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PROF. GUÍA: SR. RODRIGO SOTO BERTRÁN

En esta tesis se presenta un estudio de la reología y de las estructuras espaciales que surgen
en suspensiones de bacterias en el regimen semi-diluido.

Debido al tamaño microscópico de las bacterias, su densidad y velocidad de propulsión,
estas viven en un ambiente caracterizado por un bajo número de Reynolds, por lo que la fuerza
y torque total sobre ellas son nulos. Por lo tanto, a primer orden, las perturbaciones en el
campo de velocidades producidas por estos nadadores corresponde a un dipolo de fuerzas.
Además, el dipolo de fuerzas ejerce un cizalle en el fluido, el que puede traducirse en una
viscosidad activa cuando se impone un flujo externo. Esta contribución puede llegar a ser tal
que la viscosidad total es nula o incluso negativa, como se ha encontrado experimentalmente.

Los nadadores presentan interacciones de corto y largo alcance. En el regimen semi-diluido,
las concentraciones siguen siendo bajas, pero suficientemente altas para que las interacciones
de corto alcance sean relevantes sin que las de largo alcance jueguen un rol fundamental.
Estas interacciones se traducen principalmente en un alineamiento entre bacterias cercanas
debido a efectos estéricos e hidrodinámicos.

En esta tesis se extiende la teoría cinética de suspensiones bacterianas en el régimen dilu-
ido, considerando interacciones de corto alcance a través de una integral colisional. Se presen-
tan dos tipos de interacciones: alineamiento polar y nemático. A partir de la ecuación cinética
es posible obtener las ecuaciones hidrodinámicas de la densidad, la orientación promedio y
el tensor nemático cuando existe un flujo impuesto. En particular, en esta tesis se estudia el
caso de un flujo de corte uniforme.

Para sistemas homogéneos se encontró que por sobre cierta concentración crítica, existe
una transición hacia una fase polar o nemática, según el tipo de interacción. Ambas fases dan
origen a una viscosidad oscilante en el tiempo. A través de un análisis de separación de escalas,
cercano a la concentración crítica, se obtienen expresiones analíticas para la orientación
promedio y el cizalle producido por una suspensión. Resultados numéricos revelan, además,
que para grandes tasas de corte la fase ordenada se pierde. En particular, para colisiones
nemáticas, esta fase se pierde de manera subcrítica.

Finalmente se estudió la dependencia espacial de la suspensión bacteriana. A través de
simulaciones tipo DSMC (Direct Simulation Monte Carlo) se resolvió la ecuación cinética
condiciones de borde rígidas, encontrando estructuras espaciales en la suspensión bacteriana.
El mismo fenómeno se encuentra al emplear condiciones de borde periódicas, por lo que se
analizó la estabilidad lineal de la solución homogénea al ser perturbada con ondas planas. Los
resultados indican que la inestabilidad ocurre para grandes longitudes de onda, por lo que es
posible mediarla a través del tamaño del sistema. Además, al incluir interacciones de largo
alcance al análisis de estabilidad, se obtienen que estas sólo modifican cuantitativamente los
resultados. Finalmente, este fenómeno también se encontró en tres dimensiones.
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SUMMARY

In this thesis we study the rheology and the spatial structures that emerge in bacterial
suspensions in the semi-dilute regime.

Due to the microscopic size of the bacteria, their density, and their velocity, they live in
a low Reynolds number environment, which is characterized by a null total force and torque
acting on them. Therefore, to first order, the perturbations produced in the velocity field
by the activity of the swimmers correspond to force dipoles. Moreover, these force dipoles
exert a shear stress on the fluid, which can be translated into an active viscosity when there
is an imposed flow. This contribution to the fluid viscosity can be large enough so the total
viscosity is zero or even negative, as it has been found experimentally.

The swimmers interact through short- and long-range interactions. In the semi-dilute
regime, the concentrations are still low but high enough for the short-range interactions
to dominate over the long-range counterparts. These interactions translate mainly into an
alignment among near bacteria, due to steric and hydrodynamics effects.

In this thesis we extend the kinetic theory of bacterial suspensions in the dilute regime,
where the short-range interactions are included through a Boltzmann-like collision integral
in the kinetic equation. We present two kinds of interactions: polar and nematic alignment.
From the kinetic equation we can obtain the hydrodynamic equations for the density, the
average orientation, and the nematic tensor, when there is an imposed flow. In particular,
in this thesis we study the case of an imposed uniform shear flow.

For homogeneous systems we found that, above a critical concentration, there is a tran-
sition to a polar or nematic phase, depending on the nature of the interaction. Both phases
lead to an oscillatory viscosity in time, around a value that is close to the viscosity obtained
in the dilute regime. Through a multi-scale scheme near the critical concentration, we ob-
tained analytical expressions for the average orientation and the shear stress produced by the
activity of the swimmers. These results are confirmed by numerical solutions, finding as well
that for large shear rates, the ordered phase disappears. In particular, for nematic collisions,
the ordered phase is lost in a subcritical transition.

Finally, we studied the spatial dependence of a bacterial suspension. By testing different
boundary conditions, we concluded that the only one capable of reproducing a homogeneous
suspension, is the anti-specular collision with the wall. Through DSMC (direct simulation
Monte Carlo) simulations, we solved the kinetic equation with spatial dependence and rigid
boundary conditions, finding that spatial structures emerge in the bacterial suspension. The
same phenomenon was found when employing period-like boundary conditions, which al-
lowed us to analyze the linear stability of the homogeneous solution when it is perturbed by
plane-waves. The results showed that there is a critical wave-length, above which the insta-
bility appears. Therefore, it is possible to mediate the instability through the system size.
Moreover, the same analysis was performed including long-range hydrodynamic interactions,
finding a small quantitative correction. Finally, the same phenomenon was found in three
dimensions.
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Chapter 1

Introduction

1.1 Active Matter

Active matter refers to systems made of a plethora of units with the capacity to extract
energy from the environment and turn it into motion [25]. The examples cover a wide va-
riety of time and length-scales, both in living and artificial systems: flocks of birds, schools
of fishes [28], bacterial suspensions [10], crowds of microrobots [32], suspensions of active
colloids [29], cellular cultures [18], microtubules in suspensions [40], etc. The first two ex-
amples correspond to active matter acting in the macro-scale, whereas the rest acts in the
micro-scale. Moreover, there is a further classification into wet and dry systems, where in
the former the activity mediated by the surrounding fluid is important so the dynamics of
the fluid must be considered, as in bacterial suspensions, whereas in the latter, the fluid can
be treated as an inert medium providing only friction, like in animal herds on land [28] [41]
and vibrated granular particles [20].

The understanding of active matter at the micro and nano-scale have attracted an impor-
tant interest in the last years in multiples areas of science in technology: it can lead to the
development of novel micro-motors based on bacteria activity [46] [36], the development of
micro-cargos for pharmaceutical use [9], the understanding of cell dynamics and morphologies
in cell colonies [11], and ultimately shed some light on fundamental questions such as the
origin of life or its development at early stages.

1.2 Individual Swimmers

As a first approximation, a microswimmer can be modelled by its centre of mass position r
and its director vector p, so the swimming velocity is given by v = V0p. In the absence of
external flows, both r and p vary due to thermal fluctuations that are taken into account by
considering spatial (D) and rotational (Dr) diffusion. Nonetheless, the self-propulsion and
the rotational diffusion give rise to an effective diffusivity, the Berg diffusivityDBerg ∼ V 2

0 /Dr,
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Figure 1.1: Jeffery’s orbit representation in a simple shear flow, where a tumbling event
makes the swimmer migrate to a different orbit.

which is typically much larger than the Brownian (spatial) diffusion [5].

Flagellated bacteria such as E. Coli present a particular mechanism of reorientation called
rund and tumble [21]. When a bacterium runs all its flagella form a bundle that rotate
counterclockwise, propelling the swimmer. During the tumble phase, one or more flagellum
rotate clockwise, undoing the bundle and reorienting the swimmer.

If an external flow u is present, then the swimmer is advected:

v = V0p+ u. (1.1)

Moreover, the director vector evolves according to Jeffery’s equation [15] [8] which is valid
for ellipsoids

ṗ = (I− pp) · (βE + W) · p, (1.2)

where E = 1/2(∇u +∇uT) is the strain rate tensor, W = 1/2(∇u − ∇uT) is the vorticity
tensor, and β is the Bretherton coefficient, which depends on the swimmer’s shape. For rods,
discs and spheres, β ≈ 1, −1, and 0, respectively. For E. Coli β ≈ 0.7 [16]. In a uniform
shear flow, the evolution of the orientation and the position in eqs. (1.2) and (1.1), for non-
tumbling bacteria, describes Jeffery’s orbits as shown in fig. 1.1. These are cycloid-like orbits
with a characteristic length LJ ∼ V0/γ̇ and period TJ ∼ 1/γ̇, where γ̇ is the shear rate, that
in a simple shear flow relates to the fluid velocity by u = γ̇yx̂. The effect of the diffusion
(spatial and rotational) and the tumbling is to migrate between Jeffery’s orbits.

2



Figure 1.2: Representation of the force density over the surface of a swimmer.

1.3 Swimming at Low Reynolds Number

E. Coli is one of the best-known bacteria. We know its genome, metabolism and propulsion
mechanisms [21] [5]. Their typical volume, speed, and mass density are, respectively, Vol =
1 µm3, V0 = 10 µm/s, and ρmass = 1 g/cm3. Considering that these bacteria are immersed in
water (which has a viscosity η ≈ 10−3 Ns/m2 at room temperature), they are characterized
by a low Reynold’s number: Re ∼ 10−5. Therefore the evolution of the fluid is described by
the incompressible Stokes equation:

− η∇2u+∇p = F , (1.3)

∇ · u = 0, (1.4)

where η is the viscosity of the fluid, p is the pressure, and F accounts for the external forces.
In this regime, inertia is completely neglected, therefore the objects (in this case swimmers)
experience null total force and null total torque.

The propulsion of a swimmer involves forces exerted to the fluid. If f is the force density
acting on the fluid on the surface of the swimmer (see fig. 1.2 for a reference), then we must
have ∫

S

fd2S = 0. (1.5)

Moreover, the velocity field generated by a force density can be obtained by solving eq. 1.3
using the Green method

u(r) =

∫
S

A(r −Rcm − ρ) · f(ρ)d2S, (1.6)

where Rcm is the center of mass position of the bacteria, ρ is the relative position from
the center of mass reference, and A is the Green function of the Stokes equation, which in
3D takes the form A(r) = 1

8πηr
(I + rr/r2), called the Oseen tensor [19]. For the far field

(ρ� |r −Rcm|), the velocity field can be expanded in multipoles of the force density

u(r) ≈ A(r −Rcm) ·
∫
S

f(ρ)d2S − ∂A
∂rk
·
∫
S

ρkf(ρ)d2S. (1.7)

The first term is zero, thus the lowest non-zero contribution is the dipolar one

D =

∫
S

ρf(ρ)d2S, (1.8)

which is a symmetric tensor due to the vectorial nature of the force density and the fact
that the total torque, which relates to the anti-symmetric part, is zero. This tensor can be
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Figure 1.3: Dimensions (top) and flows (bottom) generated by the bacterium E. Coli (left)
and the algae Chlamydomonas Reinhardtii (right). The dark arrows in the bottom image
represent the velocity of the fluid near the swimmer. The pale blue arrows represent the
dipole approximation for a pusher (left) and puller (right).

diagonalized in its principal axes, from which one coincides with the orientation p of the
swimmer if it is axisymmetric. In 3D, this reduces to [34]

D = χ0I− σ0

(
pp− 1

3
I
)
. (1.9)

The first contribution is isotropic and adds to the pressure. The second contribution is
anisotropic and defines two categories of swimmers. If σ0 < 0 the swimmer is classified as a
pusher and if σ0 > 0, as a puller. The difference relies on the directions in which the swimmer
pushes and pulls the fluids as shown in fig. 1.3. E. Coli corresponds to the first case, with
|σ0| ≈ 2.3 pN µm [13] whereas algae such as Chlamydomonas Reinhardtii are classified as
pullers.
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Figure 1.4: Representation of a bacterial suspension in a simple shear flow at a given time.
Left (right) plot corresponds to the case without (with) rotational diffusion. When consider-
ing the rotational diffusion, the majority of the bacteria are nearly aligned with the velocity
profile, inducing a non-zero active shear stress.

