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We study the asymptotic behavior of the cardinality of the 
fixed point set of iterates of an endomorphism of a complex 
torus. We show that there are precisely three types of behavior 
of this function: it is either an exponentially growing function, 
a periodic function, or a product of both.
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1. Introduction

Let X be a complex manifold and let f : X → X be a holomorphic map. It is a 
natural question to ask how many fixed points f has, and what geometric and topological 
information they can give us about X. The answer to this question of course depends on 
X and the map chosen, and as stated the question is too broad to be useful. As noted 
in the introduction of [2], one expects a more uniform answer by looking at asymptotic 
properties of fixed points of iterates of f , as this point of view has been successfully
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adopted in several areas of complex and algebraic geometry (see [2] and the references 
cited in the introduction). Let

Ff (n) = F (n) := #Fix(fn)

denote the number of fixed points of fn if this number is finite, and 0 if not.
We are interested in studying the asymptotic behavior of F (n) in the case that X is 

a complex torus. In this case, the Lefschetz Fixed-Point Theorem for complex tori gives 
the exact number of fixed points of f in terms of the eigenvalues of the action of f on 
the tangent space at the origin. Indeed, let ρa(f) ∈ End(TX(0)) denote the differential of 
f at 0 (i.e. the analytic representation of f), and let λ1, . . . , λg be its eigenvalues. Then 
by [3, 13.1.2],

#Fix(fn) =

∣∣∣∣∣
g∏

i=1
(1 − λn

i )

∣∣∣∣∣
2

. (1)

This shows that the asymptotic behavior of F (n) is governed by the eigenvalues of 
ρa(f). This is not surprising, given the fact that the eigenvalues of ρa(f) control many of 
the topological properties of the dynamical system induced by f (such as its topological 
entropy; see the next section for details).

Our motivation for studying this problem for complex tori comes from [2], where the 
authors give a complete classification of the behavior of F (n) in the case that X is a 
two-dimensional complex torus. Indeed, it is shown that on a two-dimensional complex 
torus, F (n) either

• grows exponentially
• is periodic
• is a product of these two behaviors.

One of the key lemmas that is used in this classification is the fact that if λ is an 
eigenvalue of an endomorphism of a complex two-dimensional torus and |λ| = 1, then λ
must be a root of unity. This is no longer true for higher dimensions, and this, a priori, 
produces one of the main difficulties for extending the results found in dimension two.

It seems that the appearance of eigenvalues that lie on the unit circle and are not roots 
of unity should be interesting in their own right. For example, in [8], Oguiso studies Salem 
numbers that appear as eigenvalues of endomorphisms of complex tori in the context of 
studying the existence of equivariant holomorphic fibrations between tori. For this reason, 
we briefly study properties of endomorphisms with these types of eigenvalues, as well as 
find examples of when these eigenvalues appear.

Although interesting eigenvalues appear for higher dimensional complex tori, our main 
theorem shows that the asymptotic behavior of F (n) is virtually the same as in dimension 
two. Indeed, we prove:
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Theorem 1.1. Let X be a complex torus of dimension g and let f be an endomorphism 
of X. Then #Fix(fn) has one of the following behaviors:

(1) It grows exponentially in n, which means that there are real constants A, B > 1 and 
an integer N such that for all n ≥ N , An ≤ #Fix(fn) ≤ Bn.

(2) It is a periodic function, and the non-zero eigenvalues of f are k-th roots of unity 
where k is contained in the set {n ∈ N : ϕ(n) ≤ 2g} where ϕ is Euler’s function.

(3) There exist integers n1, . . . , nr ≥ 2 and an exponentially growing function h : N → N

such that

#Fix(fn) =
{

0 if n ≡ 0 (mod ni) for some i

h(n) otherwise

Moreover, types (1) and (2) appear for simple abelian varieties, but type (3) never 
appears on a simple torus.

Bauer and Herrig’s proof generalizes well to higher dimensions, with the exception of 
the case when there is an eigenvalue on the unit circle that is not a root of unity. Our 
proof uses a different technique in order to attack this problematic case. Indeed, if f is 
an endomorphism of a complex torus X and χr

f (t) is the characteristic polynomial of 
its action on H1(X, Z), we use the logarithmic Mahler measure of χr

f(t) from number 
theory to study F (n). From a dynamical point of view, the logarithmic Mahler measure 
is just the topological entropy of f . By using Baker’s Theorem on the independence of 
logarithms of algebraic numbers, along with the logarithmic Mahler measure, we are able 
to deal with endomorphisms whose analytic representation has an eigenvalue that lies 
on the unit circle but is not a root of unity.

