operators will decrease
the number of application functionalities that could be analyzed.
Bearing in mind this suggestion, some operators that could possibly
be included in the future are discussed briefly in this section. These
operators come from literature in which some KLM extensions have
been described. Of course, this list is not exhaustive and other
operators could be taken into account, especially those concerning
the group of expressive operators.

Referring to S-phrase operators, Table 1 includes an operator for
swiping (as well as the corresponding ones to prepare for per-
forming a swipe) according to Erazo and Pino's proposal (Erazo and
Pino, 2015). In fact, three operators were distinguished: an average
swipe (S), horizontal swipe (Sh) and vertical swipe (Sv). Going
beyond and using the data of that study, the analysis of variances
reveals the difference between horizontal swipes from right to left
and vice versa is statistically significant (F1 35 = 9.190, p < 0.01), as
well as between vertical swipes from top to bottom and vice versa
(F135 = 11.053, p < 0.01). This analysis suggests two operators
should be used for horizontal swipes and two for vertical swipes
instead of one for each kind of swipes. This is an example of the
aforementioned trade-off: a decision should be made between
using a single value (for any swipe type), two values (for Sh and Sv)
or four values (one for each swipe direction). Given that acceptable
predictions were reached when swipes were employed (Erazo and
Pino, 2015), we suggest following the same idea as shown in Table 1
(i.e., using only one or two values) to keep the model simplicity.

There are several models developed for other interactions that
may be adapted and included as movement operators. The first
model is Fitts' Law (Fitts, 1954), whose usefulness for THG was
discussed in (Erazo and Pino, 2015). Although a constant value has
been used in the experiments to validate THGLM, Fitts' Law could
be used to estimate the time to reach a target as demonstrated in
several works (Schwaller and Lalanne, 2013; Pino et al., 2013;
Polacek et al., 2012; Zeng et al., 2012; Sambrooks and Wilkinson,
2013; Jude et al., 2014). Another option could be the use of ballis-
tic models such as (Hoffmann and Gan, 1988). Steering Law (Accot
and Zhai, 1997) is another model that may be evaluated using THG
and possibly be extended. It is based on Fitts' Law that allows
predicting the speed and total time to navigate through a two-
dimensional tunnel in trajectory-based tasks. The user's task con-
sists of traveling from one end of the path to the other one as
quickly as possible, without touching the boundaries of the tunnel.
The potential HCI applications of this model are device comparison
and menu design. As a consequence, if the use of this model is
verified and/or adapted to be included as an operator in THGLM, it
could be used to forecast performance to navigate vertical or hor-
izontal menus, drag an element through a “tunnel”, etc.

Regarding the M operator, we have introduced two additional
operators that can complement or replace this single operator. We
have also mentioned above other candidate operators for mental
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acts, but they have not been studied because it is beyond the scope
of this work. However, it is worth to mention that M¢ could be
studied on the basis of another previous and widely used model,
Hick-Hyman Law (Hick, 1952; Hyman, 1953). This model forecasts
the time a user needs to make a decision when s/he has to choose
the correct one from some simple options. In the context of THGLM,
this model might be adapted to estimate the time a person needs to
make the decision in general, or particularly, to choose the right
gesture to execute a command and/or activate some option of the
application.

Besides, other candidate operators that could be included as
general operators have also been suggested in previous works. For
example, Holleis (2009) proposes to consider age, illumination,
scroll, etc. as further model extensions for advanced mobile phone
interactions. (He also mentions other operators that might not be
applicable to THG.) Despite Holleis includes the corresponding
values obtained from related works, these values should be verified
with THG. Finally, the Power Law of Practice (Card et al., 1983)(p.
27) may be used to model how practice can change the time to
perform THG and complete tasks using NUIs.

8. General discussion

In this work, we have provided further details and validation of
THGLM, which is a predictive model to quantitatively evaluate Uls
based on THG. The results confirm the validity of the model, and
thus it is important to discuss briefly some assumptions, advan-
tages and limitations.

First, THGLM assumes additivity of time elements. It is a
simplification because it does not consider possible interrelation-
ships between gesture strokes/holds. Nevertheless, the validity of
the additivity assumption has been demonstrated in various KLM
extensions (e.g., (Holleis et al., 2007; Luo and John, 2005; Lee et al.,
2015)). Moreover, the gestures included in THGLM are basically the
same considered in Predetermined Motion Time Systems (PMTS)
(Genaidy et al., 1989), used for many years by engineers for time
estimation in industrial tasks with similar additivity assumption.