1.4 Bacterial Suspensions and Rheology

A bacterial suspension of number density ρ generates an active stress contribution correspond-
ing to the configuration average over all orientations of the force dipole of each swimmer,
�s = ρ 〈D〉, where 〈·〉 denotes ensemble average. It can be seen as well as the nematic order
parameter weighted by the local concentration [35]. In the absence of external flow, the bac-
teria orient isotropically, leading to an additional term that can be absorbed into the pressure
(see eq. (1.9)). Nevertheless, if there is an imposed flow, there is going to be a preferred
direction leading to a non-zero active shear stress. This is a result of the interplay between
the Jeffery’s orbit and the rotational diffusion. Indeed, if we ignore the rotational diffusion
and consider a simple shear flow u = γ̇yx̂, the evolution of the orientation of each swimmer
is completely given by eq. (1.2), which in two dimensions is θ̇ = γ̇

2
[β cos(2θ)− 1], where the

angle θ is defined from the x̂ axis counterclockwise. Therefore, due to the symmetry under
reflection of the Jeffery’s equation in the y-axis, on average we would find the same amount
of bacteria aligned in θ and in π − θ, so the force dipoles cancel. We note, however, that
the distribution in this case is not isotropic since there are two orientations in which the
swimmer spend more time (i.e. in which the angular speed is minimum), namely θ = 0 and
θ = π (see fig. 1.4 (left)).

When considering the rotational diffusion, the symmetry is shifted towards the velocity
profile. This can be seen from the xy component of the nematic tensor, which is propor-
tional to the active stress and was obtained analytically in the dilute regime: 〈cos θ sin θ〉 ∝

4γ̇/Dr
16+(γ̇/Dr)2

[33], where 〈·〉 denotes ensemble average. In this case, the majority of the bacteria
are aligned with the velocity profile as depicted in fig. 1.4 (right). We note that in the limit
Dr → 0, 〈cos θ sin θ〉 goes to zero as expected.

This preferred direction leads to a non-zero active stress, that can decrease or augment
the passive stress [14] [37] [30]. We can define the active viscosity as the ratio between the
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active shear stress and the shear rate,

ηact =
Σs
xz

γ̇
. (1.10)

This contribution to the fluid viscosity can be negative enough (for pushers) so that the total
viscosity becomes zero or even negative [24], i.e. the bacterial suspension does work on the
rheometer.

The interactions between bacteria can be classified as short and long-range. For the
first case, we have binary collisions that align them (as seen in experiments [38] and in
simulations [23]) in a polar or nematic way (as shown in figs. 2.2 and 2.3, respectively), due
to steric and hydrodynamic interactions. For the second case, the interaction is mediated
by the fluid: due to the propulsion of the swimmer, it produces a perturbation in the flow
that decays as 1/r2 in three dimensions. This perturbation can be sensed by other bacteria,
advecting and rotating them. Moreover, this long-range interaction must be accounted for
each swimmer so it is convenient to use a mean field approximation, in which each bacterium
swims in the flow perturbed by the active stress defined before. The active contribution
acts as a source in the Stokes equation, modifying the velocity of the fluid and therefore the
dynamics of the swimmers (see eqs. (1.1) and (1.2)).

When increasing the density, the mean free path of the bacteria decreases, thus the short-
range interactions dominate over the long-range hydrodynamic interactions. As a result,
flocks may emerge [44], as well as active turbulence [48]. In contrast, long-range interactions
can lead to instabilities in a suspension of pushers [35].

1.5 Kinetic Theories

One way to study the rheology and, in general, the phenomenology of bacterial suspensions
is through kinetic theories. This statistical approach is valid since, for example, the num-
ber of bacteria present in a mililiter at a very dilute concentration (volume fraction of 0.01)
is ∼ 1010. The main object under study is the distribution function of bacteria Ψ(t, r,p)
such that Ψdrdp gives the number of bacteria in a given position and orientation. The
orientational moments of the distribution function lead to the number density, the average
orientation, and the nematic tensor, which are the macroscopic variables that are usually
measured experimentally. Besides, kinetic theories have successfully described the spatial
localization of microtubules with polar interaction [2] [3] and the rheology of bacterial sus-
pensions in the dilute regime [33], the two basic ingredients from which we are going to build
the kinetic theory in the semidilute regime.

1.6 Methodology, Objectives, Thesis Organization.

This thesis employs both theory and simulations. From the theoretical point of view, it
uses kinetic theory tools, linear stability analysis and asymptotic techniques. Regarding the
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simulations, it uses particle-based methods with a statistical sampling of the collisions.

The organization of this thesis is as follow: in chapter 2 we present the kinetic equation
for bacterial suspensions in two and three dimensions, extending the dilute regime to the
semi-dilute case, in which binary collision between bacteria take place, accounting for steric
and hydrodynamic effects, and the long-range hydrodynamic are ignored. In chapter 3 we
describe the polar and nematic transition in two-dimensional homogeneous suspensions and
how these phases modify the active shear stress. We employ a multi-scale scheme to analyze
the evolution of the polar and nematic parameters close to the phase transition, finding an
asymptotic characterization of the active shear stress. Analogously, chapter 4 describes the
different phases for magnetotactic bacterial suspensions exposed to a constant magnetic field
and how it modifies the rheology of the system. In chapter 5 we study inhomogeneous sus-
pensions in two and three dimensions by exploring different boundary conditions, employing
simulations and performing a linear stability analysis of the homogeneous solutions. Finally,
in chapter 6 we present the conclusions and discuss two different paths for future work: the
study of the response of the fluid under the shear rate obtained in a dilute suspension and
the study of the phenomenology of dense magnetotactic bacterial suspensions confined in
droplets.
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Chapter 2

Semidilute Regime of Two- and
Three-Dimensional Suspensions

Summary
In this chapter we derive the kinetic equation for the distribution function
of positions and orientations of the swimmers. We extend the previous
kinetic equation known for dilute suspensions [33], which does not take
into account any interaction between swimmers. We describe two types
of short-range interaction through the addition of a Boltzmann-like term:
polar and nematic aligning collisions. In addition, we present in detail the
equations related to a two-dimensional bacterial suspension in a uniform
shear flow, by expanding the distribution function in angular Fourier series.

2.1 Kinetic Equation

The evolution of the distribution function Ψ(t, r,p) involves several factors as discussed in the
Introduction. First, we have a streaming term originated by the evolution of the independent
variables r and p, given by eqs. (1.1) and (1.2), respectively. Ignoring all the other effects, we
have Ψ(r,p, t+ ∆t) = Ψ(r− ṙ∆t,p− ṗ∆t, t), and by Taylor expanding we get the following
kinetic equation

∂Ψ

∂t
+

∂

∂r
· (ṙΨ) +∇p · (ṗΨ) = 0, (2.1)

where ∇p = (I− pp) · ∂
∂p

is the gradient projected onto the unit sphere. This condition
comes as a direct consequence of the fact that p is a unit vector, and therefore has just two
degrees of freedom, which are the polar and azimuthal angle in spherical coordinates.

Next, we have diffusion in the two independent variables: a spatial (Brownian) diffusion
and a rotational diffusion. The former can act differently in each direction, so in general,
there is an anisotropic diffusivity tensor Dij which for axisymmetric bodies can be encoded
in just two variables: the diffusivity in the axial direction D|| and perpendicular to it D⊥,
so the diffusivity tensor can be written as Dij = D||pipj + D⊥(δi,j − pipj) with δi,j being

8



the Kronecker delta. The rotational diffusion can be encoded in just one variable Dr for
axisymmetric swimmers. Adding the diffusion to the eq. (2.1) gives

∂Ψ

∂t
+

∂

∂r
· (ṙΨ) +∇p · (ṗΨ) = ∂iDij∂jΨ +Dr∇2

pΨ. (2.2)

Finally, we have scattering and collision terms that change the distribution function. These
terms are added to the right-hand side (RHS) of eq. (2.2). The tumble phenomenon presented
in the introduction can be modelled as an isotropic Poissonian process with a characteristic
correlation time τ :

T [Ψ] =
1

τ

( ρ
4π
−Ψ

)
, (2.3)

where the first term in the RHS accounts for the gain term in which bacteria are distributed
isotropically, and the second term represents the loss term, which gives the number of swim-
mers that were swimming with an orientation p and performed a tumble. The tumbling can
be further generalized by adding a kernel W (p,p′) depending on the initial orientation p′.

The collision processes between bacteria are included via a Boltzmann-like term J [Ψ,Ψ]
that depends quadratically on the distribution function since we just consider binary colli-
sions. In sections 2.2 and 2.3 we discuss the polar and nematic collisions respectively.

The kinetic equation, describing the evolution of the distribution function Ψ(t, r,p) con-
sidering all the ingredients already discussed, is

∂Ψ

∂t
+

∂

∂r
· (vΨ) +∇p · (ṗΨ) = ∂iDij∂jΨ +Dr∇2

pΨ + T [Ψ] + J [Ψ,Ψ], (2.4)

with
v = V0p+ u, (2.5)

ṗ = (I− pp) · (βE + W) · p. (2.6)

In two dimensions, β equals to 0 for discs and ±1 for rods, being positive for rods moving in
their axial direction, and negative for those that move perpendicularly to their axial direction.
The fluid velocity is given by the incompressible Stokes equation

− η∇2u+∇p = ∇ · �tot + Fext, (2.7)

∇ · u = 0, (2.8)

�tot = σ0

〈
pp− 1

d
I
〉

︸ ︷︷ ︸
�s

+
ξr
2

〈
pppp− 1

d
Ipp

〉
: E︸ ︷︷ ︸

�drag

, (2.9)

+ Boundary Conditions (BC). (2.10)

where ξr is the rotational friction coefficient, which can be computed from slender body
theory as ξr = πηL/(3 ln(2L/a)), with η being the viscosity of the fluid, L the total length
of the swimmer, and a the equatorial diameter. Fext represents any external force and
d is the dimension of the system. The first term in the RHS of (2.9) represents the active
contribution to the stress which is originated from the self-propulsion of bacteria. The second
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Figure 2.1: Uniform shear flow in x̂ and its gradient in ŷ. The shear rate is γ̇.

term is a passive contribution that accounts for the drag on the surface of the swimmers due
to the resistance to be stretched or compressed by the local fluid flow. In general, the active
contribution is much greater than the passive one since the latter depends on higher order
orientational moments.

Since the Brownian diffusivity is much smaller than the Berg diffusivity [5], an outcome of
the random reorientation of the bacteria, the translational diffusion is negligible. In addition,
the tumbling term T , at long times, acts as a rotational diffusion [33] so it can be absorbed into
the rotational diffusion coefficient Dr. Besides, in the semidilute regime we neglect the long-
range hydrodynamic interactions and just consider the short-range aligning collisions [48] [12],
so u corresponds to the imposed flow.

In 2D, eq. (2.4) reduces to

∂Ψ

∂t
+
∂(ẋΨ)

∂x
+
∂(ẏΨ)

∂y
+
∂(θ̇Ψ)

∂θ
= Dr

∂2Ψ

∂θ2
+ J [Ψ,Ψ], (2.11)

where p = (cos θ, sin θ).

We will focus our attention on a uniform shear flow, which can be obtained in a Couette
configuration and locally represents any smooth flow. The fluid velocity is given by u =
u(y)x̂ = γ̇yx̂, where γ̇ is the shear rate (see fig. 2.1). In this case, the velocity of a swimmer
is given by v = (V0 cos θ + γ̇y)x̂+ V0 sin θŷ, and the Jeffery’s equation (1.2) reads

θ̇ =
γ̇

2
[β cos(2θ)− 1]. (2.12)

For circular swimmers β = 0, eq. (2.12) reduces to θ̇ = constant, so they rotate at a
constant angular speed. However, for non-circular swimmers, the rotation is slower when
they are nearly aligned with the flow, and faster when they are aligned perpendicularly to it.
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Figure 2.2: Completely inelastic polar alignment: when two bacteria collide, they end up
with the same orientation equal to the average of the pre-collisional orientations.