As a corollary, we obtain:

Corollary 1.2. An abelian variety X is simple if and only if for every f ∈ End(X), 
#Fix(fn) is either periodic or has exponential growth.

Acknowledgments: We would like to thank Eduardo Friedman for many beneficial con-
versations.

2. Eigenvalues of endomorphisms of complex tori

Let X = Cg/Λ be a complex torus of dimension g where Λ ⊆ Cg is a full-rank lattice, 
and let f be an endomorphism of X. We will assume that f fixes the origin, since by [4]
#Fix(f) = #Fix(f − f(0)). Moreover, as is customary in the area of abelian varieties, 
End(X) will denote the algebra of holomorphic maps from X to itself that fix the origin. 
We have the analytic and rational representations

ρa : End(X) → End(TX(0))
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ρr : End(X) → End(H1(X,Q)),

that are the representations of f on the tangent space of X at 0 and on the lattice 
Λ � H1(X, Z), respectively. We will oftentimes identify these representations with con-
crete matrix representations if we have some fixed basis in mind. If λ1, . . . , λg are the 
eigenvalues of ρa(f), then the Holomorphic Lefschetz Fixed-Point Formula (1) shows 
that the number of fixed points of an iteration of f is governed by the powers of these. 
By abuse of terminology we will say that these eigenvalues are eigenvalues of f . Each of 
these representations comes with a characteristic polynomial:

χa
f (t) := det(tIg − ρa(f))

χr
f (t) := det(tI2g − ρr(f)).

It is well known that χr
f (t) = χa

f (t)χa
f (t) since ρr � ρa ⊕ ρa (see [3, Chapter 1]).

Notice that any eigenvalue of an endomorphism of a complex torus is necessarily an 
algebraic integer, since it satisfies the characteristic polynomial of the rational represen-
tation of the endomorphism.

The following lemma is proved in [2] for dimension 2, and the result is trivially gen-
eralized to higher dimensions.

Lemma 2.1. If f has an eigenvalue λ with 0 < |λ| < 1, then it has another eigenvalue 
with absolute value greater than 1.

Proof. Write

χr
f (t) = χa

f (t)χa
f (t) =

g∏
i=1

(t− λi)(t− λi).

Assume first that all the eigenvalues are non-zero. Therefore since |χr
f (0)| =

∏g
i=1 |λi|2

is an integer greater than 0, we must have that there exists an eigenvalue of absolute 
value greater than 1. If one of the eigenvalues is equal to zero, a similar argument can 
be applied by dividing χr

f (t) by the largest power of t that appears. �
In [2], the key result that allowed for a complete classification of eigenvalues of en-

domorphisms on two-dimensional complex tori is the fact that if an eigenvalue is of 
absolute value 1, it must be a root of unity. As stated in the introduction, this is also the 
key problem to being able to extend the results of [2] to arbitrary dimension. We will 
make this precise in the following proposition, and we emphasize that this result, along 
with its proof, is a direct generalization of Bauer and Herrig’s main theorem. The main 
contribution of our paper (aside from the examples presented below) will appear in the 
next section.
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As in the introduction, write

F (n) := #Fix(fn).

Proposition 2.2. Let X be a complex torus and let f ∈ End(X) be an endomorphism 
of X. If every eigenvalue of f that has absolute value 1 is a root of unity, then F (n)
exhibits exactly one of the behaviors from Theorem 1.1.

Proof. If χr
f (t) has no roots that are roots of unity, then by Lemma 2.1 there must be 

an eigenvalue of absolute value greater than 1. In this case F (n) clearly has exponential 
growth. If χr

f (t) only has roots that are roots of unity, then clearly F (n) is periodic. 
Assume then that χr

f (t) has roots that are roots of unity, as well as roots that are not. 
We factor this polynomial as

χr
f (t) = P (t)Q(t)

where P (t), Q(t) ∈ Z[t] and the roots of P (t) consist of roots of unity and the roots of 
Q(t) do not. We have that

F (n) =

⎛
⎝ ∏

|λ|=1

|1 − λn|2
⎞
⎠

⎛
⎝ ∏

|λ|�=1

|1 − λn|2
⎞
⎠ .