Like KLM, THGLM is relatively easy to use but has some limita-
tions. In particular, the method to execute tasks must be completely
specified at the level of gestures. Therefore, a set of operators to
describe those tasks in terms of THG is needed. Nonetheless,
although there are several gestures which are “universally” used,
we have not known a standard concerning gestures to be employed
in NUIs. This is why Erazo and Pino (Erazo and Pino, 2015) decided
to perform a systematic bibliographic review to find the candidate
gestures to be included as operators. They chose the gestures most
frequently used in related works, but they did not include all op-
tions. Thus, we demonstrated here the model is extensible by
adding new operators based on previous suggestions. Although all
the selected operators may be used to analyze various application
functionalities, more operators can be easily included by estimating
the corresponding time, or finding the equations to compute it
instead (Erazo and Pino, 2015).

Unlike the original KLM, which assumes tasks are performed by
expert users, THGLM has been developed for novice users. The
main motivation is that today there are too few expert users on Uls
based on THG. Actually, many users approach this type of interfaces
for the first time (Walter et al., 2014). Despite we have provided
some suggestions to use the model to make predictions for expert
users, the operator values could be updated in the future when
more expert users become available.

Another limitation lies in being limited to error-free execution.
Participants made a number of errors when performing the tasks,

mainly due to the learning process. Thus, we proceeded in a way
similar to Card et al. (Card et al., 1980), i.e. “ignoring the tasks
containing errors and only predicting the error-free tasks”. The
model performance would decrease if tasks with significant errors
were used.

The model performance may also decrease depending on users’
characteristics especially because the operator values were esti-
mated by involving healthy young adults. For instance, prediction
error could worsen if applications are used by children, elderly
people, impaired people, etc. Therefore, the model may be gener-
alized by analyzing differences and/or estimating operator values
with the participation of other types of users as future work (e.g.,
the aforementioned operator for age).

Other aspect that Erazo and Pino (Erazo and Pino, 2015) dis-
cussed in the initial model formulation refers to the variability of
the operator times. They reported a relatively high coefficient of
variation (CV) of gesture production times (about 30%). Though we
reached smaller CVs for the new operators, they remained near
20%. However, these values are comparable to previously reported
ones (e.g., 31% in (Card et al., 1980)).

Although current devices allow detecting and tracking human
body and hand fingers, this interaction type has not been consid-
ered. Actually, the model only allows forecasting times of tasks
where gestures are performed with one hand. Nowadays, the
model includes an operator for hand preference to allow analyzing
tasks assuming users will use either the left or the right hand.
However, this operator is not enough to model two-handed in-
teractions. (In fact, the use of this operator should be verified for
other operators such as drawing). Despite the model may be
extended, there are several aspects that should be studied in order
to extend it to support bimanual interactions. For example, one
hand could be used to perform gestures while the other hand is
used as reference, or both hands could be used to perform gestures
symmetrically or asymmetrically. A good starting point towards
this goal may be the analysis of previous models for bimanual tasks
such as (Guiard, 1987; Ruiz et al., 2008).

There are several areas to which the model might be applied in
the future. A first one is related to the rehabilitation of people with
upper limb dysfunctions. In this scenario, THGLM may be used not
only to forecast performance time after computing the proper
values. The model might also be adapted to estimate time that
patients require in executing a routine and defining new operators,
according to their limitations. Subsequently, these values may be
used to encourage patients to continue training (e.g. achieve the
value established as a goal) (Erazo et al.,, 2014). Other possible
application or extension of the model refers to virtual/augmented/
mixed reality based on THG. For instance, applications in which
users utilize a head-mounted display and THG for interacting (e.g.,
(Kohli, 2013)). The model might be applied to analyze Ul designs for
this kind of applications after performing the corresponding
studies.

Going beyond the advantages and limitations of THGLM, it is
important to notice that the model only addresses a single aspect of
performance: time. Although performance time is commonly used
to evaluate interfaces (MacKenzie, 2013), and particularly using
model-based evaluation, there are other dimensions of perfor-
mance. Fatigue is one of these dimensions that should be consid-
ered to design Uls based on THG. Though some methods have been
proposed to quantify fatigue (Hincapié-Ramos et al., 2014), they
require user participation. Other dimensions that could be
considered are errors, learning, etc. The analysis of these and other
aspects can be very useful to get a good product, but the main
utility of THGLM is at early design stages before implementing a
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prototype and collecting data from users to apply other metrics.

