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CUBOS DINÁMICOS DIRECCIONALES PARA Zd-SISTEMAS MINIMALES

En 2005, B. Host y B. Kra [24] probaron la convergencia de algunos promedios ergódicos
múltiples introduciendo para cada d ∈ N un factor que caracteriza el comportamiento de
estos promedios. En 2010, B. Host, B. Kra y A. Maass [25] estudiaron una contraparte
topológica de estos factores para sistemas dinámicos topológicos (X,T ), donde T : X → X
es un homeomorfismo de X en sí mismo. En este trabajo introdujeron la estructura de cubos
topológicos, denotada por Q[d](X,T ), y probaron un teorema de estructura para sistemas
transitivos con la propiedad de “completación única de la última coordinada de un punto en
Q[d](X,T )”. Este teorema de estructura se puede ver como el análogo topológico del teorema
de estructura ergódico probado en [24]. Además, introdujeron la relación regionalmente
proximal de orden d, denotada RP[d](X,T ), y mostraron en el caso minimal distal que
la relación es de equivalencia y que X/RP[d](X,T ) es el factor maximal con la propiedad de
completación única en Q[d](X/RP[d](X,T )).

En 2014, S. Donoso y W. Sun [7] estudiaron una variante de los cubos topológicos para un
sistema minimal (X,S, T ), donde S y T son dos homeomorfismos que conmutan. Esta nueva
estructura se motiva en la búsqueda de factores característicos para promedios ergódicos
múltiples con transformaciones que conmutan. Los autores prueban un teorema de estructura
para sistemas minimales con la propiedad de “completación única de la última coordinada
de un punto en QS,T (X)”. Introducen además la relación (S, T )-regionalmente proximal,
denotada por RS,T (X), que es una variante más débil de la relación regionalmente proximal
de primer orden para acciones de Z2. Finalmente, en el caso distal prueban que la relación
(S, T )-regionalmente proximal es una relación de equivalencia y que X/RS,T (X) es el factor
maximal con la propiedad de completación única en QS,T (X/RS,T (X)).

En esta tesis generalizamos el concepto de cubos topológicos para sistemas minimales
(X,T1, . . . , Td), donde T1, . . . , Td son d homeomorfismos que conmutan, así como la relación
(T1, . . . , Td)-regionalmente proximal introducidas en [7]. En primer lugar demostramos un
teorema estructural para sistemas minimales distales con la propiedad de completación única.
Luego, para cada i ∈ {1, . . . , d} definimos la clase Zei0 , que corresponde a la clase de sistemas
dinámicos donde la acción Ti es la identidad y describimos, para cada sistema dinámico
(X,T1, . . . , Td), su factor Zei0 -maximal. Adicionalmente estudiamos las propiedades de los
conjuntos de recurrencia para sistemas minimales distales con la propiedad de completación
única para la clase de cubos desarrollada en esta tesis.
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In 2005, B. Host and B. Kra [24] proved the convergence of some multiple ergodic averages
by introducing for each d ∈ N a factor that characterizes the behavior of these averages. In
2010, B. Host, B. Kra and A. Maass [25] studied a topological counterpart of these factors
for topological dynamic systems (X,T ), where T : X → X is a homeomorphism from X to
itself. In this work they introduced the structure of topological cubes, denoted by Q[d](X,T ),
and they proved a structure theorem for transitive systems with the property of “unique
completion of the last coordinate of a point in Q[d](X,T )”. This structure theorem can be
seen as the topological analog of the purely ergodic structure theorem proved in [24]. In
addition, they introduced the regionally proximal relation of order d, denoted RP[d](X,T ),
and showed in the minimal distal case that the relation is an equivalence relation and that
X/RP[d](X,T ) is the maximal factor with the unique completion property in Q[d](X/RP[d](X,T )).

In 2014, S. Donoso and W. Sun [7] studied a variant of the topological cubes for a minimal
system (X,S, T ), where S and T are two commuting homeomorphisms. This new structure
is motivated in the search of characteristic factors for multiple ergodic averages with com-
muting transformations. The authors prove a structure theorem for minimal systems with
the property of “unique completion of the last coordinate of a point in QS,T (X)”. They also
introduce the relation (S, T )-regionally proximal, denoted by RS,T (X), which is a weaker
variant of the regionally proximal relation of order one for Z2-actions. Finally, in the distal
case they proved that the relation (S, T )-regionally proximal is an equivalence relation and
that X/RS,T (X) is the maximal factor with the unique completion property in QS,T (X/RS,T (X)).

In this thesis we generalize the concept of topological cubes for minimal systems
(X,T1, . . . , Td), where T1, . . . , Td are d commuting homeomorphisms, as well as the relation
(T1, . . . , Td)-regionally proximal introduced in [7]. First, we prove a structural theorem for
distal minimal systems with the closing parallelepiped property. Then, for each i ∈ {1, . . . , d}
we define the class Zei0 , which corresponds to the class of dynamical systems where the action
Ti is the identity and we describe, for each dynamical system (X,T1, . . . , Td), its maximal Zei0 -
factor. Additionally, we studied the properties of recurrence sets for distal minimal systems
with the closing parallelepiped property for the class of cubes developed in this thesis.

iv



«Introduce a little anarchy, upset the established order,
and everything becomes chaos. I’m an agent of chaos,

and you know the thing about chaos? It’s fair.»
The Joker.

v



vi



Agradecimientos

En primer lugar, quisiera agradecer a mi familia, quienes han sido un pilar fundamental y
un apoyo incondicional durante toda mi vida, especialmente a mi madre Iris, quién a pesar
de las adversidades siempre ha estado para apoyarme en todo y que junto a Carmen me han
educado desde el primer día y ayudarme en todo este proceso. Les debo todo. Agradezco
también a mis tías y tíos, en especial a mi tía Tere por ayudarme a cumplir mis metas.

Agradecer a la gente del DIM, con quienes he compartido grandes momentos durante
todos estos años. A Matraquín y Pancho, con quienes hemos sido los compañeros de oficina
más payasos del 2017. A David con sus lisandres y a ese tal Mario, por ser grandes amigos
desde que nos conocimos. Al correcto Pipe Campos, Garrafa, Javi, Camilo Rojas, Calisto,
Mauro, Seba, Ocho, Mati Pavez y en especial a la Vale por todo lo que hemos compartido
durante estos años.

A los cabros de la generación, con quienes hemos pasado buenos y malos momentos,
especialmente en la B213. A Yasser, Beto, Cata, al Mati que se fue a jgm, al Coba y
al Enzo, con quienes hemos sido muy buenos amigos a pesar de la distancia con algunos
y especialmente al Jose y Ambuli con quienes hemos compartido muchas historias y más,
sobretodo la del Verano 2017 en Río.

También quiero agradecer a las funcionarias y funcionarios del DIM, especialmente a don
Óscar, a Eterin y Karen, quienes hacen del DIM un gran lugar y además por toda la paciencia,
voluntad y disposición.

Agradecer a los profesores por todo lo que nos han brindado estos años. A Rafael Correa,
Aris Daniilidis y Jaime San Martín, por su apoyo y confianza durante estos años. A mi
profesor guía Alejandro Maass, por aceptarme como alumno y ser un gran apoyo no tan solo
en este trabajo sino también por sus consejos para el futuro. Agradezco también a Sebastián
Donoso, por toda la ayuda que me brindaste este año y la enorme disponibiliad de juntarnos
a trabajar semana a semana.

Finalmente agradecer al Centro de Modelamiento Matemático, Proyecto Basal PFB03,
por el financiamiento de este trabajo.

vii



viii



Contents

Introduction 1

1 Background on topological dynamics 3
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Measure-preserving systems . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Topological dynamical systems . . . . . . . . . . . . . . . . . . . . . 5

1.2 Equicontinuous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Distal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Topological Weakly Mixing Systems . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 The Enveloping Semigroup of a Topological Dynamical System . . . . . . . . 10

2 Nilfactors and dynamical cubes 13
2.1 Multiple ergodic averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Nilfactors and dynamical cubes for Z-actions . . . . . . . . . . . . . . . . . . 14

2.2.1 Nilmanifolds and nilsystems . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Topological cubes and the regionally proximal relation of order d . . . 15

2.3 Dynamical cubes for Z2-actions . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Directional dynamical cubes for d commuting transformations 19
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Directional dynamical cubes for d commuting transformations . . . . . . . . 21

3.2.1 Directional dynamical cubes . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 The (T1, . . . , Td)-regionally proximal relation . . . . . . . . . . . . . . 25

3.3 The classes Zej0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 The structure theorem for minimal distal systems with the closing paral-
lelepiped property 31
4.1 Directional dynamical cubes for minimal distal systems . . . . . . . . . . . . 31

4.1.1 The Z
ej
0 -maximal factor for distal systems . . . . . . . . . . . . . . . 32

4.1.2 The system (Kx0
T1,...,Td

,Fx0T1,...,Td) for distal systems . . . . . . . . . . . 34
4.1.3 The (T1, . . . , Td)-regionally proximal relation for distal systems . . . . 38

4.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Recurrence in systems with the closing parallelepiped property . . . . . . . . 55

5 Examples of systems with the closing parallelepiped property 59
5.1 Affine transformations in the torus. . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Proof of Lemma 5.3 and 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



Perspectives 79

Bibliography 83

x



Introduction

In 1977 H. Furstenberg [15] proved Szemerédi’s theorem using ergodic methods. Since this
proof, mathematicians started to ask about the L2 convergence of certain averages, called
nowadays as multiple ergodic averages. Given a measure-preserving system (X,B, µ, T ),
d ≥ 1 an integer and f1, . . . , fd ∈ L∞(X,B, µ), we ask about of the convergence of the
multiple ergodic averages

1

N

N−1∑
n=0

f1(T nx) · · · fd(T dnx).

After approximately 30 years of efforts, this problem was finally solved in 2005 in [24, 37].
The authors proved the convergence using the strategy of characteristic factors. Namely,
they defined for each d ∈ N a factor Zd characterizing the behavior of these averages and in
addition they proved that these factors can be endowed with a structure of a nilmanifold.
Later, in 2008 T. Tao proved the general commutative case, i.e., where the transformations
are not only the powers of a single transformation but they are d commuting transformations
[33]. However, until now there is not an idea of which is the structure of the characteristic
factors in the general commutative case. His proof does not belong to ergodic theory and
does not use characteristic factors. Instead he studied the average in a finitary setting.

In 2010, B. Host, B. Kra, and A. Maass studied a topological counterpart of these charac-
teristic factors for topological dynamical system (X,T ), where X is a compact metric space
and T : X → X is a homeomorphism from X to itself [25]. They introduced a cube struc-
ture, denoted by Q[d](X,T ) and proved a structure theorem for transitive systems with the
property of “completion of the last coordinate of a point in Q[d](X,T ) in a unique way” on
these structures. This condition is referred in this thesis as the closing parallelepiped prop-
erty. The structure theorem for topological dynamical systems can be viewed as an analog of
the purely ergodic structure theorem of [24] in the study of a topological counterpart of the
characteristic factors introduced by B. Host and B. Kra. In this work the authors introduced
the regionally proximal relation of order d, RP[d](X,T ), and provided some relations between
RP[d](X,T ) and Q[d+1](X,T ). They also proved that RP[d](X,T ) is an equivalence relation
for minimal distal systems and that the quotient space X/RP[d](X,T ) is the maximal factor
with the closing parallelepiped property. Later in 2012, S. Shao and X. Ye [32] proved the
same two results for general minimal systems, using a structure theorem for minimal systems
and the enveloping semigroup. Finally, Shao and Ye also introduced the regionally proximal
relation for general abelian groups and extended the results proved in [25] and [32] in this
general context.

In 2014, Donoso and Sun [7] studied a variant of the cube structure for Z2-minimal systems
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(X,S, T ), where X is a compact metric space and S, T : X → X are homeomorphisms from
X to itself, in an effort to study a topological counterpart of the characteristic factors for the
general commutative case, motivated by Host’s construction in [23]. Motivated by the ideas
in [25] they proved a structure theorem for systems with the property of “completion of the
last coordinate of a point in QS,T (X) in a unique way” or closing parallelepiped property.
In this work, Donoso and Sun introduced the (S, T )-regionally proximal relation, RS,T (X),
which is a weaker variant of the regionally proximal relation of order one RP[1](X, 〈S, T 〉),
but for Z2-actions, associated to the cube structure QS,T (X). Finally, in the distal case
they proved that the (S, T )-regionally proximal relation is an equivalence relation and that
X/RS,T (X) is the maximal factor with the closing parallelepiped property.

The main purpose of this thesis is to extend Donoso and Sun’s results for Zd-minimal
systems (X,T1, . . . , Td), where X is a compact metric space and T1, . . . , Td : X → X are
commuting homeomeomorphisms from X to itself. We introduce a cube structure for Zd-
minimal actions, denoted by QT1,...,Td(X), and the (T1, . . . , Td)-regionally proximal relation,
denoted by RT1,...,Td(X). Both are generalizations of the definitions given in [7]. We prove
a structure theorem for systems verifying the closing parallelepiped property in QT1,...,Td(X)
for Zd-minimal distal systems. By doing so we will to develop techniques for studying the
topological counterpart of the characteristic factors in the commutative case.

This thesis is organized in the following way. In Chapter 1 the basic theory of Ergodic
Theory and Topological Dynamics is introduced. We provide a complete self-contained survey
of the necessary results to understand the work developed in this thesis. In Chapter 2 we
present a survey about the historical results of the different cube structures starting with
the ergodic motivations, called the multiple ergodic averages. Then we view the Host-Kra-
Maass’s work which is the first work about the topological counterpart of characteristic
factors, and we finished with Donoso and Sun’s in the commutative case with 2 commuting
transformations. In Chapter 3 we present the directional dynamical cubes for topological
dynamical systems (X,T1, . . . , Td) with d commuting transformations. We start this chapter
with some general properties of this cube structure and then we introduce the (T1, . . . , Td)-
regionally proximal relation associated to it. We end this chapter introducing the classes Zei0 ,
which correspond to systems (X,T1, . . . , Td) where the action Ti is trivial, i.e., is the identity
and we compute the maximal Zei0 -factor for any topological dynamical system. In Chapter 4
we prove a structure theorem for Zd-minimal distal systems with the closing parallelepiped
property. We start with the description of the cube structures and the (T1, . . . , Td)-regionally
proximal relation for distal systems. We then give the proof of the structure theorem and we
prove that the (T1, . . . , Td)-regionally proximal relation is an equivalence relation. We end
this chapter studying the sets of return times for this kind of systems and we give an explicit
example of a system with closing parallelepiped property. In Chapter 5 we give a family of
examples of Zd-minimal distal systems with the closing parallelepiped property.

2



Chapter 1

Background on topological dynamics

In this chapter we introduce the basics of ergodic theory and topological dynamics. We
start by providing some basic definitions and results, with the purpose of introducing the
vocabulary and notation to be used in this thesis. We then focus in the topological setting
providing some definitions and important results related to this thesis that concern equicon-
tinuous, distal, proximal and weakly mixing systems. We finish this chapter with a brief
survey of the elementary properties of the enveloping semigroup of a topological dynamical
system introduced by Ellis, which is an extremely useful tool in the study of dynamical sys-
tems. We refer to [31] and [36] for results in ergodic theory, and [1] and [12] for the results
in topological dynamics.

1.1 Basic definitions

1.1.1 Measure-preserving systems

A measure-preserving system is a 4-tuple (X,B, µ,G), where (X,B, µ) is a probability space
and G is a countable group of measurable and measure-preserving transformations acting on
X, i.e.,

(∀A ∈ B)(∀g ∈ G) µ(g−1A) = µ(A).

In some cases, and if there is no confusion, we refer to a measure-preserving system
(X,B, µ,G) simply by X. In this thesis we always consider G as a discrete group.

If (X,B, µ) is a probability space and T : X → X is a measurable, invertible and
measure-preserving transformation, we use (X,B, µ, T ) to denote the measure-preserving
system (X,B, µ, {T n : n ∈ Z}).

If T1, . . . , Td : X → X are d measurable, invertible and measure-preserving commut-
ing transformations, we write (X,B, µ, T1, . . . , Td) to denote the measure-preserving system
(X,B, µ, {T n1

1 · · ·T
nd
d : n1, . . . , nd ∈ Z}). The transformations T1, . . . , Td span a Zd-action,

but we stress that we will consider this action with a given set of generators.

Some classical notions of special measure-preserving systems are the following.
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Definition 1.1. Let (X,B, µ,G) be a measure-preserving system. We say that the system
is ergodic if for all A ∈ B we have that[

(∀g ∈ G) µ(g−1A∆A) = 0
]

=⇒ µ(A) = 0 ∨ µ(A) = 1.

We now recall the notions of factor and conjugacy in the measure-theoretic framework.

Definition 1.2. Let (X,B, µ,G) and (Y,D, ν, G) be measure-preserving systems. We say
that X is a factor of Y if there exists a measure-preserving map π : Y → X such that
π ◦ g = g ◦ π for all G. We also say that π is the factor map and Y is an extension of X.
If π is a bi-measurable bijection, we say that π is an isomorphism and that X and Y are
isomorphic.

As mentioned in [16, Chapter 5] and [18, Chapter 2], a factor of a measure-preserving
system is determined, up to isomorphism, by a G-invariant sub-σ-algebra. Thus, given a
factor map π : Y → X we can define a conditional expectation operator from L2(Y,D, ν) to
L2(X,B, µ).

Definition 1.3. Let π : Y → X be a factor map between two measure-preserving systems
(X,B, µ,G) and (Y,D, ν, G) and let f ∈ L2(Y,D, ν). The conditional expectation of f with
respect to X is the function E(f |X) ∈ L2(X,B, µ) defined by the equation∫

X

E(f |X) · gdµ =

∫
Y

f · g ◦ πdν, ∀g ∈ L2(X,B, µ).

Another special class of measure-preserving systems are the weakly mixing ones. For the
definition we have to consider the Koopman representation of a measure-preserving system.
Let (X,B, µ,G) be a measure-preserving system. The Koopman representation of (X,B, µ,G)
is the representation κ of G on L2(X,B, µ) given by κ(g)(f)(x) = f(g−1x).

Definition 1.4. A measure-preserving system (X,B, µ,G) is weakly mixing if the constant
functions are the unique eigenvectors of the Koopman representation.

Proposition 1.5. A weakly mixing measure-preserving system is ergodic.

Definition 1.6. A measure-preserving system (X,B, µ,G) is isometric if every function
f ∈ L2(X,B, µ) is compact, i.e., the set {f ◦ g : g ∈ G} has a compact closure in the norm
topology of L2(X,B, µ).

An important theorem about weakly mixing systems is the following.

Theorem 1.7. An ergodic system (X,B, µ,G) is weakly mixing if and only if it admits no
nontrivial isometric factors.
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1.1.2 Topological dynamical systems

A topological dynamical system is a pair (X,G), where X is a compact metric space and G
is a group of homeomorphisms of the space X into itself. In this thesis we always consider
G as a discrete and countable group.

If X is a compact metric space and T : X → X is a homeomorphism of X to itself, we
use (X,T ) to denote the topological dynamical system (X, {T n : n ∈ Z}).

If T1, . . . , Td : X → X are d commuting homeomorphisms of X to itself, we write
(X,T1, . . . , Td) instead of (X, {T n1

1 · · ·T
nd
d : n1, . . . , nd ∈ Z}). As before, the transformations

T1, . . . , Td span a Zd-action, but we stress that we consider this action with a given set of
generators.

For a point x ∈ X we define its orbit as the set O(x,G) = {gx : g ∈ G}. If A ⊆ X, we
say that A is G-invariant if {gx : g ∈ G, x ∈ A} ⊆ A.

Definition 1.8. Let (X,G) be a topological dynamical system. A subset K ⊆ X is called
a minimal set if K is closed, non-empty, G-invariant and has no proper closed non-empty
invariant subsets. That is, if N ⊆M is closed and G-invariant, then N = ∅ or N = M .

If (X,G) is a topological dynamical system and K ⊆ X is a minimal set, then we say that
(K,G) is a minimal system. We have the following result.

Proposition 1.9. Let (X,G) be a topological dynamical system. X is minimal if and only
if for all x ∈ X, O(x,G) = X.

Sometimes a system is not minimal, but there exist some points whose orbits are dense
in the space.

Definition 1.10. Let (X,G) be a topological dynamical system. The system is said to be
transitive if there exists x ∈ X such that O(x,G) = X.

A subset Γ of G is said to be (left) syndetic if there is a compact subset K ⊆ G (finite in
this case) such that G = ΓK = {ak : a ∈ Γ, k ∈ K}.

Definition 1.11. Let (X,G) be a topological dynamical system and x ∈ X. We say that x
is an almost periodic point if for every neighborhood U of x there exists a syndetic subset Γ
of G such that {gx : g ∈ Γ} ⊆ U . The system is said to be pointwise almost periodic if every
point x ∈ X is an almost periodic point.

Theorem 1.12. Let (X,G) be a topological dynamical system. Then, x ∈ X is an almost
periodic point if and only if O(x,G) is a minimal set.

An almost periodic point is also calledminimal point. Like in the measure-theoretic setting
we recall the definitions of factor and conjugacy in the topological dynamics framework.
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Definition 1.13. Let (X,G) and (Y,G) be two topological dynamical systems. A factor
map from Y to X is a continuous and onto map π : Y → X such that π(gy) = gπ(y) for all
y ∈ Y and g ∈ G. If π is a factor map from Y to X we say that X is a factor of Y and that
Y is an extension of X. If π is a bi-continuous bijection, we say that π is an isomorphism
and that X and Y are isomorphic or conjugate.

Observe that if π : Y → X is a factor map, then Rπ = {(y, y′) ∈ Y ×Y : π(y) = π(y′)} is a
closed and G-invariant equivalence relation. Conversely, if (Y,G) is a topological dynamical
system and R is a closed and G-invariant equivalence relation in Y , then the quotient space
Y/R is a factor of Y .

Let (X,G) and (Y,G) be two topological dynamical systems. We have that X × Y is
always an extension of both systems X and Y using the projection to the coordinates as
factor maps. But we can construct other extensions of X and Y from X × Y .

Definition 1.14. Let k ≥ 1 be an integer and (X1, G), (X2, G), . . . , (Xk, G) be k topo-
logical dynamical systems. A joining between (X1, G), . . . , (Xk, G) is a closed subset
Z ⊆ X1 × · · · ×Xk which is invariant under the diagonal action g × · · · × g (k times) for
all g ∈ G and projects onto the each factor.

Suppose the systems X1, . . . , Xk are extensions of a common system W and denote by
πi : Xi → W the associated factor maps. We say that a joining Z ⊆ X1×· · ·×Xk is relatively
independent with respect to W if for every i ∈ {1, . . . , k}, every (x1, . . . , xk) ∈ Z and every
xi, x

′
i ∈ Xi with πi(xi) = πi(x

′
i) we have

(x1, . . . , xi−1, x
′
i, xi+1, . . . , xk) ∈ Z.

That is, we can freely change a point in a coordinate of the joining by any other point
whose projection on the factor W is the same.

The properties of these extensions can be reviewed in [14].

Remark 1.15. In this thesis, for finite product metrics we always consider the maximum
metric, i.e, if (X, ρ) is a metric space, the metric used in X ×X is

ρ((x1, x2), (x3, x4)) = max{ρ(x1, x3), ρ(x2, x4)}.

A first result about factors and minimality is the following.

