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APPLICATION OF GEOMETRY INDEPENDENT FIELD APPROXIMATION (GIFT)
IN THE STUDY OF PLATE VIBRATIONS

Los fenómenos físicos, presentes en las ciencias y en las diferentes áreas de la ingeniería,
a menudo son modelados por Ecuaciones Diferenciales Parciales (EDP). Los problemas de
valor de frontera resultantes en muchos casos carecen de soluciones analíticas. Para resolver
tales problemas, uno puede hacer suposiciones que simplifiquen el problema, o usar métodos
numéricos para aproximar la solución. Dentro de los métodos numéricos actualmente exis-
tentes, el más popular es el Método de Elementos Finitos (FEM), que es la base de diferentes
programas comerciales, como ADINA o ANSYS, entre muchos otros. La desventaja de este
método es la gran cantidad de recursos computacionales y los tiempos de iteración requeridos
para obtener una solución precisa del problema.

Dada esta desventaja, Hughes desarrolló el Análisis IsoGeométrico (IGA). Este método
permite integrar el modelo CAD con el Análisis de Elementos Finitos (FEA), por lo tanto,
reduce los tiempos y los recursos necesarios para obtener una solución precisa. Pero a su
vez, el IGA no tiene flexibilidad para obtener soluciones de ciertos problemas, ya que usa las
mismas funciones bases para parametrizar tanto la geometría como el campo de solución.

Debido a esto último, surge el Análisis IsoGeométrico Generalizado (GIFT) como una
generalización del IGA, este método utiliza diferentes funciones bases para parametrizar la
geometría del objeto y el campo de solución, permitiendo la selección de funciones que se
adapten mejor al problema estudiado. En trabajos anteriores, el GIFT ha sido aplicado a
problemas de la Ecuación de Laplace y de Elasticidad Lineal.

El objetivo principal de este trabajo es estudiar el rendimiento del GIFT para problemas
de flexión y de vibraciones de placas delgadas. El estudio consiste en implementar el GIFT
para 3 placas diferentes y comparar los resultados numéricos con lo predicho por la Teoría de
Placas de Kirchhoff-Love (KLPT). Se consideran una placa de geometría circular simple, una
placa de geometría circular de dos parches y una placa cuadrada con un agujero de forma
compleja, modelada por 8 parches. Las placas están parametrizadas por NURBS, mientras
que las soluciones se aproximan por un parche usando NURBS o B-Splines. Los resultados se
muestran en términos de curvas de convergencia, modos de vibración y frecuencias naturales.

Los resultados numéricos se comparan con las soluciones analíticas para problemas con
geometría simple y con la solución FEM para el problema de una placa más compleja. El
análisis realizado indica que, para la misma parametrización de geometría (uniforme), (a) la
solución se puede aproximar mediante un parche NURBS o B-Splines, manteniendo inalterada
la geometría original, (b) los resultados obtenidos con las aproximaciones de campo NURBS
y B-Splines son idénticas, (c) la tasa de convergencia depende del grado de aproximación de la
solución. Para parametrizaciones geométricas no uniformes, el método no produce una tasa
de convergencia óptima o resultados suficientemente precisos, al igual que el IGA tradicional.
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Abstract

Physical phenomena, present in sciences and in the different areas of engineering, are often
modeled by Partial Differential Equations (PDE). The resulting boundary value problems in
many cases lack analytical solutions. To solve such problems, one can make assumptions that
simplify the problem, or use numerical methods to approximate the solution. Within the
currently existing numerical methods, the most popular one is the Finite Element Method
(FEM), which is the basis of different commercial software, such as ADINA or ANSYS,
among many others. The disadvantage of this method is the great amount of computational
resources and iteration times required to obtain an accurate solution of the problem.

Given this disadvantage, Hughes developed the IsoGeometric Analysis (IGA). This method
can integrate the CAD model with the Finite Element Analysis (FEA), thereby reduces
the times and resources needed to obtain the precise solution. But in its turn, IGA lacks
flexibility to obtain the solutions of certain problems because it uses the same basis functions
to parameterize both, the geometry and the solution field.

Because of the latter, the Geometry Independent Field approximaTion (GIFT) was pro-
posed as a generalization of IGA, which utilizes different basis functions to parameterize
the geometry of the object and the solution field, allowing the selection of functions that
adapt better to the problem studied. The previous work on GIFT was done for problems of
Laplace’s Equation and Linear Elasticity.

The main objective of this work is to further study the performance of GIFT for problems
of bending and vibration of thin plates. The study consists in implementing GIFT for 3
different plates and comparing the numerical results with the analytical solutions of the
Kirchhoff-Love Plate Theory (KLPT). A simple circular geometry plate, a circular two-patch
geometry plate and a square plate with a cut-out of a complex shape, modeled by 8 patches,
are considered. While all plates are parameterized by NURBS, the solutions are approximated
by one patch NURBS or B-Splines. The results are demonstrated in terms of the convergence
curves, vibrations modes and natural frequencies.

The numerical results are compared with the analytical solutions for problems with sim-
ple geometry and with the FEM solution for the problem of a plate of complex shape. The
conducted analysis indicates that, for the same (smooth) geometry parameterization, (a) the
solution can be approximated by one patch NURBS or B-Splines, while keeping the original
geometry unaltered, (b) the results obtained with NURBS and B-Splines field approximations
are quasi-identical, (c) the convergence rate depends on the degree of the solution approxima-
tion. For non-uniform geometry parameterizations, the method doesn’t produce an optimal
convergence rate or sufficiently accurate results, just like the traditional IGA.
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Introduction and Motivation

There are different phenomena present in science and engineering, such as heat transfer,
wave propagation or fluid movement, which are described by Partial Differential Equations
(PDE), which, in many cases can not be solved by analytical methods. There are two
alternatives to obtain such solutions: the first is to make a series of assumptions that allow
to idealize and simplify the problem until it is possible to solve it analytically; while the other
alternative is to use numerical methods that allow obtaining an approximate solution of the
real problem.

The Finite Element Method (FEM) is one of the most popular methods of numerical
analysis and used worldwide in the different areas of engineering, since it allows finding
an approximate solution to various physical problems, such as: vibrations, kinematics and
dynamics of fluid, heat transfer, wave propagation, deformations, among others. This method
is the basis of a vast amount of programs available in the market, such as: ADINA, ANSYS,
Comsol, etc. However, when the FEM analysis is performed on the CAD geometry model,
the FEM software receives the geometry of a CAD model and converts it to the FEM model
by means of discretization and re-parameterization of the boundaries.

FEM consists in dividing the geometry of an object into a finite number of elements,
approximating the computational domain and the solution by polynomial shape functions
within each element and reducing the problem to a set of local equations connected to each
other. If the accuracy of the numerical solution is not satisfactory, the mesh of the model
must be refined and in each refinement it is necessary to communicate with the CAD model
to re-parameterize the geometry. This procedure increases the computational resources and
the iteration time. Figure 1 shows a CAD model with its respective meshing and refinement
of it.

To overcome these difficulty a new method of analysis emerged, the IsoGeometric Analysis
(IGA), developed by Hughes et al. [1].

The IGA is a numerical method that allows to integrate the CAD models that use NURBS
functions to represent the geometry with the Finite Element Analysis (FEA). Unlike the
FEM, IGA avoids the approximation of the objects and works directly with its CAD ge-
ometry. The main idea of the method is to use the same basis functions to parameterize
the geometry of the body and to approximate the unknown solution field. This allows to
reduce computational and time resources; but it has certain disadvantages, such as: (a) lack
of local refinement due to the tensor-product structure of NURBS and (b) the need to couple
multi-patch geometries. In Figure 2 can be observed the main idea of the IGA schematically.

1



Figure 1: CAD model, meshing and refinement [1].

(a) Input IGA: CAD Model. (b) Output IGA: Displacement Distribution.

Figure 2: The main idea of the IsoGeoemtric Analysis (IGA) [2].

In order to overcome this lack of flexibility and adaptability, the Geometry Independent
Field approximaTion (GIFT) was proposed in [3]. The GIFT is a generalization of the IGA
and inherits the main advantage of it, which consists in preserving the original parametriza-
tion of the geometry of the CAD model; but allowing the use of other functions as the basis
for the solution approximation. One can choose functions that are more convenient for the
analysis, as, for example, B-Splines or PHT-Splines. It has been shown in [3] that the con-
vergence rate of the method does not depend on the parameterization of the geometry and
is fully defined by the polynomial order of the basis function of the solution approximation.

In [3] the performance of the method was demonstrated for Laplace’s equation and linear
elasticity, i.e. the PDEs of second order. The main idea of this work is to investigate the
performance of GIFT when applied to problems of plate vibrations, based on Kirchhof-Love
Plate Theory, described by the PDEs of 4-th order. The motivation of this thesis work is
to show how the different options to parameterize the geometry and the solution field affect
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the precision and the convergence rate of solution, both in terms of displacements as well
as the natural frequencies for geometries composed of one or several patches and of various
complexities.

For this, 3 plate problems are studied. The first one corresponds to a circular plate, with
the analytical solution available to verify the implementation of the method. The second one
is the same problem for a circular plate, but given by a two-patch NURBS parameterization.
This problem serves to show how a simple but yet composite geometry can be analyzed using
the GIFT method. The third problem is a realistic CAD geometry, i.e. a square plate with a
cut-out of complex shape, parameterized by 8 NURBS patches. This problem demonstrates
how this NURBS parameterization can be paired with a one-patch B-Splines solution field
without any need for coupling the NURBS patches, like it is done in the standard IGA.
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Chapter 1

Objectives and Scope

1.1 General Objective

The main objective of this work is to implement and validate the method of Geometry
Independent Field approximaTion (GIFT) for the study of plate bending and vibrations,
based on the Kirchhoff-Love Plate Theory (KLPT).

1.2 Specific Objectives

1. Modify and implement the GIFT algorithm for the study of thin plates.
2. Design three test cases based on three different NURBS geometry parameterizations.
3. Compare numerical data with analytical results, as well as the FEM solution for the

plate of complex geometry, in terms of the convergence rate, vibration modes and
natural frequencies.

4. Assess the performance of the method, based on the obtained results. Draw conclusions,
analyze strengths and weaknesses of the GIFT method, formulate recommendations for
potential users.

1.3 Scope

1. The work is restricted to applying the GIFT algorithm only to the study of KLPT
plates. Other types of modifications to the existing code are not considered.

2. In this work, only 3 plates will be studied, which have 3 different geometries and
characteristics between them.

3. Extension of the work to other plates theories, as well as other numerical methods, is
not considered.
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Chapter 2

Theoretical Background

In this section, the general and specific background information on which the thesis work
is based will be presented and detailed.

2.1 Finite Element Method (FEM)

The Finite Element Method (FEM) is used to solve, numerically and roughly, physi-
cal problems necessary for engineering design and analysis. The FEM procedure is shown
schematically in Figure 2.1 [4].

This method uses the following steps [5]:

1. Domain Discretization: it consists of dividing the object to study in a finite number
of elements, where each element is formed by nodes that are in turn connected to the
nodes of the nearby elements.

