
Computer Physics Communications 229 (2018) 148–161

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

GPU parallel simulation algorithm of Brownian particles with
excluded volume using Delaunay triangulations
Francisco Carter a,*, Nancy Hitschfeld a, Cristóbal A. Navarro b, Rodrigo Soto c

a Department of Computer Science, FCFM, Universidad de Chile, Santiago, Chile
b Institute of Informatics, Universidad Austral de Chile, Valdivia, Chile
c Physics Department, FCFM, Universidad de Chile, Santiago, Chile

a r t i c l e i n f o

Article history:
Received 10 March 2017
Received in revised form 4 February 2018
Accepted 10 April 2018
Available online 17 April 2018

Keywords:
Parallel computing
Particle dynamics
Brownian dynamics
Overlap correction
Delaunay triangulations
CUDA
GPGPU
N-body simulation

a b s t r a c t

A novel parallel simulation algorithm on the GPU, implemented in CUDA and C++, is presented for the
simulation of Brownian particles that display excluded volume repulsion and interact with long and short
range forces. When an explicit Euler–Maruyama integration step is performed to take into account the
pairwise forces and Brownianmotion, particle overlaps can appear. The excluded volume property brings
up the need for correcting these overlaps as they happen, since predicting them is not feasible due to the
randomdisplacement of Brownian particles. The proposed solution handles, at each time step, a Delaunay
triangulation of the particle positions because it allows us to efficiently solve overlaps between particles
by checking just their neighborhood. The algorithm starts by generating a periodic Delaunay triangulation
of the particle initial positions on CPU, but after that the triangulation is always kept on GPU memory.
We used a parallel edge-flip implementation to keep the triangulation updated during each time step,
checking previously that the triangulation was not rendered invalid due to the particle displacements.
We designed and implemented an exact long range force simulation with an all-pairs N-body simulation,
tiling the particle interaction computations based on the warp size of the target device architecture. The
resulting implementation was validated with two models of active colloidal particles, also showing a
speedup of up to two orders of magnitude when compared to a sequential implementation. A short range
forces simulation using Verlet lists for neighborhood handlingwas also developed and validated, showing
similar performance improvements.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A colloidal suspension is a mixture of microscopical insoluble
particles dispersed throughout a continuous fluid, where particle
sizes range from 1 nm to 10 µm. Colloidal suspensions appear
in several natural and artificial substances as the milk, mud, inks,
cosmetics or latex paint, for example. Also, they are used in many
intermediate industrial processes. The interactions between col-
loidal particles of various kinds [1] have effects on the physical
and chemical properties of themixture such as its viscosity or light
dispersion. To study these and other properties it is necessary to
simulate particle systems of growing numbers (N ≥ 104). Also,
colloids are being used as models for active systems, to describe
the motion of self-propelled microorganisms [2–4].

Colloids can bemodeled as hard bodies subject to Brownian dif-
fusivemotion. Colloidal particles can typically interact through the
fluid in what is called hydrodynamic interactions, via electrostatic

* Corresponding author.
E-mail address: francisco.carter@ug.uchile.cl (F. Carter).

forces for charged colloids, which can be screened in an electrolyte,
or with van der Waals forces [1]. In out of equilibrium conditions,
phoretic forces also appear [5]. Except for the hydrodynamic forces,
these interactions can be modeled with good approximation as
pairwise additive forces,which in out of equilibriumconditions can
eventually break the action–reaction symmetry.

The simulation of colloidal dispersions can be divided on two
main problems or phases executed in sequence. The first phase
consists in updating the positions of the particles due to the inter-
particle interactions, according to some defined integration rule.
The second task corresponds to ensure that the bodies do not over-
lap after themovement produced by the previous phase, in order to
respect the excluded volume interaction for all involved particles.
These problems are specific instances of the n-body simulation and
collision detection respectively [6]. In some contexts, the simula-
tion of colloidal particles is referred as Brownian dynamics.

There are two main methods for solving overlaps between
particles: correcting all of them at once after they happen or use an
event-driven approach, integrating the system until the collision
instant, process the involved particles and repeat until the system

https://doi.org/10.1016/j.cpc.2018.04.006
0010-4655/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2018.04.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.04.006&domain=pdf
mailto:francisco.carter@ug.uchile.cl
https://doi.org/10.1016/j.cpc.2018.04.006

F. Carter et al. / Computer Physics Communications 229 (2018) 148–161 149

reaches the target time step. The last method, is particularly useful
when inertia is important and collisions result in rebounds as in
granular materials [7,8]. It requires knowing the positions of the
involved bodies at the time of collision, which becomes difficult
when random Brownian motion is present. For the simulation of
colloidal particles, which lack of inertia and excluded volume acts
like a boundary condition rather than producing collisions, the first
method is more suited.