Regarding the short-range interactions, it has been observed that bacteria align with each
other due to hydrodynamic and steric effects. As a consequence, they tend to align in a polar
and/or nematic way, so the collision integral, in the most general case, can be expressed as
J = g1Jpolar +g2Jnematic, where g1 and g2 are proportional to the collision rates accounting for
polar and nematic alignment, respectively. Furthermore, both kinds of interactions depend
on the incidental orientations, aligning bacteria only if the relative angle between them is
less than a certain threshold angle. Finally, in reality this alignment process is not perfect,
in the sense that an angle difference after the interaction may remain. In what follows, we
analyze both kinds of interactions independently, i.e. g1 = 0 or g2 = 0 in order to facilitate
the calculations.

2.2 Polar Alignment

For simplicity we consider the completely polar aligning case: when two bacteria meet they
end up with the same orientation, equal to the average of the pre-collisional orientations
shown in fig. 2.2. Moreover, we consider that two bacteria interact regardless of their initial
orientation. In this case, the collisions are accounted by a Boltzmann-like term under the
Maxwell approximation, i.e. the cross-section does not depend on the incidental angles [2] [3]:

J [Ψ,Ψ] = g

∫
dd−1p1dd−1p2Ψ(p1)Ψ(p2)

[
δ

(
p− p1 + p2

|p1 + p2|

)
− δ(p− p2)

]
. (2.13)

Here g is parameter proportional to the collision rate, which is estimated as g = V0σ, where
σ is the effective cross-section, and δ is the Dirac delta function. The first term in the RHS
of eq. (2.13) represents the gain term, that is, all the bacteria that after a collision process
end up with an orientation p. Analogously, the second term represents the loss term, i.e. all
the bacteria that lost their pre-collisional orientation p.

In 2D, for E. Coli, V0 ≈ 20 µm/s and σ2D ≈ 2 µm, so g ≈ 40 µm2/s, and the collision
integral can be expressed as

J2D[Ψ,Ψ] = g

∫ π

−π
dw [Ψ(θ + w/2)Ψ(θ − w/2)−Ψ(θ)Ψ(θ − w)] , (2.14)

where the Dirac deltas have been explicitly integrated.
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This model was used to describe the polar transition of non-propelling microtubules with-
out imposed flow as well as the spatial structures such as vortices and asters [2] [3]. Likewise,
this model was used to describe the transient spatiotemporal patterns in thin film concen-
trated bacterial suspensions [1].

To solve eq. (2.11) considering (2.14), we decompose the distribution function in angular
Fourier series

Ψ(t, x, y, θ) =
∑
n

an(t, x, y)einθ, (2.15)

so the kinetic equation reads

∂an
∂t

=− an
(
Drn

2 − inγ̇

2
+ gρ

)
+
V0

2

[(
∂an+1

∂x
+
∂an−1

∂x

)
+ i

(
∂an+1

∂y
− ∂an−1

∂y

)]
+ γ̇y

∂an
∂x
− iγ̇βn

4
(an−2 + an+2) + 2πg

∑
l

alan−lsinc (nπ/2− lπ) , (2.16)

where sinc(x) = sin(x)/x and a0 = ρ/(2π) due to the normalization condition
∫

Ψdθ = ρ,
with ρ being the bacteria number density.

2.3 Nematic Alignment

For elongated bacteria such as Bacilus Subtilis, there have been different observations indi-
cating that they interact nematically [25], i.e. swimmers with opposite orientations tend to
align so they are anti-parallel, whereas if they are swimming in a similar direction they align
polarly.

As before, to facilitate the calculations we consider the completely aligning case and that
two bacteria interact regardless of their initial orientation. In this situation, however, the
alignment is polar if the pre-collisional angle is smaller than π/2 and apolar if it is greater
than that (see fig. 2.3). The collision operator in 2D reads

J [Ψ,Ψ] =g

[ ∫ π/2

−π/2
dwΨ(θ + w/2)Ψ(θ − w/2) +

∫
[−π,−π

2
]∪[π

2
,π]

Ψ(θ + w/2 + π/2)Ψ(θ − w/2 + π/2)

−
∫ π

−π
Ψ(θ)Ψ(θ − w)

]
, (2.17)

and the equation for each of the Fourier amplitudes is given by

∂an
∂t

=− an
(
Drn

2 − inγ̇

2
+ gρ

)
+
V0

2

[(
∂an+1

∂x
+
∂an−1

∂x

)
+ i

(
∂an+1

∂y
− ∂an−1

∂y

)]
+ γ̇y

∂an
∂x

− iγ̇βn

4
(an−2 + an+2) + 2πg

∑
l

alan−l

[
insinc ((n/2− l)π) +

cos
(
(l − n/2− 1)π

2

)
(l − n/2)π

(1− in)

]
.

(2.18)
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Figure 2.3: Completely inelastic nematic alignment: when two bacteria collide, they end up
with the same orientation equal to the average of the pre-collisional orientations if the angle
between them is smaller than π/2, otherwise they end up with anti-parallel orientations.
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Chapter 3

Rheology of Two-Dimensional
Homogeneous Suspensions

Summary
In this chapter we study the kinetic equation in two dimensions for a
homogeneous suspension under a uniform shear flow, considering polar
and nematic interactions. We find that there are polar and nematic phase
transitions, respectively. In particular, we study two scenarios: circular
swimmers, for which we can find a direct connection with a suspension in
a quiescent fluid, and rod-shaped swimmers. Near the transition point, for
rod-shaped swimmers, it is possible to truncate the series expansions up to
the second Fourier mode. It is possible as well to obtain analytical solutions
based on a multi-scale scheme, in which we adopt a particular ansatz based
on scalings behaviors found in suspensions without imposed flows [2] [3].
The results show that the polar and nematic phases rotate in time due
to the imposed vorticity, which leads to a time-oscillatory behavior of the
active shear stress, with an average close to the non-interacting case. This
behavior is also shown by numerical solutions considering more terms in
the angular Fourier expansion. Finally, the polar and nematic phases
disappear for high shear rates γ̇, and in particular, for the nematic case,
it disappears in a subcritical transition.

3.1 Polar Alignment

We first consider the case with polar alignment. For a homogeneous suspension, eq. (2.16)
simplifies to

∂Ψ

∂t
+
∂(θ̇Ψ)

∂θ
= Dr

∂2Ψ

∂θ2
+ J [Ψ,Ψ]. (3.1)

It is worth pointing out that eq. (3.1) presents no activity: a suspension of passive rods
would behave in the same way. Then, what does activity mean? There are two sources of
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activity in the most general case. First, we have the self-propulsion, which is manifest in the
streaming motion of the kinetic equation and does not appear in the homogeneous case, and
second, there is the force dipole, which is a product of the self-propulsion, and generates an
active stress on the fluid. This imprint of activity is still present in a homogenous system
and is what makes the difference between an active and a passive suspension.

Assuming no dependence in space, the kinetic equation expanded in angular Fourier modes
(2.16) reduces to

ȧn = −an
(
n2 − inγ̇

2
+ ρ

)
− iγ̇βn

4
(an−2 + an+2) + 2π

∑
l

alan−lsinc (nπ/2− lπ) , (3.2)

where we used the following rescaled variables

t→ Drt, (3.3)

γ̇ → γ̇/Dr, (3.4)
an → ang/Dr. (3.5)

Note that ȧ0 = 0 reflecting that the density is conserved in a homogenous system.

In terms of the Fourier coefficients, the swimming contribution to the shear stress is

Σs
xy = −σ0πIm(a2). (3.6)

Likewise, the drag contribution is given by

Σdrag
xy = γ̇

ξrDrπ

8

( ρ
2π
− Re(a4)

)
. (3.7)

Finally, another quantity of interest is the average of the orientation vector

〈p〉 =
2π

ρ

(
Re(a1)
−Im(a1)

)
. (3.8)

The rotational diffusion gives rise to a fast decay of the high n modes. Then, it is possible
to truncate eq. (3.2) with few modes, as the rest will take small values. Considering that
the swimming contribution to the stress tensor depends on a2 and that the polar order that
results from the short-range interactions are characterized by a1, we first truncate the series
to n = 2. Furthermore, the drag contribution to the stress tensor is roughly a constant (see
eq. (3.7)) since it depends on the number density, which is conserved and therefore a constant
in the homogeneous case, and on the fourth mode, which is much smaller than the second
mode. We define the bifurcation parameter [2]

ε = ρ(4/π − 1)− 1 =
ρ− ρc

ρc
, (3.9)

such that the critical density for the isotropic to polar transition corresponds to ε = 0, that
is for ρcg/Dr = 3.66. For E. Coli, ρc ≈ 6× 10−4 µm−3, which translate to a volume fraction
of approximately 0.06%. The equations for a1 and a2 are

ȧ1 = a1

(
iγ̇

2
+ ε

)
− iβγ̇

4
a−1 −

8

3
a−1a2, (3.10)

ȧ2 = − iβγ̇ρc

4π
(ε+ 1)− [4− iγ̇ + ρc(ε+ 1)] a2 + 2πa2

1. (3.11)
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3.1.1 Circular Swimmers: β = 0

For circular swimmers (β = 0) the equations for a1 and a2 read

ȧ1 = a1

(
iγ̇

2
+ ε

)
− 8

3
a−1a2, (3.12)

ȧ2 = − [4− iγ̇ + ρc(ε+ 1)] a2 + 2πa2
1. (3.13)

Changing variables an = cnei γ̇
2
nt we recover the equations for inelastic interactions of polar

rods in absence of flow, but this time for cn

ċ1 = c1ε−
8

3
c−1c2, (3.14)

ċ2 = −[4 + ρc(ε+ 1)]c2 + 2πc2
1. (3.15)

Therefore, there is a polar phase transition that leads to a spontaneous symmetry breaking
as in the polar rods system. Indeed, near the transition ε = 0, the growth rate of c1 is
much smaller than the decaying rate of c2, so we can approximate ċ2 ≈ 0, obtaining c2 =
2π(4 + ρ)−1c2

1 which leads to a supercritical equation for c1

ċ1 = εc1 − A0|c1|2c1, (3.16)

with
A0 =

16π

3(4 + ρ)
≈ 16π

3(4 + ρc)
+O(ρ− ρc). (3.17)

Thus, for ρ > ρc or equivalently ε > 0, there is an orientation transition, going from
|c1| = 0 to a finite value |c1| =

√
ε/A0 with a random phase φ selected in the symmetry

breaking process, so c1 =
√
ε/A0eiφ. The same transition is found for a1 when γ̇ = 0,

recovering the equations for the inelastic interaction of polar rods presented by Aranson and
Tsimring [2] [3]. This analysis leads to a1 ∝

√
ε and a2 ∝ ε.

Once in the polar phase, we note that due to the change of variables, an has a constant
module with a rotating phase. In particular, a2 = c2eiγ̇t therefore, the active shear stress
becomes

Σact
xy = −σ0πIm(a2) = −σ0π

√
ε/A0 cos (φ+ γ̇t) , (3.18)

that is, it oscillates around zero, which is a direct consequence of setting β = 0 as we show
in the next section. The reason behind it is the symmetry of the swimmer: since there is no
preferred axis, the swimmer rotates at a constant rate under the uniform flow as can be seen
in eq. (2.12) with β = 0.

3.1.2 Non-Circular Swimmers: β 6= 0.

Equations (3.10) and (3.11) are highly non-linear, but a detailed analysis can be performed
close to the polar transition. How is the imposed flow going to modify the results obtained
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from (3.14) and (3.15)? Once in the polar phase, the simple shear flow will induce a macro-
scopic rotation of 〈p〉. Thus, a1 and a2 will not be stationary, but instead oscillations will
appear. For |ε| � 1 a multiple time scale approach is possible, where we define the fast and
slow time scales s0 = t, s1 = εt, and s2 = ε2t. Based on the couplings in eqs. (3.10) and
(3.11), we propose the following ansatz

a1(s0, s1, s2) = Aeiω0s0+iω1s1 +Be−iω0s0−iω1s1 (3.19)
a2(s0, s1, s2) = F e2iω0s0+2iω1s1 +Ge−2iω0s0−2iω1s1 +H, (3.20)

where A, B, F , G, and H depend solely on s1 and s2. Here we implicitly assume that γ̇ is
at least one order higher than ε so it makes sense to have several time scales: one for the
oscillations and the other for the evolution of the amplitudes.