2. Approximate Solution: the variable under study is approximated by means of shape
functions in each element.

3. Finite Element Model: it consists of transforming the problem to a set of local
equations in each element that can be written in the following form:

[Ke] · {ue} = {fe} (2.1)

Where Ke represents the Elemental Stiffness Matrix, ue is the vector of unknown nodal
values in an element and fe is the vector of Elemental Nodal Forces.

4. Element Connectivity: it consists in joining and assembling the equations of each
of the elements, obtained in the previous stage; whereby the global equation of the
problem is given by:

[Kg] · {ug} = {fg} (2.2)

Where Kg represents the Global Stiffness Matrix, ug is the global unknowns vector and
fg is the Global Nodal Forces Vector, the boundary conditions of the Neumann type
are added to this last.
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Figure 2.1: The process of Finite Element Method (FEM) [4].

5. Imposition of Boundary Conditions: the boundary conditions of the Dirichlet type
are applied.

6. Problem Resolution: the global equation of the system is solved, the solution is
given by:

{ug} = [Kg]
−1 · {fg} (2.3)

7. Post-Processing: the results obtained are compared and analyzed in order to verify
that the numerical solution is accurate enough (for example, by comparing it with the
analytical solution). In the case if this precision is not achieved, the entire process must
be repeated, but this time refining the mesh, that is, increasing the number of elements
that discretize the domain of the problem, as can be seen in Figure 2.2.

2.2 IsoGeometric Analysis (IGA)

IsoGeometric Analysis (IGA) is a computational approach that allows the integration of
Finite Element Analysis (FEA) with CAD design tools, based on NURBS (Non-Uniform
Rational B-Splines). When using the FEA on CAD models, it is necessary to convert the
CAD data to the FEA data, i.e. to re-parameterize the boundaries of CAD objects with the
polynomials used in FEM. This procedure must be repeated during the solution refinement
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Figure 2.2: Refinement of the mesh when using FEM [4].

process. IGA allows to use CAD geometries directly for the finite element analysis. This
allows the models to be designed, tested and adjusted at one time using a common data
set [1]. This is achieved by utilizing the same shape functions, which are used in CAD to
represent the geometries, to approximate the unknown fields.

The main idea of the IGA is shown schematically in Figure 2.3:

Figure 2.3: Main Idea of the IGA: the same shape functions are used both to parameterize
the geometry of the object and to approximate the solution [3].

The bases of the IGA are detailed below:

2.2.1 B-Splines

Knot Vectors

A knot vector in one dimension is a set of coordinates in the parametric space, written
Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the i−th knot, i is the knot index, i = 1, 2, ..., n+p+1,
p is the polynomial order, and n is the number of basis functions which comprise the B-Spline.
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Basis Functions

B-Spline [6] basis functions are defined recursively starting with piecewise constants (p=0):

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
(2.4)

For p = 1, 2, 3, ..., are defined as follows:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi−1

Ni+1,p−1(ξ) (2.5)

The properties of the basis functions of the B-Splines are:

1. The basis functions constitute a partition of the unit, that is, ∀ξ:
n∑

i=1

Ni,p(ξ) = 1 (2.6)

2. The support of each Ni,p(ξ) is compact and contained in the interval [ξi, ξi+p+1].
3. Each basis function is non-negative, that is, Ni,p(ξ) ≥ 0,∀ξ. Consequently, all of the

coefficients of a mass matrix computed from a B-spline basis are greater than, or equal
to, zero.

B-Spline Curves

B-Spline curves in Rd, d = 2, 3, are constructed by taking a linear combination of B-Spline
basis functions. The coefficients of the basis functions are referred to as control points. These
are somewhat analogous to nodal coordinates in finite element analysis. Piecewise linear
interpolation of the control points gives the so-called control polygon. In general, control
points are not interpolated by B-spline curves. Given n basis functions, Ni,p, i = 1, 2,. . . , n,
and corresponding control points Bi ∈ Rd, i = 1, 2,. . . , n; a piecewise-polynomial B-Spline
curve is given by:

C(ξ) =
n∑

i=1

Ni,p(ξ)Bi (2.7)

An example of a B-Splines curve is shown in Figure 2.4 for the quadratic basis functions
shown in the same figure.

The properties of the B-Splines curves are:
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(a) Quadratic basis function for the knot vector
Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}.

(b) B-Spline piecewise quadratic
curve in R2.

Figure 2.4: Example for a B-Spline curve [6].

1. They have continuous derivatives of order p − 1 in the absence of repeated knots or
control points.

2. Repeating a knot or control point k times decreases the continuity of the derivatives to
p− k.

3. An affine transformation of a B-spline curve is obtained by applying the transformation
to the control points, this property is called as affine covariance.

B-Splines Surfaces

Given a control net {Bi,j}, i = 1, 2,. . . , n, j = 1, 2,. . . ,m, and knot vectors Ξ={ξ1, ξ2, ..., ξn+p+1},
and H={η1, η2, ..., ηm+q+1}, a tensor product B-Spline surface is defined by:

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j (2.8)

Where Ni,p and Mj,q are basis functions of B-Spline curves. For purposes of numerically
integrating arrays constructed from B-Splines, elements are taken to be knot spans, namely,
[ξi, ξi+1]× [ηi, ηi+1].

B-Splines Solids

Tensor product B-Spline solids are defined in analogous fashion to B-spline surfaces. Given
a control net {Bi,j,k}, i = 1, 2,. . . , n, j = 1, 2,. . . , m, k = 1, 2,. . . , l, and knot vectors
Ξ={ξ1, ξ2, ..., ξn+p+1}, H={η1, η2, ..., ηm+q+1} and L={ζ1, ζ2, ..., ζl+r+1}; a B-Spline solid is
defined by:

V(ξ, η, ζ) =
n∑

i=1

m∑
j=1

l∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Bi,j,k (2.9)
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2.2.2 NURBS (Non-Uniform Rational B-Splines)

The rational basis functions and NURBS [1] curve are given, respectively, by:

Rp
i (ξ) =

Ni,p(ξ)wi∑n
i=1 Ni,p(ξ)wi

(2.10)

C(ξ) =
n∑

i=1

Rp
i (ξ)Bi (2.11)

Rational surfaces and solids are defined analogously in terms of the rational basis functions:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(2.12)

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k∑n
i=1

∑m
j=1

∑l
k=1 Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k

(2.13)

Surfaces and solids NURBS are given, respectively, by:

S(ξ, η) =
n∑

i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j (2.14)

V(ξ, η, ζ) =
n∑

i=1

m∑
j=1

l∑
k=1

Rp,q,r
i,j,k (ξ, η, ζ)Bi,j,k (2.15)

Figure 2.5 shows a control net and the corresponding NURBS surface description of a
torus.

Figure 2.5: Control net for a toroidal surface and the toroidal surfaces generated [1].

The properties of the NURBS are:
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1. NURBS basis functions form a partition of unity.
2. The continuity and support of NURBS basis functions are the same as for B-Splines.
3. Affine transformations in physical space are obtained by applying the transformation

to the control points, that is, NURBS possess the property of affine covariance.
4. If weights are equal, NURBS become B-Splines (i.e., piecewise polynomials)
5. NURBS surfaces and solids are the projective transformations of tensor product, piece-

wise polynomial entities.
6. NURBS can accurately represent conical surfaces, such as: circles, parabolas, ellipses,

among others.

A summary of similar and dissimilar Finite Element Analysis and IsoGeometric Analysis
concepts is presented in Table 2.1 [1].

Table 2.1: Comparison of Finite Element Analysis and IsoGeometric Analysis based on
NURBS [1].

Differences
Finite Element Analysis (FEA) IsoGeometric Analysis (IGA)

Nodal points Control points
Nodal variables Control variables

Mesh Knots
Basis interpolates nodal
points and variables

Basis does not interpolate
control points and variables

Approximate geometry Exact geometry
Polynomial basis NURBS basis
Gibbs phenomena Variation diminishing

Subdomains Patches
Similarities

Compact support
Partition of unity

Isoparametric concept
Affine covariance

Patch tests satisfied

2.2.3 Refinement

An interesting feature of NURBS or B-Splines, among others, is that the shape functions
space can be enhanced without modifying the geometry description and its parametrization.
Three types of refinement exist, and for all of them, the space is enriched by adding control
points to the geometry.
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h−Refinement: Knot Insertion

The first refinement method presented here is knot insertion [7]. This is the IGA coun-
terpart of the classical h−refinement strategy in standard FEM. Given a knot vector Ξ =
{ξ1, ξ2, · · · , ξn+p+1}, let us define an enriched knot vector:

Ξ̃ =
{
ξ̃1 = ξ1, ξ̃2, · · · ξ̃n+m+p+1 = ξn+p+1

}
(2.16)

Such that Ξ ⊂ Ξ̃. Subsequently, the new n + m basis are defined recursively as previous
introduced, but this time they associated to the new knot vector Ξ̃, see Figure 2.6. The new
m + n control points are computed as a linear combination of the original control points.
The method is applicable directly to B-Splines, whereas for NURBS the same approach can
be used but it has to be applied on the projective Rn+1-dimensional B-Spline entity, from
which the NURBS is derived.

(a) Ξ = {0, 0, 0, 1, 1, 1} (b) Ξ̃ =
{

0, 0, 0, 12 , 1, 1, 1
}

(c) Ξ =
{

0, 0, 0, 12 ,
1
2 , 1, 1, 1

}
(d) Ξ̂ =

{
0, 0, 0, 12 ,

1
2 ,

3
4 , 1, 1, 1

}
Figure 2.6: Basis functions before and after knot insertion, order p = 2. Note the changes

in continuity at the knots, given as Cp−k [7].
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p-Refinement: Order Elevation

The second refinement method is order elevation [7], which has similarities with the classi-
cal p−refinement strategy in standard FEM. This method involves increasing the polynomial
order of the shape functions used to represent the geometry. In this approach, the continuity
at every knot is preserved and therefore, during order elevation, existing knots multiplicity is
increased by one, without adding any new knot. Analogously to knot insertion, neither the
geometry nor the parametrization are changed after performing order elevation. In Figure
2.7, an example of shape functions after order elevation is depicted.

(a) Ξ =
{

0, 0, 0, 12 ,
1
2 , 1, 1, 1

}
(b) Ξ̃ =

{
0, 0, 0, 0, 0, 12 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1, 1

}
Figure 2.7: Basis functions before and after order elevation, from p = 2 to p = 4. Note that
the continuity at the knots is preserved as well as the number of distinct knot intervals [7].

hp−Refinement

The third method is the hp− or k−refinement and it consists of a combined process of
degree elevation and knot insertion. These processes are not commutative and therefore
the order in which these refinements are applied will change the final basis. hp−refinement
first applies degree elevation proceeded by knot insertion, offering a reduction in degrees of
freedom over its counterpart [8].

2.3 Geometry Independent Field approximaTion (GIFT)

The Geometry Independent Field approximaTion (GIFT) [3] is a generalization of the
concept of IsoGeometric Analysis (IGA), since it allows the coexistence of different spaces
for the parametrization of the computational domain and for the approximation of the field of
the solution. This means that this method allows to preserve the exact geometry of the CAD
that uses for example, NURBS functions; but, in the approximation space of the solution, it
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allows the use of more flexible and/or suitable functions for the analysis, such as: T-Splines,
LR-Splines, Hierarchical B-Splines and PHT-Splines.