It is clear that 
∏

|λ|=1(1 − λn), 
∏

|λ|�=1(1 − λn) ∈ Z since they are algebraic integers and 
the Galois group of P (t) fixes the former and the Galois group of Q(t) fixes the latter. 
Let n1, . . . , nr be the different orders of the roots of Q(t), and set

h(n) :=
{

F (n) if n 
≡ 0 (mod n1, . . . , nr)∏
|λ|�=1 |1 − λn|2 in any other case

We see that h(n) ∈ Z>0 for all n ∈ Z and has exponential growth. This gives us growth 
of type (3) in Theorem 1.1. �
Remark 2.3. We observe that if f is an automorphism of finite order, then its eigenvalues 
are roots of unity and satisfy χr

f which is a polynomial of degree 2g, where g is the 
dimension of X. Therefore, if λ is an eigenvalue of order k of f , ϕ(k) ≤ 2g, where ϕ is 
Euler’s totient function.

In the rest of this section we will concentrate on examples of endomorphisms with 
eigenvalues on the unit circle but that are not roots of unity. As stated in the introduction, 
it seems that these endomorphisms should be of interest in their own right, and not just 
in the context of fixed points. For example if λ is an eigenvalue of f that lies on the 
unit circle and is not a root of unity and z ∈ X is the image of an eigenvector of ρa(f)
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associated to λ, then the closure of the orbit of z by f is the image of a closed C∞ curve 
α : [0, 1] → X.

Remark 2.4. From a dynamical point of view, it is interesting when f is an automorphism 
that does not have eigenvalues that are roots of unity since this is equivalent to f being 
ergodic with respect to the Haar measure on X.

The following proposition shows that the presence of eigenvalues of absolute value 1 
that are not roots of unity could be interesting in terms of dynamics.

Proposition 2.5. Let f be an endomorphism of X that has an eigenvalue that lies on the 
unit circle and is not a root of unity. Then f restricts to an ergodic automorphism of a 
non-zero subtorus of X.

Proof. Let λ be an eigenvalue of f that lies on the unit circle and is not a root of unity, 
and let Q(t) be its minimal polynomial over Z. Then Q(t) | χr

f (t) and actually Q(t)
divides the minimal polynomial of ρr(f). Let Y be the subtorus (kerQ(f))0 where the 0 
subscript stands for the connected component of kerQ(f) that contains 0. We see that 
since f commutes with Q(f), f restricts to an endomorphism of Y . If Y = 0, then Q(f)
is an isogeny and so Q(ρr(f)) is invertible. However this contradicts the fact that Q(t)
divides the minimal polynomial of ρr(f). We see that the characteristic polynomial of 
ρr(f |Y ) is a power of Q(t) since the minimal polynomial of ρr(f |Y ) (which is Q(t)) must 
have the same linear factors as the characteristic polynomial. By [2, Lemma 1.8],

Q(0) = 1 = det(ρr(f |Y ))

and so f |Y is an automorphism. �
We finish this section by showing that endomorphisms with eigenvalues that lie on the 

unit circle but are not roots of unity appear on complex tori of every dimension greater 
than or equal to 3.

Proposition 2.6. For every g ≥ 3, there exists a complex torus of dimension g that has an 
endomorphism with an eigenvalue that lies on the unit circle but is not a root of unity.

Proof. Let E be the unique elliptic curve with an automorphism of order 4. We have that 
via the analytic representation, End(E3) � M3×3(Z[

√
−1]). Now take the endomorphism

f =

⎛
⎜⎝ 0 0 −

√
−1

1 0 −2
√
−1

0 1 −2

⎞
⎟⎠ .

We have that χr
f (t) = t6 + 4t5 + 4t4 + 4t2 + 4t + 1, and by the main result of [7], 

this polynomial has at least two roots on the unit circle. It is easy to check that this 
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polynomial is irreducible and is not cyclotomic, and so f is the kind of endomorphism we 
are looking for. For general g, we can just take E3 ×A where A is a (g− 3)-dimensional 
abelian variety, along with the endomorphism f × id. �

In the following example, we show how many examples can be obtained from an 
algebraic number theory perspective.