9. Conclusions

This work describes, verifies and extends THGLM which is
considered the first comprehensive model to quantitatively eval-
uate Uls based on THG (Erazo and Pino, 2015). The model predicts
the time to do a task given the method in an acceptable way ac-
cording to the initial validation (Erazo and Pino, 2015). Since the
initial version of the model had some limitations, we started
completing that initial formulation by describing the needed rules
and suggestions to produce quantitative predictions. Namely, we
updated the heuristics rules and recommendations for including
mental operators, and adapted a procedure to use THGLM. Then, we
used these enhancements to study the model performance in
further detail.

The empirical validation confirms the quality of THGLM to
forecast performance time. The model reached a prediction error
(RMSE) of 12%, while the error obtained by Card et al. (Card et al,,
1980) for the original KLM is 21%. The model performance is also
confirmed by the high relationship between estimated and
observed times (R? > 0.9). These results confirms hypothesis H1.

Likewise, the results from the study to analyze Ul designs vali-
date hypothesis H2. The comparison between predicted and
observed values for the three design options for the proposed
application continued acceptable; i.e., the percentage of error was
lower than 21% in all cases. More important, the comparison per-
formed to select the best design option gave the same result using
the model and observing users. Thus, we conclude THGLM can be
employed as a design tool based on both these results and the ones
obtained in a later study.

As the model should become useful for Ul designers, its validity
as a design tool was confirmed by conducting a study with the
participation of independent designers. Notably, designers' pre-
dictions stayed stable in comparison to the researcher's ones,
confirming hypothesis H3. The designers were able to produce
numerical predictions for all required tasks with no problems and
in short periods despite having no previous experience on model-
based evaluation. Hence, THGLM can be used to analyze Ul de-
signs in a relatively easy way.

In addition, we have demonstrated the model is extensible by
introducing and using several new operators. This means that other
operators can be included in the future to expand the possibilities
offered by THGLM.

Regarding the general hypothesis, we observe it is validated for
the three specific hypotheses. Therefore, Ul designers and/or re-
searchers have available a model that could be used without un-
dertaking time-consuming and resource-intensive ad-hoc
experiments. Thus, the model should be useful for designers to be
able to develop good software products using THG.

Finally, in spite of the good results and advantages of THGLM, it
has several constraints that must be taken into account when it is
used. These restrictions mainly refer to users’ characteristics and
the fact that the model only allows analyzing one-handed in-
teractions. Therefore, the model could be improved by adding new
operators to cover a wide range of users and conditions, as well as
by extending it to two bimanual interactions.

Acknowledgments

This work was supported by “Secretaria Nacional de Educacion
Superior, Ciencia, Tecnologia e Innovacién” (Convocatoria Abierta
2011), Ecuador; and NIC Chile (Dept. of Computer Science, Uni-
versidad de Chile).

References

Accot, ]., Zhai, S., 1997. Beyond Fitts' law: models for trajectory-based HCI tasks. In:
Proceedings of CHI 1997, pp. 295—302.

Bachynskyi, M., Oulasvirta, A., Palmas, G., Weinkauf, T., 2014. Is motion-capture-
based biomechanical simulation valid for HCI Studies? Study and implica-
tions. In: Proceedings of CHI 2014, pp. 3215—3224.

Bachynskyi, M., Palmas, G., Oulasvirta, A., Weinkauf, T., 2015. Informing the design
of novel input methods with muscle coactivation clustering. ACM Trans.
Computer-Human Interact. (TOCHI) 21 (6).

Barclay, K., Wei, D., Lutteroth, C., Sheehan, R, 2011. A quantitative quality model for
gesture based user interfaces. In: Proceedings of OzCHI 2011. ACM, pp. 31—39.

Cao, X., Zhai, S., 2007. Modeling human performance of pen stroke gestures. In:
Proceedings of CHI 2007, pp. 1495—1504.

Card, S., Moran, T., Newell, A., 1980, July. The keystroke-level model for user per-
formance time with interactive systems. Commun. ACM 23 (7), 396—410.
Card, S., Moran, T., Newell, A., 1983. The Psychology of Human-computer Interac-

tion. L. Erlbaum Associates.

de la Barré, R., Chojecki, P, Leiner, U., Miihlbach, L., Ruschin, D., 2009. Touchless
interaction-novel chances and challenges. In: Jacko, J.A. (Ed.), Human-computer
Interaction, Part II, HCII 2009, LNCS 5611. Springer, pp. 161—169.