This generalization of the IGA allows a local refinement adapted without the need to re-
parameterize the geometry of the domain given by the CAD model, as can be seen in Figure
2.8. This method was so far applied to problems of heat transfer (Poisson’s equation) and
linear elasticity.

Figure 2.8: Refinements in the parametric space [3].

The main idea of GIFT is to preserve the original geometry of the CAD while adapting
the base of the solution with flexibility and thus improving the approximation of the solution
field. The main features of GIFT are:

1. Preserve exact CAD geometry provided in any form, including B-splines or NURBS,
at any stage of the solution process.

2. Allow local refinement of the solution by choosing appropriate field approximations, as
independently as possible of the geometrical parameterization of the domain.

3. Allow computational savings by not refining the geometry during the process of re-
fining the solution and by choosing simpler approaches for the solution, that is, using
polynomial functions instead of rational functions.

In Figure 2.9 one can see the main idea of the GIFT.

2.3.1 Formulation of GIFT

It is considered an open domain Ω ⊂ Rd, d ≥ 2, with boundary Γ consisting of two parts
(ΓD and ΓN), such that: Γ=(ΓD ∪ ΓN), ΓD ∩ ΓN = ∅. The domain Ω is parameterized on a
parametric domain P by mapping F :

F : P → Ω x = F (ξ) x ∈ Ω, ξ ∈ P (2.17)
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Figure 2.9: Main Idea of the GIFT: different basis functions are used to parameterize the
geometry of the object and the approximation of the solution [3].

To be consistent with the previous notations, ξ = (ξ, η) in the two-dimensional case and
ξ = (ξ, η, ζ) in the three-dimensional case. Note, that the present work is limited to 2D plate
problems. In what follows we also use collapsed indexes, for example Nk(ξ), where k = (i, j).
The NURBS basis functions are denoted as Nk(ξ), while the B-Splines basis functions as
Bk(ξ).

The geometrical map F is given by a set of basis functions Ni(ξ) and a set of control
points Ci, such that:

x(ξ) = F (ξ) =
∑
k∈I

CkNk(ξ) (2.18)

In the framework of GIFT, one can choose different basis functions, {Mk(ξ)}k∈J , to seek
the solution in the form:

u(ξ) =
∑
k∈J

ukMk(ξ) (2.19)

Where uk are the unknown control variables. If the weak form of the boundary value
problem is given by:

a(u, v) = l(v), (2.20)

using the representation (2.19) together with v = Mj(ξ), the weak form (2.20) can be
transformed to a linear system of equations:

Ku = f (2.21)

15



where K correspond to the Global Stiffness Matrix, u is the vector of all unknown control
variables uk and f is the vector of Global Nodal Forces; which are given by:

Ki,j = a(Mi(x),Mj(x)) fi = l(Mi(x)) (2.22)

2.4 Kirchhoff-Love Plate Theory (KLPT)

The plates are defined as structures that have one dimension much smaller than the
other two. Plate theory reduces the analysis of a 3-dimensional structure to a 2-dimensional
problem. The equations that govern the plate theory are Partial Differential Equations (PDE)
in two dimensions defined in the mid-plane of the plate.

The Kirchhoff-Love Plate Theory (KLPT) [9] is used for the analysis of thin plates, and
which is based on assumptions that are closely related to the Euler-Bernoulli Beam Theory.
The assumptions of the TPKL deal with the kinematics of a line of normal material, that is,
a set of particles of material initially aligned in a direction normal to the mid-plane of the
plate.

The fundamental assumption of the KLPT is that the line of normal material is infinitely
rigid along its length, that is, no deformations occur in the direction normal to the middle
plane of the plate. During deformation, it is assumed that the line of normal material remains
straight and normal to the deformed mid-plane of the plate. The assumptions of the KLPT
can be summarized in the following 3:

1. The normal material line is infinitely rigid along its own length.
2. The normal material line of the plate remains a straight line after deformation.
3. The straight normal material line remains normal to the deformed mid-plane of the

plate.

Experimental measurements show that these assumptions are valid for thin plates made
of homogeneous, isotropic materials. When one or more of theses conditions are not met, the
predictions of Kirchhoff-Love Plate Theory might become inaccurate.

The KLPT is characterized by the following set of equations:

1. Six Strain-Displacement Equations: three equations define the mid-plane strains
in terms of the plate in-plane displacements, see Equation (2.23), and three equations
define the plate curvatures in terms of the transverse displacement, see Equation (2.24).

εo =

{
∂u1

∂x1

,
∂u2

∂x2

,
∂u1

∂x2

+
∂u2

∂x1

}T
=
{
ε0

1, ε
0
2, ε

0
12

}T (2.23)

κ =

{
∂2u3

∂x2
2

,−∂
2u3

∂x2
1

, 2
∂2u3

∂x1∂x2

}T
= {κ1, κ2, κ12}T (2.24)
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Where, xi denotes the i−th direction, ui is one of the displacement of the normal
material line, εo and κ are the array of mid-plane strain and curvatures of the plates,
respectively.

2. Five Equilibrium Equations: : two equations express the equilibrium conditions
for the in-plane forces, see Equation (2.25), one equation expresses the vertical force
equilibrium condition, see Equation (2.26); and two equations express the moment
equilibrium conditions, see Equation (2.27).

∂N1

∂x1

+
∂N12

∂x2

= −p1
∂N12

∂x1

+
∂N2

∂x2

= −p2 (2.25)

∂Q1

∂x1

+
∂Q2

∂x2

= −p3 (2.26)

∂M2

∂x1

− ∂M12

∂x2

−Q1 = 0
∂M12

∂x1

+
∂M1

∂x2

+Q2 = 0 (2.27)

Where, N denotes to the in-plane forces, pi is an in-plane pressure acting along the
i−th direction, Q denotes to the transverse shear forces and M corresponding to the
bending moments

3. Six Constitutive Laws: three equations state the relationship between the in-plane
forces and mid-plane strains, see Equation (2.28), and three equations state the rela-
tionship between the bending moments and plate curvatures, see Equation (2.29).

N = {N1, N2, N12}T = hCεo =
hE

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0

0 0
1− ν

2

 εo (2.28)

M = {M1,M2,M12}T = D̃κ =
Eh3

12(1− ν2)

 1 −ν 0
−ν 1 0

0 0
1− ν

2

κ (2.29)

Where, N and M are the array of in-plane forces and bending moments, respectively.

Figures 2.10, 2.11 and 2.12 respectively show the acting forces and free-body diagrams
with the balances of external forces, shear stresses and moments of deflection on a differential
element of a plate.
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Figure 2.10: Stress resultants acting on a differential element of the plate [9].

Figure 2.11: (Left) Free body diagram for the equilibrium of in-plane forces. (Right) Free
body diagram for the equilibrium of transverse shear forces.[9].

Figure 2.12: Free body diagram for the equilibrium of bending moment and shear forces [9].

18



2.4.1 The Bending Problem of the KLPT

This set of seventeen equations allow to reduce the bending problem to a single partial
differential equation for the plate transverse displacement, u3.

This problem involves nine unknowns: the three bending moments, the two transverse
shear forces, the three curvatures, and the transverse displacement; using the equations of
the KLPT, the problem is reduced to an equation of the following type:

∂4u3

∂x4
1

+ 2
∂4u3

∂x2
1∂x

2
2

+
∂4u3

∂x4
2

=
p3

D
(2.30)

D =
Eh3

12(1− ν2)
(2.31)

Where u3 = w is the plate transverse displacement, D is the Plate Bending Stiffness, E
and ν correspond to the Young’s Modulus and the Poisson’s Ratio of the material, h is the
thickness of the plate and p3 = q is an external force per unit area.

The basic equation of Kirchhoff-Love Plate Bending Theory, Eq. (2.30), is the biharmonic
partial differential equation for the transverse displacement, which can be written in a more
compact manner with the help of the Laplacian operator ∇4 = ∇2∇2 in two dimensions:

∇4w =
q

D
(2.32)

2.4.2 The Vibration Problem of the KLPT

The Partial Differential Equation that describes the free vibrations of a plate subjected
to external load is the following [10]:

D∇2∇2w + ρh
∂2w

∂t2
= q (2.33)

The additional parameters are: ρ - the density of the material, q - the external force
applied to the mean surface, distributed transversally per unit area.

The Laplacian operator ∇2 in Cartesian coordinates (x, y) and in cylindrical coordinates
(r, θ) for two dimensions is defined, respectively, as [11]:

∇2w(x, y) ≡ ∂2w

∂x2
+
∂2w

∂y2
(2.34)
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∇2w(r, θ) ≡ 1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2
(2.35)

2.4.3 Weak Form of the Kirchhoff-Love Plate Theory

The weak form of the Kirchhoff-Love Plate Theory [12] is:

D

∫
Ω

[
∂2w

∂x2

∂2v

∂x2
+ ν

(
∂2w

∂x2

∂2v

∂y2
+
∂2w

∂y2

∂2v

∂x2

)
+
∂2w

∂y2

∂2v

∂y2
+ 2 (1− ν)

∂2w

∂x∂y

∂2v

∂x∂y

]
dΩ

=

∫
Ω

qvdΩ +

∫
∂Ω

qvd∂Ω−
∫
∂Ω

mnm
∂v

∂n
d∂Ω−

N∑
i=1

[RPi
v]Pi

(2.36)

Where:

• v: is the test function.
• q: transversal distributed load to the domain Ω.
• q: transversal distributed load to the mean surface on the boundary ∂Ω of domain Ω.
• mnm: distributed moment in the tangent direction t of boundary ∂Ω.
• RPi

: concentrated forces in the transversal direction of the plate on points Pi of the
boundary with geometrical discontinuities
• n: normal direction to the boundary ∂Ω.

While the strong form of KLPT, see Eq. (2.32) or (2.33), has derivatives up to the
fourth order, the weak form only has second-order derivatives. Therefore, functions w and v
have to belong to the set C1(x, y) (continuous functions with continuous first-order partial
derivatives) or C1

cp(x, y) (piecewise continuous first-order derivatives). In the strong form,
these functions must be continuous in C4(x, y) or piecewise continuous in C4

cp(x, y).