Example 2.7. Let δ ∈ C be an algebraic integer that lies on the unit circle but is not 
a root of unity, such that Q(δ) is a totally complex extension of Q of degree 2g. Let 
τ1, . . . , τg : L ↪→ C be the different non-pairwise conjugate embeddings of L into C. It is 
a well-known fact of elementary algebraic number theory that φ = (τ1, . . . , τg) sends the 
ring of algebraic integers OL to a (full rank) lattice ΛL in Cg. Moreover, Z[δ] acts on ΛL

diagonally by

δ : (τ1(x), . . . , τg(x)) �→ (τ1(δx), . . . , τg(δx)).

This action extends to all Cg as a C-linear action, and so multiplication by δ induces 
an endomorphism (and actually automorphism) f of Cg/ΛL. Moreover, the minimal 
polynomial of δ over Q clearly divides the characteristic polynomial of the rational rep-
resentation of f , and so δ appears as an eigenvalue of f .

Remark 2.8. Note that such an example for the second proof exists only for d ≥ 3, since 
for d = 2 the subfield Q(δ + δ) would be a degree 2 totally real extension of Q, thus 
making L a CM field. However, by [5, Theorem 2], CM fields do not contain algebraic 
integers that lie on the unit circle and that are not roots of unity (or to be more precise, 
no image of an embedding of a CM field into C contains an element of this type).

Take, for example,

p(t) :=
2g∑
k=0

tk − 3t− 3t2g−1.

It appears that this polynomial is irreducible, is not cyclotomic and has only complex 
roots for all g (we confirmed this by computer for g ≤ 200). Moreover, by [7], this 
polynomial has at least 2 roots on the unit circle (which are therefore not roots of 
unity). Hence a root of p(t) that lies on the unit circle would give a δ as above.

3. Mahler’s measure and the proof of Theorem 1.1

In this section we will prove that the existence of odd eigenvalues does not give us 
new asymptotic behavior.

If Q(t) = a0
∏d

i=1(t − αi) is a non-zero polynomial in C[t], we define the Mahler 
measure of Q(t) to be
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M(Q) := |a0|
d∏

i=1
max{1, |αi|}

and the logarithmic Mahler measure of Q to be

m(Q) := log(M(Q)).

If a0 = 1, then we define the quantity

Δn(Q) :=
d∏

i=1
(αn

i − 1).

As before, let f be an endomorphism of a complex torus X with eigenvalues λ1, . . . , λg. 
The topological entropy of f is a positive number that measures in a sense the complexity 
of the topological dynamical system (X, f). In our context for complex tori (see [1]), the 
topological entropy of f is simply

h(f) =
g∑

i=1
log max{1, |λi|} = m(χr

f ).

Note moreover that F (n) = Δn(χr
f ) (no absolute value is needed since for every root of 

χr
f (t), its conjugate appears as a root as well). The lemma that follows is fundamental 

to our study of eigenvalues of complex tori, and essentially is a corollary of Baker’s 
Theorem. We will sketch the proof, but for a complete proof we refer to [6, Lemma 1.10]:

Lemma 3.1. Let Q(t) ∈ Q[t] be a polynomial, and assume that none of its roots are roots 
of unity. Then

m(Q) = lim
n→∞

1
n

log |Δn(Q)|.

Sketch of proof. If α is a root of Q(t) that does not have absolute value 1, then it is a 
simple exercise to prove that

1
n

log |1 − αn| → log max{1, |α|}.

Assume then that Q(t) has a root α that is of absolute value 1 and is not a root of unity. 
As a corollary of Baker’s Theorem, by [6, Lemma 1.11], there exist positive constants 
a, b ∈ Z>0 such that

|αn − 1| > a

nb

for all n ≥ 1. Therefore
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log |αn − 1| > log(a) − b log(n).