Inserting the ansatz in eqs. (3.10) and (3.11) and using that A,B ∝
√
ε, F,G ∝ ε, and

H = H0 + εH1, with H0, H1 ∝ 1, the equations are solved order by order. At order ε0

H0 =
−iβγ̇ρc

4π

1

ρc + 4− iγ̇
. (3.21)

Then, at order ε1/2 (
−6i(γ̇ − 2ω0) 32H0 + 3iβγ̇
32H∗0 − 3iβγ̇ 6i(γ̇ + 2ω0)

)(
A
B∗

)
= 0. (3.22)

Imposing a null determinant, we get ω = ±ω(γ̇, β) ≈ ±γ̇/2+O(β). For β = 0.7, ω ≈ 0.468γ̇.
At order ε2, expressions for H1, F and G are obtained, which are plotted in fig. 3.1.

H1 =
−iβγ̇ρc/(4π)− ρcH0

ρc + 4− iγ̇︸ ︷︷ ︸
≡H̄

+
4π

ρc + 4− iγ̇︸ ︷︷ ︸
≡ ¯̄H

AB

ε
(3.23)

F =
2π

ρc + 4− i(γ̇ − 2ω0)︸ ︷︷ ︸
≡g1

A2 (3.24)

G =
2π

ρc + 4− i(γ̇ + 2ω0)︸ ︷︷ ︸
≡g2

B2 (3.25)

Finally, substituting all these results into the order ε3/2 equation gives

dA

ds1

= A

[
ε(1− iω1)− 8

3

(
g1|A|2 + ¯̄H|B|2

)]
− 8

3
εH̄B∗, (3.26)

dB

ds1

= B

[
ε(1 + iω1)− 8

3

(
g2|B|2 + ¯̄H|A|2

)]
− 8

3
εH̄A∗. (3.27)

The crossed term εH̄ is small compared to the other terms and, therefore, can be neglected
(see fig. 3.2). In the steady state of the s1 time-scale we have that whether A or B has to
be zero, otherwise we would obtain an inconsistency such as |A|2 being a complex number.
Numerical results show that the system selects B = 0. If this is the case, then A = 0 or

17



Figure 3.1: Real part, imaginary part, and modulus squared of the different coefficients of
eqs. (3.26) and (3.27), as a function of the shear rate γ̇ for β = 0.7.

���������
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dr t

-0.2

-0.1

0.1

0.2

Im(a1)

Numerical

Ansatz

Figure 3.2: Comparison between solution of eqs. (3.26) and (3.27) (up to n = 2), and ansatz
based on ω = ω0 + εω1. ε = 0.1, γ̇ = 1, and β = 0.7.
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Figure 3.3: Comparison between the shear stress obtained in the interacting and ideal case,
as a function of ε, for a suspension of pushers (σ0 < 0).

|A|2 = 3ε
8

1−iω1

g1
. The latter solution is only valid if it is a real positive number. This condition

gives us the value ω1 = Im(g2)/Re(g2), and therefore |A|2 = 3ε
8Re(g1)

. This analysis agrees with
the numerical solutions of eqs. (3.10) and (3.11) truncating to n = 2 as shown in fig. 3.2,
where there is a just a difference in phase.

One important result is that the oscillatory behavior of a2 leads to an oscillatory active
shear stress, with period T ∼ 1/γ̇, according to (3.6). In fact, using the ansatz, the active
shear stress ((3.6)) reads

Σs
xy ≈− σ0πIm

(
F e2i(ω0+εω1)s0 +Ge−2i(ω0+εω1)s0 +H

)
≈− σ0πIm

[
3ε

8
e2i(ω0+εω1)s0+iφ − iβγ̇ρc

4π(ρc + 4− iγ̇)

(
1 + ε+

ε

ρc + 4− iγ̇
)

)]
=− σ0π

{
3ε

8
sin (2(ω0 + εω1)s0 + φ)

−βγ̇ρc [4(16 + γ̇2)(1 + ε) + (48 + 32ε+ γ̇2(1 + 2ε))ρc + 4(3 + ε)ρ2
c + ρ3

c ]

4π(16 + γ̇2 + 8ρc + ρ2
c)

2

}
, (3.28)

where φ is a free phase. In the first line we used the ansatz and in the second line we use the
approximation B ≈ 0 and ω0 ≈ γ̇/2. Taking the time average of the former expression over
a period 2π/(ω0 + εω1) we have

〈
Σs
xy

〉
t
≈ σ0π

βγ̇ρc [4(16 + γ̇2)(1 + ε) + (48 + 32ε+ γ̇2(1 + 2ε))ρc + 4(3 + ε)ρ2
c + ρ3

c ]

4π(16 + γ̇2 + 8ρc + ρ2
c)

2
,

(3.29)
which is greater than the value obtained in the ideal gas approximation Σs

xyIdeal
≈ σ0βγ̇ρc(ε+1)

(16+γ̇2)

obtained by Saintillan [33] and, in our case, by setting g = 0, as shown in fig. 3.3 (where
we show a dimensionless version of the shear stress Σ̃s = Σs/(ρ|σ0|)). Unlike the circular
swimmers case, this time we have a non-zero time average for the active shear stress, which
is proportional to β as can be seen from H = H0 + εH1 in eqs. (3.21) and (3.23).

The amplitude of the shear stress oscillations can be obtained analytically under the
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approximation A ≈ 0, obtaining |σ0|π3ε/4. Likewise, the root mean square is given by.

√〈
(Σs

xy)
2
〉
t
≈ σ0π

√
9ε2

128
+

(
βγ̇ρc [4(16 + γ̇2)(1 + ε) + (48 + 32ε+ γ̇2(1 + 2ε))ρc + 4(3 + ε)ρ2

c + ρ3
c ]

4π(16 + γ̇2 + 8ρc + ρ2
c)

2

)2

,

(3.30)
The standard deviation can be also obtained from eq. (3.28), giving√〈

(Σs
xy)

2
〉
t
−
〈
Σs
xy

〉2

t
≈ 3σ0πε

√
2/16. (3.31)

An important consequence of the oscillatory active shear stress is that for certain config-
urations, it takes positive and negative values. Hence, a suspension of pushers would not
only see a reduction of the viscosity but also an increase, when being in a peak and a valley,
respectively. On average there is indeed a reduction in the viscosity that is smaller than in
the ideal gas case.

It is worth pointing out that the oscillatory ansatz works up to order a±2. In fact, if we
truncate up to a±3, then the evolution of each mode is given by

ȧ1 = a1

(
iγ̇

2
+ ε

)
− iβγ̇

4
a−1 −

iβγ̇

4
a3 −

8

3
a−1a2 +

8

5
a−2a3, (3.32)

ȧ2 = − iβγ̇ρc

4π
(ε+ 1)− [4− iγ̇ + ρc(ε+ 1)] a2 + 2πa2

1, (3.33)

ȧ3 = −a3

[
9− 3i

2
γ̇ + ρc(ε+ 1)(1 +

4

3π
)

]
− 3iβγ̇

4
a1 + 8a1a2, (3.34)

and the natural extension for the ansatz would be

a1(s0, s1, s2) = Aeiω0s0+iω1s1 +Be−iωs0−iω1s1 , (3.35)
a2(s0, s1, s2) = F e2iωs0+2iω1s1 +Ge−2iωs0−2iω1s1 +H (3.36)
a3(s0, s1, s2) = Jeiωs0+iω1s1 +Ke−iωs0−iω1s1 + P e3iωs0+3iω1s1 +Qe−3iωs0−3iω1s1 , (3.37)

with the following scaling obtained from the case without flow: J, K ∝
√
ε, P, Q ∝ ε3/2 and

the rest remains the same. Inserting the ansatz in eqs. (3.32), (3.33), and (3.34) we can solve
to each order in ε. To order ε0 we obtain the relation (3.21), which defines H0. To order ε1/2

we have
30i(γ̇ − 2ω0) α1 α∗2 0

α∗1 −30i(γ̇ + 2ω0) 0 α2

α3 0 18iπγ̇ − 12iπω0 + α4 0
0 α∗3 0 −18iπγ̇ − 12iπω0 + α4



A
B∗

J
K∗

 = 0,

(3.38)
where α1 = −160H0−15iβγ̇, α2 = 96H0 + 15iβγ̇, α3 = 96πH0−9Iπβγ̇, and α4 = −ρc(12π+
16) − 108π. We can obtain the frequency ω0 by imposing null determinant. However, the
frequencies obtained from this matrix have real and imaginary parts, meaning that the modes
increase indefinitely or go to zero in the fast time scale s0. This fact contradicts both the
intuition and the numerical results shown next.
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Numerical Results

We solve eq. (3.2) truncating to n = 5, for β = 0.7. In fig. 3.4 we show the active shear
stress and the average of the orientation vector as a function of time. They reveal a polar
phase transition for ε close to zero and the oscillatory behavior of the active shear stress,
as predicted by the multi-scale analysis. We notice that the amplitude of the oscillations
increases with ε and it is greater for small values of γ̇.

However, by plotting the shear stress as a function of γ̇ and ε, we notice that high shear
rates impede the formation of the polar phase, as shown in fig. 3.6 and 3.8. This feature
is solely due to higher order terms (n > 2), otherwise the transition remains even for large
values of γ̇. A complete picture of the transition can be found in the phase space shown in
fig. 3.10, where we considered the following criterium to determine if a configuration belonged
to a polar phase or not: if the difference between the maximum and minimum value of the
dimensionless shear stress is smaller than 0.0001, then it belongs to the disordered phase,
otherwise it is polarly ordered.

3.2 Nematic Alignment

In the homogeneous case, eq. (2.16) reduces to

ȧn =− an
(
n2 − inγ̇/2 + ρ

)
− iγ̇βn/4 (an−2 + an+2)

+ 2π
∑
l

alan−l

[
insinc (nπ/2− lπ)

+
cos ((l − n/2− 1)π/2)

(l − n/2)π
(1− in)

]
, (3.39)

where we have used the same rescaling (3.3), (3.4), and (3.5). It is worth pointing out that the
evolution of the even modes is decoupled from the odd ones, which is a direct consequence of
the nematic symmetry present in the collision rule and the swimmer shape. On the contrary,
the evolution of the odd modes does depend on the even modes.