Proposition 1.16. Let π : Y → X be a factor map between two topological dynamical
systems (X,G) and (Y,G). If K is a minimal subset of Y , then π(K) is a minimal subset of
X. In particular, a factor of a minimal system is also a minimal system.
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1.2 Equicontinuous Systems
Definition 1.17. A topological dynamical system (X,G) is equicontinuous if for all ε > 0
there is δ > 0 such that if d(x, x′) < δ, then d(gx, gy) < ε for all g ∈ G.

Lemma 1.18. If (X,G) is equicontinuous, then it is pointwise almost periodic, i.e., every
point has a minimal orbit.

It follows from the previous lemma that an equicontinuous system is minimal if and only
if it has a dense orbit.

Lemma 1.19. If (Xi, G)i∈I is an arbitrary collection of equicontinuous systems, then the

product system
(∏
i∈I
Xi, G

)
is also equicontinuous.

Another important result about equicontinuous systems is the following.

Proposition 1.20. A factor of an equicontinuous system is equicontinuous.

Any topological dynamical system (X,G) has a maximal equicontinuous factor (Xeq, G),
i.e., Xeq is an equicontinuous factor of X, and if Z is another equicontinuous factor of X, then
Z is a factor of Xeq. The maximal equicontinuous factor is given by the regionally proximal
relation.

Definition 1.21. Let (X,G) be a topological dynamical system. Two points x, y ∈ X are
said to be regionally proximal if for all ε > 0 there exist x′, y′ ∈ X and g ∈ G such that
d(x, x′) < ε, d(y, y′) < ε and d(gx′, gy′) < ε. We define the regionally proximal relation by

RP(X,G) = {(x, y) ∈ X ×X : x, y are regionally proximal}.

The relation RP(X,G) is G-invariant, closed, symmetric and reflexive. But in general
this relation may not be transitive. In the case that G is abelian and X is a minimal system
we have that RP(X,G) is an equivalence relation. An important theorem of Gottschalk
and Ellis [13] is the characterization of the maximal equicontinuous factor of a topological
dynamical system.

Theorem 1.22. [13] Let (X,G) be a topological dynamical system and let Seq be the smallest
closed and G-invariant equivalence relation containing RP(X,G). Then X/Seq is the maximal
equicontinuous factor of X.

It follows that,

Theorem 1.23. The topological dynamical system (X,G) is equicontinuous if and only if
RP(X,G) = ∆X := {(x, x) : x ∈ X}, the diagonal of X ×X.
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1.3 Distal Systems
Definition 1.24. If (X,G) is a topological dynamical system, then x and y in X are said
to be proximal if and only if inf

g∈G
d(gx, gy) = 0. If x and y are not proximal they are said to

be distal.

We write P(X,G) = {(x, y) ∈ X ×X| x and y are proximal} for the proximal relation in
(X,G). It is easy to see that P(X,G) is a reflexive symmetric G-invariant relation, but in
general it is not transitive or closed.

The system (X,G) is said to be proximal if every pair is proximal and it is called distal if
there are no non-trivial proximal pairs, i.e., P(X,G) = ∆X . It is easy to see that equicontin-
uous systems are distal, and in the same spirit of Theorem 1.22, Ellis and Gottschalk proved
the following result.

Theorem 1.25. [13] Let (X,G) be a topological dynamical system and Peq the smallest closed
and G-invariant equivalence relation containing P(X,G). Then, X/Peq is the maximal distal
factor of X.

Interestingly, any point of a system is proximal to a minimal point as stated in the next
result.

Theorem 1.26. Let (X,G) be a topological dynamical system and let x ∈ X. Then, there
exists an almost periodic point x∗ which is proximal to x.

This result has the following useful corollaries.

Corollary 1.27. Let (X,G) be a topological dynamical system. If (X,G) is distal, then it is
pointwise almost periodic.

Corollary 1.28. A distal system is minimal if and only if it is transitive.

From a structural point of view the next two results provide the main properties of distal
systems that we will use in the sequel.

Lemma 1.29. Let (Xi, G)i∈I be a family of topological dynamical systems. Then, the product

system
(∏
i∈I
Xi, G

)
is distal if and only if for every i ∈ I the system (Xi, G) is distal.

Theorem 1.30. Let (X,G) be a topological dynamical system. Then, the following properties
are equivalent:

(1) (X,G) is distal.

(2) (Xa, G) is distal, for all cardinal numbers a ≥ 1.
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(3) (Xa, G) is distal, for some cardinal number a ≥ 1.

(4) (Xa, G) is pointwise almost periodic, for all cardinal numbers a ≥ 1.

(5) (Xa, G) is pointwise almost periodic, for some cardinal number a ≥ 2.

We will also need the following results concerning distality and factor maps.

Proposition 1.31. Let (X,G) and (Y,G) be two topological dynamical systems and let
π : Y → X be a factor map. Then, π × π(P(Y,G)) ⊆ P(X,G). If Y is minimal, then
π × π(P(Y,G)) = P(X,G). In addition, a factor of a distal system is distal.

Theorem 1.32. Let (X,G) and (Y,G) be distal minimal system, and let π : Y → X be a
factor map. Then the factor map π is open, meaning that the image of an open set is open.

1.4 Topological Weakly Mixing Systems
At the opposite of distal systems are weakly mixing systems

Definition 1.33. The topological dynamical system (X,G) is (topologically) weakly mixing
if the product system (X ×X,G), where the action of G is the diagonal action, is transitive,
i.e., for every four non-empty open sets Ui, i ∈ {1, . . . , 4},

N(U1 × U3, U2 × U4) = N(U1, U2) ∩N(U3, U4) 6= ∅,

where we define for two sets A,B ⊆ X

N(A,B) = {g ∈ G : gA ∩B 6= ∅}.

Equivalently, a topological dynamical system (X,G) is weakly mixing if every non-empty
open invariant subset U of X×X is dense in X×X. It is easy to see that if (X,G) is weakly
mixing then RP(X,G) = X×X, so (X,G) has no non-trivial equicontinuous factor. In fact,
in the class of minimal systems which admit an invariant measure this property implies that
the system is topologically weak mixing.

Theorem 1.34. Let (X,G) be a minimal topological dynamical system which admits an
invariant measure. Then, the following properties are equivalent:

(1) (X,G) is weakly mixing.

(2) (X,G) has no non-trivial equicontinuous factor (i.e., Seq = X ×X).

(3) (X,G) has no non-trivial distal factor.

(4) RP(X,G) = X ×X.

(5) The proximal relation P(X,G) is dense in X ×X.
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1.5 The Enveloping Semigroup of a Topological Dynam-
ical System

If X is a compact metric space we denote by XX the collection of all maps from X to itself.
We endow this set with the product topology or the topology of pointwise convergence. By
Tychonoff’s theorem, XX is compact and Hausdorff. We have that XX has a semigroup
structure defined by composition: if ξ, η ∈ XX then ξη ∈ XX .

Now we consider a topological dynamical systems (X,G) and we see G as a subset of XX .

Definition 1.35. Let (X,G) be a topological dynamical system. We define the enveloping
semigroup of (X,G) as E(X,G) = G the closure of G in XX .

We have that E(X,G) is compact and Hausdorff, usually non-metrizable. Also, the maps
E(X,G) → E(X,G) p 7→ pq and p 7→ gp are continuous for all q ∈ E(X,G) and g ∈ G.
We have that (XX , G) is a topological dynamical system and (E(X,G), G) is a subsystem.
In general, the elements of E(X,G) are neither one to one nor onto nor continuous. As a
system (E(X,G), G) is transitive, since O(e,G) = E(X,G), where e is the identity in G, but
in general (E(X,G), G) is not minimal.

Algebraic properties of the enveloping semigroup have a precise translation into dynamical
properties of the system. For example we have the following theorem.

Theorem 1.36. A topological dynamical system is distal if and only if its enveloping semi-
group is a group.

In relation to factors maps the enveloping semigroup behaves as stated in the following
result.

Theorem 1.37. Let (X,G) and (Y,G) be topological dynamical systems and let π : Y → X
be a factor map. Then, there exists a unique continuous semigroup homomorphism
θ : E(Y,G)→ E(X,G) such that π(py) = θ(p)π(y) for all x ∈ Y and p ∈ E(Y,G).

A left ideal in a enveloping semigroup E(X,G) is a non-empty subset I ⊆ E(X,G) such
that E(X,G)I ⊆ I. A minimal left ideal is one which does not properly contain a left ideal.
Observe that a left ideal is also a semigroup. Moreover, if I is a minimal left ideal in E(X,G)
and K is a left ideal in the semigroup I, then it is easy to see that K = I. An idempotent
in a enveloping semigroup E(X,G) is an element u ∈ E(X,G) such that u2 = u. We denote
by J(E(X,G)) the set of idempotents in the semigroup E(X,G).

We can introduce a quasi-order < on the set J(E(X,G)) by defining v < u if and only
if vu = v. If v < u and u < v we say that u and v are equivalent and we write u ∼ v. An
idempotent u ∈ J(E(X,G)) is minimal if v ∈ J(E(X,G)) and v < u implies u < v.

Lemma 1.38. [11, Lemma 4.4 and Proposition 4.5] Let I be a left ideal of a semigroup
E(X,G) and let u ∈ J(E(X,G)). Then, there exists an idempotent v in Iu such that v < u.
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Also, an idempotent is minimal if and only if it is contained in some minimal left ideal.

The enveloping semigroup is extremely useful in studying proximality. The main connec-
tion is reflected in the following theorem.

Theorem 1.39. Let (X,G) be a topological dynamical system and let x, y ∈ X. Then, the
following properties are equivalent.

(1) x and y are proximal.

(2) px = py, for some p ∈ E(X,G).

(3) There is a minimal left ideal I in E(X,G) such that px = py, for all p ∈ I.

Finally we have the following theorem which characterizes the minimality of a point x in
a topological dynamical system (X,G) using idempotents of its enveloping semigroup.

Theorem 1.40. Let (X,G) be a topological dynamical system and let I be a minimal left
ideal in E(X,G). We have that,

(1) If x ∈ X, then Ix is a minimal subset of X.

(2) If x ∈ X and v is an idempotent in E(X,G), then (x, vx) ∈ P(X,G).

(3) Let x ∈ X. The following properties are equivalent:

(a) x is an almost periodic point.

(b) x ∈ Ix.

(c) ux = x, for some u ∈ J(I).

In particular, if (X,G) is a minimal system, then for every x ∈ X, there exists
u ∈ E(X,G) idempotent such that ux = x.
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Chapter 2

Nilfactors and dynamical cubes

In this chapter we introduce the different motivations of the study of directional dynamical
cubes in the topological setting. We start with the measure-theoretic setting, stating the
Furstenberg’s proof of Szemerédi’s theorem that led to the study of the norm convergence
of some multiple ergodic averages. The considered problems were open for nearly 30 years
until Bernard Host and Bryna Kra solved in 2005 the case of one transformation and three
years later Terence Tao solved the case of a group generated by finitely many commuting
transformations. We then summarize the work of B. Host, B. Kra and A. Maass where they
studied a topological counterpart of the characteristic factors introduced by B. Host and
B. Kra in 2005. In this work they introduced the notion of dynamical cube and proved an
important structure theorem for topological dynamical systems. We end this chapter with
a work of Sebastian Donoso and Wenbo Sun with a variant of dynamical cubes for minimal
Z2-actions and an associated structure theorem. This last result is the main motivation of
this work.

2.1 Multiple ergodic averages
An important connection between ergodic theory, additive combinatorics and number theory
started in the 70’s with Furstenberg’s proof of Szemerédi’s theorem via the following ergodic
theorem.

Theorem 2.1. [15] Let (X,B, µ, T ) be a measure-preserving system and let A ∈ B with
positive measure. Then, for every d ≥ 1,

lim inf
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ . . . T−dnA) > 0.

So, it is natural to ask about the convergence of these averages, and more generally, about
the convergence in L2(X,B, µ) of the multiple ergodic averages

1

N

N−1∑
n=0

f1(T nx) · · · fd(T dnx),
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where f1, . . . , fd ∈ L∞(X,B, µ). The case d = 1 is the standard ergodic theorem of von
Neumann. If one assumes that T is weakly mixing, Furstenberg proved in [15] that for every
d ≥ 1 the limit always exists and is constant. However, without the assumption of weakly
mixing one can easily show that the limit need not to be constant. Multiple ergodic averages
are those for which even if the system is ergodic, the limit is not necessarily constant. This
is the case for d ≥ 2.

Due to Theorem 1.7, the absence of weak mixing implies the existence of “group rotation”
factors of the system (X,B, µ, T ). This also implies the existence of more complex factors
called measure distal systems. It can be shown that the behavior of some ergodic averages
can be reduced to the study of the average in an appropriate distal factor, as those we are
showing below. When this is possible, we shall say that the factor is a characteristic factor
for the average.

After approximately 30 years of efforts, the convergence of the following ergodic averages
was finally stated in [24, 37]. The authors proved,

Theorem 2.2. [24] Let (X,B, µ, T ) be a measure-preserving system and let d ≥ 1 be an
integer. For fi ∈ L∞(X,B, µ), 1 ≤ i ≤ d, we have

lim
N→∞

1

N

N−1∑
n=0

f1(T nx)f2(T 2nx) · · · fd(T dnx) (2.1)

exists in L2(X,B, µ).

In the proof the authors define for each integer d ≥ 1 the factor Zd, which are characteristic
for these averages. They also proved that these factors can be endowed with the structure
of a nilmanifold: they are measurably isomorphic to an inverse limit of ergodic rotations
on nilmanifolds. The main ingredient in the proof is the notion of measure-theoretical cube
structure and their properties.

Observe that the multiple ergodic averages for commuting transformations, i.e., when we
change the transformations T, T 2, . . . , T d in (2.1) for commuting transformations T1, . . . , Td
was obtained by Tao in [33] using finitary ergodic methods, by Towsner in [34] using non-
standard analysis and by Austin in [3] and Host in [23] using more conventional ergodic
methods. But until now we do not know the precise structure of the characteristic factors.
For instance, it is still open if nilsystems have a role to play there.

2.2 Nilfactors and dynamical cubes for Z-actions

2.2.1 Nilmanifolds and nilsystems

We start with the definition of d-step nilmanifolds.

Let G be a group. For g, h ∈ G we write [g, h] = ghg−1h−1 for the commutator of g and
h, and for A,B ⊆ G we write [A,B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}.
The commutator subgroups Gj, j ≥ 1, are defined inductively by setting G1 = G and
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Gj+1 = [Gj, G]. Let d ≥ 1 be an integer. We say that G is d-step nilpotent if Gd+1 is
the trivial subgroup.

Let G be a d-step nilpotent Lie group and Γ be a discrete cocompact subgroup of G. The
compact manifold X = G/Γ is called a d-step nilmanifold. The group G acts on X by left
translations and we write this action by (g, x) 7→ gx. The Haar measure µ of X is the unique
probability measure on X invariant under this action. Let τ ∈ G and T be the transformation
x 7→ τx of X. Then, (X,B, µ, T ) is called a d-step nilsystem.

Nilmanifolds were first introduced and studied by Mal’cev [29] in 1949. But recently its
importance has grown in ergodic theory and additive combinatorics in the study of multiple
ergodic averages [24], in the structure analysis of measurable and topological systems [24, 25]
and in the analysis of certain patterns in a subset of the integers [19]. Here we will talk
about applications of nilsystems in topological dynamics, searching for a structure theorem
for minimal systems. The structure theorem for topological dynamical systems can be viewed
as an analog of the purely ergodic structure theorem of [24] in the study of a topological
counterpart of the characteristic factors introduced by Host and Kra.

2.2.2 Topological cubes and the regionally proximal relation of or-
der d

Let X be a set, let d ≥ 2 be an integer, and write [d] = {1, 2, . . . , d}. We view {0, 1}d in
one of two ways, either as a sequence ε = ε1 . . . εd of 0’s and 1’s written without commas or
parentheses; or as a subset of [d]. A subset ε corresponds to the sequence ε1 . . . εd ∈ {0, 1}d
such that i ∈ ε if and only if εi = 1 for i ∈ [d].

We denote X2d by X [d]. A point x ∈ X [d] can be written in one of two equivalent ways,
depending on the context:

x = (xε : ε ∈ {0, 1}d) = (xε : ε ⊆ [d]).

For x ∈ X, we write x[d] = (x, x, . . . , x) ∈ X [d] and the diagonal ofX [d] is ∆[d] = {x[d] : x ∈ X}.

A point x ∈ X [d] can be decomposed as x = (x′,x′′) with x′,x′′ ∈ X [d−1], where
x′ = (xε0 : ε ∈ {0, 1}d−1) and x′′ = (xε1 : ε ∈ {0, 1}d−1). We can also isolate the first co-
ordinate, writing X

[d]
∗ = X2d−1 and then writing a point x ∈ X [d] as x = (x,x∗), where

x∗ = (xε : ε ⊆ [d], ε 6= ∅) ∈ X [d]
∗ .

The faces of dimension r of a point x ∈ X [d] are defined as follows. Let J ⊆ [d] with
|J | = d− r and ξ ∈ {0, 1}d−r. The elements (xε : ε ∈ {0, 1}d, εJ = ξ) of X [r] are called faces
of dimension r of x, where εJ = (εi : i ∈ J).

Identifying {0, 1}d with the set of vertices of the Euclidean unit cube, an Euclidean isom-
etry of the unit cube permutes the vertices of the cube and thus the coordinates of a point
x ∈ X [d]. These permutations are the Euclidean permutations of X [d].

Let (X,T ) be a topological dynamical system and d an integer. We define Q[d](X,T ) to
be the closure in X [d] of the elements of the form

(Tn·εx : ε = (ε1, . . . , εd) ∈ {0, 1}d),
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where n = (n1, . . . , nd) ∈ Zd and x ∈ X. As an illustration, Q[2](X,T ) is the closure in X [2]

of the set
{(x, T nx, Tmx, T n+mx) : x ∈ X,n.m ∈ Z},

and Q[3](X,T ) is the closure in X [3] of the set

{(x, T nx, Tmx, T n+mx, T px, T n+px, Tm+px, T n+m+px) : x ∈ X,n,m, p ∈ Z}.

It is important to observe that Q[d](X,T ) is invariant under the Euclidean permutations
of X [d].

As mentioned before, the cube structure for topological dynamical systems was introduced
in [25] as the topological counterpart of the theory of measure-theoretical cubes developed
in [24].

The following structure theorem relates the notion of cube and nilsystems.

Theorem 2.3. [25, Theorem 1.2] Assume that (X,T ) is a transitive topological dynamical
system and let d ≥ 1 be an integer. The following properties are equivalent:

(1) If x, y ∈ Q[d+1](X,T ) have 2d+1 − 1 coordinates in common, then x = y.

(2) If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d+1](X,T ), then x = y.

(3) X is an inverse limit of minimal d-step nilsystems.

A transitive system satisfying either of the equivalent properties above is called a d-step
nilsystem or a system of order d.

The cube structure Q[d+1](X,T ) also allows us to build the maximal factor of order d for
a topological dynamical system (X,T ). Let (X,T ) be a topological dynamical system and
d ≥ 1 be an integer. A pair (x, y) ∈ X ×X is said to be regionally proximal of order d if for
any δ > 0 there exist x′, y′ ∈ X and n = (n1, . . . , nd) ∈ Zd such that ρ(x, x′) < δ, ρ(y, y′) < δ
and

ρ(Tn·εx′, Tn·εy′) < δ

for every nonempty subset ε ⊆ [d], where ρ is the metric on X.

The set of regionally proximal pairs of order d is denoted by RP[d](X,T ), and is called the
regionally proximal relation of order d. We remark that when d = 1, RP[1](X,T ) is nothing
but the regionally proximal relation RP(X,T ) defined in Chapter 1.

It is easy to see that RP[d](X,T ) is a closed and invariant relation for all d ∈ N. We also
have that

P(X,T ) ⊆ . . .RP[d+1](X,T ) ⊆ RP[d](X,T ) ⊆ . . . ⊆ RP[2](X,T ) ⊆ RP[1](X,T ) = RP(X,T ).

Lemma 2.4. [25, Lemma 3.3] Let (X,T ) be a minimal system and let d ≥ 1 be an integer.
Take x, y ∈ X. Then, (x, y) ∈ RP[d](X,T ) if and only if there exists a∗ ∈ X

[d]
∗ such that

(x,a∗, y,a∗) ∈ Q[d+1](X).
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Host, Kra and Maass [25] proved the following theorems in the minimal distal case, then
Shao and Ye [32] proved the same theorems for general minimal systems.

Theorem 2.5. [25, 32] Let (X,T ) be a minimal topological dynamical system and let d ∈ N.
Then,

(1) RP[d](X,T ) is an equivalence relation.

(2) The quotient of X under RP[d](X,T ) is the maximal d-step nilfactor of X.

In particular, (X,T ) is a system of order d if and only if the regionally proximal relation
of order d coincides with the diagonal relation. Furthermore, it is easy to see that a system
of order d is distal.

Theorem 2.6. [32, Theorem 6.4] Let π : (Y, T ) → (X,T ) be a factor map between the
minimal systems (X,T ) and (Y, T ) and let d ∈ N. Then, π× π(RP[d](Y, T )) = RP[d](X,T ).

The study of nilsystems took another course since the work of Omar Antolin Camarena
and Balázs Szegedy [6] with a more abstract definition of a nilsystem, and the works of
Yonatan Gutman, Freddie Mannes and Peter Varjú in [20, 21, 22] concerning the structure
theory of nilspaces. But in the topological and measure-theoretical setting it is still open the
existence of cubes structures for a finitely generated commutative group action.

2.3 Dynamical cubes for Z2-actions
In 2014, Donoso and Sun [7] studied a variant of the cube structure defined in the previous
section in an effort to study a topological counterpart of the characteristic factors in the
general commutative case, motivated by Host’s construction in [23]. Given a compact metric
space X and two commuting homeomorphisms S, T : X → X they introduced the space of
dynamical cubes QS,T (X) as

QS,T (X) = {(x, Snx, Tmx, SnTmx) : x ∈ X, n,m ∈ Z} ⊆ X4.

Another cube structures related to QS,T (X) are the following

QS(X) = {(x, Snx) : x ∈ X,n ∈ Z},
QT (X) = {(x, Tmx) : x ∈ X,m ∈ Z}.

With the same idea of the work of Host, Kra and Maass in [25] they proved a structure
theorem for systems with the property “completion of the last coordinate of a point inQS,T (X)
in a unique way” or also called closing parallelepiped property. This relation served to study
product structures inherent to the system (X,S, T ) and in particular to identify a “product
behaviour”. A product system is one of the form (Y ×W,σ × id, id×τ), where (Y, σ) and
(W, τ) are topological dynamical systems.

Associated to this new cube structure they defined a relation in X called the (S, T )-
regionally proximal relation in the following way
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Definition 2.7. Let (X,S, T ) be a minimal system with commuting transformations S and
T . We define

RS(X) = {(x, y) ∈ X ×X : (x, y, a, a) ∈ QS,T (X) for some a ∈ X},
RT (X) = {(x, y) ∈ X ×X : (x, b, y, b) ∈ QS,T (X) for some b ∈ X},
RS,T (X) = RS(X) ∩RT (X).

The authors proved the following structure theorem for systems (X,S, T ).

Theorem 2.8. [7, Theorem 1.1] Let (X,S, T ) be a minimal system with commuting trans-
formations S and T . The following properties are equivalent:

(1) (X,S, T ) is a factor of a product system.

(2) If x, y ∈ QS,T (X) have three coordinates in common, then x = y.