We will prove that every subsequence of cn := 1
n log |αn − 1| has a subsequence that 

converges to 0. If (cnk
)k∈N is a subsequence, then there exists (nk�

)�∈N ⊆ (nk)k∈N such 
that αnk� converges to some z0 on the unit circle. If z0 
= 1, then clearly cnk�

→ 0. If 
z0 = 1, then for � 
 0,

0 >
1
nk�

log |αnk� − 1| > 1
nk�

(log(a) − b log(nk�
)) → 0. �

Given f as before, factor

χr
f (t) = P (t)Q(t)

where P (t), Q(t) ∈ Z[t] are such that the roots of P (t) are all roots of unity and the 
roots of Q(t) are not. Then

F (n) = Δn(P )Δn(Q),

and so in order to analyze the growth of F (n) we need to understand the behavior of 
Δn(P ) and Δn(Q). However it is clear that Δn(P ) is periodic, and so we will analyze 
Δn(Q). The proof of the first part of Theorem 1.1 follows immediately from the following 
proposition:

Proposition 3.2. The growth of Δn(Q) when n → ∞ is exponential.

Proof. We first note that by Lemma 2.1, Q(t) has at least one root of absolute value 
greater than or equal to 1. Moreover, if every root of Q(t) is of absolute value 1, then 
each root is a root of unity, which is a contradiction. Therefore, Q(t) must have a root 
of absolute value greater than 1. In particular, m(Q) > 0. Now

0 < m(Q) = lim
n→∞

1
n

log |Δn(Q)|

which means that

1 < C := em(Q) = lim
n→∞

|Δn(Q)|1/n.

Therefore, given 0 < ε < C − 1 there exists N such that for all n ≥ N ,

(C − ε)n < |Δn(Q)| < (C + ε)n.

Since C − ε > 1 and C + ε > 1, this implies that the growth is exponential. �
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Example 3.3. It is trivial that behaviors of type (1) and (2) appear for simple abelian 
varieties. Indeed, multiplication by an integer m ∈ Z\{±1} gives exponential behavior 
on any complex torus, and multiplication by −1 gives periodic behavior for any complex 
torus. A less trivial example of behavior (2) can be obtained by giving a simple abelian 
variety with a finite order automorphism.

The proof of Theorem 1.1 will be complete with the following:

Proposition 3.4. Let X be a complex torus and let f ∈ End(X) be an endomorphism that 
presents behavior (3). Then X is not simple.

Proof. As above, write P r
f (t) = P (t)Q(t) where P (t), Q(t) ∈ Z[t] are such that the roots 

of P (t) are all roots of unity and the roots of Q(t) are not. Let Y be the connected 
component of kerQ(f) that contains 0. If X is simple, then Y is either 0 or all X. If 
Y = 0, then Q(f) is an isogeny and therefore Q(ρr(f)) is invertible in End(H1(X, Q)). 
However, P (t) and Q(t) have different irreducible factors, and the irreducible factors of 
the minimal polynomial of ρr(f) must be equal to the irreducible factors of P (t)Q(t). 
Therefore if Q(ρr(f)) is invertible, P (ρr(f)) = 0, a contradiction.

If Y = X, then Q(ρr(f)) = 0 and the same argument applies. Therefore Y is non-
trivial and X is not simple. �
Corollary 3.5. An abelian variety X is simple if and only if for every f ∈ End(X), 
#Fix(fn) is either periodic or has exponential growth.

Proof. We only need to prove that if X is not simple, then there exists an endomorphism 
of X with behavior of type (3). Let Y be a non-trivial abelian subvariety of X, and let 
Z be its complementary abelian subvariety with respect to some polarization (this is 
where we need for X to be an abelian variety, and not just a complex torus). If Y ∩Z is 
contained in the group of m-torsion points of X for some m ≥ 3, then the endomorphism

Y × Z → Y × Z

(y, z) �→ (−y, (m− 1)z)

descends to an endomorphism of X which has behavior (3). �
It is well-known that the endomorphism algebra EndQ(X) of a simple abelian vari-

ety X (along with the Rosati involution), if different from Q, takes one of four explicit 
forms (see [3, Section 5.5]). In [2] each case was analyzed in order to see what behavior 
occurred, and it was concluded that behavior (3) never appears in the simple case.

Let X be a simple abelian variety, and let End(X)×tors be the elements of finite order 
in End(X)×. Our results imply the following:
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Corollary 3.6. Let X be a simple abelian variety. Then for every

f ∈ End(X)\End(X)×tors,

#Fix(fn) grows exponentially.
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