As in the polar case, it is possible to truncate eq. (3.39) with few modes, as the rest will
take small values due to the rotational diffusion. Nonetheless, this time we truncate the set
of equations up to a±4 since the nematic interactions involve just even modes and in order to
see a phase transition we need a non-linear coupling of a2 and a4. This reasoning is confirmed
by the numerical results, which reveal that there is a nematic phase transition involving a4.
We define the bifurcation parameter

ν = ρ(4/π − 1)− 4 = ε− 3 =
ρ− 4ρc

ρc
, (3.40)

such that the critical density for the isotropic to nematic transition corresponds to ν = 0.
This time the critical density is four times bigger than in the polar case ρNematic

c = 4ρc. The
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Figure 3.4: Dimensionless active shear stress Σ̃s
xy as a function of time Drt (left) and time

evolution of the average orientation (right) for pushers with β = 0.7 and γ̇ = 1. The black
dot in the right plots corresponds to the initial orientation.
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Figure 3.5: Continuation of fig. 3.4.
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Figure 3.6: Dimensionless active shear stress Σ̃s
xy as a function of γ̇ for different concentrations

(pushers with β = 0.7). The orange lines represent the maximum and minimum value for
Σ̃s
xy, the blue line is the average between these two values, and the black line represents the

ideal case.
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Figure 3.7: Continuation of fig. 3.6.
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Figure 3.8: Dimensionless active shear stress Σ̃s
xy as a function of ε for different shear rates

(pushers with β = 0.7). The orange lines represent the maximum and minimum value for Σ̃,
the blue line is the average between these two values, and the black line represents the ideal
case.
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Figure 3.9: Continuation of fig. 3.8.
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Figure 3.10: Transition diagram in the phase space formed by ε and γ̇. The colored region
indicates the polar phase.
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√
2
)
a3a−2 +

4

7

(
− 2i− (1− i)

√
2
)
a4a−3, (3.41)

ȧ3 =−
(

9− 3iγ̇

2
+ ρc(ν + 4)

[
1− 2

3π

(
2i + (1 + i)

√
2
)])

a3 −
3iβγ̇

4
a1 + 4

(
− 2i + (1 + i)

√
2
)
a1a2

+
4

5

(
− 2i− (1 + i)

√
2
)
a4a1, (3.42)

ȧ2 =− iβγ̇ρc

4π
(ν + 4) + a2(iγ̇ + ν)− iβγ̇

2
a4 −

8

3
a4a−2, (3.43)

ȧ4 =− [16− 2iγ̇ + ρc(ν + 4)]a4 + 2πa2
2 − iβγ̇a2. (3.44)

If γ̇ = 0 we recover the same equations for the polar order transition found in interacting
polar microtubules in absence of flow [2] [3], this time for the a4 coefficient enslaved to a2, and
for the bifurcation parameter ν instead of ε. In addition, the numerical results reveal that
all the odd coefficients rapidly decay to zero, even the first ones. This result is a consequence
of the rotational diffusion (for high modes) and the nematic interaction for all the modes.
Finally, the evolution of the distribution function is mainly governed by the even modes.
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3.2.1 Circular Swimmers: β = 0

If β = 0, eqs. (3.43) and (3.44) read

ȧ2 =a2(iγ̇ + ν)− 8

3
a−2a4, (3.45)

ȧ4 =− (16− 2iγ̇ + ρc(ν + 4))a4 + 2πa2
2. (3.46)

Using the same change of variables as in the polar case an = cnei γ̇
2
nt we recover the same

phenomena found in [2] [3], this time for the variables c2 and c4

ċ2 = c2ν −
8

3
c−2c4, (3.47)

ċ2 = −(16 + ρc(ν + 4))c4 + 2πc2
2. (3.48)

As before, we can perform a detailed analysis close to the nematic transition ν = 0, where
the growth rate of c2 is much smaller than the decaying rate of c4, so the latter variable is
enslaved by the former one: c4 = 2π(16 +ρ)−1c2

2. Inserting this expression in eq. (3.47) leads
to a supercritical equation for c2

ċ2 = νc2 −B0|c2|2c2, (3.49)

with
B0 =

16π

3(16 + ρ)
≈ 16π

3(16 + 4ρc)
+O(ρ− 4ρc). (3.50)

A nematic transition occurs for ν > 0, where the equilibrium stationary solution is c2 =√
ν/B0eiφ, with φ being a random phase. Although the mechanism and the transition are

different from the polar case, the phenomena is the same: an oscillatory active shear stress
with zero mean

Σs
xy = −σ0πIm(a2) = −σ0π

√
ν/B0 cos(φ+ γ̇t). (3.51)

3.2.2 Non-Circular Swimmers: β 6= 0

Solving numerically the eq. (3.39) up to n = 5, we obtain the same qualitative behavior as
in the polar case, that is time oscillations in the active shear stress (see fig. 3.11). However,
there is not a polar phase, and in fact the oscillation is caused by a nematic phase transition.

As before, we plot the shear stress as a function of γ̇ and ε, noting that high shear rates
impede the formation of the nematic phase, as shown in figs. 3.13, 3.14, 3.15, and 3.16. It is
worth pointing out that the nematic phase disappears in a subcritical transition unlike the
polar phase in section 3.1 (see fig. 3.17).
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Figure 3.11: Dimensionless active shear stress Σ̃s
xy as a function of time Drt (left) and time

evolution of the average orientation (right) for pushers with nematic alignment. β = 0.7,
γ̇ = 0.1. The black dot in the left plots corresponds to the initial configuration.
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Figure 3.12: Continuation of fig 3.11.
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Figure 3.13: Dimensionless active shear stress Σ̃s
xy as a function of γ̇ for different concentration

(pushers with β = 0.7). The orange lines represent the maximum and minimum value for Σ̃,
the blue line is the average between these two values, and the black line represents the ideal
case.
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Figure 3.14: Continuation of fig. 3.13.
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Figure 3.15: Dimensionless active shear stress Σ̃s
xy as a function of ν for different shear rates

(pushers with β = 0.7). The orange lines represent the maximum and minimum value for Σ̃,
the blue line is the average between these two values, and the black line represents the ideal
case.
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Figure 3.16: Continuation of fig. 3.15.
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Figure 3.17: Dimensionless shear stress as a function of γ̇ for ν = 0.5. Pushers. β = 0.7.
The orange dots represent the maximum and minimum values for Σ̃ and the blue dots are
the average between these two values. The right plot is a zoom from the left one, which it is
at the same time a zoom from the last plot of fig. 3.13.
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Chapter 4

Rheology of Two-Dimensional
Homogeneous Magnetotactic
Suspensions

Summary
In this chapter we consider magnetotactic bacteria: bacteria that tend
to align with external magnetic fields. We study the kinetic equation in
two dimensions for a homogeneous suspension under a uniform shear flow,
considering polar interactions for magnetic swimmers. In addition to the
evolution of the orientation vector due to the local vorticity, the presence of
an external magnetic field generates a torque which reorients the swimmer
in the direction of the field or antiparallel to it. Numerical results show
that the presence of a magnetic field shifts the transition points found in
the non-magnetic case in chapter 3, depending on the relative orientation
of the field with respect to the flow direction.

4.1 Introduction

Among all the different type of bacteria, a special group called magnetotactic has attracted
important attention. They have the ability to synthesize an intern magnetic moment aligned
with their principal axism = ±mp, strong enough to reorient them under an imposed mag-
netic field of the order of mili Teslas [7]. If the magnetic moment points in the swimming
direction p then the bacterium is called North Seeker (NS), and South Seeker (SS) if it
points in the opposite direction. Such magnetotactic bacteria are able to move preferentially
to one of the magnetic poles [43] by following the magnetic field lines. In the north hemi-
sphere, magnetotactic bacteria tend to move towards the north, following the positive sense
of magnetic field lines (NS), whereas in the south hemisphere, they tend to follow the inverse
sense, going to the south pole (SS). In both cases, they are led to deep waters, where the
concentration of oxygen is low, representing the ideal environment for them to develop.
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Figure 4.1: Magnetospirilum gryphwaldense. Simplified representation.

Magnetotactic bacteria exposed to a shear flow and a magnetic field exhibit unique pat-
terns of collective motion such as band formation and pearling instabilities [47]. One example
of magnetotactic bacteria is the Magnetospirilum gryphwaldense (NS), characterized by a spi-
ral shape, flagella at both ends, and magnetic moment of m ≈ 10−16 Am2 [31] [26] as shown
in fig. 4.1.

If there is a magnetic field B = Bb, the evolution of the orientation is going to be
affected by the magnetic torque m × B [45]. Due to the small Reynolds’ number, the
condition of null total torque translates to an instantaneous rotation when applying a torque
(in this case magnetic), and therefore we have an angular velocity proportional to this torque,
Ωm = m×B/ξr, with ξr being the rotational friction coefficient, which modifies the Jeffery’s
equation (1.2)

ṗ = (I− pp) · (βE + W) · p+ Ωm × p. (4.1)

In what follows, we will focus on NS bacteria with the magnetic field in the plane oriented
at an angle α from the flow direction x̂ (see fig. 4.2); the analysis for SS bacteria is completely
analogous. For simplicity, we neglect the magnetic interaction among bacteria, since its effect
is weak when dealing with dilute and semi-dilute suspensions. Indeed, the magnetic field
produced by a magnetic dipole isBdip = µ0

4π

(
3r(m·r)

r5
− m

3

)
, where µ0 ≈ 1.2× 10−6 Tm/A and

r is the distance from the dipole. We can roughly estimate the strength of this magnetic field:
using the magnetic moment ofMagnetospirilum gryphwaldense and a typical distance between
bacteria of r ≈ ρ

−1/3
c ≈ 12 µm, we obtain Bdip ∼ 10−34 T, whereas common experiments in

the lab deal with B ∼ 10−3 T.

4.2 Polar Alignment

Performing the same Fourier decomposition in the kinetic equation (2.11) considering the
collision factor given by (2.14), we have

ȧn =− an
(
n2 − inγ̇/2 + ρ

)
− iγ̇βn/4 (an−2 + an+2) +

ωmn

2

(
e−iαan−1 − aiαan+1

)
+ 2π

∑
l

alan−lsinc (nπ/2− lπ) , (4.2)

where we used the rescaled variables given by (3.3), (3.4), and (3.5). ω−1
m = ξr/(mB) is the

characteristic time for the magnetic momentm to relax towards the direction of the magnetic
field B.
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Figure 4.2: Uniform shear flow pointing in x̂ with gradient in ŷ and shear rate γ̇. The
magnetic field B is in the same plane x-y forming an angle α with x̂.

4.2.1 Numerical Results

By truncating eq. (4.2) up to a±5, we can obtain numerical results. In particular, we
find that there is a competition between the alignment in the direction of the flow and the
direction of the magnetic field, as shown in fig. 4.3. In this scenario there is a polar phase,
however, the mean orientation tend to spend more time in the direction of the imposed
magnetic field, which means that the mean orientation evolves having, on average, a non-
zero magnitude, unlike the non-magnetic case. Moreover the external magnetic field shifts
the critical concentration in a non-trivial way, and in fact, the order parameter is a function
of the shear rate γ̇, the concentration ρ, and the magnetic Peclet number ωm.
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Figure 4.3: Dimensionless active shear stress Σ̃s
xy as a function of time Drt (left) and time

evolution of the average orientation (right). The first column corresponds to ωm = 1 and
α = 45◦, and the second to ωm = 1 and α = 135◦. Rows correspond to different densities.
Red (blue) curves correspond to the ideal (interacting) case for pushers.
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Figure 4.4: Continuation of fig. 4.3.
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Figure 4.5: Continuation of fig. 4.3.
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Figure 4.6: Continuation of fig. 4.3.
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Figure 4.7: Continuation of fig. 4.3.
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Chapter 5

Spatial Structures in Two- and
Three-Dimensional Suspensions

Summary
In this chapter we study the kinetic equation in two and three dimensions
for inhomogeneous suspensions under a shear flow, considering polar and
nematic interactions. Different boundary conditions are explored, conclud-
ing that the only one capable of reproducing the homogeneous results are
anti-specular BC with the walls. In particular, for the simulations we use
wall-aligning collisions once the bacteria hit the wall. This adhoc condi-
tion reveals two phenomena observed experimentally: upstream swimming
and high concentrations near the wall. Adding this boundary condition
to two-dimensional systems, we found that an instability appears in the
gradient direction for certain system sizes of pusher suspensions. Applying
periodic-like BC leads to the same phenomenon, which allows us to use
linear stability analysis, revealing that this instability is triggered by small
wave-numbers, or equivalently, long-wavelengths. Therefore, if the system
is small enough (smaller than the critical wave-length), then no instability
appears. This peculiarity is also confirmed by the simulations. We also
explore the three-dimensional case, in which a similar instability appears.

5.1 Introduction

In this section, we will include spatial dependence in the kinetic equation, which is the one
presented in eq. (2.11)

∂Ψ

∂t
+
∂(ẋΨ)

∂x
+
∂(ẏΨ)

∂y
+
∂(θ̇Ψ)

∂θ
= Dr

∂2Ψ

∂θ2
+ J [Ψ,Ψ]. (5.1)

We will show that the validity of the homogeneous solutions is restricted to semi-dilute
suspensions or very small systems, of the size of few mean free paths. Higher concentration
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or bigger systems may give rise to spatial structures or instabilities.

First, we will analyze different bacteria-wall interacting mechanism in the dilute and semi-
dilute regime. Then, we will introduce a particle-based method to study the kinetic equation.
Finally, we will study the patterns that emerge from the unstable nature of the homogeneous
solution.