If the approximate solution w(x, y) for the transverse displacement of the Kirchhoff plate
is given by the following linear combination of N global basis functions {Ni}Ni=1, like the Eq.
(2.19):

w(x, y) =
N∑

i=1

uiNi(x, y) (2.37)

While for v(x, y):

v(x, y) =
n∑
j=1

biNj(x, y) (2.38)
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The approximation of the weak form of the Kirchhoff-Love Plate Theory is the following:

N∑
i,j=1

{
D

∫
Ω

[
∂2Ni

∂x2

∂2Nj

∂x2
+ ν

(
∂2Ni

∂x2

∂2Nj

∂y2
+
∂2Ni

∂y2

∂2Nj

∂x2

)
+
∂2Ni

∂y2

∂2Nj

∂y2
+ 2 (1− ν)

∂2Ni

∂x∂y

∂2Nj

∂x∂y

]
dΩ

}
ui

=

∫
Ω

qNjdΩ +

∫
∂Ω

qNjd∂Ω−
∫
∂Ω

mnm
∂Nj

∂n
d∂Ω−

N∑
i=1

[RPi
Nj]Pi

(2.39)

This equation represents the system of linear equations of the form:

Ku = f (2.40)

Where, the coefficients of the Global Stiffness Matrix K and the Force Vector f are given,
respectively, by :

Kij = D

∫
Ω

[
∂2Ni

∂x2

∂2Nj

∂x2
+ ν

(
∂2Ni

∂x2

∂2Nj

∂y2
+
∂2Ni

∂y2

∂2Nj

∂x2

)
+
∂2Ni

∂y2

∂2Nj

∂y2
+ 2 (1− ν)

∂2Ni

∂x∂y

∂2Nj

∂x∂y

]
dΩ

(2.41)

fj =

∫
Ω

qNjdΩ +

∫
∂Ω

qNjd∂Ω−
∫
∂Ω

mnm
∂Nj

∂n
d∂Ω−

N∑
i=1

[RPi
Nj]Pi

(2.42)

The coefficients of the global stiffness matrix can also be denoted by the following matrix
product [13]:

Kij =

∫
Ω

BT
i DBjdΩ (2.43)

The stress-displacement vector is given by:

BT
i =

{
−∂

2Ni

∂x2
−∂

2Ni

∂y2
− ∂

2Ni

∂x∂y

}T
(2.44)

The elasticity matrix D is given by:

D =
Eh3

12(1− ν2)

1 ν 0
ν 1 0

0 0
(1− ν)

2

 (2.45)
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When going from a global coordinate system to a local one, we have the approximate
solution w(ξ, η) and the coefficients of the local stiffness matrix are given, respectively, by
[12]:

we(ξ, η) =
n∑

i=1

uiN
e
i (ξ, η) (2.46)

Ke
ij =

∫
Ωe

Be
i
TDBe

jdet(J)dξdη (2.47)

Where the elementary stress-displacement vector Be
i is composed of the second order

derivatives of the local base functions {N e
i (ξ, η)}ni=1.

2.4.4 Numerical Analysis of Free Vibrations

The general equation of motion for a solid body is given by [14]:

Mü + Cu̇ + Ku = f (2.48)

Where, u is the displacement vector, M is the Global Mass Matrix, C is the Global
Damping Matrix, K is the Global Stiffness Matrix and f is the vector of external forces.
Considering that there is no damping or external loads acting on the solid, the equation of
motion in matrix form is reduced to [15]:

Mü + Ku = 0 (2.49)

The general solution of Eq. (2.49) that describes the unforced and undamped vibrations
of a solid is [13]:

u = u exp(iωt) (2.50)

In this equation, i is the imaginary unit, ω is the natural frequency, t is the time and u is
the eigenvector associated to ω. Replacing this solution in the Eq. (2.50), you get [15]:

(
K− ω2M

)
u = 0 (2.51)

This equation represents a problem of eigenvalues, which allows to obtain the natural
frequencies ω and their respective eigenvectors. The equation of eigenvalues has a non-trivial
solution (u = 0) when it is fulfilled that:
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det
(
K− ω2M

)
= 0 (2.52)

This last equation is fulfilled for a discrete set of eigenvalues λi = ω2
i , with i = 1, 2, 3, ...;

where each λi has an associated vector ui, as shown in the following equation [8]:

(K− λiM)ui = 0 (2.53)

For the case of a plate, the Global Stiffness Matrix K is obtained from Eq. (2.41) or (2.43)
presented in the previous section, while the Global Mass Matrix M and its coefficients are
given by [15]:

M =

∫
Ω

ρhNTNdΩ (2.54)

Mij =

∫
Ω

ρhNiNjdΩ (2.55)

Where ρ is the density of the material, h is the thickness of the plate, N is the vector that
contains the basis functions and Ni is the i-th basis function that approximates the solution.
Analogous to the Global Stiffness Matrix, you move from a global coordinate system to a
local system as shown below:

M e
ij =

∫
Ωe

ρhNi(ξ, η)Nj(ξ, η)det(J)dξdη (2.56)
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Chapter 3

Methodology

The methodology of this thesis work is based on the implementation of the Geometry
Independent Field approximaTion (GIFT) to study the static and dynamic response of thin
plates, based on the Kirchhoff-Love Plate Theory (KLPT). To fulfill this, the following stages
are established:

1. Literature Review: This first stage consists of carrying out a review of the bibliog-
raphy related to the main concepts of this thesis work: Finite Element Method (FEM),
IsoGeometric Analysis (IGA), Geometry Independent Field approximaTion (GIFT)
and Kirchhoff-Love Plate Theory (KLPT).

2. Characterization of Plates to study: It consists in defining the geometry, its
NURBS parameterization and material characteristics of the plates to be studied.

3. GIFT Algorithm: This stage consists in studying the algorithm developed in [3],
which is programmed in C ++ language, and which allows to implement the GIFT to
study 2-dimensional plate problems.

4. Adaptation of the GIFT Code: this stage consists in adapting the aforementioned
code so that it is capable of generating different plate geometries.

5. Application of the GIFT to the Plate Study: this stage consists of extending
the computer code, now available for Poisson’s equation, for the study of plates, to
obtain numerically the response, both static and dynamic, of each of the configurations
studied in this report.

6. Reference Solutions of the KLPT: this stage consists in finding analytical solutions
of vibrations and deflections, for those geometries where solutions exist. For complex
geometries, reference solutions are the FEM solutions, obtained in ANSYS.

7. Analysis and Comparison of Results: This stage consists of comparing, for each
one of the geometries studied, the static and dynamic response obtained by GIFT with
the reference solutions.

The methodology is illustrated in Figure 3.1.
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Figure 3.1: Methodology of this thesis work.

3.1 Resources

The resources needed to develop this thesis work are of the non-pecuniary type and are
mainly related to the computational software used to develop it. These correspond to:

• Literature and additional bibliography.
• A computer code, programmed in C ++ language and generated with the Code::Blocks

program, which is a free C++ IDE available for Windows, OS X and Linux operating
system. This program also allows the implementation of GIFT.
• Mathematical software, such as Maple or Wolfram Mathematica, to solve the KLPT

equations.
• For the data analysis and the Post-Processing of the results obtained with the GIFT

code, the software Matlab R© will be used, which is a not free numerical computing
software, available for Windows, OS X and Linux operating system.
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Chapter 4

Definition of the Problems

This thesis work seeks to demonstrate the applicability and performance of the GIFT
method to solve plate vibration problems, an important area of solid mechanics. For this, 3
plates with different characteristics and complexities will be studied.

The first problem corresponds to the problem of a clamped circular plate subjected to a
constant external load and whose geometry is generated from a single patch. The second
problem is identical to the previous one, but with the difference that the circular geometry of
the plate is generated with 2 patches. Finally, the last problem to study consists of a square
plate clamped in all its boundaries and with a complicated shape hole in its center, whose
geometry is generated by 8 patches.

The objectives of each of the problems are:

• Problem 1: The problem seeks to demonstrate the applicability and accuracy of the
GIFT method to resolve a simple problem with an analytical solution known. The
particular objective is to compare NURBS and B-Splines for the field approximation.
• Problem 2: Together with the aforementioned, this problem also seeks to demonstrate

that in the framework of GIFT, the two-patch NURBS geometry can be paired with the
one-patch B-Splines solution field, where the necessary continuity of the basis functions
can be enforced directly on the solution basis without any coupling conditions between
the geometry patches, unlike it is done in the standard IGA.
• Problem 3: This problem, in addition to the aforementioned, seeks to demonstrate

the effectiveness of the GIFT method to solve problems with more complex and multi-
patches geometries.

To compare the numerical results obtained with the GIFT method to the analytical ones,
we will use the error measure given by the L2-error, defined in the Eq. 4.1.

‖w − w∗‖L2 =

[∫
Ω

(w − w∗)2

]1/2

(4.1)
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Where w represented the numerical displacement obtained with the GIFT method and
w∗ is the displacement predicted by the theory.

4.1 Problem 1: Clamped Circular Plate with One-Patch
Parameterization

The first problem consists in studying the symmetrical bending and free vibrations of a
circular plate of radius a clamped around the edge with the geometry generated with a single
patch.

The mechanical and physical properties of the plate material and the dimensions used to
study the unforced deformations and vibrations of this plate are presented in Table 4.1 [16].

Table 4.1: Dimensions, mechanical and physical properties of the Circular Plate [16].

Property Value Unit of Measure
E 200 GPa
ν 0.3 -
ρ 7850 kg/m3

a 0.5 m
h 0.01 m

4.1.1 Geometry

The knot vectors and the control points used to generate the geometry of a circular plate
with p = q = 2 are given, respectively, by the Eq. (4.2) and Table 4.2 [17] [18].

Ξ = {0, 0, 0, 1, 1, 1} H = {0, 0, 0, 1, 1, 1} (4.2)

Table 4.2: Control Points and respective weights to represent a circular plate of radius
a = 0.5[m] [17] [18].

i 1 2 3 4 5 6 7 8 9
xi -

√
2

4
-
√

2
2

-
√

2
4

0 0 0
√

2
2

√
2

2

√
2

4

yi

√
2

4
0 -

√
2

4

√
2

2
0 -

√
2

2

√
2

2
0 -

√
2

4

wi 1
√

2
2

1
√

2
2

1
√

2
2

1
√

2
2

1

These parameters allow one to generate a circle, as shown in Figure 4.1a, where one can
see the geometry elements and the control points [17]. According to the GIFT method, in
all following calculations, the original (coarse) geometry parameterization is used without
any changes. However, in some study cases the solution is approximated by NURBS basis
functions, derived from the geometry basis by p- and h- refinements. Such refined geometries
are demonstrated in Figures 4.1b and 4.2 [19].
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(a) p = 2 (b) p = 3.

Figure 4.1: Coarse mesh and control points of a circular plate
for some polynomial degrees p [17].

(a) Control Points. (b) Physical Mesh.

Figure 4.2: A 10 × 10 uniform meshed circular plate [19].

4.1.2 Analytical Solution for Symmetric Bending

The bending of a circular plate, using the KLPT, can be studied by analytical resolution
of the governing equation, see Eq.(2.32), with the appropriate boundary conditions. In the
case of bending, Eq.(2.32) can be re-written in cylindrical coordinates as:
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D∇2∇2w(r, θ) = q (4.3)

For the case of a circular plate subjected to a symmetric external load, w(r, θ) = w(r), so
the equation is reduced to [20]:

∇2∇2w(r) =
1

r

d

dr

[
r

d

dr

{
1

r

d

dr

(
r

dw

dr

)}]
=

q

D
(4.4)

In a particular case of a constant load, i.e. q = − |q| = −qo, the solution of the ordinary
differential equation (4.4) is obtained by direct integration, i.e:

w(r) = − qor
4

64D
+ C1 ln(r) + C2r

2 + C3r
2 ln(r) + C4 (4.5)

Where the integration constants Ci, with i = 1, 2, 3, 4; are determined by the boundary
conditions. In the case of a complete circular plate, it is required that the deflections are
finite at any point of it, so it must be imposed that C1 = 0; since ln(r) tends to −∞ in r = 0.