Erazo, O., Pino, J.A., 2015. Predicting task execution time on natural user interfaces
based on touchless hand gestures. In: Proceedings of IUI 2015. ACM,
pp. 97—109.

Erazo, O., Pino, J.A., Antunes, P., 2015. Estimating production time of touchless hand
drawing gestures. In: Abascal, J., et al. (Eds.), INTERACT 2015, Part III, LNCS 9298,
pp. 552—-569.

Erazo, O., Pino, J.A, Pino, R, Ferndndez, C., 2014. Magic mirror for neuro-
rehabilitation of people with upper limb dysfunction using Kinect. In: IEEE
(Ed.), Proceedings of HICSS 2014, pp. 2607—2615.

Fitts, PM., 1954, June. The information capacity of the human motor system in
controlling the amplitude of movement. J. Exp. Psychol. 47 (6), 381—391.

Gallo, L., Placitelli, A.P., Ciampi, M., 2011. Controller-free exploration of medical
image data: experiencing the Kinect. In: 24th International Symposium on
Computer-based Medical Systems, pp. 1—6.

Genaidy, A.M., Mital, A., Obeidat, M., 1989. The validity of predetermined motion
time systems in setting production standards for industrial tasks. Int. J. In-
dustrial Ergonomics 3 (3), 249—-263.

Guiard, Y., 1987. Asymmetric division of labor in human skilled bimanual action: the
kinematic chain as a model. J. Mot. Behav. 19 (4), 486—517.

Guna, ], Jakus, G., Pogacnik, M., Tomazic, S., Sodnik, ]J., 2014. An analysis of the
precision and reliability of the Leap motion sensor and its suitability for static
and dynamic tracking. Sensors 14 (2), 3702—3720.

Hick, W.E., 1952. On the rate of gain of information. Q. J. Exp. Psychol. 4 (1), 11-26.

Hincapié-Ramos, ].D., Guo, X., Moghadasian, P,, Irani, P., 2014. Consumed endurance:
a metric to quantify arm fatigue of mid-air interactions. In: Proceedings of CHI
2014. ACM, pp. 1063—1072.

Hinrichs, U., Carpendale, S., Valkanova, N., Kuikkaniemi, K., Jacucci, G. Vande
Moere, A., 2013. Interactive public displays. Comput. Graph. Appl. 33 (2), 25—-27.

Hoffmann, E.R., 1997. Movement time of right-and left-handers using their
preferred and non-preferred hands. Int. J. Industrial Ergonomics 19 (1), 49—57.

Hoffmann, E., Gan, K., 1988. Directional ballistic movement with transported mass.
Ergonomics 31 (5), 841-856.

Holleis, P.,, 2009. Integrating Usability Models into Pervasive Application Develop-
ment. PhD Thesis. Ludwig - Maximilians-Universitat Miinchen, Germany.

Holleis, P., Otto, F., Hussmann, H., Schmidt, A., 2007. Keystroke-level model for
advanced mobile phone interaction. In: Proceedings of CHI 2007,
pp. 1505—1514.

Hyman, R., 1953. Stimulus information as a determinant of reaction time. J. EXp.
Psychol. 45 (3), 188—196.

Isokoski, P., 2001. Model for unistroke writing time. In: Proceedings of CHI 2001.
ACM, pp. 357—364.

Jagodzinski, P., Wolski, R., 2015. Assessment of application technology of natural
user interfaces in the creation of a virtual chemical laboratory. J. Sci. Educ.
Technol. 24 (1), 16—28.

Jensen, A.R., 2006. Clocking the Mind: Mental Chronometry and Individual Differ-
ences. Elsevier.

John, B.E., Prevas, K., Salvucci, D.D., Koedinger, K., 2004. Predictive human perfor-
mance modeling made easy. In: Proceedings of CHI 2004, pp. 455—462.

Jude, A., Poor, G.M., Guinness, D., 2014. An evaluation of touchless hand gestural
interaction for pointing tasks with preferred and non-preferred hands. In:
Proceedings of NordiCHI 2014, pp. 668—676.

Kabbash, P., MacKenzie, 1.S., Buxton, W., 1993. Human performance using computer
input devices in the preferred and non-preferred hands. In: Proceedings of
INTERACT 1993 and CHI 1993, pp. 474—481.