5.2 Wall-Interactions

In this section we show how different bacteria-wall interacting mechanisms modify the dis-
tribution of swimmers. In particular, we study two mechanisms, that despite its simplicity,
can shed some light on different phenomena. In order to facilitate the calculations and do
not rely on numerical solutions from partial differential equations, we tackle the stationary
dilute regime so the problem can be turned into determining eigenvalues and eigenvectors as
shown below.

In the dilute regime, the stationary kinetic equation (2.11) reads

V0 sin θ
∂Ψ

∂y
+
∂(θ̇Ψ)

∂θ
= Dr

∂2Ψ

∂θ2
, (5.2)

where we have neglected the spatial dependence in the flow direction on symmetry grounds,
so Ψ = Ψ(y, θ). Using angular Fourier series, the equation for each amplitude an is

0 = −an
(
n2 − inγ̇

2

)
+

i

2

(
dan+1

dy
− dan−1

dy

)
− iγ̇βn

4
(an−2 + an+2) , (5.3)

where we have used the rescaled variables given by (3.3), (3.4), and (3.5) plus y → yDr/V0.
Equation (5.3) can be written in matrix form


. . . . . . . . .
−1 0 1

−1 0 1
−1 0 1

. . . . . . . . .


︸ ︷︷ ︸

P

d

dy



...
a−2

a−1

a0

a1

a2
...


︸ ︷︷ ︸

da
dy

=


. . . . . . . . . . . .
z−1 0 w−1 0 z−1

z0 0 w0 0 z0

z1 0 w1 0 z1

. . . . . . . . . . . .


︸ ︷︷ ︸

M



...
a−2

a−1

a0

a1

a2
...


︸ ︷︷ ︸

a

,

(5.4)

with wn = −2in2 − nγ̇ and zn = γ̇βn/2. This equation reduces to a generalized eigenvalue
problem when introducing the ansatz a = eλyA. Thus the solution can be expressed as

a =
∑
j

Cje
λjyA, (5.5)
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Figure 5.1: Specular (left) and anti-specular (right) boundary conditions depicted.

where Cj are constant coefficients given by the boundary conditions. In order to solve the
eigenvalue problem (5.4) we must truncate the system up to an order a±n and then apply
the standard tools, that is solving Det(Pλ−M) = 0 to determine the eigenvalues, and then
determining the basis of the null space for each eigenvalue.

In what follows, we study two BC: specular and anti-specular collisions with the wall (see
fig. 5.1).

5.2.1 Specular Collisions

In the upper wall, the specular collision translates to the following condition for the distri-
bution function

Ψ(θ) = Ψ(2π − θ)0<θ<π. (5.6)

The lower wall condition is completely analogous. In addition, we have the normalization
condition ∫

a0dy =
ρ

2π
. (5.7)

Expanding the condition (5.6) in Fourier series, we arrive, after some manipulation, at

(am − a−m)|wall = 0 ∀m, (5.8)

which is valid for the upper and lower wall.

Truncating the system (5.4) up to order a±4 and employing the specular boundary con-
ditions, we obtain that the system indeed develops inhomogeneities near the walls, as shown
in fig. 5.2. This result comes from the incompatibility of the BC with the Jeffery’s equation
(1.2), since the swimmer experiences an abrupt change in its angular speed when colliding
with the wall.
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Figure 5.2: Real (left) and imaginary (right) part of a0, a1, and a2 as a function of y, for
γ̇ = 10, β = 0.7, Ly = 10, and ρ = 2, with specular BC. Numerical solution obtained by
truncating eq. (5.4) up to order a±4.
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Figure 5.3: Real (left) and imaginary (right) part of a0, a1, and a2 as a function of y, for
γ̇ = 10, β = 0.7, Ly = 10, and ρ = 2 with anti-specular BC. Numerical solution obtained by
truncating eq. (5.4) up to order a±4.

5.2.2 Anti-specular Collisions

For the anti-specular collisions in the upper wall, the constraint reads

Ψ(θ) = Ψ(π − θ)0<θ<π, (5.9)

which translates to am(ywall) = 0 for m odd when integrating from 0 to π. The same result
applies to the lower wall. As before, we also have the normalization condition from eq. (5.7).

Truncating the system (5.4) up to order a±4 and employing the anti-specular boundary
conditions, we obtain that the system reaches a homogeneous distribution as in the case of
periodic boundary conditions (see fig. 5.3). Unlike the specular collisions, an anti-specular
collision does not change the angular speed of the swimmer when colliding with the wall due to
its ellipsoidal shape. This feature can be seen directly from the Jeffery’s equation 2.12, which
presents a symmetry in the even modes due to the presence of 2θ. However, this boundary
condition in unreal and does not even approximate the interactions observed experimentally.

5.2.3 Wall-Aligning Collisions

It has been widely reported that bacteria are attracted to walls [6] yet the origin of this
attraction is still discussed [21]. In this regard, two important macroscopic effects have
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Figure 5.4: Representation of upstream swimming in a Poiseuille (left) and Couette (right)
configuration.

Figure 5.5: Alignment with wall boundary condition representation.

been observed experimentally: an augmentation in the concentration near the walls [6] and
upstream swimming [17] [42], in which bacteria swim against the flow if n · ∇u > 0, where
n is the normal to the wall, and u = u(y)x̂ (see fig. 5.4).

With this in mind, we employ an adhoc interaction: let n be the unit normal vector of
a given surface. If p is the orientation of the swimmer when arriving to the surface, then
it ends up with a new orientation p′ = [p − (p · n)n]/[1 − (p · n)2], which is a unit vector
parallel to the surface (see fig. 5.5). Furthermore, in the simulations we add some noise
to this reorientation process to render it more realistic, so at the end the swimmer is not
completely aligned with the wall but has a small deviation from it.

The simulations reveal that this interaction leads to an augmentation of the bacteria
concentration near the walls, as it would be expected since we are removing any velocity in
the normal direction. Moreover, upstream swimming is obtained in 3 dimensions but not in
2 dimensions. The reason behind it is that in 3D bacteria have an extra degree of freedom
that allow them to rotate around the gradient axis, whereas in 2D they are restricted to move
in the plane and therefore cannot change their orientation smoothly.

49



5.3 Particle-based Methods

Particle-based methods are suitable tools to study kinetic equation. They are based on the
fact that the distribution functions are statistical objects and therefore, they give averages of
the real number of particles over small boxes in phase space and time (coarse-graining) [39].

We can simulate a large number of swimmers Ñ (which differs from the real number of
swimmers N) with dynamics that reproduce the evolution of the distribution function and
not necessarily the motion of real swimmers. Then, all the averages can be computed directly
from the sampling swimmers. Each sampling swimmer represents Λ = N/Ñ = ρL3/Ñ real
swimmers. In what follows we will describe the evolution of each sampling swimmer.

Each simulation cycle consists of two steps: the displacement and the interactions. The
displacement accounts for the streaming and the diffusion, whereas the interactions account
for the binary collisions between bacteria.

5.3.1 Streaming Motion

Streaming motion is straightforward since we already have the expressions for ṙ and ṗ, so
we just have to solve the equations of motion for each sampling swimmer. If Γ = {r,p}
represents the degrees of freedom of the system, then the general equation of motion can be
written as Γ̇ = φ(Γ). This equation can be easily integrated via Euler-like methods.

5.3.2 Diffusion

Diffusive behavior is obtained by adding a noise ξ(t) to the previous equation of motion. This
noise must have a Gaussian distribution with vanishing average, and must be uncorrelated,
i.e.

〈ξ(t)ξ(t′)〉 = δ(t− t′), (5.10)
so the equation of motion corresponds to a Langevin equation: Γ̇ = φ(Γ) +

√
Dtξ(t).

Then, the evolution in a time step ∆t becomes

Γ(t+ ∆t) = Γ(t) + φ (Γ) ∆t+
√

2D∆tη, (5.11)

where η is a normal random number with a Gaussian distribution of unit variance and
vanishing average.

In particular, for the case of rotational diffusion, we can adopt an alternative approach: let
η = (ηx, ηy, ηz) be a noise-vector with each of its components having the properties mentioned
before. Then the diffusive behavior can be accounted by including a multiplicative noise to
the equation of motion

p(t+ ∆t) = p(t) + φ(r,p)∆t+
√

2Dr∆tp× η. (5.12)

In order to assure that p is a unit vector, it is mandatory to normalize p after each time step.
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5.3.3 Collisions

Here is where we depart from Molecular Dynamics (MD). Although we could simulate each
real collision, implementing them would be very costly. The general technique to deal with
two-particle collision is the direct simulation Monte Carlo (DSMC), which samples the colli-
sions statistically.

DSMC requires a grid with each cell size ∆ being large enough to avoid MD, and small
enough to avoid the loss of any relevant information (see fig. 5.6). In this regard, we have to
consider two length scales: the mean free path lmfp ∼ 1/(ρσ) and the Jeffery’s orbit length
LJ ∼ V0/γ̇ (applicable for uniform shear flows with shear rate γ̇). We must have ∆ < LJ so
we do not lose information about the spatial organization. Finally, ∆ must not be greater
than a few mean free paths lmfp so we can choose the pair of swimmers randomly in the box
assuming a nearly homogeneous system. Then the hierarchy should be ∆ ∼ lmfp < LJ .

The local distribution Ψ(r,p) is sampled by the number of local (sampling) swimmers,
which we call Ñi,j,k with i, j, k indicating the box. The total number of collisions that should
take place for the sampling particles, in a time step ∆t is N coll

i,j,k = Ñi,j,kνi,j,k∆t/2, where νi,j,k

is the collision frequency at the given box, and the factor 1/2 avoids double counting. The
collision frequency, in the Maxwell approximation, is given by

ν(r) =
g

ρ(r)

∫
Ψ(p1)Ψ(p2)dp1dp2 = gρ(r), (5.13)

so the number of collisions in a box is

N coll
i,j,k =

Ñ2
i,j,kΛ(Dr∆t)

2

g

Dr∆3
, (5.14)

To perform the collisions, in each box we choose N coll
i,j,k pairs of random sampling swimmers

and we update their orientations according to the completely inelastic polar or nematic
collision rules. This simple approach is valid due to the Maxwell approximation. If we were
to consider the cross-section depending on the incidental angles of the swimmers, then the
collision process is slightly more sophisticated [39].

One important remark is that N coll
i,j,k is not necessarily an integer number. By truncating it

we would be considering fewer collisions than expected, affecting the transport properties of
the system. In order to avoid such undesired side-effects, it is a common practice to truncate
N coll

i,j,k to an integer number and to add the fractional part to the next time step collision
process, so the right number of collisions is generated on average.

5.4 Two-Dimensional Simulations

We perform different simulations by varying the number density, the shear rate, and the
dimensions of the system. We first consider the wall-aligning BC since it is more realistic.
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Figure 5.6: Grid DSMC in two dimensions. The length cell ∆ is depicted.

We found that for large systems, or equivalently small shear rates, spatial structures emerge
in the ŷ direction but not in the direction of the flow. Additionally, simulations suggest
that they are not formed by nucleation processes [4]. In figs. 5.7, 5.8, and 5.9 we show the
number density integrated in x̂ direction, ρx(y), and the average orientation weighted by the
density 〈p〉x ρx (averaged in the x̂ direction) as a function of y and time, in a spatiotemporal
diagram. We observe that, due to the instability of the homogeneous suspensions in the
gradient direction, spatial structures emerge. On the contrary, as illustrated in figs. 5.10,
5.11, and 5.12, where we show the number density integrated in the ŷ direction, ρy(x) and
the average orientation weighted by the density 〈p〉y ρy (this time averaged in the ŷ direction)
as a function of x and time, in a spatiotemporal diagram, we observe that this direction does
not present any instability.

The BC lead to inhomogeneities (sec. 5.2) in the ŷ direction, so in order to determine if the
spatial structures are dependent on the wall interactions, we employ periodic-like boundary
conditions. Although the uniform shear flow is only periodic in the direction of the flow,
we can use periodic-like boundary condition in all directions by applying the Lees-Edwards
method [22]. This method is widely used to compute transport properties, such as the
viscosity of liquids and granular flows, with high accuracy [22]. In our case, this method
simply consists in shifting the position of the swimmer by ±γ̇Ly∆T every time it crosses the
non-periodic boundary (see fig. 5.13), where Ly is the height of the system and ∆T the time
elapsed from the beginning of the simulation. Notice that if the system is homogeneous in
the x direction, then this BC is irrelevant.