Considering the case of a clamped circular plate in the edge (r = a), the boundary
conditions correspond to:

• w(a) = 0.

• ∂w

∂r
(a) = 0.

Imposing both boundary conditions, we obtain the equation that governs the behavior of
a circular plate clamped in its radius a and holds under a constant and symmetrical external
load [21]:

w(r) = − qo
64D

(r2 − a2)2 (4.6)

4.1.3 Analytical Solution for Free Vibrations

For free vibrations, the external load q is zero and the dynamic governing equation, see
Eq. (2.33), is reduced to [10]:

D∇2∇2w + ρh
∂2w

∂t2
= 0 (4.7)

In what following, we quickly recall the derivation of the analytical solution given in [10].

Applying separation of variables to solve this partial differential equation, the solution has
the form:
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w(r, θ, t) = W (r, θ)T (t) (4.8)

Substituting in the Eq. 4.7, the following two differential equations are obtained:

d2T

dt2
+ ω2T = 0 (4.9)

∇4W (r, θ)− λ4W (r, θ) = (∇2 + λ2)(∇2 − λ2)W (r, θ) = 0 (4.10)

Where,

λ4 = w2ρh

D
(4.11)

The Eq. 4.10 generates two partial differential equations:

∂2W

∂r2
+

1

r

∂W

∂r
+

1

r2

∂2W

∂θ2
+ λ2W = 0 (4.12)

∂2W

∂r2
+

1

r

∂W

∂r
+

1

r2

∂2W

∂θ2
− λ2W = 0 (4.13)

Applying again the separation of variables, W (r, θ) = R(r)Θ(θ), the following ordinary
differential equations are obtained:

d2Θ

dθ2
+ α2Θ = 0 (4.14)

r2 d2R

dr2
+ r

dR

dr
−
(
±λ2r2 − α2

)
R = 0 (4.15)

Where α2 is a constant and an integer, so α = m = 0, 1, 2, 3, ... The solutions of the
differential equations 4.14 and 4.15 are, respectively:

Θ(θ) = A cos(mθ) +B sin(mθ) (4.16)

R(r) = C1Jm(λr) + C2Ym(λr) + C3Im(λr) + C4Km(λr) (4.17)

Where Jm and Ym are the Bessel Functions of First and Second Kind, while Im and Km

are the Modified Bessel Functions of First and Second Kind, respectively.
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The general solution of spatial variables is given by [14]:

W (r, θ) = [C1Jm(λr) + C2Ym(λr) + C3Im(λr) + C4Km(λr)] {A cos(mθ) +B sin(mθ)}
(4.18)

Considering that the solutions of W (r, θ) must be finite in any part of the circular plate,
it must be imposed that C2 and C4 are equal to 0 because the Bessel functions Ym and Km

tend to infinity at r = 0. In addition, for the case where the plate is embedded in the edge
r = a, the boundary conditions are the following:

W (a, θ) = 0 (4.19)

dW

dr
(a, θ) = 0 (4.20)

By imposing the boundary condition given by the Eq. 4.20, you get [11]:

Jm(λa)Im+1(λa) + Jm+1(λa)Im(λa) = 0 (4.21)

This corresponds to the characteristic equation of a clamped circular plate, whose roots
allow to obtain the natural frequencies of the different vibration modes of the plate; as follows:

λmn = ωmn

√
ρh

D
(4.22)

Using this in the Eq. (4.18), the spatial equation is given by:

Wmn(r, θ) = [Jm(λmnr)Im(λmna)− Jm(λmna)Im(λmnr)]

{
cos(mθ)
sin(mθ)

}
(4.23)

On the other hand, the solution of the Eq. 4.9 is:

Tmn(t) = D1
mn cos(ωmnt) + E1

mn cos(ωmnt) (4.24)

The general equation for free vibrations of a clamped circular plate is given by [10]:
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w(r, θ, t) =
∞∑
m=0

∞∑
n=0

{[Jm(λmnr)Im(λmna)− Jm(λmna)Im(λmnr)] cos(mθ)}
(
A1
mn cos(ωmnt) +A2

mn sin(ωmnt)
)

+

∞∑
m=0

∞∑
n=0

{[Jm(λmnr)Im(λmna)− Jm(λmna)Im(λmnr)] sin(mθ)}
(
A3
mn cos(ωmnt) +A4

mn sin(ωmnt)
)

(4.25)

Where the constants Ai
mn, with i = 1, 2, 3, 4, are determined by the initial conditions.
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4.2 Problem 2: Clamped Circular Plate with Two-Patch
Parameterization

The second problem consists only in the symmetrical bending of a circular plate embedded
around the edge, parameterized by two patches in three different ways, in which the divisions
between the patches can be classified as regular or irregular.

The mechanical and physical properties of the plate material and the dimensions used to
study the bending problem of this plate are the same that it was presented in Table 4.1 for
the first problem.

4.2.1 Geometry

In this case, the division of the circle can be regular or irregular. The regular division
implies the division of the circle into two equal halves, while the irregular division generates
two halves of a circle that are not equal to each other.

Regular Division with 2 Patches

The knot vectors of each of the patches are given, respectively, by the Eq. 4.26 and 4.27,
and the control points are tabulated in Table 4.3.

• Patch 1: Left Half of a Circle.

Ξ =

{
0, 0, 0,

1

2
,
1

2
,
1

2

}
H =

{
0, 0, 0,

1

4
,
1

2
,
3

4
, 1, 1, 1

}
(4.26)

• Patch 2: Right Half of a Circle.

Ξ =

{
1

2
,
1

2
,
1

2
, 1, 1, 1

}
H =

{
0, 0, 0,

1

4
,
1

2
,
3

4
, 1, 1, 1

}
(4.27)

These parameters allow generating a circle divided into two equal parts, as shown in
Figure 4.3, where one can see the coarse mesh and the control points of each of the parts.
In addition, in Figure 4.3, one can see the distribution of control points on the surface of
the circle and the physical mesh generated for a certain refinement of the geometry. Though
note, that in all numerical calculations, the original coarse geometry is used.
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Table 4.3: Control Points of each of the semicircles.

Left Half Circle Right Half Circle
i xi yi wi i xi yi wi

1 -0.35355 0.35355 1 1 0 0.5 0.85355
2 -0.42099 0.28612 0.92678 2 0 0.375 0.85355
3 -0.5 0.10355 0.85355 3 0 0.125 0.85355
4 -0.5 -0.10355 0.85355 4 0 -0.125 0.85355
5 -0.42099 -0.28612 0.92678 5 0 -0.375 0.85355
6 -0.35355 -0.35355 1 6 0 -0.5 0.85355
7 -0.20711 0.5 0.85355 7 0.20711 0.5 0.85355
8 -0.22855 0.375 0.85355 8 0.22855 0.375 0.85355
9 -0.25 0.125 0.85355 9 0.25 0.125 0.85355
10 -0.25 -0.125 0.85355 10 0.25 -0.125 0.85355
11 -0.22855 -0.375 0.85355 11 0.22855 -0.375 0.85355
12 -0.20711 -0.5 0.85355 12 0.20711 -0.5 0.85355
13 0 0.5 0.85355 13 0.35355 0.35355 1
14 0 0.375 0.85355 14 0.42099 0.28612 0.92678
15 0 0.125 0.85355 15 0.5 0.10355 0.85355
16 0 -0.125 0.85355 16 0.5 -0.10355 0.85355
17 0 -0.375 0.85355 17 0.42099 -0.28612 0.92678
18 0 -0.5 0.85355 18 0.35355 -0.35355 1

(a) Coarse Geometry. (b) Refined Geometry.

Figure 4.3: Coarse and refined distribution of the 2 generating patches
of a circle together with their respective physical mesh.

Irregular Division with 2 Patches

In this section, two ways of generating the circular geometry of 2 patches with an irregular
division are described: the �-shape and the o-shape.

The knot vectors used to generate each of the parts of the aforementioned cases correspond
to the same ones already used to construct the circular geometry with a regular division, that
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is, those given by the Eq. (4.26) and (4.27). The control points of each of the parts for the
�-shape and the o-shape parameterizations, are given, respectively, by the Tables 4.4 and
4.5.

In the Figures 4.4 and 4.5, the distributions of the control points are shown in a coarse
and refined way for each of the cases mentioned above. Note, that in the calculations, only
the coarse geometry is used.

Table 4.4: Control Points of each of the semicircles of radius a = 0.5[m]
for the �-shape parameterization.

Left Half Circle Right Half Circle
i xi yi wi i xi yi wi

1 -0.35355 0.35355 1 1 0 0.5 0.85355
2 -0.42099 0.28612 0.92678 2 -0.15 0.25 0.85355
3 -0.5 0.10355 0.85355 3 0 0 0.85355
4 -0.5 -0.10355 0.85355 4 0 0 0.85355
5 -0.42099 -0.28612 0.92678 5 -0.15 -0.25 0.85355
6 -0.35355 -0.35355 1 6 0 -0.5 0.85355
7 -0.20711 0.5 0.85355 7 0.20711 0.5 0.85355
8 -0.22855 0.375 0.85355 8 0.22855 0.375 0.85355
9 -0.25 0.125 0.85355 9 0.25 0.125 0.85355
10 -0.25 -0.125 0.85355 10 0.25 -0.125 0.85355
11 -0.22855 -0.375 0.85355 11 0.22855 -0.375 0.85355
12 -0.20711 -0.5 0.85355 12 0.20711 -0.5 0.85355
13 0 0.5 0.85355 13 0.35355 0.35355 1
14 -0.15 0.25 0.85355 14 0.42099 0.28612 0.92678
15 0 0 0.85355 15 0.5 0.10355 0.85355
16 0 0 0.85355 16 0.5 -0.10355 0.85355
17 -0.15 -0.25 0.85355 17 0.42099 -0.28612 0.92678
18 0 -0.5 0.85355 18 0.35355 -0.35355 1

(a) Coarse Geometry. (b) Refined Geometry.

Figure 4.4: Coarse and refined geometry with the �-shape parameterization.
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Table 4.5: Control Points of each of the semicircles of radius a = 0.5[m]
for the o-shape parameterization.

Left Half Circle Right Half Circle
i xi yi wi i xi yi wi

1 -0.35355 0.35355 1 1 0 0.5 0.85355
2 -0.42099 0.28612 0.92678 2 0.15 0.25 0.85355
3 -0.5 0.10355 0.85355 3 0 0 0.85355
4 -0.5 -0.10355 0.85355 4 0 0 0.85355
5 -0.42099 -0.28612 0.92678 5 -0.15 -0.25 0.85355
6 -0.35355 -0.35355 1 6 0 -0.5 0.85355
7 -0.20711 0.5 0.85355 7 0.20711 0.5 0.85355
8 -0.22855 0.375 0.85355 8 0.22855 0.375 0.85355
9 -0.25 0.125 0.85355 9 0.25 0.125 0.85355
10 -0.25 -0.125 0.85355 10 0.25 -0.125 0.85355
11 -0.22855 -0.375 0.85355 11 0.22855 -0.375 0.85355
12 -0.20711 -0.5 0.85355 12 0.20711 -0.5 0.85355
13 0 0.5 0.85355 13 0.35355 0.35355 1
14 0.15 0.25 0.85355 14 0.42099 0.28612 0.92678
15 0 0 0.85355 15 0.5 0.10355 0.85355
16 0 0 0.85355 16 0.5 -0.10355 0.85355
17 -0.15 -0.25 0.85355 17 0.42099 -0.28612 0.92678
18 0 -0.5 0.85355 18 0.35355 -0.35355 1

(a) Coarse Geometry. (b) Refined Geometry.