Kendon, A., 2004. Gesture units, gesture phrases and speech. In: Gesture: Visible
Action as Utterance. Cambridge University Press, pp. 108—126.

Kieras, D., 2003. Model-based evaluation. In: The Human-computer Interaction
Handbook. Lawrence Erlbaum Associates, New Jersey, pp. 1191—1208.

Kieras, D., 2001. Using the Keystroke-level Model to Estimate Execution Times.
University of Michigan, vol. 2001. Retrieved from. http://www-personal.umich.
edu/~itm/688/KierasKLMTutorial2001.pdf.  http://www-personal.umich.edu/
~itm/688/KierasKLMTutorial2001.pdf.

Kita, S., Van Gijn, L, Van der Hulst, H., 1998. Movement phases in signs and Co-


http://refhub.elsevier.com/S0169-8141(17)30363-3/sref1
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref1
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref1
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref2
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref2
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref2
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref2
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref3
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref3
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref3
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref4
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref4
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref4
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref5
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref5
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref5
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref6
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref6
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref6
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref7
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref7
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref8
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref8
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref8
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref8
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref8
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref9
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref9
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref9
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref9
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref10
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref10
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref10
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref10
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref11
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref11
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref11
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref11
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref11
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref12
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref12
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref12
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref13
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref13
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref13
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref13
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref14
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref14
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref14
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref14
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref15
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref15
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref15
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref16
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref16
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref16
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref16
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref16
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref16
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref16
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref17
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref17
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref18
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref18
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref18
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref18
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref18
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref19
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref19
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref19
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref20
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref20
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref20
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref21
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref21
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref21
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref22
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref22
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref22
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref23
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref23
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref23
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref23
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref24
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref24
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref24
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref25
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref25
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref25
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref26
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref26
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref26
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref26
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref26
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref27
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref27
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref28
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref28
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref28
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref29
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref29
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref29
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref29
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref30
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref30
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref30
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref30
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref31
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref31
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref31
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref32
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref32
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref32
http://www-personal.umich.edu/%7Eitm/688/KierasKLMTutorial2001.pdf
http://www-personal.umich.edu/%7Eitm/688/KierasKLMTutorial2001.pdf
http://www-personal.umich.edu/%7Eitm/688/KierasKLMTutorial2001.pdf
http://www-personal.umich.edu/%7Eitm/688/KierasKLMTutorial2001.pdf
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref34

138 0. Erazo, J.A. Pino / International Journal of Industrial Ergonomics 65 (2018) 122—138

Speech gestures, and their transcription by human coders. In: Gesture and Sign
Language in Human-computer Interaction. Springer Berlin Heidelberg,
pp. 23-35.

Kohli, L., 2013. Warping virtual space for low-cost haptic feedback. In: Proceedings
of SIGGRAPH Symposium on I3D 2013, p. 195.

Kosinski, B., Cummings, J., 1999. The scientific method: an introduction using re-
action time. In: Tested Studies for Laboratory Teaching (ABLE Proceedings) 25.

Kurtenbach, G., Hulteen, E.A., 1990. Gestures in human-computer communication.
In: The Art of Human-computer Interface Design. Addison-Wesley, pp. 309—317.

Lee, A., Song, K., Ryu, H.B.,, Kim, J., Kwon, G., 2015. Fingerstroke time estimates for
touchscreen-based mobile gaming interaction. Hum. Mov. Sci. 44, 211-224.

Lubos, P, Bruder, G., Steinicke, F., 2014. Analysis of direct selection in head-mounted
display environments. IEEE Symposium 3D User Interfaces 11—18.

Luo, L., John, B.E., 2005. Predicting task execution time on handheld devices using
the keystroke-level model. Ext. Abstr. CHI 2005 1605—1608.

MacKenzie, 1.S., 2003. Motor behavior models for human-computer interaction. In:
HCI Models, Theories, and Frameworks: toward a Multidisciplinary Science.
Morgan Kaufmann, San Francisco, pp. 27—54.

MacKenzie, 1.S., 2013. Human-Computer Interaction: an Empirical Research
Perspective. Morgan Kaufmann.

MacKenzie, 1.S., Teather, RJ., 2012. FittsTilt: the application of Fitts' law to tilt-based
interaction. In: Proceedings of NordiCHI 2012, pp. 568—577.