(3) RS(X) = ∆X .

(4) RT (X) = ∆X .

(5) RS,T (X) = ∆X .

For the proof of this structure theorem they introduced the so called topological magic
extensions, motivated by Host’s work [23]. In this extension B. Host found a characteristic
factor that looks like the Cartesian product of single transformations.

A minimal system (X,S, T ) with commuting transformations S and T is called a magic
system if RS(X)∩RT (X) = QS(X)∩QT (X). Notice that in principle the relations QS(X)
and QT (X) are much easier to compute than RS(X) and RT (X). The term magic reflects
then that computing RS(X) ∩RT (X) is not that complicated.

Lemma 2.9. [7, Proposition 3.10] Let (X,S, T ) be a minimal system with commuting trans-
formations S and T . Then (X,S, T ) admits a minimal magic extension, i.e., it has an
extension which is a minimal magic system.

Additionally, in the distal case, they proved another related result.

Theorem 2.10. [7] Let (X,S, T ) be a minimal distal system with commuting transformations
S and T . Then

(1) QS(X), QT (X) and RS,T (X) are closed equivalence relations on X.

(2) (X/RS,T (X), S, T ) is the maximal factor of (X,S, T ) having a product extension.
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Chapter 3

Directional dynamical cubes for d
commuting transformations

In this chapter we present the notion of directional dynamical cubes for a topological
dynamical system (X,T1, . . . , Td) with d commuting transformations. This is a generalization
of the dynamical cubes introduced by S. Donoso and W. Sun in [7] whose main properties
were discussed in Chapter 2. We start the chapter with some general properties of the cube
structure and then we introduce the (T1, . . . , Td)-regionally proximal relation associated with
the cube structure. We end the chapter introducing the classes Zei0 , which correspond to
systems (X,T1, . . . , Td), where the action Ti is trivial, i.e., is the identity, and we compute
the maximal Zei0 -factor for any topological dynamical system. This notion will be used to
describe systems where our cube structure has the closing parallelepiped property.

3.1 Notation
Let d ≥ 2 be an integer and consider T1, . . . , Td : X → X, d commuting homeomorphisms
of X. As was mentioned in Chapter 1, we write (X,T1, . . . , Td) to denote the topological
dynamical system (X, {T n1

1 · · ·T
nd
d : n1, . . . , nd ∈ Z}). The transformations T1, . . . , Td span

a Zd-action. Throughout this thesis we always use G ∼= Zd to denote the group generated by
T1, . . . , Td.

Definition 3.1. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a topological dynamical
system with commuting transformations T1, . . . , Td. For j ∈ [d], the j-th face transformation
T

[d]
j : X [d] → X [d] is defined for every x ∈ X [d] and every ε ⊆ [d] by:

(T
[d]
j x)ε =

{
Tjxε if j ∈ ε,
xε if j /∈ ε.

The face group of dimension d is the group FT1,...,Td of transformations of X [d] generated by
the face transformations. Let G be the group generated by the transformations T1, . . . , Td.
We have that G ∼= Zd. We write G∆

[d] = {g[d] : g ∈ G}. Let GT1,...,Td denote the subgroup of
G[d] generated by FT1,...,Td and G∆

[d].
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Using the same notation of Section 2.2, for every j ∈ [d] we define the following transfor-
mations

Φj : {0, 1}d → {0, 1}d

ε 7→ Φi(ε) =

{
εk if k 6= j,

1− εk if k = j.

Ψ0
j : {0, 1}d−1 → {0, 1}d

ε 7→ Ψj
0(ε) = ε1ε2 . . . εj−10εj . . . εd−1.

Ψ1
j : {0, 1}d−1 → {0, 1}d

ε 7→ Ψj
0(ε) = ε1ε2 . . . εj−11εj . . . εd−1.

Let X be a set. From now on, when we consider a point x ∈ X8 we will represent it as in
Figure 3.1.

x000 x100

x010 x110

x001 x101

x011 x111

x∅ x{1}

x{2} x{1,2}

x{3} x{1,3}

x{2,3} x{1,2,3}

Figure 3.1: Representations of a point in X8.

Thus, we have that the face permutations Φ1,Φ2,Φ3 in the case d = 3 illustrate the
following Euclidean permutations when applied to the coordinates of a point in X8 as in the
Figure 3.2.

x100 x000

x110 x010

x101 x001

x111 x011

(a) (b) (c)

x010 x110

x000 x100

x011 x111

x001 x101

x001 x101

x011 x111

x000 x100

x010 x110

Figure 3.2: The figures (a), (b) and (c) represent Φ1(x), Φ2(x) and Φ3(x), where
x is the point of Figure 3.1 in the case d = 3.

The maps Ψ0
j and Ψ1

j are used to replicate a face. Let d ≥ 2 be an integer, j ∈ [d] and
x ∈ X [d−1]. If we define y ∈ X [d] by yε = xη if ε = Ψ0

j(η) ∨ ε = Ψ1
j(η), we have that

the face that is determined by fixing the value of j in the coordinates is equal to x, i.e.,
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(yε : ε(j) = 0), (yε : ε(j) = 0) ∈ X [d−1] and

(yε : ε(j) = 0) = (yε : ε(j) = 1) = x.

3.2 Directional dynamical cubes for d commuting trans-
formations

3.2.1 Directional dynamical cubes

We introduce the notion of directional dynamical cubes for a system with d commuting
transformations and we study its basic properties.

Definition 3.2. Let d ≥ 2 be an integer and let (X,T1, . . . , Td) be a topological dynamical
system with commuting transformations T1, . . . , Td. We define,

QT1,...,Td(X) =
{

(T n1ε1
1 · · ·T ndεd

d x)ε∈{0,1}d : x ∈ X,n = (n1, . . . , nd) ∈ Zd
}
⊆ X [d].

We define the same structure for {j1, . . . , jk} ⊆ [d] as

QTj1 ,...,Tjk
(X) =

{
(T n1ε1

j1
· · ·T nkεk

jk
x)ε∈{0,1}k : x ∈ X,n = (n1, . . . , nk) ∈ Zk

}
.

For example, if k = 1 and j ∈ [d] we have

QTj(X) =
{

(x, T nj x) : x ∈ X,n ∈ Z
}
.

For x0 ∈ X, we define

Kx0
T1,...,Td

=
{

(T n1ε1
1 . . . T ndεd

d x0)ε∈{0,1}d\{~0} : n = (n1, . . . , nd) ∈ Zd
}
.

As an example, for d = 3 we have

QT1,T2,T3(X) = {(x, T n1 x, Tm2 x, T n1 Tm2 x, T
p
3 x, T

n
1 T

p
3 x, T

m
2 T

p
3 x, T

n
1 T

m
2 T

p
3 x) : x ∈ X, n,m, p ∈ Z},

QT1,T2(X) = {(x, T n1 x, Tm2 x, T n1 Tm2 x) : x ∈ X, n,m ∈ Z},
QT1,T3(X) = {(x, T n1 x, T

p
3 x, T

n
1 T

p
3 x) : x ∈ X, n, p ∈ Z},

QT2,T3(X) = {(x, Tm2 x, T
p
3 x, T

m
2 T

p
3 x) : x ∈ X, m, p ∈ Z},

QT1(X) = {(x, T n1 x) : x ∈ X, n ∈ Z},
QT2(X) = {(x, Tm2 x) : x ∈ X, m ∈ Z},
QT3(X) = {(x, T p3 x) : x ∈ X, p ∈ Z},
Kx0
T1,T2,T3

= {(T n1 x0, Tm2 x0, T n1 T
m
2 x0, T

p
3 x0, T n1 T

p
3 x0, Tm2 T

p
3 x0, T n1 T

m
2 T

p
3 x0) : n,m, p ∈ Z}.

This generalizes the definitions given by Donoso and Sun in [7] for two commuting trans-
formations. In general we have that

Kx0
T1,...,Td

6= QT1,...,Td(x0) = {a∗ ∈ X [d]
∗ : (x, a∗) ∈ QT1,...,Td(X)},
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but with an identical proof of Lemma 4.5 in [17] we have that there exists a Gδ-dense subset
A ⊆ X such that Kx0

T1,...,Td
= QT1,...,Td(x0) for every x0 ∈ A. We say that x0 ∈ X is a

continuity point if Kx0
T1,...,Td

= QT1,...,Td(x0). We start with some basic properties of these
cubes structures.

Proposition 3.3. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a topological dynamical
system with commuting transformations T1, . . . , Td. Then,

(1) x[d] ∈ QT1,...,Td(X) for every x ∈ X.

(2) QT1,...,Td(X) is invariant under GT1,...,Td.

(3) (Face permutation invariance)Let x ∈ QT1,...,Td(X) and j ∈ [d]. If y ∈ X [d] is defined as

yε = xΦj(ε), ∀ε ∈ {0, 1}d,

then y ∈ QT1,...,Td(X).

(4) (Projection) Let x ∈ QT1,...,Td(X), {j1, . . . , jk} ⊆ [d] and ξ ∈ {0, 1}d−k. Then, we have
that

(xε : ε ∈ {0, 1}d, ε[d]\{j1,...,jk} = ξ) ∈ QTj1 ,...,Tjk
(X).

(5) (Duplication) Let {j1, . . . , jk} ⊆ [d] and x = (xη : η ∈ {0, 1}k) ∈ QTj1 ,...,Tjk
(X). We have

that if y ∈ X [d] is defined such that for ε ∈ {0, 1}d,

yε = xη ⇐⇒ ∀` ∈ {1, . . . , k}, εi` = η`,

then y ∈ QT1,...,Td(X).

(6) (x, y) ∈ QTj(X)⇔ (y, x) ∈ QTj(X), for all x, y ∈ X and for all j ∈ [d].

This proposition shows the basic structural properties that have these cubes structures.
Property (3) shows that some Euclidean permutations leave invariant QT1,...,Td(X). However,
if d = 2, and (x0, x1, x2, x3) ∈ QT1,T2(X), we may have that (x0, x2, x1, x3) /∈ QT1,T2(X). But,
we can assure that (x0, x2, x1, x3) ∈ QT2,T1(X). Roughly speaking, this lack of symmetry
makes the problem harder because we do not expect to get the strong algebraic consequences
that one obtains in the case Ti = T i like in [24]. Property (4) shows that the projection of
the faces of a cube is a cube of the dimension of the face. Finally property (5) shows the
lifting property of cubes in order to obtain a cube with a higher dimension.

Proof. (1) Take x ∈ X and ~0 ∈ Zd in the definition.

(2) It is direct to see that QT1,...,Td(X) is invariant under G∆
[d] and FT1,...,Td(X).

(3) Let (xi)i∈N ⊆ X and (n(i))i∈N ⊆ Zd such that

∀ε ∈ {0, 1}d, xε = lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d xi.
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Let yi = T
nj(i)
j xi and m(i) = (n1(i), . . . ,−nj(i), . . . , nd(i)) ∈ Zd. For ε ∈ {0, 1}d we have

yε = lim
i→∞

T
m1(i)ε1
1 · · ·Tmj(i)εj

j · · ·Tmd(i)εd
d yi,

= lim
i→∞

T
n1(i)ε1
1 · · ·T nj−1(i)εj−1

j−1 T
nj(1−εj)
j T

nj+1(i)εj+1

j+1 · · ·T nd(i)εd
d xi,

= xΦj(ε).

We conclude that y ∈ QT1,...,Td(X).

(4) Let (xi)i∈N ⊆ X and (n(i))i∈N ⊆ Zd such that

∀ε ∈ {0, 1}d, xε = lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d xi.

Now, consider η ∈ {0, 1}d such that

η` =

{
0 ` ∈ {j1, . . . , jk},
η` ` /∈ {j1, . . . , jk},

and put yi = xiη. If ε ∈ {0, 1}d is such that ε[d]\{j1,...,jk} = ξ, then

xε = lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d xi,

= lim
i→∞

T
nj1

(i)εj1
j1

· · ·T njk
(i)εjk

jk
yi.

We conclude that (xε : ε ∈ {0, 1}d, ε[d]\{j1,...,jk} = ξ) ∈ QTj1 ,...,Tjk
(X).

(5) Let (xi)i∈N ⊆ X and (n(i))i∈N ⊆ Zd such that

∀ε ∈ {0, 1}d, xε = lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d xi.

Then, there exists m ∈ Zk such that

∀η ∈ {0, 1}k, xη = lim
i→∞

T
mj1

(i)εj1
j1

· · ·Tmjk
(i)εjk

jk
xi.

If we use n(i) ∈ Zd such that

np(i) =

{
mj` if p = j`, for some j` ∈ {j1, . . . , jk},
0 if p /∈ {j1, . . . , jk},

we conclude the statement.

(6) This follows directly from definitions.
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It is easy to see that the relation QTj(X) is symmetric, reflexive, closed and Tj-invariant.
In [17] Eli Glasner proved that QTj [x] = {y ∈ X : (x, y) ∈ QTj(X)} is a transitive set for
a Gδ-dense subset of X. But in general this relation is not an equivalence relation (for an
example see [35]).

By Proposition 3.3 (2) we have that (QT1,...,Td(X),GT1,...,Td) is a topological dynamical
system. Moreover, we have

Proposition 3.4. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal system with
commuting transformations T1, . . . , Td. Then, (QT1,...,Td(X),GT1,...,Td) is a minimal system.
Furthermore, if (X,T1, . . . , Td) is distal, then (QT1,...,Td(X),GT1,...,Td) is also distal.

Proof. The proof is similar to Proposition 3.4 in [7]. Let E(QT1,...,Td(X),GT1,...,Td) be
the enveloping semigroup of the system (QT1,...,Td(X),GT1,...,Td). For every ε ∈ {0, 1}d,
let πε : QT1,...,Td(X) → X be the projection onto the ε-th coordinate and let
π∗ε : E(QT1,...,Td(X),GT1,...,Td)→ E(X,G) be the respective semigroup homomorphism.

Let u ∈ E(QT1,...,Td , G
∆
[d]) denote a minimal idempotent for the system (QT1,...,Td , G

∆
[d]). We

show that u is also a minimal idempotent in E(QT1,...,Td(X),GT1,...,Td). By Theorem 1.40, it
suffices to show that if v ∈ E(QT1,...,Td(X),GT1,...,Td) with vu = v, then uv = u. Projecting
onto the corresponding coordinates, we deduce that π∗ε(vu) = π∗ε(v)π∗ε(u) = π∗ε(v) for every
ε ∈ {0, 1}d. The projection of a minimal idempotent of E(QT1,...,Td(X), G∆

[d]) is a minimal
idempotent in E(X,G). Then, we have that π∗ε(u)π∗ε(v) = π∗ε(u) for every ε ∈ {0, 1}d. Since
QT1,...,Td(X) ⊆ X [d] we view the elements of E(QT1,...,Td(X),GT1,...,Td) as vectors of dimension
2d, then the projections to the coordinates determine an element of E(QT1,...,Td(X),GT1,...,Td).
Hence, we have that uv = u. Therefore, we conclude that u is a minimal idempotent in
E(QT1,...,Td(X),GT1,...,Td).

Now, let x ∈ X. Since X is minimal, by Theorem 1.40 there exists a minimal idempotent
u ∈ E(X,G) such that ux = x. Consider u[d] ∈ E(QT1,...,Td(X), G∆

[d]). We have that u[d]x[d] =

x[d], so by Theorem 1.40 x[d] is a minimal point in X [d] (so in QT1,...,Td(X)) under the action
G∆

[d]. We observe that the point x[d] is minimal under the action GT1,...,Td since u[d] is also
a minimal idempotent in E(QT1,...,Td(X),GT1,...,Td). As O(x[d],GT1,...,Td) = QT1,...,Td(X), we
conclude that (QT1,...,Td(X),GT1,...,Td) is a minimal system.

Now, if (X,T1, . . . , Td) is distal, then (X [d],GT1,...,Td) is also distal. Additionally, since
QT1,...,Td(X) is invariant under GT1,...,Td we also obtain that (QT1,...,Td(X),GT1,...,Td) is distal.

From previous result we can conclude that for every {j1, . . . , jk} ⊆ [d] the system
QTj1,...,jk

(X) is minimal under the action of the group GTj1 ,...,Tjk . Particularly, for every
transformation Tj the system QTj(X) is minimal under the action generated by g × g for
g ∈ G and id×Tj. However, the system (Kx0

T1,...,Td
,Fx0T1,...,Td) is not necessarily minimal, de-

spite of Theorem 3.1 in [32], because the minimality of this system implies the minimality of
O(x0, Tj) for every j ∈ [d].

24



Proposition 3.5. Let d ≥ 2 be an integer and let π : Y → X be a factor map between
two minimal systems (Y, T1, . . . , Td) and (X,T1, . . . , Td) with commuting transformations
T1, . . . , Td. Then,

π[d](QT1,...,Td(Y )) = QT1,...,Td(X).

Proof. It is easy to see that π[d](QT1,...,Td(Y )) ⊆ QT1,...,Td(X) and by minimality we have the
equality.

Let x ∈ QT1,...,Td(X), (xi)i∈N ⊆ X and (n(i))i∈N ⊆ Zd such that

∀ε ∈ {0, 1}d, xε = lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d xi.

We take an arbitrary yi ∈ π−1(xi). By compactness, we can assume that yi → y and for
all ε ∈ {0, 1}d we can assume that

lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d yi = yε.

Now, by continuity of π, we have that π(yi)→ π(y) = x and that for ε ∈ {0, 1}d

π(yε) = π
(

lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d yi
)

= lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d π
(
yi
)

= xε.

Then, y ∈ QT1,...,Td(Y ) and π[d](y) = x ∈ QT1,...,Td(X).

Remark. Previous result is also true for every subset of [d], i.e., if {j1, . . . , jk} ⊆ [d], then

π[k]
(
QTj1 ,...,Tjk

(Y )
)

= QTj1 ,...,Tjk
(X).

Particularly, π × π(QTj(X)) = QTj(Y ), where j ∈ [d].

3.2.2 The (T1, . . . , Td)-regionally proximal relation

We define a relation in X associated with this cube structure as in Chapter 2. We introduce
the (T1, . . . , Td)-regionally proximal relation which generalizes the definition given by Donoso
and Sun for two commuting transformations in [7].

Definition 3.6. Let d ≥ 2 be an integer and let (X,T1, . . . , Td) be a topological dynamical
system with commuting transformations T1, . . . , Td. For x, y ∈ X, a∗ ∈ X [d−1]

∗ and j ∈ [d],
we define z(x, y, a∗, j) ∈ X [d] as the point such that

zε =


x if ε = ∅,
y if ε = {j},
(a∗)η if ε = Ψ0

j(η) ∨ ε = Ψ1
j(η).
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We define the Tj-regionally proximal relation as

RTj(X) =
{

(x, y) ∈ X ×X : ∃a∗ ∈ X [d−1]
∗ , z(x, y, a∗, j) ∈ QT1,...,Td(X)

}
.

Finally, we define the (T1, . . . , Td)-regionally proximal relation as

RT1,...,Td(X) =
d⋂
j=1

RTj(X).

As an example, for d = 3, the relations are defined as follows

RT1(X) = {(x, y) ∈ X ×X : (x, y, a, a, b, b, c, c) ∈ QT1,T2,T3(X) for some a, b, c ∈ X},
RT2(X) = {(x, y) ∈ X ×X : (x, a, y, a, b, c, b, c) ∈ QT1,T2,T3(X) for some a, b, c ∈ X},
RT3(X) = {(x, y) ∈ X ×X : (x, a, b, c, y, a, b, c) ∈ QT1,T2,T3(X) for some a, b, c ∈ X}.

The representations of these relations are the following,

(x, y) ∈ RT1(X) :

x

b

y

b

cc

aa

∈ QT1,T2,T3(X)

(x, y) ∈ RT2(X) :

x a

y a

b c

b c

∈ QT1,T2,T3(X)

(x, y) ∈ RT3(X) :

x a

b c

y a

b c

∈ QT1,T2,T3(X)

Figure 3.3: Representation of the relations RT1(X), RT2(X) and RT3(X) in the
case d = 3.
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Remark 3.7. We remark that (x, y) ∈ RTd(X) if and only if there exists a∗ ∈ X [d−1]
∗ such

that (x, a∗, y, a∗) ∈ QT1,...,Td(X).

It is easy to see that the relations are reflexive, symmetric, closed and invariant under G.
In the next chapter we prove that these relations are transitive in the distal case, but we do
not know if these relations are transitive in the general minimal case. The next proposition
follows from the definition. We introduce this notion because it is useful in order to describe
systems with the closing parallelepiped property.

Proposition 3.8. Let d ≥ 2 be an integer and let π : Y → X be a factor map between
two minimal systems (Y, T1, . . . , Tj) and (X,T1, . . . , Td) with commuting transformations
T1, . . . , Td. Then, π[d](RTj(Y )) ⊆ RTj(X), where j ∈ [d]. In particular,

π[d](RT1,...,Td(Y )) ⊆ RT1,...,Td(X).

We will study minimal systems (X,T1, . . . , Td) with commuting transformations T1, . . . , Td
which have the following property:

Definition 3.9. Let d ≥ 2 be an integer and let (X,T1, . . . , Td) be a minimal system with
commuting transformations T1, . . . , Td. We say that X has the closing parallelepiped property
if x,y ∈ QT1,...,Td(X) have 2d − 1 coordinates in common, then x = y.

Proposition 3.10. Let d ≥ 2 be an integer and let (X,T1, . . . , Td) be a minimal system with
commuting transformations T1, . . . , Td which has the closing parallelepiped property. Then,
for every j ∈ [d] we have that RTj(X) = ∆X .

Proof. Let x, y ∈ X be such that (x, y) ∈ RTj(X). Then, by definition, there exists
a∗ ∈ X [d]

∗ such that z(x, y, a∗, j) ∈ QT1,...,Td(X). By Proposition 3.3 (4), we have that
(x, a∗) ∈ QT1,...,Tj−1,Tj ,...,Td(X). Define w ∈ X [d] as

wε =


x if ε = ∅,
x if ε = {j},
(a∗)η if ε = Ψ0

j(η) ∨ ε = Ψ1
j(η).

By Proposition 3.3 (5), we have that w ∈ QT1,...,Td(X) and therefore the closing paral-
lelepiped property implies that x = y.

The proof of Proposition 3.10 in the case d = 3 and j = 1 can be illustrated as follows:
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x

b

y

b

cc

aa

(a)

(b)

(c)

∈ QT1,T2,T3(X) =⇒

x

b

a

c

∈ QT2,T3(X)

=⇒

x

b

x

b

cc

aa

∈ QT1,T2,T3(X)

Figure 3.4: Illustration of the proof of Proposition 3.10 in the case d = 3 and
j = 1. We have the existence of a cube like in (a) because (x, y) ∈ RT1(X). By
Proposition 3.3 (4), the cube in (b) belongs to QT2,T3(X). Finally, by Proposition
3.3 (5), the cube in (c) belongs to QT1,T2,T3(X).

3.3 The classes Z
ej
0

In this section we define for every j ∈ [d] the class of dynamical systems (X,T1, . . . , Td) where
the action Tj is the identity, denoted by Z

ej
0 . This notation is analogous as the one used by

Austin in [2] for the measure-theoretical setting. Then we compute the maximal Zej0 -factor
for any system (X,T1, . . . , Td).

Consider the following classes of topological dynamical systems. For every j ∈ [d] define

Z
ej
0 = {(X,T1, . . . , Td) : Tj is the identity on X}.

We remark that these classes satisfy the following properties:

• The trivial system (one point) belongs to Z
ej
0 .