Figure 4.5: Coarse and refined geometry with the o-shape parameterization.
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4.3 Problem 3: Clamped Square Plate with a cut-out of
Complicated Shape, composed by 8 Patches

The last problem of this work corresponds to studying the deflection and free vibrations
of a square plate clamped at all its edges and that has a hole of a complicated shape. For
this problem, the results for the bending are compared with the ANSYS FEM model and for
the vibrations it is compared with the results obtained in [8] and [22]:

4.3.1 Geometry

The dimensions and the 8 patches that make up the square plate with a heart-shaped hole
can be seen in Figure 4.6. The physical and mechanical properties of the plate material are
shown in Table 4.6.

(a) Dimensions of the Plate. (b) 8 Patches of the Geometry.

Figure 4.6: Dimensions and the 8 patches of the square plate with a complicated shaped
hole [8].

Table 4.6: Physical and mechanical properties of the Square Plate with a Complicated Hole.

Property Value Units of Measurement
E 200 GPa
ν 0.3 -
ρ 8000 kg/m3

h 0.05 m

The knot vectors and the order of the polynomials of the NURBS basis functions used
for each of the patches are presented in Table 4.7; while the control points together with the
respective weights of each of the patches are tabulated in Table 4.8.
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Table 4.7: Degree of the polynomials and knot vectors of the 8 patches
of the geometry of the plate [8].

Patch ξ η

1 p = 2
Ξ =

{
0, 0, 0, 1

8
, 1

8
, 1

8

} q = 1
H = {0, 0, 1, 1}

2 p = 2
Ξ =

{
1
8
, 1

8
, 1

8
, 2

8
, 2

8
, 2

8

} q = 1
H = {0, 0, 1, 1}

3 p = 2
Ξ =

{
2
8
, 2

8
, 2

8
, 3

8
, 3

8
, 3

8

} q = 1
H = {0, 0, 1, 1}

4 p = 2
Ξ =

{
3
8
, 3

8
, 3

8
, 4

8
, 4

8
, 4

8

} q = 1
H = {0, 0, 1, 1}

5 p = 1
Ξ =

{
4
8
, 4

8
, 5

8
, 5

8

} q = 1
H = {0, 0, 1, 1}

6 p = 1
Ξ =

{
5
8
, 5

8
, 6

8
, 6

8

} q = 1
H = {0, 0, 1, 1}

7 p = 2
Ξ =

{
6
8
, 6

8
, 6

8
, 7

8
, 7

8
, 7

8

} q = 1
H = {0, 0, 1, 1}

8 p = 2
Ξ =

[
7
8
, 7

8
, 7

8
, 1, 1, 1

] q = 1
H = {0, 0, 1, 1}

These parameters allow one to generate a square plate with a heart shaped hole, as shown
in Figure 4.7, where one can see the coarse meshing and the control points for NURBS of
third and forth degrees and different levels of h−refinement [23].

(a) Quadratic NURBS functions. (b) Cubic NURBS functions.

Figure 4.7: Control mesh and physical mesh of the plate with a hole of complicated shape.
(a) Quadratic NURBS basis functions with 880 control points and 640 elements. (b) Cubic

NURBS basis functions with 576 control points and 192 elements [23].
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Table 4.8: Control Points of the 8 patches of the square plate [8].

Patch i j xi yi wi

1

1 1 4 0 1
1 2 4 2 1
2 1 7 0 1
2 2 6 2

√
2/2

3 1 10 0 1
3 2 6 4 1

2

1 1 10 0 1
1 2 6 4 1
2 1 10 3 1
2 2 8 4

√
2/2

3 1 10 6 1
3 2 8 6 1

3

1 1 10 6 1
1 2 8 6 1
2 1 10 8 1
2 2 8 6 + 2 tan

(
π
8

)
cos
(
π
8

)
3 1 10 10 1
3 2 6 +

√
2 6 +

√
2 1

4

1 1 10 10 1
1 2 6 +

√
2 6 +

√
2 1

2 1 8 10 1
2 2 6 + 2 tan

(
π
8

)
8 cos

(
π
8

)
3 1 6 10 1
3 2 6 8 1

5

1 1 6 10 1
1 2 6 8 1
2 1 0 10 1
2 2 2 8 1

6

1 1 0 10 1
1 2 2 8 1
2 1 0 4 1
2 2 2 4 1

7

1 1 0 4 1
1 2 2 4 1
2 1 0 2 1
2 2 2 4− 2 tan

(
π
8

)
cos
(
π
8

)
3 1 0 0 1
3 2 4−

√
2 4−

√
2 1

8

1 1 0 0 1
1 2 4−

√
2 4−

√
2 1

2 1 2 0 1
2 2 4− 2 tan

(
π
8

)
2 cos

(
π
8

)
3 1 4 0 1
3 2 4 2 1
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Chapter 5

Results

In this section the results obtained in numerical and analytical form for each of the prob-
lems of this thesis work are presented.

5.1 Problem 1: Clamped Circular Plate with One-Patch
Parameterization.

5.1.1 Solution Bases

To study this plate, the geometry was generated using NURBS basis functions given in
Table 4.2 and Eq. (4.2), and the corresponding result is shown in Figure 5.1. To approximate
the solution, both NURBS and B-Splines functions were used. In order to construct the
solution bases, the same knot vectors as for the geometry parameterization are first selected:

Σ = {0, 0, 0, 1, 1, 1}, Π = {0, 0, 0, 1, 1, 1}. (5.1)

Then, the NURBS basis of degree p = q = 2 is chosen to be the same as in the geometry
parameterization given in Table 4.2. The degree of the NURBS basis is subsequently raised
using the algorithm of degree elevation to p = q = 3, 4, 5. In what follows, the corresponding
bases are denoted as Np,q. The bases are then refined using the algorithm of knot insertion.

The B-Spline solution basis of degree p = q = 2 is constructed on knot vectors, see
Eq. (5.1), by setting all weights to be equal to 1. The degree of the B-Splines basis is
subsequently raised using the algorithm of degree elevation to p = q = 3, 4, 5. In what
follows, the corresponding bases are denoted as Bp,q. Then the h-refinement by knot insertion
is performed.
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Figure 5.1: Geometry of a circular plate of radius a = 0.5[m]
generated with NURBS functions.

5.1.2 Bending Symmetric Problem

Considering the case of the clamped plate subjected to a symmetrical and constant exter-
nal load of q = qo = 1[kPa], it follows from the analytical solution, see Eq. (4.6), that the
maximum deflection is reached at the center r = 0 and has a theoretical value of [20]:

wmax = − qoa
4

64D
= −0.0533[mm] (5.2)

For this case, in Figures 5.2 and 5.3, the deformed shape is shown, obtained both theoreti-
cally and numerically. The numerical results, shown graphically in Figure 5.3, were obtained
by using basis N5,5 and 1024 elements.

Figure 5.4 shows the comparison between the theoretical displacement and the numerical
solution obtained using N5,5 and 1024 elements.

Figure 5.5 shows the convergence curves obtained for the different degrees of polynomials
and NURBS and B-Splines basis functions for the solution approximation, namely N2,2, B2,2,
N3,3, B3,3, N4,4, B4,4, N5,5 and B5,5.

Table 5.1 shows the slopes for the different cases of convergence studied and presented
graphically in Figure 5.5.
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(a) Front view. (b) 3-D view.

Figure 5.2: Theoretical transverse displacement of a clamped circular plate.

(a) Front view. (b) 3-D view

Figure 5.3: Numerical transverse displacement of a clamped circular plate.

Table 5.1: Convergence rates for each approximation function of the solution.

(p, q)
Theory

[24] [25] [26] NURBS B-Splines

(2,2) 3 2.2 2.2
(3,3) 4 5.11 5.15
(4,4) 5 5.96 6
(5,5) 6 7.48 7.53
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Figure 5.4: Absolute difference between the theoretical displacement and the numerical
solution obtained using N5,5 and 1024 elements.
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5.1.3 Free Vibrations Problem

The natural dimensionless frequencies βmn are given analytically by [16]:

βmn = λmna =

(
ω2
mna

4ρh

D

)1/4

(5.3)

In the Tables 5.2 and 5.3, the theoretical values of the natural dimensionless frequencies
βmn, from [10], are listed together with the corresponding numerical results, obtained using
B2,2 and B5,5 with and 1024 elements, respectively.

In Tables 5.4 and 5.5 the results obtained with NURBS bases, i.e. N2,2 and N5,5 with 1024
elements are listed.

Table 5.2: Dimensionless Natural Frequencies βmn of a Clamped Circular Plate using basis
B2,2 with 1024 elements.

m Nodal Results n Nodal Circles
Diameters 0 1 2 3

0
Exact 3.196217 4.6109 5.905929 7.144228

Numerical 3.198069 4.616915 5.911821 7.166465
Error (%) 5.79·10−2 1.3·10−1 9.98·10−2 3.11·10−1

1
Exact 6.306425 7.798718 9.196739 10.53613

Numerical 6.321035 7.826841 9.221098 10.60179
Error (%) 2.32·10−1 3.61·10−1 2.65·10−1 6.23·10−1

2
Exact 9.439492 10.9581 12.40202 13.79493

Numerical 9.487346 11.03392 12.46293 13.9296
Error (%) 1.82·10−1 6.92·10−1 4.91·10−1 9.76·10−1

3
Exact 12.577108 14.10886 15.57915 17.005

Numerical 12.55427 13.9296 15.45366 17.07051
Error (%) 1.82·10−1 1.27 8.05·10−1 3.85·10−1

4
Exact 15.71639 17.25601 18.74513 20.19208

Numerical 15.70346 17.23816 18.73814 20.17515
Error (%) 8.23·10−2 1.03·10−1 3.73·10−2 8.38·10−2
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Table 5.3: Dimensionless Natural Frequencies βmn of a Clamped Circular Plate using basis
B5,5 with 1024 elements.

m Nodal Results n Nodal Circles
Diameters 0 1 2 3

0
Exact 3.196217 4.6109 5.905929 7.144228

Numerical 3.196221 4.6109 5.905678 7.143531
Error (%) 1.25·10−4 0 4.25·10−3 9.76·10−3

1
Exact 6.306425 7.798718 9.196739 10.53613

Numerical 6.306437 7.799274 9.196883 10.53667
Error (%) 1.9·10−4 7.13·10−3 1.57·10−3 5.13·10−3

2
Exact 9.439492 10.9581 12.40202 13.79493

Numerical 9.439499 10.95807 12.40222 13.79506
Error (%) 7.42·10−5 2.74·10−4 1.61·10−3 9.42·10−4

3
Exact 12.577108 14.10886 15.57915 17.005

Numerical 12.57713 14.10883 15.57949 17.0053
Error (%) 1.75·10−4 1.63·10−3 2.18·10−3 1.76·10−3