McNeill, D., 1992. Guide to gesture classification, transcription, and distribution. In:
Hand and Mind: what Gestures Reveal about Thought. The University of Chi-
cago Press, pp. 75—104.

Miiller-Tomfelde, C., 2007. Dwell-based pointing in applications of human com-
puter interaction. In: Baranauskas, C., et al. (Eds.), Human-computer Interaction
- INTERACT 2007, LNCS 4662, Part 1. Springer Berlin Heidelberg, pp. 560—573.

Neff, M., Kipp, M., Albrecht, L., Seidel, H.P., 2008. Gesture modeling and animation
based on a probabilistic recreation of speaker style. ACM Trans. Graph. (TOG) 27
(1).

Nielsen, M., Storring, M., Moeslund, T.B., Granum, E., 2004. A procedure for devel-
oping intuitive and ergonomic gesture interfaces for HCL. In: Camurri, A.,
Volpe, G. (Eds.), GW 2003, LNAI 2915. 2915. Springer Berlin Heidelberg,
pp. 409—420.

Norman, D., 2010, May. Natural user interfaces are not natural. Interactions 17 (3),
6-10.

Nunes, J.F., Moreira, P.M., Tavares, ].M., 2015. Human motion analysis and simulation
tools: a survey. In: Handbook of Research on Computational Simulation and
Modeling in Engineering.

Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 9 (1), 97—113.

Peters, M., Ivanoff, ]., 1999. Performance asymmetries in computer mouse control of
right-handers, and left-handers with left-and right-handed mouse experience.
J. Mot. Behav. 31 (1), 86—94.

Pino, A., Tzemis, E., loannou, N., Kouroupetroglou, G., 2013. Using Kinect for 2D and

3D pointing tasks: performance evaluation. In: Kurosu, M. (Ed.), Human-com-
puter Interaction, Part IV, HCII 2013, LNCS 8007. Springer Berlin Heidelberg,
pp. 358—367.

Polacek, O., Klima, M., Sporka, AJ., Zak, P., Hradis, M., Zemcik, P., Prochdzka, V., 2012.
A comparative study on distant free-hand pointing. In: Proceedings of EuroiTV
2012, pp. 139—-142.

Rosenbaum, D.A., 2009. Human Motor Control. Academic press/Elsevier, San Diego.

Ruiz, J., Bunt, A, Lank, E., 2008. A model of non-preferred hand mode switching. In:
Proceedings of Graphics Interface 2008, pp. 49—56.

Sambrooks, L., Wilkinson, B., 2013. Comparison of gestural, touch, and mouse
interaction with Fitts' law. In: Proceedings of OzCHI 2013, pp. 119—122.

Schwaller, M., Lalanne, D., 2013. Pointing in the air: measuring the effect of hand
selection strategies on performance and effort. In: Holzinger, A., et al. (Eds.),
SouthCHI 2013, LNCS 7946, pp. 732—747.

Sridhar, S., Feit, A.M., Theobalt, C., Oulasvirta, A., 2015. Investigating the dexterity of
multi-finger input for mid-air text entry. In: Proceedings of CHI 2015,
pp. 3643—3652.

Stanton, N.A., Young, M.S., 2003. Giving ergonomics away? The application of er-
gonomics methods by novices. Appl. Ergon. 34 (5), 479—490.

Sturman, M.M., Vaillancourt, D.E., Corcos, D.M., 2005. Effects of aging on the reg-
ularity of physiological tremor. ]. Neurophysiology 93 (6), 3064—3074.

Vatavu, R.D., 2012. User-defined gestures for free-hand TV control. In: Proceedings
of EuroiTV 2012, pp. 45—48.

Walter, R., Bailly, G., Miiller, J., 2013. StrikeAPose: revealing mid-air gestures on
public displays. In: Proceedings of CHI 2013, pp. 841—-850.

Walter, R, Bailly, G., Valkanova, N., Miiller, J., 2014. Cuenesics: using mid-air ges-
tures to select items on interactive public displays. In: Proceedings of Mobi-
leHCI 2014. ACM, pp. 299—308.

Webb, J., Ashley, J., 2012. NUI In: Beginning Kinect Programming with the Microsoft
Kinect SDK. Apress, pp. 170—172.

Weichert, F., Bachmann, D., Rudak, B., Fisseler, D., 2013. Analysis of the accuracy and
robustness of the Leap motion controller. Sensors 13 (5), 6380—6393.