By using the Lees-Edwards BC together with the same system parameters, we found the
same spatial structures (see figs. 5.14 5.15 5.16 5.17 5.18 5.19), concluding that they are not
caused by the walls.
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Figure 5.7: ρx(y) (gray scale) in time (horizontal axis) space (vertical axis, in µm) represen-
tation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.8: 〈px〉x ρx(y) (color bar) in time (horizontal axis) space (vertical axis, in µm)
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.9: 〈py〉x ρx(y) (color bar) in time (horizontal axis) space (vertical axis, in µm))
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.10: ρy(x) (gray scale) in time (horizontal axis) space (vertical axis, in µm) repre-
sentation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.11: 〈px〉y ρy(x) (color bar) in time (horizontal axis) space (vertical axis, in µm)
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.12: 〈py〉y ρy(x) (color bar) in time (horizontal axis) space (vertical axis, in µm)
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.13: Lees-Edwards boundary condition scheme. If the swimmer traverses the wall,
then it appears in the opposite wall with its x position shifted by γ̇Ly∆T , where γ̇ is the
shear rate of the uniform flow, Ly the distance between the walls, and ∆T the time elapsed
from the beginning of the simulation.
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Figure 5.14: ρx(y) (gray scale) in time (horizontal axis) space (vertical axis, in µm) repre-
sentation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.15: 〈px〉x ρx(y) (color bar) in time (horizontal axis) space (vertical axis, in µm)
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.16: 〈py〉x ρx(y) (color bar) in time (horizontal axis) space (vertical axis, in µm)
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.17: ρy(x) (gray scale) in time (horizontal axis) space (vertical axis, in µm) repre-
sentation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.

2000 4000 6000 8000 10000
0

160

2000 4000 6000 8000 10000
0

160

2000 4000 6000 8000 10000
0

160

2000 4000 6000 8000 10000
0

160

2000 4000 6000 8000 10000
0

160

2000 4000 6000 8000 10000
0

160

Drt

-0.004

-0.002

0

0.002

0.004

Figure 5.18: 〈px〉y ρy(x) (color bar) in time (horizontal axis) space (vertical axis, in µm)
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.19: 〈py〉y ρy(x) (color bar) in time (horizontal axis) space (vertical axis, in µm)
representation obtained from DSMC simulations, for different Ly and fixed Lx = 160 µm.
ρ = 10, γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.

It is worth pointing out that larger systems or, analogously, larger shear rates, allow
the formation of several bands that show fusion processes in a slow time-scale, as shown in
fig. 5.20.

Having the same phenomenon in the periodic system and the one including walls, we
can turn our attention to the former case and perform a linear stability analysis of the
homogeneous solution Ψ0. Let Ψ = Ψ0 + αΨ1 with α � 1. To first order in α, eq. (2.11)
reads

∂Ψ1

∂t
= −(p+ γ̇yx̂) · ∇Ψ1 −

∂(θ̇Ψ1)

∂θ
+
∂2Ψ1

∂θ2
+ I [Ψ0,Ψ1] , (5.15)

where I[Ψ0,Ψ1] is the linearized Boltzmann operator, given by

I[Ψ0,Ψ1] =

∫ π

−π
dw[Ψ0(θ + w/2)Ψ1(θ − w/2) + Ψ1(θ + w/2)Ψ0(θ − w/2)−Ψ0(θ)Ψ1(θ − w)

−Ψ1(θ)Ψ0(θ − w)]. (5.16)

In order to analyze the stability of the homogeneous solution, we assume plane-wave
perturbations. Considering the deformation and advection fo the waves due to the imposed
flow, we write the perturbation as [27]

Ψ1(r, θ, t) = Ψ̄1(θ, t)eik·(r−γ̇yx̂t). (5.17)

The advantage of this kind of perturbation is that it eliminates the explicit appearance y
(see eq. 5.15), which if treated with Fourier, would be expressed as convolutions, rendering
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Figure 5.20: ρx(y) (top, in gray scale), 〈px〉x ρx(y) (middle, in color bar), 〈py〉x ρx(y) (bottom,
in color bar), in time (horizontal axis) space (vertical axis, in µm) representation obtained
from DSMC simulations, for Ly = Lx = 500 µm. ρ = 50, γ̇ = 100, and β = 0.7. Lees-Edward
boundary condition were applied. At Drt ≈ 2400 there is a fusion event between two bands.
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the problem more complicated. The price to pay is the explicit appearance of time in the
perturbation equation.

Inserting (5.17) into (5.17) we are left with

∂Ψ̄1

∂t
= −ip · kΨ̄1 + iγ̇kxt sin θΨ̄1 −

∂(θ̇Ψ̄1)

∂θ
+
∂2Ψ̄1

∂θ2
+ I

[
Ψ0, Ψ̄1

]
. (5.18)

Notice that (5.18) is not an eigenvalue problem due to the explicit appearance of t in the
RHS, in addition to the explicit time-dependence of the homogeneous solutions, which can
be seen through the ansatz in eqs. (3.19) and (3.20). Expanding the perturbation in angular
Fourier series, Ψ̄1 =

∑
bn(t)einθ, eq. (5.18) can be written as

db

dt
= L(k, t)b, (5.19)

where

b =



...
b−2

b−1

b0

b1

b2
...


(5.20)

and L is the linear operator which depends explicitly on the wave-vector k and t.

Based on the simulation results, we assume that the perturbation is only in the gradient
direction, i.e. kx = 0. Therefore, the linear dependence on time disappears (see eq. (5.18))
and L becomes periodic in time due to the oscillating nature of the homogeneous solution.
Notice that in this case, the correction of the plane-wave perturbation becomes irrelevant,
i.e. the result would have been the same having used Ψ1(r, θ, t) = Ψ̄1(θ, t)eikyy. From a
theoretical point of view, the periodic nature of linear operator allows us to use the Floquet’s
theorem, which is the analogue of Bloch’s theorem in condensed matter. It states that
the solution of eq. (5.19) has the form b(t) =

∑
i cie

µitxi(t), where xi(t) is a T -periodic
function and ci are coefficients determined by the initial conditions. The µi coefficients are
called Floquet exponents and have the same interpretation as the eigenvalues, since xi(t) are
bounded functions.

Before attempting the Floquet method, we can solve eq. (5.19) numerically by truncating
to order a±10 with a complex random initial condition of amplitude. In order to analyze if
the solution is stable or not, we plot the maximum value of |bn| for all n from −10 to 10 and
between Drt = 0 and Drt = 1000 in fig. 5.21. Furthermore, we also show the plots for the
cases up to order a±3 and a±2 in order to see what is the minimum number of modes needed
to see the instability. In this regard, we obtained that all this phenomenon can be explained
by the first three Fourier modes. However, as discussed in chapter 3, we have an approximate
numerical solution to order a±2, and the multiscale analysis fails for higher orders, therefore
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nothing is gained by using the Floquet’s method at this stage. Other approximations should
be considered and it is left as future work.

The numerical results agree with the simulations, revealing a critical wave-length of λc ≈
2200 µm which is very close to the critical system size shown in figs. 5.14, 5.15, and 5.16, for
the parameters ρ = 10, γ̇ = 10, and β = 0.7.

We can further study the stability of the homogeneous solution when considering long-
range interactions. As before, we assume that the perturbation is only in the gradient
interaction. To this end, we need the perturbed velocity field u1 produced by the perturbed
active stress tensor Σij = σ0

∫
Ψ1(pipj − δij/2)d2p, which is given by (following the Green

method)

u1,i =

∫
Aij(y − y′)

∂

∂y
Σ1,yj(y

′)dy′ = iσ0ky

∫
Aij(y − y′)eikyy′dy′

∫
Ψ̄1 (pypj − δy,j/2) d2p

= iσ0kyÃij(ky)e
ikyy

∫
Ψ̄1 (pypj − δy,j/2) d2p, (5.21)

where Ãij = 1
8πη

(δij/k
2 − kikj/k

4) is the Oseen tensor in Fourier space. As a result, the
perturbed velocity field is

u1 =
−σ0

8πη

∫
Ψ̄1pxpyd

2px̂, (5.22)

which enters into the Jeffery equation

θ̇1 =
∂u1,x

∂y

1

2
(β cos(2θ)− 1). (5.23)

Considering the angular Fourier decomposition of the perturbation, Ψ̄1 =
∑
bn(t)einθ, and

the rescaled variables given by (3.3), (3.4), and (3.5) plus y → yDr/V0 , the evolution of the
orientation due to the perturbation is

θ̇1 = −i
σ0

32ηg
(b2 − b−2)eikyy. (5.24)

Using the parameters for E. Coli, σ0 ≈ 2.3 pN m, g ≈ 80 µm3/s, and the viscosity of water
at room temperature η ≈ 10× 10−3 Ns/m2, we have σ0/(ηg) ∼ 10. The perturbed equation
becomes

∂Ψ̄1

∂t
= −ip ·kΨ̄1 +iγ̇kxt sin θΨ̄1−

∂(θ̇Ψ̄1)

∂θ
+i

σ0

32ηg
(b2−b−2)

∂Ψ0

∂θ
+
∂2Ψ̄1

∂θ2
+I
[
Ψ0, Ψ̄1

]
. (5.25)

The effect of the long-range interaction is to add constants into the matrix operator
L(k, t). By numerically solving the linear problem truncated up to order a±10 and b±10, with
a complex random initial condition of amplitude, we obtain that the instability prevails, but
the long-range interactions shift the critical wave-length to a smaller but similar value, as
seen in figs 5.22, 5.23, 5.24.
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Figure 5.21: Linear-Log plot of the maximum value of |bn| at Drt = 1000, as a function of
the wave-vector ky. We assume kx = 0. The vertical line corresponds to 0.001. The solutions
were obtained by truncating the system at n = 10 (top), n = 3 (middle), and n = 2 (bottom),
for both the homogeneous solution and the perturbation. The parameters used were ρ = 10
and γ̇ = 10. The figure in the top reveals a critical wave-length of λc ≈ 2200 µm.
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Figure 5.22: Evolution of the modules of all the Fourier modes |bn| for different wave-vectors
ky with (right) and without (left) long-range hydrodynamic interactions. We assume kx = 0.
The solutions were obtained by truncating the system at n = 10 for both the homogeneous
solution and the perturbation. The parameters used were ρ = 10, β = 0.7 and γ̇ = 10.
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Figure 5.23: Continuation of figure 5.22
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Figure 5.24: Evolution of the modules of all the Fourier modes |bn| for different wave-vectors
ky with (right) and without (left) long-range hydrodynamic interactions. We assume kx = 0.
The solutions were obtained by truncating the system at n = 10 for both the homogeneous
solution and the perturbation. The parameters used were ρ = 10, β = 0.7 and γ̇ = 10.

5.4.1 Three-Dimensional Simulations

By performing various simulations varying the density and the size of the system, we find a
similar kind of spatial structures. We imposed a uniform shear flow u = γ̇zx̂. The simulations
were done considering wall aligning BC (see figs. 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, and
5.32) and Lees-Edward BC (see figs. 5.33, 5.34, 5.35, and 5.36). Since we are working in
three dimensions, we take averages in two orthogonal directions and plot them as a function
of third coordinate. For example, in fig. 5.25 we show the number density integrated in the
x̂ and ŷ direction, ρxy(z) and in fig. 5.26 we show the average orientation weighted by the
density, 〈px〉xy ρxy(z). Unlike the two-dimensional case, the origin of the spatial structures
depends on the system size in a non-trivial way, but they share some similarities with the
two-dimensional case. For example, the instability only appears in the gradient direction
(z-axis) whereas in the rest remains homogenous (see figs. 5.29 5.30 5.31 5.32). We note as
well that the evolution of py is not oscillatory, but has a persistence to a given direction, as
shown in fig. 5.27. In figs. 5.375.385.395.40 we show as well the formation of several bands
when the shear rate is large in a periodic-like system.