4
Exact 15.71639 17.25601 18.74513 20.19208

Numerical 15.71644 17.25573 18.74397 20.19234
Error (%) 3.18·10−4 1.62·10−3 6.19·10−3 1.29·10−3

Table 5.4: Dimensionless Natural Frequencies βmn of a Clamped Circular Plate obtained
using basis N2,2 with 1024 elements.

m Nodal Results n Nodal Circles
Diameters 0 1 2 3

0
Exact 3.196217 4.6109 5.905929 7.144228

Numerical 3.198081 4.616927 5.911779 7.166362
Error (%) 5.83·10−2 1.31·10−1 9.91·10−2 3.1·10−1

1
Exact 6.306425 7.798718 9.196739 10.53613

Numerical 6.32111 7.82693 9.221159 10.60182
Error (%) 2.33·10−1 3.62·10−1 2.66·10−1 6.23·10−1

2
Exact 9.439492 10.9581 12.40202 13.79493

Numerical 9.487488 11.03408 12.46293 13.92975
Error (%) 5.08·10−1 6.93·10−1 4.91·10−1 9.77·10−1

3
Exact 12.577108 14.10886 15.57915 17.005

Numerical 12.55442 13.92975 15.45366 17.07051
Error (%) 1.82·10−1 1.27 8.05·10−1 3.85·10−1

4
Exact 15.71639 17.25601 18.74513 20.19208

Numerical 15.70346 17.23816 18.73814 20.17515
Error (%) 8.23·10−2 1.03·10−1 3.73·10−2 8.38·10−2

45



Table 5.5: Dimensionless Natural Frequencies βmn of a Clamped Circular Plate obtained
using basis N5,5 with 1024 elements.

m Nodal Results n Nodal Circles
Diameters 0 1 2 3

0
Exact 3.196217 4.6109 5.905929 7.144228

Numerical 3.196221 4.6109 5.905678 7.143531
Error (%) 1.25·10−4 0 4.25·10−3 9.76·10−3

1
Exact 6.306425 7.798718 9.196739 10.53613

Numerical 6.306437 7.799274 9.196883 10.53667
Error (%) 1.9·10−4 7.13·10−3 1.57·10−3 5.13·10−3

2
Exact 9.439492 10.9581 12.40202 13.79493

Numerical 9.439499 10.95807 12.40222 13.79506
Error (%) 7.42·10−5 2.74·10−4 1.61·10−3 9.42·10−4

3
Exact 12.577108 14.10886 15.57915 17.005

Numerical 12.57713 14.10883 15.57949 17.0053
Error (%) 1.75·10−4 1.63·10−3 2.18·10−3 1.76·10−3

4
Exact 15.71639 17.25601 18.74513 20.19208

Numerical 15.71644 17.25573 18.74397 20.19234
Error (%) 3.18·10−4 1.62·10−3 6.19·10−3 1.29·10−3

In Table 5.6 one can see the values of the first 20 dimensionless natural frequencies βmn
obtained with basis B5,5 with 1024 elements. In Figure 5.6 several vibration modes are shown.
The obtained results are in good agreement with the analytical solution, given by Eq.(4.23).

Table 5.6: The first 20 vibration modes with their respective
natural dimensionless frequencies.

Mode Value βmn Mode Value βmn
1 3.196221 11 8.346606
2 4.6109 12 8.346606
3 4.6109 13 9.196883
4 5.905678 14 9.196883
5 5.905678 15 9.439499
6 6.306437 16 9.525701
7 7.143531 17 9.525701
8 7.143531 18 10.53667
9 7.799274 19 10.53667
10 7.799274 20 10.68703
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(a) 1st Mode (b) 2nd Mode (c) 4th Mode

(d) 6th Mode (e) 7th Mode (f) 9th Mode

(g) 11th Mode (h) 13th Mode (i) 15th Mode

(j) 16th Mode (k) 18th Mode (l) 20th Mode

Figure 5.6: Some of the vibration modes of a clamped circular plate.
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5.2 Problem 2: Clamped Circular Plate with Two-Patch
Parameterization.

5.2.1 Solution Bases for Regular Division

To study this plate in a first instance, the geometry was generated using NURBS basis
functions given in Table 4.3 and Eq. (4.26) and (4.27); the corresponding result is shown in
Figure 5.7. To approximate the solution, B-Splines functions were used. In order to construct
the solution bases, the knot vectors used were:

Σ =

{
0, 0, 0,

1

3
,
2

3
, 1, 1, 1

}
, Π =

{
0, 0, 0,

1

4
,
2

4
,
3

4
, 1, 1, 1

}
. (5.4)

The B-Spline solution basis of degree p = q = 2 is constructed on knot vectors, see
Eq. (5.4), by setting all weights to be equal to 1. The degree of the B-Splines basis is
subsequently raised using the algorithm of degree elevation to p = q = 3, 4, 5. In what
follows, the corresponding bases are denoted as Bk

p,q, where k denotes the patch number used
to generate the geometry. Then the h-refinement by knot insertion is performed.

Figure 5.7: Geometry of a circular plate of radius a = 0.5[m]
of 2 patches generated with NURBS functions.
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5.2.2 Bending Symmetric Problem for a Regular Division

For this case, in Figures 5.8 and 5.9, the deformed shape is shown, obtained both theoreti-
cally and numerically. The numerical results, shown graphically in Figure 5.9, were obtained
by using basis B2

5,5 and 1230 elements.

(a) Front view. (b) 3-D view.

Figure 5.8: Theoretical transverse displacement of a clamped circular plate generated with
2 patches and with a regular division.

(a) Front view. (b) 3-D view.

Figure 5.9: Numerical transverse displacement of a clamped circular plate generated with 2
patches and with a regular division.

Figure 5.10 shows the comparison between the theoretical displacement and the numerical
solution obtained using B2

5,5 and 1230 elements.

Figure 5.11 shows the convergence curves obtained for the different degrees of polynomials
and B-Splines basis functions for the solution approximation, namely B1

2,2, B2
2,2, B1

3,3, B2
3,3,

B1
4,4, B2

4,4, B1
5,5 y B2

5,5.
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Figure 5.10: Absolute difference between the theoretical displacement and the numerical
solution obtained using B2

5,5 and 1230 elements.
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with 1 pacth and 2 patches regularly divided .
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Table 5.7 shows the slopes for the different cases of convergence studied and presented
graphically in Figure 5.11.

Table 5.7: Convergence rates for the cases studied.

(p, q)
Theory

[24] [25] [26] 1 Patch 2 Patches

(2,2) 3 2.2 2.13
(3,3) 4 5.15 4.89
(4,4) 5 6 6.26
(5,5) 6 7.53 7.97

5.2.3 Solution Bases for Irregular Divisions

To study how different parameterizations may affect the results already obtained, 2 irreg-
ular ways of dividing the circle were studied: the �-shape and the o-shape. For both cases,
the geometry was generated using NURBS basis functions given in Eq. (4.26) and (4.27),
and in Tables 4.4 and 4.5, respectively; the corresponding result for each parameterization is
shown in Figure 5.12. To approximate the solution, B-Splines functions were used. In order
to construct the solution bases, the same knot vectors used in the first part of this problem
section are used, i.e, see Eq. (5.4).

(a) �-shape parameterization. (b) o-shape parameterization.

Figure 5.12: The two parameterizations of a circle with an irregular division
using NURBS functions.

The B-Spline solution basis of degree p = q = 2 is constructed on knot vectors, see
Eq. (5.4), by setting all weights to be equal to 1. The degree of the B-Splines basis is
subsequently raised using the algorithm of degree elevation to p = q = 3, 4, 5. In what
follows, the corresponding bases are denoted as BS

p,q, where S denotes the type of irregular
parametrization used to generate the geometry: S = SC corresponds to �-shape and S = SS
to o-shape. Then the h-refinement by knot insertion is performed.
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5.2.4 Bending Symmetric for Irregular Divisions

For this case, in Figures 5.13 and 5.14, the deformed shape obtained numerically is shown.
The numerical results, shown graphically in Figure 5.13 were obtained by using basis BSC

5,5

and 1230 elements; while in Figure 5.14, the results were obtained using basis BSS
5,5 and the

same number of elements.

(a) Front view. (b) 3-D view.

Figure 5.13: Numerical transverse displacement of a clamped circular plate generated with
�-shape parameterization.

(a) Front view. (b) 3-D view.

Figure 5.14: Numerical transverse displacement of a clamped circular plate generated with
o-shape parameterization.

Figure 5.15 shows the comparison between the theoretical displacement and the numerical
solution for both irregular parameterizations. The numeral results were obtained using BSC

5,5

and BSS
5,5 , for �-shape and o-shape parameterization, respectively; and 1230 elements.
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(a) �-shape parameterization. (b) o-shape parameterization.

Figure 5.15: Absolute difference between the theoretical displacement and the numerical
solution obtained using BSC

5,5 and BSS
5,5 , for �-shape and o-shape parameterization,

respectively, and 1230 elements.

Figure 5.16 shows the convergence curves obtained for the different degrees of polynomials
and B-Splines basis functions for the solution approximation, namely BSC

2,2 , BSS
2,2 , BSC

3,3 , BSS
3,3 ,

BSC
4,4 , BSS

4,4 , BSC
5,5 y BSS

5,5 .

Figure 5.16: Convergence curves of the different cases studied for a clamped circular plate
generated with the 2 irregular parameterizations: �-shape and o-shape.
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5.3 Problem 3: Clamped Square Plate with a cut-out of
Complicated Shape, composed by 8 Patches

5.3.1 Solution Bases

To study this plate, the geometry was generated using NURBS basis functions given in
Table 4.8, and the corresponding result is shown in Figure 5.17. To approximate the solution,
B-Splines functions were used. In order to construct the solution bases, the knot vectors used
were:

Σ =

{
0, 0, 0,

1

8
,
2

8
,
3

8
,
4

8
,
5

8
,
6

8
,
7

8
, 1, 1, 1

}
, Π = {0, 0, 0, 1, 1, 1}. (5.5)

Figure 5.17: Geometry of an Square Plate with a Complicated Hole of 8 patches using
NURBS functions and the control points distribution represented by green points.

The B-Spline solution basis of degree p = q = 2 is constructed on knot vectors, see
Eq. (5.5), by setting all weights to be equal to 1. The degree of the B-Splines basis is
subsequently raised using the algorithm of degree elevation to p = q = 3, 4. In what follows,
the corresponding bases are denoted as Bp,q. Then the h-refinement by knot insertion is
performed.
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5.3.2 Bending Problem

For this case, in Figures 5.18 and 5.19, the deformed shape obtained numerically is shown.
The numerical results, shown graphically in Figure 5.18, were obtained by using basis B4,4

and 624 elements; while in Figure 5.19, the results were obtaining by an ANSYS simulation.

(a) Front view. (b) 3-D view.

Figure 5.18: Numerical transverse displacement of a clamped square plate with a hole with
complicated shape.
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(a) Model in ANSYS of the plate.

(b) Numerical transverse displacement of the plate obtained with ANSYS.

Figure 5.19: Model and transverse displacement obtained with ANSYS.