Whelan, R., 2008. Effective analysis of reaction time data. Psychol. Rec. 58 (3),
475—-482.

Wigdor, D., Wixon, D., 2011. The natural user interface. In: Brave NUI World:
Designing Natural User Interfaces for Touch and Gesture. Morgan Kaufmann,
Boston, pp. 9—-14.

Wobbrock, J.O., Wilson, A.D., Li, Y., 2007. Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes. In: Proceedings of UIST
2007, pp. 159—-168.

Wobbrock, J., Morris, M., Wilson, A., 2009. User-defined gestures for surface
computing. In: Proceedings of CHI 2009. ACM, pp. 1083—1092.

Zeng, X., Hedge, A., Guimbretiere, F.,, 2012. Fitts' law in 3D space with coordinated
hand movements. In: Proceedings of Human Factors and Ergonomics Society
Annual Meeting. 56. SAGE Publications, pp. 990—994.


http://refhub.elsevier.com/S0169-8141(17)30363-3/sref34
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref34
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref34
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref34
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref35
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref35
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref36
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref36
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref37
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref37
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref37
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref38
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref38
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref38
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref39
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref39
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref39
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref40
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref40
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref40
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref41
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref41
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref41
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref41
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref42
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref42
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref43
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref43
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref43
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref44
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref44
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref44
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref44
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref45
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref45
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref45
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref45
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref46
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref46
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref46
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref47
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref47
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref47
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref47
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref47
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref47
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref48
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref48
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref48
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref49
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref49
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref49
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref50
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref50
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref50
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref51
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref51
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref51
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref51
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref52
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref52
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref52
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref52
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref52
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref53
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref53
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref53
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref53
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref53
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref54
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref55
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref55
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref55
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref56
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref56
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref56
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref57
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref57
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref57
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref57
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref58
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref58
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref58
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref58
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref59
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref59
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref59
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref60
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref60
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref60
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref61
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref61
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref61
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref62
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref62
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref62
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref63
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref63
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref63
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref63
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref64
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref64
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref64
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref65
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref65
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref65
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref66
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref66
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref66
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref67
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref67
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref67
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref67
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref68
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref68
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref68
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref68
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref69
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref69
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref69
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref70
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref70
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref70
http://refhub.elsevier.com/S0169-8141(17)30363-3/sref70

	Predicting user performance time for hand gesture interfaces
	1. Introduction
	2. Background
	2.1. Model-based evaluation
	2.2. Gestures

	3. Touchless hand gesture level model (THGLM)
	4. Using THGLM
	4.1. Including mental operators
	4.1.1. Heuristic rules for placing M operators
	4.1.2. Other recommendations for placing M operators

	4.2. A procedure to apply THGLM

	5. Validation of THGLM
	5.1. Further model validation
	5.1.1. Method
	5.1.1.1. Apparatus
	5.1.1.2. Participants
	5.1.1.3. Procedure and tasks

	5.1.2. Results

	5.2. Using the model to analyze interface designs
	5.2.1. Method
	5.2.1.1. Apparatus
	5.2.1.2. Participants
	5.2.1.3. Procedure and tasks

	5.2.2. Results

	5.3. Discussion

	6. Validation with designers
	6.1. Method
	6.1.1. Part 1: model predictions
	6.1.1.1. Participants
	6.1.1.2. Procedure and tasks

	6.1.2. Part 2: observed values
	6.1.2.1. Apparatus
	6.1.2.2. Participants
	6.1.2.3. Procedure and tasks


	6.2. Results
	6.3. Discussion

	7. Extending THGLM
	7.1. The candidate operators
	7.1.1. Mentally prepare
	7.1.2. Hand preference (Hp)
	7.1.3. Other stroke operators

	7.2. User study for time measurements
	7.2.1. Method
	7.2.1.1. Procedure and tasks
	7.2.1.2. Apparatus
	7.2.1.3. Participants
	7.2.2.4. Design

	7.2.2. Results
	7.2.3. Using the new operators

	7.3. Further model extensions

	8. General discussion
	9. Conclusions
	Acknowledgments
	References