• Z
ej
0 is productive, i.e., any product of systems in Z

ej
0 is also in Z

ej
0 .

• Z
ej
0 is hereditary, i.e., a closed invariant subsystem of any system in Z

ej
0 is in Z

ej
0 .

• Z
ej
0 is closed under isomorphism.

Using a Zorn’s Lemma argument it can be proved that for every system (X,T1, . . . , Td)
there exists a maximal Zej0 -factor [1, Chapter 9]. In addition, this factor can be characterized.

For a minimal system (X,T1, . . . , Td) with commuting transformations T1, . . . , Td, we de-
fine σTj(X) as the smallest closed and Tj-invariant equivalence relation which contains the
relation QTj(X).
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Lemma 3.11. Let (X,T1, . . . , Td) be a minimal system with commuting transformations
T1, . . . , Td and take j ∈ [d]. Then, X/σTj

(X) is the maximal Zej0 -factor of (X,T1, . . . , Td).

Proof. Let π : X → X/σTj
(X). We have that X/σTj

(X) ∈ Z
ej
0 . Indeed, if x, x′ ∈ X are such

that x′ ∈ O(X,Tj), then π(x) = π(x′), because Tj[x] = [Tjx] and since (x, Tjx) ∈ σTj(X),
then Tj[x] = [x]. So Tj acts trivially on X/σTj

(X). Now, let Z be a factor of X in Z
ej
0 and

π′ : X → Z be the factor map. We define Rπ′ = {(x, y) ∈ X : π′(x) = π′(y)}. We have to
prove that σTj(X) ⊆ Rπ′ . In fact, since Rπ′ is closed and Tj-invariant equivalence relation, it
suffices to prove that QTj(X) ⊆ Rπ′ . Fix x ∈ X. We have that

Tj ◦ π = π′ ◦ Tj = π′ ◦ idZ .

Thus {(x, T nj x)}n∈N ⊆ Rπ′ . Since Rπ is closed we conclude that QTj(X) ⊆ Rπ′ .
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Chapter 4

The structure theorem for minimal distal
systems with the closing parallelepiped
property

In this chapter we prove the following structure theorem for minimal distal systems, which
is the main result in this thesis:

Theorem 4.1. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td. Then, the following statements are equivalent:

(1) X has the closing parallelepiped property, i.e., if x, y ∈ QT1,...,Td(X) have 2d − 1 coordi-
nates in common, then x = y.

(2) RT1,...,Td(X) = ∆X .

(3) X has a minimal distal extension (Y, T̂1, . . . , T̂d) which is a joining of the systems Y/QT̂j

for j ∈ [d] and is relatively independent with respect to the systems Y/Q
T̂j1
/QT̂j2

, where
j1, j2 ∈ [d] with j1 6= j2.

Rougly speaking, the extension Y of point (3) can be constructed using Zd−1-minimal distal
actions. We start with some important properties of dynamical cubes and the (T1, . . . , Td)-
regionally proximal relation in minimal distal systems. We then give a proof of the structure
theorem for distal systems. We finish the chapter studying a property of the systems with
the closing parallelepiped property, which corresponds to the sets of recurrence induced by
these systems.

4.1 Directional dynamical cubes for minimal distal sys-
tems

In this section we present the main properties of directional dynamical cubes for minimal
distal systems.
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4.1.1 The Z
ej
0 -maximal factor for distal systems

An important consequence of the distality of a system is the following.

Proposition 4.2. Let d ≥ 2 be an integer, (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td and j ∈ [d] be fixed. Then, QTj(X) is a closed and
invariant equivalence relation of X for every j ∈ [d].

Proof. The proof is similar to the one of Lemma 5.2 in [7]. We only need to prove transitivity.
Let (x, y), (y, z) ∈ QTj(X). Pick any a ∈ X. Then, (a, a) ∈ QTj(X). By Proposition 3.4,
there exists a sequence (gn)n∈N = ((g′n, g

′′
n))n∈N ∈ GTj such that gn(x, y) = (g′nx, g

′′
ny) converges

to (a, a), where GTj is the group generated by id×Tj and g × g, g ∈ G. We can assume,
by compactness, that g′′nz → u and thus (g′′ny, g

′′
nz) → (a, u) ∈ QTj(X). Now, we have that

gn(x, z) = (g′nx, g
′′
nz) → (a, u) and this point belongs to the closed orbit of (x, z) under GTj .

By distality this orbit is minimal and so it follows that (x, z) is in the closed orbit of (a, u)
and thus (x, z) ∈ QTj(X).

A similar argument can be used to prove the next result.

Lemma 4.3 (Gluing Lemma). Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal
system with commuting transformations T1, . . . , Td. Consider x = (x′, x′′), y = (y′, y′′) ∈ X [d]

with x′, x′′, y′, y′′ ∈ X [d−1] and x′′ = y′. If x, y ∈ QT1,...,Td(X), then z = (x′, y′′) ∈ QT1,...,Td(X).

Proof. Let x′,x′′,y′′ ∈ X [d−1] be such that (x′,x′′), (x′′,y′′) ∈ QT1,...,Td(X). Pick any a ∈ X.
Then, (a[d−1], a[d−1]) ∈ QT1,...,Td(X). By Proposition 3.4, there exists a sequence (gn)n∈N =
((g′n, g

′′
n))n∈N ∈ GT1,...,Td such that gn(x′,x′′) = (g′nx′, g′′nx′′)→ (a[d−1], a[d−1]). We can assume,

by compactness, that g′′ny′′ → u and thus (g′′nx′′, g′′ny′′)→ (a[d−1],u) ∈ QT1,...,Td(X). Now, we
have that gn(x′,y′′) = (g′nx′, g′′ny′′)→ (a[d−1],u), and this point belongs to the closed orbit of
(x′,y′′) under GT1,...,Td . By distality this orbit is minimal and so it follows that (x′,y′′) is in
the closed orbit of (a[d−1],u) and thus (x′,y′′) ∈ QT1,...,Td(X).

Remark. Given two points x,y ∈ QT1,...,Td(X) we can use the Gluing Lemma when we
have (xε : ε ∈ {0, 1}d, ε(j) = 0) = (yε : ε ∈ {0, 1}d, ε(j) = 1) for some j ∈ [d].
Namely, we can apply a sequence of Euclidean permutations until we get two points
w = (w,w′′), z = (z′, z′′) ∈ QT1,...,Td(X) such that z′ = (xε : ε ∈ {0, 1}d, ε(j) = 0) and
w′′ = (yε : ε ∈ {0, 1}d, ε(j) = 1). We note that the Euclidean permutations that are needed
for the aforementioned procedure are different from those in Proposition 3.3 (3). In the next
figure we illustrate this comment.
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x0 x1

x2 x3

x4 x5

x6 x7

∈ QT1,T2,T3(X)

y0 x0

y1 x2

y2 x4

y3 x6

∈ QT1,T2,T3(X)

(a) (b)
Then

x0 x2

x4 x6

x1 x3

x5 x7

∈ QT2,T3,T1(X)

y0 y1

y2 y3

x0 x2

x4 x6

∈ QT2,T3,T1(X)

(c) (d)

Gluing Lemma

y0 y1

y2 y3

x1 x3

x5 x7

∈ QT2,T3,T1(X)

y0 x1

y1 x3

y2 x5

y3 x7

∈ QT1,T2,T3(X)

(e) (f)

Figure 4.1: Illustration of Gluing Lemma. In (a) and (b) we have two cubes in
QT1,T2,T3(X) with two equal faces. With an Euclidean permutation we have that
the cubes (c) and (d) are in QT1,T2,T3(X) satisfying the hypothesis for Lemma
4.3. By the Gluing Lemma we have the existence of the cube (e) in QT1,T2,T3(X)
and finally we apply the inverse of the Euclidean permutation to obtain a cube in
QT1,T2,T3(X).

Using Lemma 3.11 and Proposition 4.2 we get the following result.

Corollary 4.4. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td. Then, for j ∈ [d], X/QTj

(X) is the maximal Zej0 -factor.

Proof. By Proposition 4.2 we have that σTj(X) = QTj(X). We conclude with Lemma
3.11.
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4.1.2 The system (Kx0

T1,...,Td
,Fx0

T1,...,Td
) for distal systems

Let d ≥ 2 be an integer. For a minimal distal system (X,T1, . . . , Td) with commuting
transformations T1, . . . , Td and x0 ∈ X, we consider the system (Kx0

T1,...,Td
,Fx0T1,...,Td), defined

in Section 3.2, based in Donoso and Sun’s work [7]. This system has a decomposition on
factors when we project to the coordinates where the corresponding transformations act as
the identity, represented in the following commutative diagram:

Kx0

T1,...,Td
: x0...0 x10...0 · · · x0...01 · · · x1···1

id T1 · · · id · · · T1
... ... . . .

... · · · ...
id id · · · Td · · · Td

Kx0

T2,...,Td
Kx0

T1,T3,...,Td
Kx0

T1,...,Td−1
· · · · · ·

Kx0

T3,...,Td
Kx0

T2,T4,...,Td
Kx0

T1,T4,...,Td
· · · · · · Kx0

T1,...,Td−2

... ... ... ... ... ...

Kx0

Td
Kx0

Td−1
Kx0

Td−2
· · · · · · Kx0

T1

Figure 4.2: Decomposition of the system (Kx0
T1,...,Td

,Fx0T1,...,Td) using the projection
on the coordinates where the transformations act as the identity.

Here, Kx0
T1,...,Tj−1,Tj+1,...,Td

corresponds to the projection onto the coordinates where the
action Tj acts trivially, i.e., in the coordinates where j /∈ ε. We have that elements of
Kx0
T1,...,Td

have 2d − 1 coordinates. Indeed, x ∈ Kx0
T1,...,Td

, then (x0,x) ∈ QT1,...,Td(X). So, in
systems with the closing parallelepiped property we have that, if two points x,y ∈ Kx0

T1,...,Td
have the same projections onto the systems Kx0

T1,...,Tj−1,Tj+1,...,Td
for all j ∈ [d], then x = y.

In fact, the system Kx0
T1,...,Tj−1,Tj+1,...,Td

has the coordinates in the face ε(j) = 0 and the last
coordinate is a function of the other coordinates. For example, for 3 transformations we have
the following diagram:
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Kx0

T1,T2,T3
: x000 x100 x010 x110 x001 x101 x011 x111

id T1 id T1 id T1 id T1

id id T2 T2 id id T2 T2

id id id id T3 T3 T3 T3

Kx0

T2,T3
: x010 x001 x011

id id id
T2 id T2

id T3 T3

Kx0

T1,T3
: x100 x001 x101

T1 id T1

id id id
id T3 T3

Kx0

T1,T2
: x100 x010 x110

T1 id T1

id T2 T2

id id id

Kx0

T3
: x001

id
id
T3

Kx0

T2
: x010

id
T2

id

Kx0

T1
: x100

T1

id
id

Figure 4.3: Illustration of the decomposition of (Kx0
T1,T2,T3

,Fx0T1,T2,T3).

In this way, we have that in a system with the closing parallelepiped property, a point
x ∈ Kx0

T1,...,Td
can be deduced by its projections on the systems Kx0

T1,...,Tj−1,Tj+1,...,Td
for every

j ∈ [d].

By the previous discussion, we have that in a with the closing parallelepiped property the
system Kx0

T1,...,Td
can be viewed as a joining of the systems Kx0

T1,...,Tj−1,Tj+1,...,Td
for every j ∈ [d].

We also remark that for a minimal system (X,T1, . . . , Td) with commuting transformations
T1, . . . , Td, j ∈ [d] and x0 ∈ X we have that Kx0

T1,...,Tj−1,Tj+1,...,Td
∈ Z

ej
0 . We will prove that

Kx0
T1,...,Tj−1,Tj+1,...,Td

is the Z
ej
0 -maximal factor in the distal case.

Proposition 4.5. Let d ≥ 2 be an integer, (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td and take x0 ∈ X. Then, Kx0

T1,...,Tj−1,Tj+1,...,Td
is isomor-

phic to Kx0

T1,...,Td/QT
[d]
j

(Kx0

T1,...,Td
) for any j ∈ [d].

Proof. Let x,y ∈ Kx0
T1,...,Td

be such that

(xε : ε ∈ {0, 1}d, ε(j) = 0) = (yε : ε ∈ {0, 1}d, ε(j) = 0).

We have to show that (x,y) ∈ Kx0
T1,...,Td

. Let δ > 0, π : Kx0
T1,...,Td

→ Kx0
T1,...,Tj−1,Tj+1,...,Td

be
the factor map. By the openness of π, we can find 0 < δ′ < δ such that

B((xε : ε ∈ {0, 1}d, ε(j) = 0), δ′) ⊆ π(B(x, δ)) ∩ π(B(y, δ)) (4.1)
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By definition of Kx0
T1,...,Td

, there exists n ∈ Zd such that

ρ((T n1ε1
1 . . . T ndεd

d x0)ε∈{0,1}d\{~0},x) < δ′.

Call z = (T n1ε1
1 . . . T ndεd

d x0)ε∈{0,1}d\{~0}. Then, we have that

ρ((zε : ε ∈ {0, 1}d, ε(j) = 0), (xε : ε ∈ {0, 1}d, ε(j) = 0)) < δ′.

Thus, by (4.1), there exists z1 ∈ Kx0
T1,...,Td

such that

(z1
ε : ε ∈ {0, 1}d, ε(j) = 0) = (zε : ε ∈ {0, 1}d, ε(j) = 0) ∧ ρ(z1,y) < δ.

Let 0 < δ′′ < δ′ be such that δ′ + δ′′ < δ and for every u,v ∈ Kx0
T1,...,Td

we have

ρ(u,v) < δ′′ =⇒ ρ((T
[d]
j )nju, (T [d]

j )njv) < δ′.

By definition of Kx0
T1,...,Td

, there exists n′′ ∈ Zd such that

ρ((T
n′1ε1
1 . . . T

n′dεd
d x0)ε∈{0,1}d\{~0}, z

1) < δ′′.

We call z2 = (T
n′1ε1
1 . . . T

n′dεd
d x0)ε∈{0,1}d\{~0}. We define

z3 = (T
[d]
j )nj−n′jz2 = (T

n′1ε1
1 . . . T

n′j−1εj−1

j−1 T
njεj
j T

n′j+1εj+1

j+1 . . . T
n′dεd
d x0)ε∈{0,1}d\{~0}.

We have

ρ(z3,x) ≤ ρ((z3
ε : ε ∈ {0, 1}d, ε(j) = 0), (zε : ε ∈ {0, 1}d, ε(j) = 0))

+ρ((zε : ε ∈ {0, 1}d, ε(j) = 0), (xε : ε ∈ {0, 1}d, ε(j) = 0))
+ρ((z3

ε : ε ∈ {0, 1}d, ε(j) = 1), (zε : ε ∈ {0, 1}d, ε(j) = 1))
+ρ((zε : ε ∈ {0, 1}d, ε(j) = 1), (xε : ε ∈ {0, 1}d, ε(j) = 1))
≤ δ′′ + δ′ + δ′ + δ′

≤ 3δ,

and

ρ((T
[d]
j )n

′
j−njz3,y) ≤ ρ((((T

[d]
j )n

′
j−njz3)ε : ε ∈ {0, 1}d, ε(j) = 0), (z1

ε : ε ∈ {0, 1}d, ε(j) = 0))
+ρ((z1

ε : ε ∈ {0, 1}d, ε(j) = 0), (yε : ε ∈ {0, 1}d, ε(j) = 0))

+ρ((((T
[d]
j )n

′
j−njz3)ε : ε ∈ {0, 1}d, ε(j) = 1), (z1

ε : ε ∈ {0, 1}d, ε(j) = 1))
+ρ((z1

ε : ε ∈ {0, 1}d, ε(j) = 1), (yε : ε ∈ {0, 1}d, ε(j) = 1))
≤ δ′′ + δ′ + δ′′ + δ
≤ 3δ.
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By Proposition 3.5, if (Z, T1, . . . , Td) ∈ Z
ej
0 for some j ∈ [d] and is a fac-

tor of (Kx0
T1,...,Td

, T
[d]
1 , . . . , T

[d]
d ), then, by Corollary 4.4, there exists a map from

Kx0
T1,...,Td/QT

[d]
j (K

x0
T1,...,Td

)
to Z. As a consequence, we have proved the following result.

Corollary 4.6. Let d ≥ 2 be an integer, let (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td and x0 ∈ X. Then, for every j ∈ [d] the system
Kx0
T1,...,Tj−1,Tj+1,...,Td

∼= Kx0
T1,...,Td/QT

[d]
j

(Kx0
T1,...,Td

) is the maximal Zej0 -factor of Kx0
T1,...,Td

.

With an identical proof we obtain the following proposition.

Proposition 4.7. Let d ≥ 2 be an integer, (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td, x0 ∈ X, {j1, . . . , j`} ⊆ [d] and k ∈ {1, . . . , `}. Then,
the system Kx0

Tj1 ,...,Tjk−1
,Tjk+1

,...Tj`
is the maximal Zejk0 -factor of Kx0

Tj1 ,...,Tj`
.

A direct consequence from this proposition is,

Corollary 4.8. Let d ≥ 2 be an integer, (X,T1, . . . , Td) be a minimal distal system with

commuting transformations T1, . . . , Td, x0 ∈ X, {j1, . . . , j`} ⊆ [d] and k1, k2 ∈ {1, . . . , `}.

Then,
Kx0

Tj1
,...,Tj`

/QTjk1/QTjk2

∼= Kx0
Tj1

,...,Tj`
/QTjk2/QTjk1

.

Now, let (X,T1, . . . , Td) be a minimal distal system with commuting transformations
T1, . . . , Td. Let H ≤ 〈T1, . . . Td〉 be a subgroup. We define

QH(X) = {(x, hx) : x ∈ X, h ∈ H} ⊆ X2.

In particular, if {j1, . . . , jk} ⊆ [d], we have

Q〈Tj1 ,...,Tjk〉(X) = {(x, hx) : x ∈ X, h ∈ 〈Tj1 , . . . , Tjk〉}.

Be careful and do not get confused: the setsQ〈Tj1 ,...,Tjk〉(X) andQTj1 ,...,Tjk
(X) are different.

We denote by Z
ej1
0 ∧ Z

ej2
0 the intersection between the classes Zej10 and Z

ej2
0 , that is, a system

belongs to Z
ej1
0 ∧ Z

ej2
0 if both transformations j1, j2 act trivially.

Similarly as stated in Proposition 4.2 one proves that the relation Q〈Tj1 ,Tj2〉(X) is a closed
and invariant equivalence relation, and by a proof analogous to that of Lemma 4.4 we have
that X/Q〈Tj1

,Tj2 〉
(X) is the maximal Zej10 ∧ Z

ej2
0 -factor of X. We conclude that X/QTj1

(X)/QTj2
(X)

is a factor of X/Q〈Tj1
,Tj2 〉

(X). On the other hand, X/Q〈Tj1
,Tj2 〉

(X) is a factor of X/QTj1
(X), which

belongs to Zej20 . Thus, X/Q〈Tj1
,Tj2 〉

(X) is a factor of X/QTj1
(X)/QTj2

(X). Then, we have the following
result,
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Proposition 4.9. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal sys-
tem with commuting transformations T1, . . . , Td. If j1, j2 ∈ [d] with j1 6= j2, then
X/QTj1

(X)/QTj2
(X) ∼= X/Q〈Tj1

,Tj2 〉
(X).

We can generalize the previous result for any subset of [d] in the following way.

Lemma 4.10. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td. Let {j1, . . . , jk} ⊆ [d]. Then, Q〈Tj1 ,...,Tjk〉(X) is a
closed and invariant equivalence relation such that

X/QTj1/· · ·/QTjk

∼= X/Q〈
Tj1

,...,Tjk

〉(X).

Finally, X/Q〈
Tj1

,...,Tjk

〉(X) is the maximal Zej10 ∧ . . . ∧ Z
ejk
0 -factor of (X,T1, . . . , Td).

4.1.3 The (T1, . . . , Td)-regionally proximal relation for distal systems

In this section we study the properties of the (T1, . . . , Td)-regionally proximal relation for
distal systems that will be used in the proof of Theorem 4.1.

We start with the following proposition, which was proved in the case d = 2 by Donoso
and Sun [7].

Proposition 4.11. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a distal system with
commuting transformations T1, . . . , Td. Consider x, y ∈ X. The following statements are
equivalent:

(1) (x, y
[d]
∗ ) ∈ QT1,...,Td(X).

(2) There exists a∗ ∈ X [d]
∗ such that (x,a∗), (y,a∗) ∈ QT1,...,Td(X).

(3) For every a∗ ∈ X [d]
∗ , (x,a∗) ∈ QT1,...,Td(X) if and only if (y,a∗) ∈ QT1,...,Td(X).

(4) (x, y) ∈ RT1,...,Td(X).

(5) There exists j ∈ [d] such that (x, y) ∈ RTj(X).

Proof. (1) =⇒ (4). Let j ∈ [d] and a∗ = y[d−1] ∈ X [d−1], then z(x, y, a∗, j) =

(x, y
[d]
∗ ) ∈ QT1,...,Td(X).

(4) =⇒ (5). It follows directly from the definition.

(5) =⇒ (1). The idea of the proof is to construct, in two stages, a sequence of points
z1, . . . , zd ∈ QT1,...,Td(X) so that we increase the number of times that y appears as a coordi-
nate of zi, using Lemma 4.3 until we get zd = (x, y

[d]
∗ ) ∈ QT1,...,Td(X).

In Stage 1 we construct the points z1, . . . , zj ∈ QT1,...,Td(X) such that for 2 ≤ k ≤ j we
have that the point zj satisfies the following properties:

• For every ε ⊆ [k], ε 6= ∅, zkε = zkε∪{j} = y and zk∅ = x.
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• For every ε ⊆ [d] with ε * [k] and every 1 ≤ ` < k we have that zkε = zkΦ`(ε)
. It is easy

to see that this is equivalent to the following property. Let ε1, ε2 ⊆ [d] with ε1, ε2 * [k]
and ε1(r) = ε2(r) for every r ≥ k, then zkε1 = zkε2 .

• For every ε ⊆ [d], ε 6= ∅, we have that zkε = zkΦj(ε).

This Stage is not necessary for the case j = 1.

In Stage 2 we have the point zj ∈ QT1,...,Td(X) satisfying the following properties:

• For every ε ⊆ [k], ε 6= ∅, zkε = y and zk∅ = x.
• For every ε ⊆ [d] with ε * [k] and every 1 ≤ ` ≤ k we have that zkε = zkΦ`(ε)

.

Finally we have that zd = (x, yd∗) ∈ QT1,...,Td(X). This Stage is not necessary for the case
j = d.

Take x, y ∈ X such that (x, y) ∈ RTj(X) for some j ∈ [d]. Then, there exists a∗ ∈ X [d−1]

for which z(x, y, a∗, j) ∈ QT1,...,Td(X). We call z1 = z(x, y, a∗, j).

Stage 1. Construction of the points z1, . . . , zj ∈ QT1,...,Td(X).