More simulations should be considered in order to understand the origin of the instability,
by varying the system size, the concentration and the shear rates. This is left as future work.
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Figure 5.25: ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.26: 〈px〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.27: 〈py〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.28: 〈pz〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.29: ρyz(x) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.30: 〈px〉yz ρyz(x) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.31: 〈py〉yz ρyz(x) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.32: 〈pz〉yz ρyz(x) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Wall-aligning boundary condition were applied.
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Figure 5.33: ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.34: 〈px〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.35: 〈py〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.36: 〈pz〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 10, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.37: ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 100, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.38: 〈px〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 100, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.39: 〈py〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 100, and β = 0.7. Lees-Edward boundary condition were applied.
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Figure 5.40: 〈pz〉xy ρxy(z) in time (horizontal axis) space (vertical axis, in µm) representation
obtained from DSMC simulations, for different Lz and fixed Lx = Ly = 160 µm. ρ = 10,
γ̇ = 100, and β = 0.7. Lees-Edward boundary condition were applied.
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Chapter 6

Conclusions and Perspectives

In this thesis we extended the kinetic theory of dilute bacterial suspensions to the semidi-
lute case by including short-range aligning collisions through a Boltzmann collision integral.
This model was studied theoretically and numerically in detail for a homogeneous suspen-
sion of swimmers with nematic and polar interactions, and for non-homogeneous bacterial
suspensions of polar interacting swimmers.

In chapter 2 we derived the kinetic equation for the distribution function of positions and
orientations, considering short-range interactions through a Boltzmann collision integral. The
interactions considered were completely inelastic polar and nematic aligning collisions, which
were expressed in detail in two dimensions. Finally, we expanded the distribution function
in angular Fourier modes for the case of a simple shear flow, obtaining the evolution of each
mode for both kinds of interactions.

In chapter 3 we studied in detail the kinetic equation in two dimensions for a homoge-
neous suspension under a uniform shear flow. First, we analyzed the polar interacting case.
Although analytic solutions were not possible to find even when truncating the equations to
the first two modes, we employed an ansatz in a multi-scale scheme in which we identified
different time-scales for the polar interacting case near the critical density. As a result, we
obtained simplified expressions for the nematic and polar modes in the Fourier expansion,
as well as for the active stress tensor. This last quantity revealed an oscillatory behavior
with a frequency of the order of the shear rate of the imposed uniform shear flow, due to the
interplay between the Jeffery’s orbit and the short-range aligning collisions, with an average
that remained close to the one obtained in the dilute regime. Furthermore, we obtained the
scaling laws of the root mean square and the standard deviation of the the active shear stress.
Then, we tried to perform the same analysis truncating to the first three modes, but we faced
different inconsistencies due to the ansatz used. Finally, we solved numerically the equations
for the modes up to order 10, for which we obtained a new transition for high shear rates,
in which we lose the polar phase. For the nematic interacting case, we found that a similar
transition takes place, this time related to the fourth mode enslaved to the second mode. In
fact, all the odd modes go to zero, including the average orientation even in the oscillatory
phase, unlike the polar interacting case. Finally, numerical solutions, considering up to the
tenth mode, reveal a subcritical transition in which the nematic phase is lost.
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In chapter 4 we studied numerically the effect of polar interactions in magnetotactic bac-
teria under a simple shear flow and a constant magnetic field. The effect of the magnetic
interaction is to shift the average polarization close to the direction of the magnetic field
and to increase or decrease the critical density with respect to the non interacting case if the
magnetic field is aligned with the flow or opposed to it, respectively.

In chapter 5 we studied inhomogeneous suspensions in two and three dimensions. First,
we tested different boundary conditions, concluding that the only boundary condition able
to reproduce the homogeneous solution is the anti-specular collision with the wall. Then we
solved the kinetic equation by employing DSMC simulations and adhoc boundary conditions
that reproduce two phenomena observed experimentally: upstream swimming and high con-
centrations near the wall. Considering this boundary condition in two and three dimensions,
we observe that the homogeneous solution becomes unstable and spatial localizations appear.
Furthermore, this instability depends on the size of the system, appearing for systems larger
than a threshold set by the shear rate. Then we ran simulations with periodic-like boundary
conditions, obtaining the same results, concluding that the instability is not generated by
the interaction with the walls. Having the same phenomenon in the periodic-like system,
we performed a linear stability analysis of the homogenous solution by using plane-wave
perturbations in the gradient direction. We found that this instability appears even when
considering long-range hydrodynamic interactions. The same results were obtained in three
dimensions.

6.1 Future work

There are several small contributions that could be done and were mentioned throughout
this thesis: to find an ansatz up to the third mode for the homogenous solution in chapter 3
which could explain the loss of the transition for large shear rates, and could be of great help
to the Floquet problem proposed in chapter 5, to consider perturbations in the flow direction
in chapter 5, and to explore different parameters for the three dimensional simulations in
chapter 5 in order to understand the origin of the instability.

In addition, we have already started to work in different paths that are highly connected
to this thesis: the response of the fluid under a change of viscosity and the phenomenology
of dense magnetotactic bacterial suspensions in three dimensional droplets.

6.1.1 Fluid Response

Until now we have not studied how the fluid is going to respond to a change in the viscosity.
The most simple case corresponds to a 2D simple shear flow for an ideal bacterial suspen-
sion (i.e without interactions. In the stationary and homogeneous state, the Fokker-Planck
equation for the distribution function reads

∂(θ̇Ψ)

∂θ
= Dr

∂2Ψ

∂θ2
, (6.1)
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Figure 6.1: Shear stress as a function of the shear rate. The shaded region indicates the
unstable values of γ̇. The dots indicate the three possible solutions for a given value of σxy.

where θ̇ is given by (2.12). Equation (6.1) can be solved via angular Fourier series: Ψ =∑
aneinθ. Truncating to order a±2 we obtain the following expression for the shear stress

tensor:
Σxy = Σviscous

xy + Σactive
xy = η

(
1− b

1 + (τcγ̇2)

)
γ̇, (6.2)

where b = |σ0|βρ
16η

and τc = 1/(4Dr). Figure 6.1 shows the behavior of the shear stress as a
function of the shear rate γ̇.

The evolution of the fluid is governed by the incompressible Navier-Stokes (NS) equation

ρ
∂u

∂t
=
∂σxy
∂y

, (6.3)

where we have assumed that the spatial dependence is perpendicular to the flow direction,
and we have used the notation u = ux̂.

Given the non-newtonian shear stress of (6.2), we do not expect to have a Couette profile
as a stable solution for all the shear rates. Indeed, let u = u0 + δu, where u0 = γ̇y is the
Couette solution. To first order in δu, from the NS equation we have

ρ
∂δu

∂t
= σ′xy (γ̇0)

∂2δv

∂y2
. (6.4)

Therefore, if σ′xy (γ̇0) < 0 the Couette solution is unstable. So, how is the system going to
evolve if it is tuned to an unstable Couette profile? We note from figure 6.1 that for a given
shear stress there are three shear rates associated, one in the unstable region, and the two
others in the stable region. Due to the boundary conditions, it is impossible to have just one
value (whether γ̇− or γ̇+). Nevertheless local linear profiles, as the ones shown in fig. 6.2,
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Figure 6.2: Velocity profiles for three different cases: Couette (dashed), 1-kink (red), and
2-kinks (blue). All of them satisfying the same boundary conditions. Dimensionless units.

are possible in principle, where the two shear rates of the linear profiles are located in the
stable region. The condition to obtain the two stable shear rates for a given value of σxy is
the continuity of the shear stress at each kink, i.e. σxy(γ̇1) = σxy(γ̇2) (where γ̇1 and γ̇2 are
the stable shear rates), leading to:

γ̇2 =
−bγ̇1 ±

√
4(b− 1)τ−2

c + (b(4 + b)− 8)γ̇2
1 − 4τ 2

c γ̇
2
1

2(1 + τ 2
c γ̇

2
1)

. (6.5)

If there are 2 kinks or more, these shear rates alternate. Finally, figs. 6.1 and 6.2 imply an
infinite amount of solutions, by varying the number of kinks and their positions.

As preliminary results, we solved the dimensionless incompressible NS equation

∂u

∂t
=

∂

∂y


1− b

1 +
(
∂u
∂y

)2

 ∂u

∂y

 , (6.6)

where we have used t → τct and y →
√
ητc/ρy. We solved the equations with explicit

methods. As boundary conditions we used u = 0 at y = 0, and u = γ̇ at y = 1. In fig. 6.3 we
show the velocity profiles for two initial conditions. Corroborating our previous analytical
results, there are plenty of stable solutions, where the evolution towards one of the solutions
depends solely on the initial condition.

On more physical grounds we know that the number of kinks is in fact limited by the
minimum size of each region with constant shear rate, and ultimately it cannot be shorter
than one mean free path. Furthermore, we expect that the system would try to minimize
the number of kinks. Inspired by this idea we add an artificial viscosity that smooths out
the kinks. Its deduction is based on microscopic theories (kinetic theory for example). The
new equation reads:

∂u

∂t
=
∂σxy
∂y

+ c
∂4u

∂y4
, (6.7)
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Figure 6.3: Velocity profiles at different times, for two initial conditions: Couette with noise
(left) and sinusoidal with noise(right). At each time we have the solution of NS equation and
the solution NS with artificial viscosity c = −0.001. Here gam= γ̇. Dimensionless values.
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where c is the artificial viscosity. Figure 6.3 shows the velocity profile at different times
with c = −0.001. Increasing the artificial viscosity leads to even smoother curves as shown
in fig. 6.4. It is worth pointing out the fast evolution towards the equilibrium solution in
both cases, with and without artificial viscosity.

One of the possible path to follow is to find an underlying variational principle that fix
the number of kinks present in the system. By solving this problem we can potentially
explain the negative viscosity measurements as a local phenomenon near the walls where the
local velocity profile induce the right alignment of the bacteria in order to do work to the
rheometer.

6.1.2 Dense Magnetotactic Bacterial Suspensions in Confined En-
vironments

When dense magnetotactic bacterial suspensions are enclosed in confined environments such
as droplets, and exposed to external magnetic fields, they reveal macroscopic patterns such
as vortices of the size of the droplet. It has been proposed that in very dense suspensions, the
long-range hydrodynamic interactions are highly screened leading to very weak perturbations,
so the system is governed by short-range interactions [48]. In this regard, we study through
DSMC simulations the effect of the short-range interactions for a dense magnetotactic bacte-
rial suspension with nematic and polar interactions confined in a spherical droplet, ignoring
both magnetic and hydrodynamic long-range interactions. We employed wall-aligning BC
and a repulsive potential among the bacteria in order to avoid unrealistic overlaps. The
repulsion is considered via a Yukawa potential U(ra) =

∑
b U(ra,b), with

U(ra,b) = U0
e−ra,b/λ

ra,b
, (6.8)

where ra,b = ra− rb is the distance vector between the swimmers a and b, U0 is the strength
of the repulsion, and λ is the screening-length which is typically the cell-size of the bacterium.

Simulations reveal that for very high concentrations, the short-range aligning interactions
lead to the formation of vortices as shown in figs. 6.5 and 6.6 for polar and nematic interac-
tions, respectively.

The next steps would be to compare measurable quantities with the experimental re-
sults, such as the vorticity or radial shear rates, in order to determine whether long-range
hydrodynamic and magnetic interactions can be neglected or not.
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Figure 6.4: Velocity profiles at different times. Initial condition: Couette with noise. Dimen-
sionless values.
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Figure 6.5: Snapshots of the simulations at tDr = 0 (left) and tDr = 2, showing a slice of the
droplet (that is why the number of bacteria is not the same in both pictures). The magnetic
field points in the upward direction. The droplet has a radius of 30 µm. The parameters used
where λ = 3 µm, ρ = 100, β = 0.7, ωm = 1, and polar interactions. The colors indicate the
orientation of the swimmers.

Figure 6.6: Snapshots of the simulations at tDr = 0.01 (left) and tDr = 2.28, showing a slice
of the droplet. The magnetic field points in the upward direction. The magnetic field points
in the upward direction. The droplet has a radius of 100 µm. The parameters used where
λ = 3 µm, ρ = 100, β = 0.7, ωm = 1, and nematic interactions. The colors indicate the
orientation of the swimmers.
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