5.3.3 Free Vibrations Problem

The natural dimensionless frequencies for this case are defined as:

λi =

(
w2

i L
4ρh

D

)1/4

(5.6)

Table 5.8 presents the results obtained for the first 10 dimensionless natural frequencies
with the present method using basis B4,4 with 624 elements and other methods to compare
the accuracy of this. The results coming from the other methods come from: Shuohui Yin et
al. [22] using isogeometric approach based on the first order shear deformation plate theory
(FSDT), Xinkang Li et al. [27] using IGA based on the third order shear deformation plate
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theory (TSDT), X. Y. Cui et al. [28] using the radial point interpolation method with edge-
based smoothing operations (ES-RPIM), Khuong D. Nguyen et al. [8] using isogeometric
finite element for three-dimensional functionally graded material plate structure (3D FGM),
S-FSDT based on IGA [22], Kirchhoff on the IGA [13], MKI method [29], EFG method [30]
and node-based smoothing RPIM (NS-RPIM) method [28].

To compare the accuracy of the results listed in Table 5.8, the percentage difference is
defined as:

%Difference =

∣∣∣∣∣∣∣
λi,GIFT − λi,Mj

1

2

(
λi,GIFT + λi,Mj

)
∣∣∣∣∣∣∣ · 100 (5.7)

Where, λi,GIFT and λi,Mj
represent the i−th dimensionless natural frequency obtained

with the GIFT method and the j−th method mentioned above, respectively.

In Table 5.8 one can see the values of the first 10 dimensionless natural frequencies λi

obtained with basis B4,4 with 624 elements. In Figure 5.20, the first 10 vibration modes are
shown.
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(a) 1st Mode (b) 2nd Mode (c) 3rd Mode

(d) 4th Mode (e) 5th Mode (f) 6th Mode

(g) 7th Mode (h) 8th Mode (i) 9th Mode

(j) 10th Mode

Figure 5.20: First 10 modes of vibration of a clamped square plate with a hole of
complicated shape.
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Chapter 6

Analysis and Discussion

In this chapter, the results obtained for three problems of bending and vibration of the
KLPT plates will be analyzed and discussed.

6.1 Problem 1: Clamped Circular Plate with 1 Patch

In the first problem, symmetric bending and free vibration problems were studied for a
clamped circular plate, whose geometry was generated with 1 patch.

From Figures 5.2 and 5.3, it can be noted that the numerical results obtained with the
GIFT method for the problem of bending of a circular plate clamped at the edge are quite
similar to those predicted by the theory. Inclusively, in Figure 5.4 it can be seen that the
absolute difference between the numerical values wN and analytical wA, when using NURBS
functions and polynomials of degree 5 with h−refinement, are of the order of |wN − wA| ≈
10−15[m].

From the convergence curves plotted in Figure 5.5, it can be seen that the finer the mesh
or higher the order of the basis functions (NURBS or B-Splines), more accurate the results
are, as expected. From Figure 5.5 and Table 5.1, it can be seen that for the same polynomial
order p = q = 2, 3, 4, 5 the convergence results obtained with NURBS bases are quasi identical
to the results, obtained by the B-Splines.

As discussed in [24], [25] and [26], the theoretical convergence rate for this type of problem
is p + 1. Comparing the convergence rates obtained theoretically and numerically for each
degree of polynomial p = q, using both NURBS and B-Splines functions, and presented in
Table 5.1; it can be seen that the numerical value of the slope for the case p = q = 2 is less
than the theoretical and for the rest of the cases studied, they are larger, which contradicts
what was expected by the theory.

But this error with the theory is due to the computational limitations of this thesis work
and not to errors in the implementation of the GIFT method, because as can be seen in
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Figure 5.5, the convergence curves show a monotonously decreasing behavior as the size of
the element h decreases, where the convergence rate also decreases with this and tends to
the theoretical values expected, but given the computational limitations, the results for finer
meshes that show the rate can not be obtained to which, for each degree of polynomial, the
curve presents an asymptotic behavior.

From the results on the dimensionless natural frequencies βmn tabulated in 5.2- 5.5, we can
see that when using polynomials of grade p = q = 2 with h−refinement, percentage errors are
obtained within the range [10−1, 1], while that by using polynomials of degree p = q = 5 with
h−refinement, the percentage error decreases and is in the range [10−5, 10−3]. In addition,
it can be noted that the results obtained using NURBS and B-Splines for the same case,
are similar in magnitude. These results coincide with what was expected by increasing the
degree of the polynomial of the basis functions and refining the mesh.

6.2 Problem 2: Clamped Circular Plate with 2 Patches

In the second problem, only the symmetrical bending was studied for circular plate, whose
geometry was generated with 2 patches of 3 different forms, which can be classified as regular
and irregular.

In the Figures 5.7 and 5.12, one can see the 3 different ways in which the geometry of the
circular plate was generated. Out of these, Figure 5.7 shows a division of the regular type,
while the Figure 5.12 are of the irregular type.

Analyzing the problem of symmetrical bending for the case in which the geometry is
generated with a regular division of the 2 patches, it can be observed from the Figures
5.8 and 5.9 that the deflections obtained numerically with the GIFT are quite similar to
those predicted by the theory. Additionally, in Figure 5.10 it can be seen that the absolute
difference between the numerical values wN and analytical wA, when using B-Splines functions
and polynomials of degree 5 with h−refinement, are of the order of |wN − wA| ≈ 10−13[m].

From Figure 5.11 and Table 5.7, we can see that the convergence curves and the slopes
corresponding to the same solution bases of p = q = 2, 3, 4, 5 but different (one-patch and
two-patch) geometry parameterizations, are quite similar. The overall error for the one-
patch geometry is smaller than for the two-patch parameterization, but this slight difference
in the accuracy comes with the significant advantage, that the original smooth two-patch
parameterization can be used directly, without any coupling between patches, as well as
without elevating its degree.

As discussed in the work of [24], [25] and [26]; the theoretical convergence ratio for this type
of problem is p+ 1. Comparing the convergence rates obtained theoretically and numerically
for each degree of polynomial p = q, using B-Splines functions, and presented in Table 5.7;
it can be seen that the numerical value of the slope for the case p = q = 2 is less than the
theoretical and for the rest of the cases studied, they are larger, which contradicts what was
expected by the theory.
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Similar to the analysis performed in Problem 1, this error with the theory is due to the
computational limitations of this thesis work and not to errors in the implementation of
the GIFT method, because as can be seen in Figure 5.11, the convergence curves show a
monotonously decreasing behavior as the size of the element h decreases, where the conver-
gence rate also decreases with this and tends to the theoretical values expected, but given
the computational limitations, the results for finer meshes that show the rate can not be
obtained to which, for each degree of polynomial, the curve presents an asymptotic behavior.

For the case in which the problem of bending of the circular plate generated with the 2
irregular parameterizations, shown in Figure 5.12 is studied, it can be seen in Figures 5.13 and
5.14 that the maximum deflection reached by both has a value of wmax ≈ −0.048[mm], which
represents approximately an 10% of error compared to the expected theoretical value given
by the Eq. (5.2). The latter can also be observed in Figures 5.15a and 5.15b, the absolute
differences between the numerical values wN and analytical wA for both parameterizations:
�-shape and o-shape, respectively; when using B-Splines functions and polynomials of degree
5 with h−refinement for both cases, are of the order of |wN − wA| ≈ 10−6[m].

Additionally, in Figures 5.15a and 5.15b, you can observer that the maximum errors for
both parameterizations, �-shape and o-shape, are concentrated in the irregular joint of the
patches.

In Figure 5.16, the convergence curves for both irregular parameterizations of the circle
tend to a constant value if we keep refining the solution field, which indicates that the GIFT
method does not allow obtaining an accurate solution for this type of geometry parameter-
ization. This zero convergence rate for each of the cases studied is due to the repetition of
control points in the center of the circle to generate �-shape and o-shape, and as can be
observed in the physical meshes generated in Figures 4.4 and 4.5, distortions of the mesh and
discontinuities of the basis functions occur at the border joining both patches; which does
not allow to obtain an accurate solution for this problem. However, note, that such irregular
parameterizations present the same difficulty for a standard IGA and are avoided in practice.

6.3 Problem 3: Clamped Square Plate with a cut-out of
Complicated Shape, composed by 8 Patches

In the last problem of this work, symmetric bending and free vibration problems were
studied for a clamped square plate with a complicated shape hole, whose geometry was
generated with 8 patches, as shown in Figure 5.17.

Comparing the results obtained for the bending problem of this plate with the GIFT
method and the ANSYS simulation, results that are presented graphically in Figures 5.18
and 5.19, it can be seen that for the maximum displacement of the plate there is a percent-
age difference between the both methods of approximately 33 %. This may be due to the
low continuity of the geometry parameterization across the boundary between the patches,
analogously to the situation with the irregular two-patch parameterizations of the circle in
Problem 2.
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In Table 5.20, the numerical values of the dimensionless natural frequencies λi obtained
by the GIFT method are compared with the results available in the literature and obtained
by other methods. It can be seen that the GIFT yields the results which are very similar to
those obtained by the others authors.

6.4 Discussion

Based on the results obtained in this work, the following can be observed:

• GIFT, in general, can be used for problems of bending and vibration of Kirchoff-Love
plates, described by PDEs of 4th order.
• The numerical results obtained for all cases with smooth geometry parameterization

are accurate and consistent with the reference solutions.
• For other cases, where the geometry parameterizations have low continuity, the method

yields lower convergence rates and the error is accumulated around irregular points,
analogously to the situations commonly observed in the standard IGA.
• The difference between the results, obtained with the NURBS bases (for the solution

approximation) derived from the original geometry parameterizations and the results
obtained with the B-Splines bases are quasi identical (comparing the NURBS and B-
Splines bases of the same degree). Note, that in the latter case, during the solution
refinement process, there is no need to refine the weights and therefore this approach
has a potential to provide significant computational savings, when applied to large scale
problems.
• It is demonstrated that the multi-patch geometries can be paired with one-patch so-

lution basis, given by B-Splines. In this cases, no additional coupling is required be-
tween the geometry patches. Based on the obtained results, the smooth geometry
parameterization provides the most accurate results. However, the use of geometry
parameterization with low continuity is still possible and yields solutions of acceptable
precision.
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Conclusions

In this work, the application of the new method, proposed in [3], to problems of bending
and vibration of Kirchhof-Love plates, has been demonstrated. The performance of the
method was studied in three different problems, which take into account various one and
multi-patch geometry parameterizations and the solution field bases. The obtained results
are compared with the reference solutions. The limitations of the method are also discussed.

The GIFT method, as already presented in this thesis work, presents a series of charac-
teristics that surpass it by traditional methods of resolution, such as IGA and FEM. This
allows it to be shown as a feasible alternative to solve various problems present in current
engineering, such as: failure analysis of equipment components, fracture study and propaga-
tion of cracks, heat transfer, structural analysis, among others; and all this thanks to the fact
that the method employs resources efficiently, it presents greater flexibility and adaptability
that allow it to work with more complex geometries without losing accuracy of the solution.

Given the incipient of the method, the future work has to develop consists in showing the
applicability of the method to solve other physical phenomena and engineering problems, also
to further develop the GIFT to increase the accuracy of the results obtained for problems
where the geometry of the object presents significant discontinuities.
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