Assume j 6= 1. Consider the face (z1
ε : ε ∈ {0, 1}d, ε(j) = 1) of z1. We

have (z1
ε : ε ∈ {0, 1}d, ε(j) = 1)∈ QT1,...,Tj−1,Tj+1,...,Td(X) by Proposition 3.3 (4). We view

(z1
ε : ε ∈ {0, 1}d, ε(j) = 1) as a point in X [d−1], then we can write

(z1
ε : ε ∈ {0, 1}d, ε(j) = 1) = (u1

η : η ∈ {0, 1}d−1)

where u1
η = z1

ε if and only if ε = Ψ1
j(η). Then, by Proposition 3.3 (5), there exists a point

v1 ∈ QT1,...,Td(X) with v1
α = u1

η if and only if α = Ψ0
j(η) or α = Ψ1

j(η)m i.e., we duplicate u1.
In particular, v1

∅ = v1
{j} = y. Let ε ⊆ [d], ε 6= ∅. If j ∈ ε, take η such that ε = Ψ1

j(η). Then,
we have that v1

ε = u1
η = z1

ε . If j /∈ ε, take η such that ε = Ψ1
j(η). Then, we have that

v1
ε = u1

η = (a∗)η = z1
Φj(ε) = z1

ε .

Thus, we have that for every ε ⊆ [d], ε 6= ∅, v1
ε = z1

ε . In particular,
(z1
ε : ε ∈ {0, 1}d : ε(1) = 1) = (v1

α : α ∈ {0, 1}d, α(1) = 1). By Lemma 4.3, there exists a
point z2 ∈ QT1,...,Td(X) such that (z2

ε : ε ∈ {0, 1}d : ε(1) = 0) = (z1
ε : ε ∈ {0, 1}d : ε(1) = 0)

and (z2
ε : ε ∈ {0, 1}d : ε(1) = 1) = (v1

α : ε ∈ {0, 1}d : α(1) = 0) with z2
ε = v1

α if and only if
ε = Φ1(α). In particular, we have z2

∅ = x, z{1} = z2
{j} = z2

{1,j} = y and for every ε ⊆ [d],
ε 6= ∅, {1}, z2

ε = z2
Φ1(ε). Since z1 satisfies that z1

ε = z1
Φj(ε) for every ε ⊆ [d], ε 6= ∅, {j}, we

have that z2
ε = z2

Φj(ε).

Now, assume we have built zk ∈ QT1,...,Td(X) for 2 ≤ k < j such that the following
properties hold:

• For every ε ⊆ [k], ε 6= ∅, zkε = zkε∪{j} = y and zk∅ = x.

• For every ε ⊆ [d] with ε * [k] and every 1 ≤ ` < k we have that zkε = zkΦ`(ε)
. It is easy

to see that this is equivalent to the following property. Let ε1, ε2 ⊆ [d] with ε1, ε2 * [k]
and ε1(r) = ε2(r) for every d ≥ r ≥ k, then zkε1 = zkε2 .

• For every ε ⊆ [d], ε 6= ∅, {j}, we have that zkε = zkΦj(ε).
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Consider the face (zkε : ε ∈ {0, 1}d, ε(j) = 1) ∈ QT1,...,Tj−1,Tj+1,...,Td(X). If we denote
(zkε : ε ∈ {0, 1}d, ε(j) = 1) = (ukη : η ∈ {0, 1}d−1) with zkε = ukη if and only if ε = Ψ1

j(η).
Then, by Proposition 3.3 (5), there exists vk ∈ QT1,...,Td(X), where vkα = ukη if and only if
α = Ψ0

j(η) or α = Ψ1
j(η). Let ε ⊆ [d], ε 6= ∅. If j ∈ ε, take η such that ε = Ψ1

j(η). Then,
we have that vkε = ukη = zkε . If j /∈ ε, take η such that ε = Ψ0

j(η). Then, we have that
vkε = ukη = zkΦj(ε) = zkε . Thus, we have that for every ε ⊆ [d], ε 6= ∅, vkε = zkε . In partic-
ular, (zkε : ε ∈ {0, 1}d, ε(k) = 1) = (vkα : α ∈ {0, 1}d, α(k) = 1). By Lemma 4.3, there exists
zk+1 ∈ QT1,...,Td(X) such that (zk+1

ε : ε ∈ {0, 1}d, ε(k) = 0) = (zkε : ε ∈ {0, 1}d, ε(k) = 0) and
(zk+1
ε : ε ∈ {0, 1}d, ε(k) = 1) = (vkα : α ∈ {0, 1}d, α(k) = 0) with zk+1

ε = vkα if and only if
ε = Φk(α).

If ε ⊆ [k + 1], ε 6= ∅, then zk+1
ε = zε∪{j} = y and zk+1

∅ = x.

Let ε ⊆ [d] with ε * [k] and 1 ≤ ` < k. If k /∈ ε we have that zk+1
ε = zkε = zkΦ`(ε)

= zk+1
Φ`(ε)

.
If k ∈ ε we have that zk+1

ε = vkΦk(ε) = zkΦk(ε) = zkΦ`(Φk(ε)) = zkΦk(Φ`(ε))
= vkΦk(Φ`)(ε)

= zk+1
Φ`(ε)

.

Let ε ⊆ [d], ε 6= ∅, {j}. If k /∈ ε we have that zk+1
Φj(ε) = zkΦj(ε) = zkε = zk+1

ε . If k ∈ ε we have
that zk+1

Φj(ε) = vkΦk(Φj(ε)) = zkΦk(Φj(ε)) = zkΦj(Φk(ε)) = zkΦk(ε) = vkΦk(ε) = zk+1
ε .

We proceed inductively until k = j − 1, where we use the face ε(j − 1) = 1 in Lemma 4.3
to get the point zj ∈ QT1,...,Td(X) with the following properties:

• For every ε ⊆ [j], ε 6= ∅, zjε = y and zj∅ = x.

• For every ε ⊆ [d] with ε * [j] and every 1 ≤ ` < j we have that zjε = zjΦ`(ε)
. It is easy

to see that this is equivalent to the following property. Let ε1, ε2 ⊆ [d] with ε1, ε2 * [j]
and ε1(r) = ε2(r) for every d ≥ r ≥ j, then zjε1 = zjε2 .

• For every ε ⊆ [d], ε 6= ∅, {j}, we have that zjε = zjΦj(ε).

Then, for ε1, ε2 ⊆ [d] with ε1, ε2 * [j] and for every d ≥ r > j, ε1(r) = ε2(r).

The point zj also satisfies that if ε ⊆ [j], ε 6= ∅, zjε = y and zj∅ = x.

Stage 2. Construction of the points zj+1, . . . , zd ∈ QT1,...,Td(X).

Assume j 6= d. We proceed by induction in the following way. Suppose that for j ≤ k < d,
the point zk ∈ QT1,...,Td(X) satisfies the following properties:

• For every ε ⊆ [k], ε 6= ∅, zkε = y and zk∅ = x.
• For every ε ⊆ [d] with ε * [k] and every 1 ≤ ` ≤ k we have that zkε = zkΦ`(ε)

.

Consider the face (zkε : ε ∈ {0, 1}d, ε(k) = 1) ∈ QT1,...,Tk−1,Tk+1,...,Td(X). Denote
(zkε : ε ∈ {0, 1}d, ε(k) = 1) = (ukη : η ∈ {0, 1}d−1) with zkε = ukη if and only if ε = Ψ1

k(η).
Then, by Proposition 3.3 (5), there exists vk ∈ QT1,...,Td(X), where vkα = ukη if and
only if α = Ψ0

k(η) or α = Ψ1
k(η). Let ε ⊆ [d], ε 6= ∅. If k ∈ ε, take η such

that ε = Ψ1
k(η). Then, we have that vkε = ukη = zkε . If k /∈ ε, take η such that

ε = Φ0
k(η). Then, we have that vkε = ukη = zkΦk(ε) = zkε . Thus, we have that for

every ε ⊆ [d], ε 6= ∅, vkε = zkε . In particular, (zkε : ε ∈ {0, 1}d, ε(k + 1) = 1) =
(vkα : α ∈ {0, 1}d, α(k + 1) = 1). By Lemma 4.3, there exists zk+1 ∈ QT1,...,Td(X)
such that (zk+1

ε : ε ∈ {0, 1}d, ε(k + 1) = 0) = (zkε : ε ∈ {0, 1}d, ε(k + 1) = 0) and
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(zk+1
ε : ε ∈ {0, 1}d, ε(k + 1) = 1) = (vkα : α ∈ {0, 1}d, α(k + 1) = 0) with zk+1

ε = vkα if
and only if ε = Φk+1(α).

Let ε ⊆ [k + 1], ε 6= ∅. We distinguish three cases:

• If ε = ∅, then zk+1
∅ = zk∅ = x.

• If k + 1 /∈ ε, zk+1
ε = zkε = y.

• If k + 1 ∈ ε, zk+1
ε = vkΦk+1(ε). Now, we note that Φk+1(ε) ⊆ [k]. Then, vkΦk+1(ε) = y.

Thus, zk+1
ε = y.

Let ε ⊆ [d] with ε * [k + 1] and 1 ≤ ` ≤ k + 1. We have the following cases:

• If k + 1 /∈ ε and 1 ≤ ` ≤ k, then, zk+1
ε = zkε = zkΦ`(ε)

= zk+1
Φ`(ε)

.

• If k + 1 /∈ ε and ` = k + 1, then, zk+1
Φ`(ε)

= vk+1
ε = zkε .

• If k + 1 ∈ ε and 1 ≤ ` ≤ k, then

zk+1
Φ`(ε)

= vkΦk+1(Φ`(ε))
= zkΦk+1(Φ`(ε))

= zkΦ`(Φk+1(ε)) = zkΦk+1(ε) = vkΦk+1(ε) = zk+1
ε .

• If k + 1 ∈ ε and ` = k + 1, then, zk+1
Φk+1(ε) = zkΦk+1(ε) = vkΦk+1(ε) = zkε .

With this we prove that zk+1 satisfies the following properties:

• For every ε ⊆ [k + 1], ε 6= ∅, zk+1
ε = y and zk+1

∅ = x.
• For every ε ⊆ [d] with ε * [k + 1] and every 1 ≤ ` ≤ k + 1 we have that zk+1

ε = zk+1
Φ`(ε)

.

We proceed inductively until k = d − 1, where we use the face ε(d) = 1 and we have
zd ∈ QT1,...,Td(X) such that for every ε ⊆ [d], ε 6= ∅, zdε = y and zk+1

∅ = x, i.e., zd =

(x, y
[d]
∗ ) ∈ QT1,...,Td(X).

In the case d = 3 the proof of (5) =⇒ (1) can be illustrated in the following diagram.

z1 =

x

b

y

b

cc

aa

=⇒

y

b

a

c

∈ QT2,T3(X)

=⇒ v1 =

y

b

y

b

cc

aa
=⇒ z2 =

x

b

y

b

bb

yy
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y

b

y

b

∈ QT2,T3(X)

=⇒ v2 =

y

b

y

b

bb

yy
=⇒ v3 =

x

y

y

y

yy

yy
z3 =

Figure 4.4: Illustration of the proof (5) =⇒ (1) of Proposition 4.11 for the
cases d = 3 and j = 1.

(1) =⇒ (3). Let a∗ be such that z = (x, a∗) ∈ QT1,...,Td(X). We
prove that (y, a∗) ∈ QT1,...,Td(X). The idea of the proof is to construct two sequences
z1, . . . , zd−1 ∈ QT1,...,Td(X) and v1, . . . ,vd+1 ∈ QT1,...,Td(X) such that for every 1 ≤ k ≤ d
and every ε ⊆ [d], the value of zkε is equal to zη if and only if η ⊆ [k] and for every j ∈ [k],
ε(j) = η(j), i.e., the coordinates of zk depend only on the subsets of [k] with respect to
the coordinates of z. To do this, by Proposition 3.3 (4), we project z ∈ QT1,...,Td(X) in
QT1,...,Tk(X) using the subset [k] ⊆ [d] and ξ = ~0 ∈ {0, 1}d−k. We get that(

zε : ε ∈ {0, 1}d, ε[d]\[k] = ~0
)

=
(
zε : ε ∈ {0, 1}d, ε ⊆ [k]

)
∈ QT1,...,Tk(X).

We consider zk to be a lifting of
(
zε : ε ∈ {0, 1}d, ε ⊆ [k]

)
∈ QT1,...,Tk(X) to QT1,...,Td(X) using

Proposition 3.3 (5).

For the construction of the sequence v1, . . . ,vd+1 ∈ QT1,...,Td(X), we know that property
(1) is equivalent to property (5). Then, by (5), we have that v1 = (y, xd∗) ∈ QT1,...,Tk(X). We
have that for 1 ≤ d ≤ k, (vkε : ε(k) = 1) = (zkε : ε(k) = 0) and, by Lemma 4.3, we have the
existence of the point vk+1 ∈ QT1,...,Td(X) such that (vk+1

ε : ε(k) = 0) = (vkε : ε(k) = 0) and
(vk+1
ε : ε(k) = 1) = (zkε : ε(k) = 1). With this we finally have that vd+1 = (y, a∗).

We remark that (v1
ε : ε(1) = 1) = (z1

ε : ε(1) = 0) = x[d−1]. By Lemma 4.3, we have the
existence of a point v2 ∈ QT1,...,Td(X) such that

v2
ε =

{
v1
ε if ε(1) = 0,
z1
ε if ε(1) = 1.

Let ε ⊆ [d]. If ε = ∅, we have that v2
∅ = v1

∅ = y. If ε(1) = 0, then v2
ε = v1

ε = x = z1
ε . If

ε(1) = 1, we have that v2
ε = z1

ε . Thus, for every ε ⊆ [d], ε 6= ∅, v2
ε = z1

ε .
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Now assume that for all 1 ≤ k < d− 1 we have constructed using Lemma 4.3 inductively
vk+1 ∈ QT1,...,Td(X), with vk+1

∅ = y and vk+1
ε = zkε for all ε ⊆ [d], ε 6= ∅. Let ε ⊆ [d] with

ε(k) = 0. Then, zk+1
ε = zkε and vkΦk+1(ε) = zkΦk+1(ε) = zkε . Thus, (zk+1

ε : ε(k + 1) = 0) =

(vk+1
ε : ε(k + 1) = 1). By Lemma 4.3, we have the existence of the point vk+2 ∈ QT1,...,Td(X)

such that
vk+2
ε =

{
vk+1
ε if ε(k + 1) = 0,
zk+1
ε if ε(k + 1) = 1.

Thus vk+2
∅ = y. Let ε ⊆ [d] with ε 6= ∅. If ε(k + 1) = 1, then vk+2

ε = zk+1
ε . If ε(k + 1) = 0,

then
vk+2
ε = vk+1

ε = zkε = zk+1
ε .

We conclude that vk+2
ε = zk+1

ε for all ε ⊆ [d], ε 6= ∅. Inductively, we proceed until k = d− 2,
where we obtain a point vd ∈ QT1,...,Td using Lemma 4.3 with vd−1 and zd−1, and vd∅ = y and
vdε = zd−1

ε for all ε ⊆ [d], ε 6= ∅.

Finally, we observe that (vdε : ε(d) = 1) = (zε : ε(d) = 0). Using Lemma 4.3 with vd and z
we get the existence of the element vd+1 ∈ QT1,...,Td(X) such that

vd+1
ε =

{
vdε if ε(d) = 0,
zε if ε(d) = 1.

Let ε ⊆ [d]. If ε = ∅, then vd+1
ε = y. Now assume that ε 6= ∅. If ε(d) = 1, then vd+1

ε = zε.
If ε(d) = 0 we have that

vd+1
ε = vdε = zd−1

ε = zε.

We conclude that vd+1 = (y, a∗) ∈ QT1,...,Td(X).

In the case d = 3 the proof of (1) =⇒ (3) can be illustrated in the following diagram.

z =

x a

b c

d e

f g

v1 =

y

x

x

x

xx

xx

x a

x a

x a

x a

z1 =

y a

x a

x a

x a

v2 =
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x a

b c

x
a

b c

z2 = v3 =

y a

b c

x a

b c

v4 =

y a

b c

d e

f g

Figure 4.5: Illustration of the proof of (1) =⇒ (3) for the case d = 3.

(3) =⇒ (2) It follows directly. Since x[d] ∈ QT1,...,Td(X), then (y, x
[d]
∗ ) ∈ QT1,...,Td(X).

(2) =⇒ (1) Suppose that u = (x, a∗) = (x1,x2), v = (y, a∗) = (x3,x2) ∈ QT1,...,Td(X) for
some a∗ ∈ X [d]

∗ . Then, (uε : ε(d) = 1) = (vε : ε(d) = 1). By Proposition 3.3 (3) (using j = d)
and Lemma 4.3 we have the existence of a point z ∈ QT1,...,Td(X) such that

zε =

{
uε ε(d) = 0,
vΦd(ε) ε(d) = 1.

Then, z = (x1,x3), i.e., there exists b∗ ∈ Xd−1
∗ such that z = (x, b∗, y, b∗) ∈ QT1,...,Td(X).

Thus, by Remark 3.7, (x, y) ∈ RTd(X) and from the proof of (5) =⇒ (1), we conclude that
(x, y, . . . , y) ∈ QT1,...,Td(X).

We use Proposition 4.11 to prove the following lemma.

Lemma 4.12. Let d ≥ 2 be an integer, (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td, and x0 ∈ X a continuity point. Suppose that X has
the closing parallelepiped property. Then, Kx0

T1,...,Td
is relatively independent with respect to

their maximal Zej10 ∧ Z
ej2
0 -factors, for all j1, j2 ∈ [d] with j1 6= j2.

Proof. Let x,y ∈ X [d]
∗ be such that:

1. x ∈ Kx0
T1,...,Td

.

2. For every j1 ∈ [d], (yε : ε ∈ {0, 1}d \ {~0}, ε(j1) = 0) ∈ Kx0
T1,...,Tj1−1,Tj1+1,...,Td

.

44



3. For every j1, j2 ∈ [d], j1 6= j2,

(xε : ε ∈ {0, 1}d\{~0}, ε(j1) = 0, ε(j2) = 0) = (yε : ε ∈ {0, 1}d\{~0}, ε(j1) = 0, ε(j2) = 0),

i.e., the projection of x and y onto the coordinates given by the maximal Zej10 ∧ Z
ej2
0 -

factor are equal.

We want to prove that y ∈ Kx0
T1,...,Td

. By (3), the only coordinates ε ⊆ [d], ε 6= ∅ such
that xε 6= yε are the coordinates ε = [d] and ε = [d] \ {j1} for some j1 ∈ [d]. For the proof
we construct a sequence of points x0,x1 . . . ,xd ∈ Kx0

T1,...,Td
such that x0 = x and for every

j1 ∈ [d] we have

xj1−1
ε =


xε ε ⊆ [d], ε 6= [d] \ {`}, for some ` ∈ [d],
yε ε = [d] \ {r}, for every r ∈ {1, . . . , j1 − 1},
aj1 ε = [d],

for some aj1−1 ∈ X. Since X has the closing parallelepiped property, aj1 is unique. Thus,
xd = y ∈ Kx0

T1,...,Td
. For this, we project xj1−1, y in Kx0

T1,...,Tj1−1,Tj1+1,...,Td
. We observe that

(xj1−1
ε : ε ∈ {0, 1}d \ {~0}, ε(j1) = 0), (yε : ε ∈ {0, 1}d \ {~0}, ε(j1) = 0) only differ in the

coordinate [d] \ {j1}.

Claim. If we replace the coordinate ε = [d] \ {j1} of xj1−1 by the same coordinate of y we
obtain a point xj1 ∈ Kx0

T1,...,Td
.

Proof of the Claim. Consider the system (X,T1, . . . , Tj1−1, Tj1+1, . . . , Td). Since the points
(xj1−1

ε : ε ∈ {0, 1}d, ε(j1) = 0), (yε : ε ∈ {0, 1}d, ε(j1) = 0) differ only in one coordinate, by
Proposition 4.11 we have that

(xj1−1
[d]\{j1}, . . . , x

j1−1
[d]\{j1}, y[d]\{j1}) ∈ QT1,...,Tj1−1,Tj1+1,...,Td(X). (4.2)

Now, by Proposition 3.3 (4), we have that (xj1−1
[d]\{j1}, x

j1−1
[d] ) ∈ QTj1

(X). If we define
v1 ∈ X [d] as

v1
ε =

{
x[d]\{j1} if ε(j1) = 0,

xj1−1
[d] if ε(j1) = 1,

then, by Proposition 3.3 (5), v1 ∈ QT1,...,Td(X). The idea of the proof is to construct a
sequence of points u1, . . . ,ud in QT1,...,Td(X) such that u1 satisfies

u1
ε =


xj1−1

[d]\{j1} if ε(j1) = 0 ∧ ∃j2 6= j1, ε(j2) = 0,

y[d]\{j1} if ε = [d] \ {j1},
xj1−1

[d] if ε(j1) = 1 ∧ ∃j2 6= j1, ε(j2) = 0,

a if ε = [d],

for some a ∈ X. For this we use Proposition 3.3 (5). We construct the rest of the se-
quence u2, . . . ,ud ∈ QT1,...,Td(X) from u1 satisfying: uk[d]\{j1} = y[d]\{j1}, uk[d] = a and for
ε ⊆ [d] with ε 6= [d] and ε 6= [d] \ {j1}, the value ukε depends only in the elements of
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{j1, d, d− 1, . . . , d− k + 2} (with respect to the coordinates of xj1−1) in the following way.
If η ⊆ [d], we have that

ukε = xj1−1
η ⇐⇒

∀` ∈ {j1, d, d− 1, . . . , d− k + 2}, ε(`) = η(`),
∧

∀` ∈ [d] \ {j1, d, d− 1, . . . , d− k + 2}, η(`) = 1.
(4.3)

Here, we separate the proof of the Claim in three cases.

Case 1. If j1 = 1 we proceed inductively until k = d.

Case 2. If j1 6= 1 and j1 6= d, we proceed like in Case 1 until k = d− j1 + 2 and we obtain the
point ud−j1+1 ∈ QT1,...,Td(X). Here we have that the coordinates of ud−j1+1 depend on
the subset {j1, j1 + 1, . . . , d}. For the rest of the sequence, i.e., for d− j1 + 2 ≤ k ≤ d
we proceed inductively like in the previous case, but with a slight difference.

Case 3. If j1 = d we proceed like in the second part of Case 2.

In the three cases we will finish with ud ∈ QT1,...,Td(X) such that ud[d]\{j1} = y[d]\{j1} and
ud[d] = a, and the rest of the coordinates depend on the subset [d] like in (4.3), i.e., for every
ε ∈ {0, 1}d, ε 6= [d], ε 6= [d] \ {j1}, udε = xj1−1

ε and thus udε and xj1−1
ε differ just in the

coordinate ε = [d] \ {j1} in Kx0
T1,...,Td

. Then we choose ud to be xj1 .

Now to formalize the proof, we divide the construction of the sequence in two stages. In
Stage 1 we construct u1 ∈ QT1,...,Td(X), and in Stage 2 we construct the rest of the sequence
u2, . . . ,ud ∈ QT1,...,Td(X).

Stage 1. Construction of the point u1 ∈ QT1,...,Td(X).

We consider two cases, if QTj1
(x[d]\{j1}) = O(xj1−1

[d]\{j1}, Tj1) and if

QTj1
(xj1−1

[d]\{j1}) ) O(xj1−1
[d]\{j1}, Tj1). By Lemma 4.5 of [17], we have a Gδ-dense subset of

X such that QTj1
(x) = O(x, Tj1).

Case 1: QTj1
(xj1−1

[d]\{j1}) = O(x[d]\{j1}, T
j1−1
j1

). Let (ni)i∈N ⊆ Z be a sequence such that

T ni
j1
x[d]\{j1} → xj1−1

[d] .

By compactness we assume that

T ni
j1
yj1−1

[d]\{j1} → a.

Thus, by Proposition 3.3 (5), we have that there exists u1 ∈ QT1,...,Td(X) such that

u1
ε =


xj1−1

[d]\{j1} if ε(j1) = 0 ∧ ∃j2 6= j1, ε(j2) = 0,

y[d]\{j1} if ε = [d] \ {j1},
xj1−1

[d] if ε(j1) = 1 ∧ ∃j2 6= j1, ε(j2) = 0,

a if ε = [d].

Case 2: QTj1
(xj1−1

[d]\{j1}) ) O(xj1−1
[d]\{j1}, Tj1). We define the following projection maps.
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• φ1 is the projection from Kx0
T1,...,Td

onto the coordinates ε ∈ {0, 1}d where ε(j1) = 0 and
the coordinate ε = [d], which we call Kx0

{T1,...,Tj1−1,Tj1+1,...,Td}∪[d].

• φ2 is the projection from Kx0
{T1,...,Tj1−1,Tj1+1,...,Td}∪[d] onto Kx0

T1,...,Tj1−1,Tj1+1,...,Td
.

• φ3 is the projection from Kx0
T1,...,Tj1−1,Tj1+1,...,Td

onto the coordinates ε ∈ {0, 1}d where
ε(j1) = 0 and there exists j2 ∈ [d], j2 6= j1, such that ε(j2) = 0, which we call
Kx0
{T1,...,Tj1−1,Tj1+1,...,Td}\([d]\{j1}).

Let δ > 0. By Theorem 1.32 we consider 0 < δ′ < δ such that

B
((
xj1−1
ε : ε ∈ {0, 1}d, ε(j1) = 0

)
, δ′
)
⊆ φ2

(
B
((
xj1−1
ε : ε ∈ {0, 1}d, ε(j1) = 0,∨ ε = d

))
, δ
)
,

(4.4)
and 0 < δ′′ < δ′ such that

B((xj1−1
ε : ε ∈ {0, 1}d, ε(j1) = 0 ∧ ∃j2 ∈ [d], j2 6= j1, ε(j2) = 0), δ′′)

⊆ φ3(B((xj1−1
ε : ε ∈ {0, 1}d, ε(j1) = 0), δ′)).

(4.5)

From now, a point (aε : ε ∈ {0, 1}d, ε(j1) = 0) ∈ Kx0
T1,...,Tj1−1,Tj1+1,...,Td

will be written as
(a′η : η ∈ {0, 1}d−1), with the correspondance aε = a′η if and only if ε = Ψ0

j1
(η).

Let (a′η : η ∈ {0, 1}d−1) ∈ Kx0
T1,...,Tj1−1,Tj1+1,...,Td

be such that QTj1
(a′[d−1]) = QTj1

(a[d]\{j1}) =

O(a[d]\{j1}, Tj1) and

ρ((a′η : η ∈ {0, 1}d−1), ((xj1−1
η )′ : η ∈ {0, 1}d−1)) < δ′′.

Thus, by Remark 1.15,

ρ((a′η : η ∈ {0, 1}d−1, η 6= [d− 1]), ((xj1−1
η )′ : η ∈ {0, 1}d−1, η 6= [d− 1])) < δ′′.

Then, by (4.5), there exists (b′η : η ∈ {0, 1}d−1) such that

ρ((b′η : η ∈ {0, 1}d−1), (y′η : η ∈ {0, 1}d−1)) < δ′,

and (a′η : η ∈ {0, 1}d−1, η 6= [d − 1]) = (b′η : η ∈ {0, 1}d−1, η 6= [d − 1]). Therefore,
(a′η : η ∈ {0, 1}d−1) and (b′η : η ∈ {0, 1}d−1) correspond to Case 1. By (4.4), there exists
a[d] ∈ X with a[d] ∈ O(a[d]\{j1}, Tj1) and

ρ((aε : ε ∈ {0, 1}d, ε(j1) = 0,∨ ε = [d]), (xj1−1
ε : ε ∈ {0, 1}d, ε(j1) = 0,∨ ε = [d])) < δ. (4.6)

Now, let w ∈ QT1,...,Td(X) constructed in Case 1 for the point
(a′η : η ∈ {0, 1}d−1) ∈ Kx0

T1,...,Tj1−1,Tj1+1,...,Td
, i.e.,

wε =


a[d]\{j1} if ε(j1) = 0 ∧ ∃j2 6= j1, ε(j2) = 0,
b[d]\{j1} if ε = [d] \ {j1},
a[d] if ε(j1) = 1 ∧ ∃j2 6= j1, ε(j2) = 0,
uδ if ε = [d],
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for some uδ ∈ X. If δ → 0, by compactness, we can assume that uδ → a. Thus we have that
there exists u1 ∈ QT1,...,Td(X) such that

u1
ε =


xj1−1

[d]\{j1} if ε(j1) = 0 ∧ ∃j2 6= j1, ε(j2) = 0,

y[d]\{j1} if ε = [d] \ {j1},
xj1−1

[d] if ε(j1) = 1 ∧ ∃j2 6= j1, ε(j2) = 0,

a if ε = [d].

Stage 2. Construction of the points u2, . . . ,ud ∈ QT1,...,Td(X).

From now assume j1 6= d and consider the face (u1
ε : ε(d) = 0). We have two different

values, xj1−1
[d]\{j1} if ε(j1) = 0 and xj1−1

[d] if ε(j1) = 1. Since (x0,xj1−1) ∈ QT1,...,Td(X), using
Proposition 4.11 (4) and (5) with the subset {j1, d} there exists v2 ∈ QT1,...,Td(X) such that

v2
ε =


xj1−1

[d]\{d,j1} if ε(j1) = 0 ∧ ε(d) = 0,

xj1−1
[d]\{d} if ε(j1) = 1 ∧ ε(d) = 0,

xj1−1
[d]\{j1} if ε(j1) = 0 ∧ ε(d) = 1,

xj1−1
[d] if ε(j1) = 1 ∧ ε(d) = 1.

Hence, (v2
ε : ε ∈ {0, 1}d, ε(d) = 1) = (u1

ε : ε ∈ {0, 1}d, ε(d) = 0). By Lemma 4.3, there
exists u2 ∈ QT1,...,Td(X) such that

u2
ε =



xj1−1
[d]\{d,j1} if ε(j1) = 0 ∧ ε(d) = 0,

xj1−1
[d]\{d} if ε(j1) = 1 ∧ ε(d) = 0,

xj1−1
[d]\{j1} if ε(j1) = 0 ∧ ε(d) = 1, ε 6= [d] \ {j1},
xj1−1

[d] if ε(j1) = 1 ∧ ε(d) = 1, ε 6= [d],

y[d]\{j1} ε = [d] \ {j1},
a ε = [d].

Now assume that we have uk ∈ QT1,...,Td(X) for 2 ≤ k < d− j1 + 1
such that for ε ∈ {0, 1}d the value ukε depends only in the elements of
{j1, d, d− 1, . . . , d− k + 2} (with respect to the coordinates of xj1−1), except ε = [d]
and ε = [d] \ {j1}, where uk[d]\{j1} = y[d]\{j1} and uk[d] = a. We consider the face
(ukε : ε ∈ {0, 1}d, ε(d− k + 1) = 0). Since xj1−1 ∈ QT1,...,Td(X), then using Proposition
3.3 (4) and (5) with {j1, d, d− 1, . . . , d− k + 1} ⊆ [d], there exists vk+1 ∈ QT1,...,Td(X)
such that its coordinates depend only in the set {j1, d, d− 1, . . . , d− k + 1} (with
respect to the coordinates of xj1−1), thus (vk+1

ε : ε ∈ {0, 1}d, ε(d− k + 1) = 1) =
(ukε : ε ∈ {0, 1}d, ε(d− k + 1) = 0). Then, by Lemma 4.3, there exists uk+1 ∈ QT1,...,Td(X)
such that for every ε ∈ {0, 1}d

uk+1
ε =

{
vk+1
ε if ε(d− k + 1) = 0,
ukε if ε(d− k + 1) = 1.

By construction, we have that the coordinates of uk+1 only depend on the set
{j1, d, d− 1, . . . , d− k + 1} (with respect to the coordinates of xj1−1), except ε = [d] \ {j1}
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and ε = [d], where we have uk+1
[d]\{j1} = y[d]\{j1} and u[d] = a. Here we have to separate in

three cases, j1 = 1, j1 = d and j1 6= 1, d. The only difference in these three cases is just the
behavior of the set {j1, . . . , d, d− 1, . . . d− k + 2} but the procedure is the same.

• If j1 = 1 we proceed inductively until k = d.
• If j1 6= 1 and j1 6= d, we proceed like the previous case until k = d− j1 + 2 and obtain
the point ud−j1+1 ∈ QT1,...,Td(X). Here we have that the coordinates of ud−j1+1 depend
on the subset {j1, j1 + 1, . . . , d}, so the difference is that for ud−j1+1 we use the face
ε(j1 − 1) = 0 in Lemma 4.3 instead of ε(j1 − 1) = 0 and for the rest of the sequence,
i.e., d− j1 + 1 ≤ k < d, we use the face ε(d− k) = 0 until k = d− 1 where we use the
face ε(1) = 0 and we get the point ud ∈ QT1,...,Td(X).

• If j1 = d, for 2 ≤ k < d we use the face ε(d− k) = 0 until k = d− 1 where we use the
face ε(1) = 0 and we get the point ud ∈ QT1,...,Td(X).

Finally, for ud we have that its coordinates depend on the entire set [d] (with respect
to xj1−1) except the coordinates ε = [d] \ {j1} and ε = [d]. Thus, udε = xj1−1

ε for all
ε ∈ {0, 1}d, ε 6= [d] \ {j1}, ε 6= [d], ud[d]\{j1} = y[d]\{j1} and ud[d] = a.

To conclude, first we use the claim for 1 ≤ j1 ≤ d to construct the point xj1 ∈ Kx0
T1,...,Td

.
Finally, for xd ∈ Kx0

T1,...,Td

xdε =


xε ε ⊆ [d], ε 6= [d] \ {`}for every ` ∈ [d],
yε ε = [d] \ {r}, for some r ∈ [d],
ad ε = [d],

which allow to conclude that xd = y ∈ Kx0
T1,...,Td

.

In the case d = 3 the proof of previous lemma can be illustrated in the following diagram.
In such diagram we assume we can prove the relatively independence with respect to the
factors of Kx0

T2,T3
.
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(x0,x) =

x0

x{3}

x{1}

x{1,3}

x{1,2,3}x{2,3}

x{1,2}x{2}

(a)

(x0,y) =

x0

x{3}

x{1}

y{1,3}

y{1,2,3}y{2,3}

y{1,2}x{2}

(b)

=⇒

x0

x{2,3}

x{2}

y{2,3}

(c)

∈ QT2,T3(X)
v1 =

x{2,3}

x{2,3}

x{1,2,3}

x{1,2,3}

x{1,2,3}x{2,3}

x{1,2,3}x{2,3}

(d)
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x{2,3}

x{2,3}

x{1,2,3}

x{1,2,3}

ay{2,3}

x{1,2,3}x{2,3}

(e)

=⇒ u1 = v2 =

x{2}

x{2,3}

x{1,2}

x{1,2,3}

x{1,2,3}x{2,3}

x{1,2}x{2}

(f)

=⇒ u2 =

x{2}

x{2,3}

x{1,2}

x{1,2,3}

ay{2,3}

x{1,2}x{2}
=⇒ u3 =

x0

x{3}

x{1}

x{1,3}

ay{2,3}

x{1,2}x{2}

(g) (h)

Figure 4.6: Illustration of the proof of the claim in previous proof for the case
d = 3 and with respect to the factors of Kx0

T2,T3
. In (a) we have the point (x,x) ∈

QT1,...,Td(X). In (b) we have the point (x,y) such that the projection to Kx0
T2,T3

is (x0, x{2}, x{3}, y{2,3}). Then, by Proposition 3.3 (4) the point in (c) belongs to
QT2,T3(X). Additionally, the point in (d) belongs to QT1,T2,T3(X) by Proposition
3.3 (4) and (5) using the point z. Finally, for Cases 1 and 2 of Stage 1 we have
the existence of the point (e) in QT1,...,Td(X). Using Proposition 3.3 (4) and (5)
described in the proof we have that the point (f) is in QT1,T2,T3(X). Using Lemma
4.3 with u1 and v2 we have the existence of the point (g) in QT1,T2,T3(X). Finally,
using Lemma 4.3 with the points u2 and z we have the existence of the point (h)
in QT1,T2,T3(X).

4.2 Proof of Theorem 4.1
We can prove that RT1,...,Td(X) is an equivalence relation in the distal case.

Theorem 4.13. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a distal system with com-
muting transformations T1, . . . , Td. Then, RT1,...,Td(X) is a closed and invariant equivalence
relation on X.

Proof. It suffices to prove the transitivity of RT1,...,Td(X). Let (x, y), (y, z) ∈ RT1,...,Td(X).
By Proposition 4.11 (1) we have that (y, z

[d]
∗ ) ∈ QT1,...,Td(X). Now, by Proposition 4.11

(x, z
[d]
∗ ) ∈ QT1,...,Td(X) and thus (x, z) ∈ RT1,...,Td(X).

We also have the following property, which allows us to lift the relation RT1,...,Td(X) by a
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factor map and to prove our main theorem.

Theorem 4.14. Let π : Y → X be a factor map between topological dynamical sys-
tems (X,T1, . . . , Td) and (Y, T1, . . . , Td) with commuting transformations T1, . . . , Td. If
(X,T1, . . . , Td) is distal, then π × π(RT1,...,Td(Y )) = RT1,...,Td(X).

Proof. The proof is similar to Theorem 6.4 in [32]. By Proposition 3.8 we have that
π × π(RT1,...,Td(Y )) ⊆ RT1,...,Td(X). Let (y1, y2) ∈ RT1,...,Td(X). First, by Proposition 3.3
(5), there exist a sequence (yi)i∈N ⊆ Y and a sequence n(i) ⊆ Zd such that

lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d yi =

{
y1 ε 6= [d],
y2 ε = [d].

Let (xi)i∈N in X be such that π(xi) = yi. By compactness we can assume there exist
y1 ∈ X and a∗ ∈ X [d]

∗ such that

lim
i→∞

T
n1(i)ε1
1 · · ·T nd(i)εd

d xi =

{
x1 ε = ∅,
(a∗)ε ε 6= ∅.

If x = (x1, a∗), then π[d](x) = (y1, . . . , y1, y2). Let xI = (xε : ε(d) = 0) and
xII = (xε : ε(d) = 1). We have that xI ∈ QT1,...,Td−1

(X). By minimality, there exist sequences
gi ∈ G and n1(i) ⊆ Zd−1 with

∀η ∈ {0, 1}d−1, lim
i→∞

T
n1
1(i)η1

1 · · ·T n
1
d−1(i)ηd−1

d−1 gi(xI)η = x1.

By compactness, we can assume that

∀η ∈ {0, 1}d−1, lim
i→∞

T
n1
1(i)η1

1 · · ·T n
1
d−1(i)ηd−1

d−1 gi(xII)η = (x′II)η.

If we define m1(i) = (n1(i), 0) ∈ Zd, then

lim
i→∞

T
m1

1(i)ε1
1 · · ·Tm

1
d(i)εd

d gi(x)ε =

{
x1 if ε(d) = 0,
(x′II)η if ε = Ψ1

d(η).

Let x1 = (x
[d−1]
1 ,x′II). We observe that

π[d](x1) = (y1, . . . , y1, y3),

where y3 = lim
i→∞

T
n1
1(i)

1 · · ·T n
1
d−1(i)

d−1 giy2. Hence, (y1, y3) ∈ O((y1, y2), G∆
[2]).

Now assume we have produced points xj ∈ QT1,...,Td(X) for 1 ≤ j ≤ d with π[d](xj) = yj

such that xjε = x1 if there exists some k with d − j + 1 ≤ k ≤ d and ε(k) = 0, yj[d] = yj+2,
yjε = y1 for all ε 6= [d], and (y1, yj+2) ∈ O((y1, yj+1), G∆

[2]).
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Let xjI = (xjε : ε ∈ {0, 1}d, ε(d − j) = 0) and xjII = (xjε : ε ∈ {0, 1}d, ε(d − j) = 1). By
minimality, there exist a sequence gij ∈ G and nj+1(i) ⊆ Zd−1 such that

∀η ∈ {0, 1}d, lim
i→∞

T
nj+1
1 (i)η1

1 · · ·T n
j+1
d−j−1(i)ηd−j−1

d−j−1 T
nj+1
d−j(i)ηd−j

d−j+1 · · ·T n
j+1
d−1(i)ηd−1

d gij(xII)η = x1.

By compactness, we can assume that

∀η ∈ {0, 1}d, lim
i→∞

T
nj+1
1 (i)η1

1 · · ·T n
j+1
d−j−1(i)ηd−j−1

d−j−1 T
nj+1
d−j(i)ηd−j

d−j+1 · · ·T n
j+1
d−1(i)ηd−1

d gij(xII)η = (xj
′

II)η.

Consider mj+1(i) = (nj+1
1 (i), . . . , nj+1

d−j−1(i), 0, nj+1
d−j(i), . . . , n

j+1
d−1(i)) ⊆ Zd. If we define

xj+1 ∈ X [d] as

xj+1
ε =

{
x1 ε(d− j) = 0,

(xj
′

II)η ε = Ψ1
d−j(η),

then
lim
i→∞

T
mj+1

1 (i)ε1
1 · · ·Tm

j+1
d (i)εd

d gijx
j
ε = xj+1

ε .

Let yj+1 = π[d](xj+1). We have that yj+1
ε = y1 for all ε 6= [d] and yj+1

[d] = yj+3. We have
that (y1, yj+3) ∈ O((y1, yj+1), G∆

[2]).

Inductively we get x1, . . . ,xd and y1, . . . ,yd such that for all j ∈ [d], π[d](xj) = yj.

For xd, we have that xdε = x1 if there exists some k with 1 ≤ k ≤ d such that ε(k) = 0.
That means there is some x2 ∈ X such that

xd = (x1, . . . , x1, x2).

By Proposition 4.11, (x1, x2) ∈ RT1,...,Td(Y ). We observe that π(x2) = yd+2. By
distality and minimality we have that (y1, yd+2) ∈ O((y1, y2), G∆

[2]), then there ex-
ists gid+1 ∈ G such that (gid+1y1, g

i
d+1yd+2) → (y1, y2). By compactness we can as-

sume that (gid+1x1, g
i
d+1x2)→ (z1, z2). Then, as RT1,...,Td(X) is closed and invariant

(z1, z2) ∈ RT1,...,Td(Y ) and π × π(z1, z2) = (y1, y2).

We are now ready to prove our main theorem.

Proof of Theorem 4.1. (1) =⇒ (2). This follows from Proposition 3.10.

(2) =⇒ (1). Suppose that (X,T1, . . . , Td) does not verify the closing paral-
lelepiped property, then there exist x, y ∈ X with x 6= y and a∗ ∈ X

[d]
∗ such that

(x, a∗), (y, a∗) ∈ QT1,...,Td(X). By Proposition 4.11, we have that (x, y) ∈ RT1,...,Td(X). Then,
x = y, which is a contradiction.

(1) =⇒ (3). This is a consequence of Lemma 4.12.

(3) =⇒ (1). If (X,T1, . . . , Td) has the closing parallelepiped property, by Lemma 4.12
we consider Kx0

T1,...,Td
for a fixed x0 ∈ X.
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Let (Y, T1, . . . , Td) be an extension of X which is a joining of the maximal Zej0 -factors for
j ∈ [d]. Then, Y ⊆

∏
j∈[d]

Y/QT̂j
is invariant under the transformations T̂1, . . . , T̂d. Consider the

action T̂j on Y . Let ~y = (y1, . . . , yd) ∈ Y . As the component j of ~y is an element of Y/QTj
,

this component is invariant under the action of T̂j, i.e.,

T̂j~y = (Tjy1, . . . , Tjyj−1, yj, Tjyj+1, . . . , Tjyd) .

We will see that Y has the closing parallelepiped property in QT̂1,...,T̂j
(Y ). Indeed, let

y ∈ QT̂1,...,T̂j
(Y ), then there exists (~yi)i∈N ⊆ N and (n(i))i∈N ⊆ Zd such that

∀ε ∈ {0, 1}d, ~yε = lim
i→∞

T̂
n1(i)ε1
1 · · · T̂ nd(i)εd

d ~yi.

We now study the component ε = [d] of this element. We have that,

~y[d] = lim
i→∞

T̂
n1(i)
1 · · · T̂ nd(i)

d ~yi.

So, for every j ∈ [d]

(~y[d])j = lim
i→∞

T
n1(i)
1 · · ·T nd(i)

d (~yi)j,

= lim
i→∞

T
n1(i)
1 · · ·T nj−1(i)

j−1 T
nj+1(i)
j+1 · · ·T nd(i)

d (~yi)j,

= lim
i→∞

T̂
n1(i)η1
1 · · ·T nd(i)ηd

d (~yi)j,

where η = [d] \ {j}. Thus, the component j of ~y[d] corresponds to the component j of ~y[d]\{j}.
Hence the last component of the elements of the cube QT̂1,...,T̂d

(Y ) is a function of the rest of
the coordinates. From this, Y has the closing parallelepiped property. Since (1) is equivalent
with (2) we have that RT̂1,...,T̂d

(Y ) = ∆Y . By Theorem 4.14 we have that RT1,...,Td(X) = ∆X .
We then conclude that X also has the closing parallelepiped property.

The following corollary is proved implicitly in Theorem 4.1.

Corollary 4.15. Let π : (Y, T1, . . . , Td) → (X,T1, . . . , Td) be a factor map between minimal
distal systems (X,T1, . . . , Td) and (Y, T1, . . . , Td) with commuting transformations T1, . . . , Td.
If Y has the closing parallelepiped property, then X has it too. In particular, having the
closing parallelepiped property is an invariant under factor maps in the class of minimal
distal systems.

Remark. Observe that if (~y1, ~y2) ∈ QTj(Y ), then (~y1)j = (~y2)j. This implies that the
extension in the corollary also satisfies

d⋂
i=1

QTi(Y ) = ∆Y .
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Remark. Consider the case d = 2. We have that Y is a joining between Y/QT1
(Y ) and

Y/QT2
(Y ). Since the next level is the trivial system, by the relatively independence of these

systems we conclude that Y ∼= Y/QT1 (Y ) × Y/QT2 (Y ), i.e., Y is a product system, generalizing
the result of Donoso and Sun in [7] for the distal case.

Using Theorem 4.1 and Theorem 4.14 we get the following corollary.

Corollary 4.16. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal system
with commuting transformations T1, . . . , Td. Then, (X/RT1,...,Td

(X), T1, . . . , Td) has the closing
parallelepiped property. Moreover, this system is the maximal factor with this property, i.e.,
any other factor of X with the closing parallelepiped property factorizes through it.

Proof. Observe that if (Z, T1, . . . , Td) is a factor of (X,T1, . . . , Td) such that
RT1,...,Td(Z) = ∆Z , then, by Theorem 4.14, π×π(RT1,...,Td(X)) = RT1,...,Td(Z) = ∆Z . That is,
there exists a factor map from (X/RT1,...,Td

(X), T1, . . . , Td) to (Z, T1, . . . , Td). It remains to prove
that RT1,...,Td(X/RT1,...,Td(X)) = ∆X/RT1,...,Td

(X). Let π : X → X/RT1,...,Td
(X) be the quotient map

and (y1, y2) ∈ RT1,...,Td(X/RT1,...,Td(X)). By Theorem 4.14, there exists (x1, x2) ∈ RT1,...,Td(X)
with π(x1) = y1 and π(x2) = y2. But y1 = π(x1) = π(y1) = y2, so RT1,...,Td(X/RT1,...,Td(X))
coincides with the diagonal of X/RT1,...,Td(X).

4.3 Recurrence in systems with the closing parallelepiped
property

In this section we study sets of return times for distal systems with the closing parallelepiped
property. In particular, we get a characterization of minimal distal systems with this property
using return time ideas.

We define the sets of return times for Zd-minimal systems in the following way.

Definition 4.17. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal system with
commuting transformations T1, . . . , Td. Consider x ∈ X and an open neighborhood U of x.
We define the set of return times NT1,...,Td(x, U) = {(n1, . . . , nd) ∈ Zd : T n1

1 · · ·T
nd
d x ∈ U}.

A subset A of Zd is a set of return times for a minimal distal system if there exists a
minimal distal system (X,T1, . . . , Td), x ∈ U and an open neighborhood U of x such that
NT1,...,Td(x, U) ⊆ A.

We can characterize Zd sets of return times for distal systems via the closing parallelepiped
property. For this we consider the following definition

Definition 4.18. Let d ≥ 2 be an integer, B1, . . . , Bd ⊆ Zd−1. We define the d-joining of
B1, . . . , Bd as the set

B = {(n1, . . . , nd) ∈ Zd : ∀i ∈ [d], (n1, . . . , ni−1, ni+1, . . . , nd) ∈ Bi} ⊆ Zd.

We remark that the 2-joining of B1, B2 ⊆ Z is the Cartesian product B1 × B2. Now we
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have the following theorem

Theorem 4.19. Let d ≥ 2 be an integer. A subset B ⊆ Zd is a set of return times for a
minimal distal with the closing parallelepiped property if and only if B contains a d-joining
of d subsets B1, . . . , Bd ⊆ Zd.

Proof. Let (X,T1, . . . , Td) be a minimal distal system with an extension (Y, T̂1, . . . , T̂d) like
in Theorem 4.1, x ∈ X and U be an open neighborhood of x. Denote by π : Y → X the factor
map. Let (y1, . . . , yd) ∈ Y such that π(y1, . . . , yd) = x and Ũ be a neighborhood of (y1, . . . , yd)
in Y such that π(Ũ) ⊆ U . Then, we have that NT̂1,...,T̂d

((y1, . . . , yd), Ũ) ⊆ NT1,...,Td(x, U).
Now, we consider the factor map πi : Y → Yi, the projection onto the i-th coordinate.
Since all the systems that we are considering are minimal and distal, then the map πi is
open, by Theorem 1.32. So π(Ũ) is open in Yi and we have that NT̂1,...,T̂d

((y1, . . . , yd), Ũ) =

NT1,...,Td(yi, πi(Ũ)). But, in Yi the action Ti is the identity, and the action on Yi is an
action of Zd−1. So we have that (n1, . . . , nd) ∈ NT̂1,...,T̂d

((y1, . . . , yd), Ũ) if and only if
∀i ∈ [d], (n1, . . . , ni−1, ni+1, . . . , nd) ∈ NT1,...,Ti−1,Ti+1,...,Td(yi, πi(Ũ)).

Conversely, let Bi ⊆ Zd−1 be a set of return times for a minimal distal system and for
i ∈ [d] let (Yi, T1, . . . , Ti−1, Ti+1, . . . , Td) be a minimal distal system. Consider yi ∈ Yi and an
open neighborhood Ui of yi such that

NT1,...,Ti−1,Ti+1,...,Td(yi, Ui) ⊆ Bi.

We define B = {n ∈ Zd : ∀i ∈ [d], (n1, . . . , ni−1, ni+1, . . . , nd) ∈ Bi}. We prove that B is
a set of return times for a minimal distal system with the closing parallelepiped property.

For every Yi we consider the action Ti as the identity, and we set Y =
d∏
i=1

Yi, y = (y1, . . . , yd)

and Z = O(y, T1, . . . , Td) ⊆ Y , which is minimal and distal. As Ti acts trivially in the
i-th coordinate on Z, then Z has the closing parallelepiped property. Now, we consider

U =

(
d∏
i=1

Ui

)
∩ Z, which is an open neighborhood of y in Z. Then, NT1,...,Td(y, U) ⊆ B and

NT1,...,Td(y, U) = {n ∈ Zd : ∀i ∈ [d], (n1, . . . , ni−1, ni+1, . . . , nd) ∈ NT1,...,Ti−1,Ti+1,...,Td(yi, Ui)}.

We denote by BT1,...,Td the family generated by sets of return times arising from Zd-minimal
distal systems with the closing parallelepiped property, and by B∗T1,...,Td the family of subsets
of Zd which have non-empty intersection with every set in BT1,...,Td .

Lemma 4.20. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td. Suppose (x, y) ∈ RT1,...,Td(X). Let (Z, T1, . . . , Td) be
a minimal distal system with RT1,...,Td(Z) = ∆Z and let J be a joining between X and Z.
Then, for z0 ∈ Z we have that (x, z0) ∈ J if and only if (y, z0) ∈ J .
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Proof. The proof is similar to the proof of Lemma 6.19 in [7], which is an adaptation of the
proof of Theorem 3.5 in [27]. Let W = ZZ and TZ1 , . . . , TZd : W → W be the corresponding
commuting transformations. Let ω∗ ∈ W be the point satisfying ω∗(z) = z for all z ∈ Z and
Z∞ = O(ω∗, GZ), where GZ is the group generated by TZ1 , . . . , TZd . Then, Z∞ is minimal
and distal. So for any ω ∈ Z∞, there exists p ∈ E(Z,G) such that ω(z) = pω∗(z) = p(z) for
any z ∈ Z. Since (Z, T1, . . . , Td) is minimal and distal, E(Z,G) is a group, so p : Z → Z is
surjective. Thus, there exists zω ∈ Z such that ω(zω) = z0.

Take a minimal subsystem (A, T1 × TZ1 , . . . , Td × TZd ) of the product system
(X × Z∞, T1 × TZ1 , . . . , Td × TZd ). Let πX : A → X be the natural coordinate projection.
Then, πX is a factor map between two distal minimal systems. By Theorem 4.14, there exist
ω1, ω2 ∈ W such that ((x, ω1), (y, ω2)) ∈ RT̂1,...,T̂d

(A), where T̂i = Ti × TZi , for i ∈ [d].

Let z1 ∈ Z be such that ω1(z1) = z0. Denote by π : A → X × Z, π(u, ω) = (u, ω(z1))
for (u, ω) ∈ A, u ∈ X and ω ∈ W . Consider the projection B = π(A). Then,
(B, T1 × T1, . . . , Td × Td) is a minimal distal subsystem of (X × Z, T1 × T1, . . . , Td × Td) and
since π(x0, ω

1) = (x, z0) ∈ B we have that J contains B. Suppose that π(x, ω2) = (x, z2).
Then, ((x, z0), (y, z2)) ∈ RT1×T1,...,Td×Td(B) and we conclude that (z0, z2) ∈ RT1,...,Td(Z). Since
RT1,...,Td(Z) = ∆Z we have that z0 = z2 and thus (y, z0) ∈ B ⊆ J .

Lemma 4.21. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . Td. Then, for x, y ∈ X, (x, y) ∈ RT1,...,Td(X) if and only
if NT1,...,Td(x, U) ∈ B∗T1,...,Td for any open neighborhood U of y.

Proof. The proof is similar to Theorem 6.20 in [7]. Suppose N(x, U) ∈ B∗T1,...,Td for
any open neighborhood U of y. Since X is distal, RT1,...,Td(X) is an equivalence re-
lation. Let π be the projection map π : X → Y = X/RT1,...,Td(X). By Propo-
sition 4.16 we have that RT1,...,Td(Y ) = ∆Y . Since (X,T1, . . . , Td) is distal, then
the factor map π is open and π(U) is an open neighborhood of π(y). Particularly,
NT1,...,Td(x, U) ⊆ NT1,...,Td(π(x), π(U)). Let V be an open neighborhood of π(x). By
hypothesis, we have that NT1,...,Td(x, U) ∩NT1,...,Td(π(x), π(U)) 6= ∅, which implies that
NT1,...,Td(π(x), π(U)) ∩NT1,...,Td(π(x), V ) 6= ∅. This implies that π(U) ∩ V 6= ∅. But this
holds for every V , then we have that π(x) ∈ π(U) = π(U). Finally, since this fact holds for
every U we conclude that π(x) = π(y). This shows that (x, y) ∈ RT1,...,Td(X).

Conversely, suppose that (x, y) ∈ RT1,...,Td(X). Let U be an open neighborhood of y and A
be a B∗T1,...,Td set. Then, there exist a minimal distal system (Z, T1, . . . , Td) withRT1,...,Td(Z) =
∆Z , an open set V ⊆ Z and z0 ∈ V such that NT1,...,Td(z0, V ) ⊆ A. Let J be the orbit closure
of (x, z0) under Ti × Ti for i ∈ [d]. By distality we have that (J, T1 × T1, . . . , Td × Td) is a
minimal system and (x, z0) ∈ J . By Theorem 4.14 we have that (y, z0) ∈ J and particularly
there exist sequences (ni)i∈N ⊆ Zd such that (T

ni
1

1 · · ·T
ni
d

d x, T
ni
1

1 · · ·T
ni
d

d z0)→ (y, z0). This
implies that NT1,...,Td(x, U) ∩NT1,...,Td(z0, V ) 6= ∅ and the proof is finished.

We get the following characterization of the closing parallelepiped property for minimal
distal systems.
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Corollary 4.22. Let d ≥ 2 be an integer and (X,T1, . . . , Td) be a minimal distal system with
commuting transformations T1, . . . , Td. Then, (X,T1, . . . , Td) has the closing parallelepiped
property if and only if for every x ∈ X and every open neighborhood U of x, NT1,...,Td(x, U)
contains the d-joining of d sets of return times for Zd−1-distal systems.

Proof. We only need to prove one implication. Let us suppose that there exists
(x, y) ∈ RT1,...,Td(X) \∆X and let U, V be open neighborhoods of x and y respectively such
that U ∩ V = ∅. By assumption NT1,...,Td(x, U) is a BT1,...,Td set, and by Lemma 4.21
NT1,...,Td(x, V ) has nonempty intersection with NT1,...,Td(x, U). This implies that U ∩ V 6= ∅,
a contradiction. We conclude that RT1,...,Td(X) = ∆X and therefore (X,T1, . . . , Td) has the
closing parallelepiped property.
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Chapter 5

Examples of systems with the closing
parallelepiped property

In this chapter we present a family of examples of systems with the closing parallelepiped
property for each d ≥ 2.

5.1 Affine transformations in the torus.
Let r ≥ 1, α ∈ Tr and A be a r × r unipotent integer matrix, i.e., (A − I)p = 0 for some
p ∈ N. A basic result about unipotent matrices is the following.

Proposition 5.1. Let A be a square matrix. Then, A is unipotent if and only if its charac-
teristic polynomial, pA(t), is a power of t−1. Equivalently, A is unipotent if all its eigenvalues
are 1.

Let T : Tr → Tr be the affine transformation x 7→ Ax + α. Let H be the group of
transformations of Tr generated by A and the translations of Tr. That is, every element
h ∈ H is a map x 7→ Aix + β for some i ∈ Z and β ∈ Tr. The group H acts transitively on
Tr and we may identify this space with H/Γ, where Γ is the stabilizer of 0, which consists of
the powers of A. The system (Tr, µ⊕r, T ) is called an affine nilsystem (here µ is the Haar
measure on T). Properties such as transitivity, minimality and ergodicity are equivalent for
systems in this class and this can be checked by looking at the rotation induced by α on the
projection Tr/ker(A− I) [30].

We consider different affine transformations Ti : Tr → Tr, x 7→ Aix + αi, where Ai is an
unipotent matrix for every i ∈ {1, . . . , d}. We can still regard the system (Tr, T1, . . . , Td) as a
nilsystem (described in Chapter 2) as long as the matrices commute. Let G be the group of
transformations of Tr generated by the matrices A1, . . . , Ad and the translations of Tr. Then,
every element g ∈ G is a map x 7→ A(g)x+β(g), where A(g) = Am1

1 · · ·A
md
d , m1, . . . ,md ∈ Z

and β(g) ∈ Tr.

A simple computation shows that if g1, g2 ∈ G, then the commutator [g1, g2] is the map
x 7→ x+ (A(g1)− I)β(g2)− (A(g2)− I)β(g1) and thus it is a translation of Tr. On the other
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hand, if g ∈ G and β ∈ Td, then [g, β] is the translation x 7→ x + (A(g) − I)β. It follows
that the iterated commutator [· · · [[g1, g2], g3] · · · gk] belongs to Tr and is contained in the
image of (A(g3) − I) · · · (A(gk) − I). If k is large enough, this product is trivial. So G is a
nilpotent Lie group. The torus Tr can be identified with G/Γ, where Γ is the stabilizer of 0,
which is the group generated by the matrices A1, . . . , Ad. We refer to (Tr, T1, . . . , Td) as an
affine nilsystem with d transformations. It is worth noting that the transformations Ti and
Tj commute if and only if (Ai − I)αj = (Aj − I)αi in Tr.

By a theorem from Leibman [28] we get:

Proposition 5.2. Let (Tr, T1, . . . , Td) be an affine nilsystem with d transformations. Then,
the properties of transitivity, minimality, ergodicity and unique ergodicity under the action
of 〈T1, . . . , Td〉 are equivalent.

We consider some conditions on the commuting transformations T1, . . . , Td such that
(Tr, T1, . . . , Td) has the closing parallelepiped property. We start by presenting the examples
but the proofs will be given in subsequent sections. First, we consider the case d = 2. We
have the following lemma.

Lemma 5.3. Let (Tr, T1, T2) be an affine nilsystem with 2 commuting transformations, with
Tix = Aix+ αi for i ∈ {1, 2}. Then, we have that for every n,m ∈ Z,

T n1 T
m
2 x = T n1 x+ Tm2 x− x,

if and only if the following conditions hold

(A1 − I)(A2 − I) = 0. (5.1)

(A1 − I)α2 = (A2 − I)α1 = 0. (5.2)

In particular, if conditions (5.1) and (5.2) are satisfied we have that

QT1,T2(X) = {(x, T n1 x, T x2 , T n1 x+ Tm2 x− x) : x ∈ Tr, n,m ∈ Z},

and thus (Tr, T1, T2) has the closing parallelepiped property.

Example. Consider the following matrices

A1 =


1 0 0 1 0 2
0 1 0 3 1 4
0 0 1 6 3 6
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , A2 =


1 0 0 1 1 2
0 1 0 2 2 4
0 0 1 1 2 3
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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For the first matrix, the eigenspace is given by,

W1(A1) =

〈



1
0
0
0
0
0

 ,


0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


0
0
0
−2
2
1




〉
.

For the second one, the eigenspace is given by,

W1(A2) =

〈



1
0
0
0
0
0

 ,


0
1
0
0
0
0

 ,


0
0
1
0
0
0

 ,


0
0
0
−1
−1
1




〉
.

It is easy to see that (A1−I)(A2−I) = 0 and we can choose α1 ∈ W1(A2) and α2 ∈ W1(A1)
such that (T6, T1, T2) has the closing parallelepiped property.

We can generalize the conditions (5.1) and (5.2) in the following way.

Lemma 5.4. Let (Tr, T1, . . . , Td) be an affine nilsystem with d commuting transformations,
with Tix = Aix+ αi for i ∈ [d]. Then, we have that for every n = (n1, . . . , nd) ∈ Zd,

T n1
1 · · ·T

nd
d x = (−1)d

d−1∑
i=0

(−1)i+1 ©
k∈I⊆[d]
|I|=i

T nk
k x

if and only if the following conditions hold:

d∏
i=1

(Ai − I) = 0, (5.3)

∀j ∈ [d],
d∏
i=1
i 6=k

(Ai − I)αj = 0. (5.4)

In particular, if conditions (5.3) and (5.4) hold the system (Tr, T1, . . . , Td) has the closing
parallelepiped property.

5.2 Proof of Lemma 5.3 and 5.4
We start with the following proposition which gives a description of the iterates of an affine
transformation.
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Proposition 5.5. Let r ≥ 1 be an integer, α ∈ Tr, A a r × r unipotent integer matrix and
T : Tr → Tr be the affine transformation x 7→ Ax+α. Then, for every n ∈ Z and x ∈ Tr we
have that

T nx = Anx+ sgn(n)

|n|−1∑
k=1

Asgn(n)kα1 + β(n),

where,

β(n) =


α if n ≥ 1,
A−nα if n ≤ −1,
0 if n = 0,

and

sgn(n) =


1 if n ≥ 1,
0 if n = 0,
−1 if n ≤ 1.

Proof. Let x ∈ Td. We observe that

Tx = Ax+ α,
T 2x = T (Ax+ α) = A2x+ Aα + α.

Suppose that for some n ≥ 1 we have proved that T nx = Anx+
n−1∑
k=0

Akα. Then,

T n+1x = T

(
Anx+

n−1∑
k=0

Akα

)
,

= A

(
Anx+

n−1∑
k=0

Akα

)
+ α,

= An+1x+
n∑
k=1

Akα + α,

= An+1x+
n∑
k=0

Akα.

Hence,

∀n ≥ 1, T nx = Anx+
n−1∑
k=0

Akα.

For the case n ≤ −1 we observe that

x = T n(T−nx) = An(T−nx) +
n−1∑
k=0

Akα.
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Therefore,

T−nx = A−nx− A−n
n−1∑
k=0

Akα,

= A−nx−
n−1∑
k=0

Ak−nα,

= A−nx−
n∑
k=1

A−kα.

Finally,

∀n ∈ Z, T nx = Anx+ sgn(n)

|n|−1∑
k=1

Asgn(n)kα + β(n).

First we focus on the case of two commuting transformations. The following propositions
give algebraic consequences of conditions (5.1) and (5.2).

Proposition 5.6. Let r ≥ 1 be an integer, A1, A2 be two r × r unipotent integer matrices
and α1, α2 ∈ Tr be such that condition (5.1) holds and the transformations x 7→ Aix + αi,
i ∈ {1, 2}, commute. Then, we have that for every n,m ∈ Z,

Am2 α1 = mA2α1 − (m− 1)α1,
An1α2 = nA1α2 − (n− 1)α2.

Proof. We observe that

(A1 − I)2α2 = (A1 − I)(A1 − I)α2 = (A1 − I)(A2 − I)α2 = 0.

Then,
A2

1α2 = 2A1α2 − α2.

By induction we prove that

∀n ≥ 0, An1α2 = nA1α2 − (n− 1)α2.

We observe that

A1(−A1α2 + 2α2) = −A2
1α2 + 2A1α2 = −2A1α2 + α2 + 2A1α2 = α2.

Hence, A−1
1 α2 = −A1α2 + 2α2. Now, assume that the following formula works for some

n ≥ 1,
A−n1 α2 = −nA1α2 + (n+ 1)α2.

Then, by the induction hypothesis,

A1(−(n+ 1)A1α2 + (n+ 2)α2) = −(n+ 1)A2
1α2 + (n+ 2)A1α2,

= −(n+ 1)(2A1α2 − α2) + (n+ 2)A1α2,
= −2(n+ 1)A1α2 + (n+ 1)α2 + (n+ 2)A1α2,
= −nA1α2 + (n+ 1)α2,
= A−n1 α2.
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Hence, −(n + 1)A1α2 + (n + 2)α2 = A−1
1 (A−n1 α2) = A

−(n+1)
1 α2. Thus, we conclude that

for every n ∈ Z
A−n1 α2 = −nA1α2 + (n+ 1)α2.

The argument for A2 and α1 is the same.

Proposition 5.7. Let r ≥ 1 be an integer, A1, A2 be two r× r commuting unipotent integer
matrices such that condition (5.1) hold. Then, for every n,m ∈ Z we have that

An1A
m
2 = An1 + Am2 − I.

Proof. First we consider the cases n,m ≥ 1. Assume that for some n ≥ 1,
An1A2 = An1 + A2 − I. We have that

An+1
1 A2 = An+1

1 + A1A2 − A1 = An+1
1 + A1 + A2 − I − A1 = An+1

1 + A2 − I.

Then, by induction, we have that for every n ≥ 1

An1A2 = An1 + A2 − I.

Also, by induction we can prove that

∀n,m ≥ 1, An1A
m
2 = An1 + Am2 − I.

Let m ≥ 1. We have that,
An1 = An1A

m
2 + I − Am2 .

Then, An1A
−m
2 = An1 + A−m2 − I. Finally, we get that

∀n,m ∈ Z, An1Am2 = An1 + Am2 − I.

Proof of Lemma 5.3. Let x ∈ Tr and n,m ∈ Z. We compute an expression for T n1 Tm2 x.
By Proposition 5.5, we have that

T n1 T
m
2 x = T n1

(
Am2 x+ sgn(m)

|m|−1∑
j=1

A
sgn(m)j
2 α2 + β2(m)

)
,

= An1

(
Am2 x+ sgn(m)

|m|−1∑
j=1

A
sgn(m)j
2 α2 + β2(m)

)
+ sgn(n)

|n|−1∑
k=1

A
sgn(n)k
1 α1 + β1(n),

= An1A
m
2 x+ sgn(m)An1

|m|−1∑
j=1

A
sgn(m)j
2 α2 + An1β2(m)

+ sgn(n)
|n|−1∑
k=1

A
sgn(n)k
1 α1 + β1(n).
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Now, by Proposition 5.7,

T n1 T
m
2 x = An1x+ Am2 x− x+ sgn(m)An1

|m|−1∑
j=1

A
sgn(m)j
2 α2 + An1β2(m)

+ sgn(n)
|n|−1∑
k=1

A
sgn(n)k
1 α1 + β1(n),

= −x+ T n1 x+ Am2 x+ sgn(m)An1

|m|−1∑
j=1

A
sgn(m)j
2 α2 + An1β2(m),

= −x+ T n1 x+ Am2 x+ sgn(m)
|m|−1∑
j=1

An1A
sgn(m)j
2 α2 + An1β2(m),

= −x+ T n1 x+ Am2 x+ sgn(m)
|m|−1∑
j=1

(An1 + A
sgn(m)j
2 − I)α2 + An1β2(m),

= −x+ T n1 x+ Am2 x+ sgn(m)(|m| − 1)An1α2

+ sgn(m)
|m|−1∑
j=1

A
sgn(m)j
2 α2 − sgn(m)(|m| − 1)α2 + An1β2(m).

Then, by Proposition 5.6,

T n1 T
m
2 x = −x+ T n1 x+ Am2 x+ sgn(m)(|m| − 1)(nA1α2 − (n− 1)α2)

+ sgn(m)
|m|−1∑
j=1

A
sgn(m)j
2 α2 − sgn(m)(|m| − 1)α2 + nA1β2(m)− (n− 1)β2(m),

= −x+ T n1 x+ Tm2 x+ sgn(m)(|m| − 1)nA1α2 − sgn(m)(|m| − 1)nα2

+nA1β2(m)− nβ2(m),
= −x+ T n1 + Tm2 x+ n(A1 − I)(sgn(m)(|m| − 1)α2 + β2(m)).
= −x+ T n1 + Tm2 x+ nC(m)(A1 − I)α2,

where C(m) is a matrix which depends on m. If α2 is an eigenvector of A1 (and α1 is an
eigenvector of A2) we have that

T n1 T
m
2 x = −x+ T n1 x+ Tm2 x.

So,
QT1,T2(X) = {(x, T n1 x, T x2 , T n1 x+ Tm2 x− x) : x ∈ Tr, n,m ∈ Z},

and thus (Tr, T1, T2) has the closing parallelepiped property.

Conversely, assume that for every n,m ∈ Z and x ∈ X we have that

T n1 T
m
2 x = T n1 x+ T n2 x− x.

In particular,
T1T2x = T1x+ T2x− x,
T1(A2x+ α2) = A1x+ α1 + A2x+ α2 − x,
A1(A2x+ α2) + α1 = A1x+ α1 + A2x+ α2 − x,
A1A2x+ A1α2 + α1 = A1x+ α1 + A2x+ α2 − x,
A1A2x+ A1α2 = A1x+ A2x+ α2 − x.
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If x = 0 we have that
A1α2 = α2 =⇒ (A1 − I)α2 = 0.

Then, (A2 − I)α1 = (A1 − I)α2 = 0 and condition (5.2) is satisfied. We conclude that for
every x ∈ Tr,

A1A2x = A1x+ A2x− x.

This implies that

A1A2 = A1 + A2 − I =⇒ (A1 − I)(A2 − I) = 0.

Now we consider the affine nilsystem (Tr, T1, . . . , Td). We remark that Condition (5.3) can
be rewritten as

d∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak = 0, (5.5)

since the two expressions, the left side of equations (5.8) and (5.5), are equal up to an
eventually change of sign.

Indeed, suppose that for some d ∈ N the two formulas are equalup to a change of sign.
Then,

d+1∏
i=1

(Ai − I) = 0 ⇔ (Ad+1 − I)
d∏
i=1

(Ai − I) = 0,

⇔ (Ad+1 − I)

 d∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak

 = 0,

⇔ Ad+1

d∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak −
d∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak = 0,

⇔
d∑
i=0

(−1)i+1
∏

k∈I∪{d+1}
I⊆[d]
|I|=i

Ak −
d∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak = 0,

⇔
d+1∑
i=1

(−1)i
∏

k∈I⊆[d+1]
|I|=i, d+1∈I

Ak −
d∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak = 0,

⇔
d+1∑
i=1

(−1)i
∏

k∈I⊆[d+1]
|I|=i, d+1∈I

Ak +
d+1∑
i=0

(−1)i
∏

k∈I⊆[d+1]
|I|=i, d+1/∈I

Ak = 0,

⇔
d+1∑
i=1

(−1)i
∏

k∈I⊆[d+1]
|I|=i

Ak = 0,

⇔
d+1∑
i=1

(−1)i+1
∏

k∈I⊆[d+1]
|I|=i

Ak = 0,

(5.6)
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with the convention
∏
k∈∅

Ak = I. We get the following proposition.

Proposition 5.8. Let r ≥ 1 be an integer, A1, . . . , Ad be r× r commuting unipotent integer
matrices which satisfy condition (5.3). Then, for every n ∈ Zd we have

d∏
i=1

Ani
i = (−1)d

d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ank
k .

Proof. By (5.6) we have that

A2
1

d∏
i=2

Ai = A1

(−1)d
d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak

 ,

= (−1)d
d−1∑
i=0

(−1)i+1A1

∏
k∈I⊆[d]
|I|=i

Ak,

= (−1)d
d−1∑
i=0

(−1)i+1A1

∏
k∈I⊆[d]

|I|=i, I 6={2,...,d}

Ak + (−1)d(−1)d
d∏
i=1

Ai,

= (−1)d
d−1∑
i=0

(−1)i+1A1

∏
k∈I⊆[d]

|I|=i, I 6={2,...,d}

Ak + (−1)d
d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ak.

(5.7)

Let I ⊆ [d] with 0 ≤ |I| ≤ d− 1, 1 /∈ I and I 6= {2, . . . , d}. Then,

A1

∏
k∈I

Ak =
∏

k∈I∪{1}

Ak.

Hence, we remark that for i ∈ {0, 1, . . . , d− 1} and I ⊆ [d] such that 1 /∈ I

A1

∏
k∈I⊆[d]

|I|=i, I 6={2,...,d}

Ak =
∏

k∈I⊆[d]
|I|=i+1, I 6=[d]

Ak.

The two previous expressions appear in the sums of (5.7), but with different sign. So they
cancel each other. Therefore, in the first sum, only appear the subsets such that 1 ∈ I and
in the second sum the subsets such that 1 /∈ I. Then,

A2
1

d∏
i=2

Ai = (−1)d
d−1∑
i=1

(−1)i+1A1

∏
k∈I⊆[d]

|I|=i, I 6={2,...,d}, 1∈I

Ak + (−1)d
d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i, 1/∈I

Ak,

= (−1)d
d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Aγkk ,
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where
γk =

{
2 if k = 1,
1 if k 6= 1.

Using a similar argument as in the case d = 2, then by induction over the integer vectors
n ∈ Zd with positive entries and finally extending the formula for all n ∈ Zd we get that

∀n ∈ Zd,
d∏
i=1

Ani
i = (−1)d

d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ank
k .

Now we compute the expression for T n1
1 · · ·T

nd
d x. For simplification, we only consider

integer vectors n ∈ Zd with positive entries.

Proposition 5.9. Let (Tr, T1, . . . , Td) be an affine nilsystem with d commuting transforma-
tions, with Tix = Aix+ αi for i ∈ [d]. Then, we have that for every n = (n1, . . . , nd) ∈ Zd+,

T n1
1 · · ·T

nd
d x =

d∏
i=1

Ani
i x+

d∑
i=1

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1.

Proof. The case d = 1 follows from Proposition 5.5. For d = 2

T n1
1 T n2

2 x = An1
1 A

n2
2 x+ An1

1

n2−1∑
j=0

Aj2α2 +

n1−1∑
k=0

Ak1α1,

and
2∏
i=1

Ani
i x+

2∑
i=1

2−i∏
j=1

Aj
n2−i+1−1∑
k2−i+1=0

A
k2−i+1

2−i+1α2−i+1 = An1
1 A

n2
2 x+ An1

1

n2−1∑
k2=0

Ak22 α2 +
n1−1∑
k1=0

Ak11 α1.

Using the induction hypothesis we have that

T n1
1 · · ·T

nd+1

d+1 x = T1

(
d∏
i=1

A
ni+1

i+1 x+
d∑
i=1

d−i∏
j=1

A
nj+1

j+1

nd−i+1+1−1∑
kd−i+1+1=0

A
kd−i+1+1

d−i+1+1αd−i+1+1

)
,

= T1

(
d+1∏
i=2

Ani
i x+

d∑
i=1

d+1−i∏
j=2

A
nj

j

nd+2−i−1∑
kd+2−i=0

A
kd+2−i

d+2−i αd+2−i

)
,

= An1
1

(
d+1∏
i=2

Ani
i x+

d∑
i=1

d+1−i∏
j=2

A
nj

j

nd+2−i−1∑
kd+2−i=0

A
kd+2−i

d+2−i αd+2−i

)
+

n1−1∑
k1=0

Ak11 α1,

=
d+1∏
i=1

Ani
i x+

d∑
i=1

d+1−i∏
j=1

A
nj

j

nd+2−i−1∑
kd+2−i=0

A
kd+2−i

d+2−i αd+2−i +
n1−1∑
k1=0

Ak11 α1,

=
d+1∏
i=1

Ani
i x+

d+1∑
i=1

d+1−i∏
j=1

A
nj

j

nd+2−i−1∑
kd+2−i=0

A
kd+2−i

d+2−i αd+2−i.
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By Propositions 5.8 and 5.9 we have that,

T n1
1 · · ·T

nd
d x =

d∏
i=1

Ani
i x+

d∑
i=1

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1,

= (−1)d
d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ank
k x+

d∑
i=1

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1,

= (−1)d
d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ank
k x+

d−1∏
j=1

A
nj

j

nd−1∑
kd=0

Akdd αd

+
d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1.

Now, by Condition (5.4),

T n1
1 · · ·T

nd
d x = (−1)d

d−1∑
i=0

(−1)i+1
∏

k∈I⊆[d]
|I|=i

Ank
k x+

nd−1∑
kd=0

(−1)d
d−1∑
i=0

(−1)i+1
∏

j∈I⊆[d]
|I|=i

A
mj

j

αd,

+
d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1

where
mj =

{
nj if j 6= d,
kd if j = d.

Thus,

T n1
1 · · ·T

nd
d x = (−1)d

d−1∑
i=0

(−1)i+1

 ∏
k∈I⊆[d]
|I|=i

Ank
k x+

nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i

A
mj

j αd


+

d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1.

(5.8)

The first expression in previous equality is equal to

= (−1)d
d−1∑
i=0

(−1)i+1

 ∏
k∈I⊆[d]
|I|=i

Ank
k x+

nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d/∈I

A
mj

j αd +
nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d∈I,d/∈I

A
mj

j αd

 ,

= (−1)d
d−1∑
i=0

(−1)i+1

 ∏
k∈I⊆[d]
|I|=i

Ank
k x+ nd

∏
j∈I⊆[d]
|I|=i,d/∈I

A
nj

j αd +
nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d∈I

A
mj

j αd

 .
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In the case i = d− 1 in the first sum appears

∏
k∈I⊆[d]
|I|=d−1

Ank
k x+ nd

∏
j∈I⊆[d]

|I|=d−1,d/∈I

A
nj

j αd +
nd−1∑
kd=0

∏
j∈I⊆[d]

|I|=d−1,d∈I

A
mj

j αd

=
∏

k∈I⊆[d]
|I|=d−1

Ank
k x+ nd

d−1∏
j=1

A
nj

j αd +
nd−1∑
kd=0

∏
j∈I⊆[d]

|I|=d−1,d∈I

A
mj

j αd,

=
∏

k∈I⊆[d]
|I|=d−1

Ank
k x+ nd(−1)d−1

d−2∑
i=0

(−1)i+1
∏

k∈I⊆[d−1]
|I|=i

Akαd +
nd−1∑
kd=0

∏
j∈I⊆[d]

|I|=d−1,d∈I

A
mj

j αd.

So we have that

T n1
1 · · ·T

nd
d x = (−1)d

d−2∑
i=0

(−1)i+1

 ∏
k∈I⊆[d]
|I|=i

Ank
k x+ nd

∏
j∈I⊆[d]
|I|=i,d/∈I

A
nj

j αd +
nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d∈I

A
mj

j αd


+

d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1 +
∏

k∈I⊆[d]
|I|=d−1

Ank
k x

+nd(−1)d−1
d−2∑
i=0

(−1)i+1
∏

k∈I⊆[d−1]
|I|=i

Akαd +
nd−1∑
kd=0

∏
j∈I⊆[d]

|I|=d−1,d∈I

A
mj

j αd,

= (−1)d
d−2∑
i=0

(−1)i+1

 ∏
k∈I⊆[d]
|I|=i

Ank
k x+

nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d∈I

A
mj

j αd

+
∏

k∈I⊆[d]
|I|=d−1

Ank
k x

+
d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1 +
nd−1∑
kd=0

∏
j∈I⊆[d]

|I|=d−1,d∈I

A
mj

j αd

+nd(−1)d−1
d−2∑
i=0

(−1)i+1
∏

k∈I⊆[d−1]
|I|=i

Akαd + nd(−1)d
d−2∑
i=0

(−1)i+1
∏

j∈I⊆[d]
|I|=i,d/∈I

A
nj

j αd.

(5.9)

From here we deduce that,

T n1
1 · · ·T

nd
d x = (−1)d

d−2∑
i=0

(−1)i+1

 ∏
k∈I⊆[d]
|I|=i

Ank
k x+

nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d∈I

A
mj

j αd

+
∏

k∈I⊆[d]
|I|=d−1

Ank
k x

+
nd−1∑
kd=0

∏
j∈I⊆[d]

|I|=d−1,d∈I

A
mj

j αd +
d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1.

Now we are ready to prove Lemma 5.4. For illustration we first present an example of
Equation (5.10) in the proof of Lemma 5.4.
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Example. Consider the case d = 2. We have that

−x+ An1
1 x+ An2

2 x+
n2−1∑
k2=0

Ak22 α2 +
n2−1∑
k1=0

Ak11 α1 = −x+ An1
1 x+

n2−1∑
k1=0

Ak11 α1

+An2
2 x+

n2−1∑
k2=0

Ak22 α2,

= −x+ T n1
1 x+ T n2

2 x.

Consider now the case d = 3. We have that the left side of Equation 5.10 is equal to

x− T n1
1 x− T n2

2 x− T n3
3 x+ T n1

1 T n2
2 x+ T n1

1 T n3
3 x+ T n2

2 T n3
3 x,

and the right side of Equation (5.10) is equal to

−(−x+ An1
1 x+ An2

2 x+ An3
3 x+

n3−1∑
k3=0

Ak33 α3) + An1
1 A

n2
2 x+ An1

1 A
n3
3 x+ An2

2 A
n3
3 x

+
n3−1∑
k3=0

An1
1 A

k3
3 α3 +

n3−1∑
k3=0

An2
2 A

k3
3 α3 + An1

1

n2−1∑
k2=0

Ak22 α2 +
n1−1∑
k1=0

Ak11 α1

= −
(
−x+ An1

1 x+ An2
2 x+ An3

3 x− An1
1 A

n2
2 x− An2

2 A
n3
3 x−

n3−1∑
k3=0

An2
2 A

k3
3 α3 −

n2−1∑
k2=0

Ak22 α2

)
+An1

1 A
n3
3 x−

n2−1∑
k2=0

Ak22 α2 −
n3−1∑
k3=0

Ak33 α3 +
n3−1∑
k3=0

An1
1 A

k3
3 α3 + An1

1

n2−1∑
k2=0

Ak22 α2 +
n1−1∑
k1=0

Ak11 α1,

= − (−x+ An1
1 x+ An2

2 x+ An3
3 x− An1

1 A
n2
2 x− An1

1 A
n3
3 x− T n2

2 T n3
3 x)

−
n2−1∑
k2=0

Ak22 α2 −
n3−1∑
k3=0

Ak33 α3 +
n3−1∑
k3=0

An1
1 A

k3
3 α3 + An1

1

n2−1∑
k2=0

Ak22 α2 +
n1−1∑
k1=0

Ak11 α1,

= −
(
−x+ An1

1 x+ An2
2 x+

n2−1∑
k2=0

Ak22 α2 + An3
3 x− An1

1 A
n2
2 x− An1

1 A
n3
3 x− T n2

2 T n3
3 x

)
−

n3−1∑
k3=0

Ak33 α3 +
n3−1∑
k3=0

An1
1 A

k3
3 α3 + An1

1

n2−1∑
k2=0

Ak22 α2 +
n1−1∑
k1=0

Ak11 α1,

= − (−x+ An1
1 x+ T n2

2 x+ An3
3 x− An1

1 A
n2
2 x− An1

1 A
n3
3 x− T n2

2 T n3
3 x)

−
n3−1∑
k3=0

Ak33 α3 +
n3−1∑
k3=0

An1
1 A

k3
3 α3 + An1

1

n2−1∑
k2=0

Ak22 α2 +
n1−1∑
k1=0

Ak11 α1,

= − (−x+ An1
1 x+ T n2

2 x+ An3
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Proof of Lemma 5.4. Suppose that for some d ≥ 2 the following identity holds,
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(5.10)

We now extend the identity to d+ 1. Indeed,
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. Now we have that previ-
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(5.11)
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Ank
k x+

nd+1−1∑
kd+1=0

∏
j∈I⊆[d+1]
|I|=i, d+1∈I

A
mj

j αd+1


+(−1)d

d−1∑
i=0

(−1)i+1
nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d∈I

A
mj

j αd +
d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1,

= (−1)d+1
d∑
i=1

(−1)i+1

 ∏
k∈I⊆[d+1]
|I|=i,d+1∈I

Ank
k x+

nd+1−1∑
kd+1=0

∏
j∈I⊆[d+1]
|I|=i, d+1∈I

A
mj

j αd+1


−(−1)d+1

d−1∑
i=0

(−1)i+1
nd−1∑
kd=0

∏
j∈I⊆[d]
|I|=i,d∈I

A
mj

j αd +
d∑
i=2

d−i∏
j=1

A
nj

j

nd−i+1−1∑
kd−i+1=0

A
kd−i+1

d−i+1 αd−i+1.
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Finally we have that

(−1)d+1
d−1∑
i=0

(−1)i+1

 ∏
k∈I⊆[d+1]
|I|=i

Ank
k x+

nd+1−1∑
kd+1=0

∏
j∈I⊆[d+1]
|I|=i,d+1∈I

A
mj

j αd+1

+
∏

k∈I⊆[d+1]
|I|=d

Ank
k x

+
nd+1−1∑
kd+1=0

∏
j∈I⊆[d+1]
|I|=d,d+1∈I

A
mj

j αd+1 +
d+1∑
i=2

d+1−i∏
j=1

A
nj

j

nd+2−i−1∑
kd+2−i=0

A
kd+2−i

d+2−i αd+2−i

= (−1)d+1
d−1∑
i=0

(−1)i+1 ©
k∈I⊆[d]
|I|=i

T nk
k x+ T n1

1 · · ·T
nd
d x+ (−1)d+1

d∑
i=1

(−1)i+1 ©
k∈I⊆[d+1]
|I|=i, d+1∈I

T nk
k x,

= (−1)d+1
d∑
i=0

(−1)i+1 ©
k∈I⊆[d]
|I|=i

T nk
k x+ (−1)d+1

d∑
i=1

(−1)i+1 ©
k∈I⊆[d+1]
|I|=i, d+1∈I

T nk
k x,

= (−1)d+1
d∑
i=0

(−1)i+1 ©
k∈I⊆[d+1]
|I|=i

T nk
k x.

We conclude that if (Tr, T1, . . . , Td) satisfies conditions (5.3) and (5.4), then

T n1
1 · · ·T

nd
d x = (−1)d

d−1∑
i=0

(−1)i+1 ©
k∈I⊆[d]
|I|=i

T nk
k x

and thus the system has the closing parallelepiped property since the last coordinate of
QT1,...,Td(X) is a function of the rest of the coordinates.

Conversely, assume that for every n = (n1, . . . , nd) ∈ Zd and x ∈ X we have that

T n1
1 · · ·T

nd
d x = (−1)d

d−1∑
i=0

(−1)i+1 ©
k∈I⊆[d]
|I|=i

T nk
k x.

In particular,

T1 · · ·Tdx = (−1)d
d−1∑
i=0

(−1)i+1 ©
k∈I⊆[d]
|I|=i

Tkx,

d∏
i=1

Aix+
d∑
i=1

d−i∏
j=1

Ajαd−i+1 = (−1)d
d−1∑
i=0

(−1)i+1 ©
k∈I⊆[d]
|I|=i

Tkx,

d∏
i=1

Aix+
d∑
i=1

d−i∏
j=1

Ajαd−i+1 = (−1)d
d−1∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

©
k∈I

Tkx.
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From now we assume the subsets I = {`1, . . . , `i} are given in increasing order. Then,

d∏
i=1

Aix+
d∑
i=1

d−i∏
j=1

Ajαd−i+1 = (−1)d
d−1∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

∏
k∈I

Akx

+(−1)d
d−1∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

k∑
r=1

∏
j∈{`1,...,`k−r}

Ajα`k−r+1
.

If x = 0 we have that

d∑
i=1

d−i∏
j=1

Ajαd−i+1 = (−1)d
d−1∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

i∑
r=1

∏
j∈{`1,...,`i−r}

Ajα`i−r+1
,

which is equivalent to

d∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

i∑
r=1

∏
j∈{`1,...,`i−r}

Ajα`i−r+1
= 0. (5.12)

We separate the left side of (5.12) in the following sums,

d∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

i∑
r=1

∏
j∈I={`1,...,`i−r}

Ajα`i−r+1
=

d∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i, d∈I

∏
j∈{`1,...,`i−r}

Ajαd

+
d−1∑
i=1

(−1)i+1
∑
I⊆[d]
|I|=i, d/∈I

i∑
r=1

∏
j∈{`1,...,`i−r}

Ajα`i−r+1

+
d∑
i=2

(−1)i+1
∑
I⊆[d]
|I|=i, d∈I

i∑
r=2

∏
j∈{`1,...,`i−r}

Ajα`i−r+1
.

(5.13)

Let 1 ≤ i < d and I ⊆ [d] with |I| = i and d /∈ I. We consider J = I ∪ {d}. We observe
that if r ∈ {2, . . . , i+ 1}, then i+ 2− r < i+ 1. Therefore `i+1−r+1 6= d. Then, for J in the
third sum we have

i+1∑
r=2

∏
j∈{`1,...,`i+1−r}

Ajα`i+1−r+1
=

i∑
r=1

∏
j∈{`1,...,`i−r}

Ajα`i−r+1
,

which is the expression for I in the second sum. Since the map I 7→ I ∪ {d} is a bijection
when |I| < d, we have that the last two sums on (5.13) cancel each other. Finally, equation
(5.12) is equivalent to

d∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i, d∈I

∏
j∈{`1,...,`i−r}

Ajαd = 0⇐⇒
d−1∏
i=1

Ajαd = 0.
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We have deduced that condition (5.4) holds. We conclude that for every x ∈ Tr,

d∏
i=1

Aix = (−1)d
d−1∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

∏
k∈I

Akx.

Then,
d∏
i=1

Ai = (−1)d
d−1∑
i=0

(−1)i+1
∑
I⊆[d]
|I|=i

∏
k∈I

Ak =⇒
d∏
i=1

(Ai − I) = 0,

and condition 5.3 holds.
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Perspectives

The main result of this thesis is the introduction of a new dynamical cubic structure for
a minimal Zd-action on a compact metric space and, for a minimal distal system with the
closing parallelepiped property, the proof of a structure theorem. These results extend the
same results in the case of a Z2-action.

As we mentioned before, the systems with the closing parallelepiped property are the
topological versions of the ones that control the behavior of multiple ergodic averages in
the commuting case. It is a hard and open question to give a precise description of them,
and it seems that nilsystems play a role in it. Some progress in this direction was made by
T. Austin in [4, 5]. The work we have done here contributes to the understanding of such
systems, giving a partial structure theorem for topological systems. We do not know if we
can further improve the relatively independence result we have to get nilsystems involved in
the picture.

In particular, we would to determine if the closing parallelepiped property is preserved
under factor maps. This property was proved for two commuting transformations and even
in that case the proof is non trivial. Some ideas to tackle these open problems would be to
find a topological counterpart of the magic systems introduced by B. Host in [23], as was
done in [7], and some tricky use of the enveloping semigroup.

An aspect that would be nice to see further developed in the future is the use of these cube
structures to understand the group of automorphisms of a dynamical system, in particular,
of some symbolic systems and tilings. In [7] S. Donoso and W. Sun used the cube structure
QS,T (X) to understand the group of automorphisms of the Robinson tiling.

Another problem we would like to tackle is to study the maximal nilsystem factor of a sys-
tem (X,T1, . . . , Td) with commuting transformations T1, . . . , Td, and if there exists a relation
with the factors defined in this thesis. Let H be the group spanned by the transformations
Ti,j = T−1

i Tj. We have that in the factor X/QH(X) the transformations T1, . . . , Td are equal, so
if the factor has the closing parallelepiped property, then this factor is a nilsystem, but this
factor is not necessarily the maximal nilsystem factor of X. It is a hard and open question
to give a precise description of them.
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