This work focuses on designing and implementing a novel par-
allel simulation algorithm for 2D colloidal particle interacting with
short and long range pairwise forces, with periodic boundaries,
excluded volume and Brownianmotion. The algorithm implemen-
tation takes advantage of the data-parallel computing capabili-
ties of the GPU architecture, which have proven to be effective
at accelerating the simulation process of several computational
physics problems [9–11]. The interaction forces are allowed to be
non-reciprocal as in the case of active particles [12,13]. The main
contribution of this work consists of a new and efficient method of
resolving particle overlaps by using periodic Delaunay triangula-
tions, which are fully maintained on the graphic card. The starting
positions and triangulation are initialized on the host while all the
simulation code is executed on the device. The random values are
also generated on the graphics card, both on the initialization and
simulation phases. The algorithm uses a GPU edge-flip implemen-
tation to keep the triangulation fulfilling the Delaunay condition
during each time step and to correct inverted triangles in case they
are generateddue to theparticle displacements. For the short range
force simulation, we developed a parallel algorithm that builds
and uses Verlet lists in order to handle the particle neighborhood
in parallel. The algorithm is validated with two models of active
colloidal particles. Upon testing the parallel implementation of
a long range forces simulation, the results show a performance
improvement of up to two orders of magnitude when compared
to the previously existing sequential solution. The algorithm for
the short range force presents a similar performance improvement
regarding the parallel long range implementation.

The paper is organized as follows: Section 2 describes the spe-
cific conditions and properties that the simulated systems must
operate under. Section 3 lists previous related work used to solve
similar problems. Section 4 details the designed solution with its
subcomponents, data structures, and optimizations. The imple-
mentation of the algorithm is described in Section 5. Sections 6
and 7 cover the tests, benchmarks, validation and used method-
ology, presenting the running time and performance results when
compared to the other implemented solutions. Finally, Section 8
rounds up the obtained results.

2. Description of the model

This section contains the description of the involved concepts
and properties of this problem that may differentiate it from
other body simulation problems, such as the excluded volume and
stochastic component of particle movement.

2.1. Preliminaries

Let P = {p1, p2, . . . , pN} be a set ofN bodies on a d-dimensional
space. The n-body simulation is the computation of the interac-
tions over each body in P , where Fi corresponds to the interaction
over pi by effect of Pi = P \ {pi}, the set of all other bodies in the
system. The interaction forces F typically depend on the distance
rij between two bodies as F ∼ r−qij . If q > d the force is said to be
short ranged, while if q ≤ d, it is considered a long range force.

When the forces are long ranged, the set Pi cannot be reduced
in n-body simulations and an exact evaluation of the forces has
a cost O(N2). Approximate solutions for long range interactions

as the Barnes–Hut algorithm reduce the cost to O(N logN) [14].
But for short range forces, the interactions can be truncated and,
therefore, Pi can be reduced to the neighborhood of particles close
to pi. In this case, the evaluation of the forces costs O(N ∗ NNL)
on average, where NNL is the average number of neighbors of a
body [15]. Since the construction of the list is O(N2) for evaluating
all pairwise distances between bodies, it is possible to partition the
simulation domain in cells so that close bodies get binned together
in the same cells. Assignment of bodies to their respective cells
takes O(N) time [16,17].

The simulation domain is a two-dimensional L × L box. To
avoid spurious boundary effects, the box is periodic on the X and Y
directions, meaning that the particles wrap around the box as they
move across its boundaries. For the distance calculations between
particles, including force calculations, we follow the minimum-
image convention, in which a particle interacts with another via its
real position or its image depending on which is the shortest [16].

2.2. Particle interaction without excluded volume

Microscopic particles move in an overdamped regime, with
no inertia. When subject to a force F⃗ , the equation of motion is
simplified to dr⃗/dt = γ F⃗ , where γ is the mobility. Absorbing the
mobility coefficient into the force, which will then have velocity
units, in a time step ∆t , the integration rule for updating the
position r⃗ of a particle from instant t to t +∆t is performed using
the Euler–Maruyama method:

r⃗i(t +∆t) = r⃗i(t)+ F⃗i(t)∆t + ξ⃗
√
D∆t, (1)

where F⃗i is the deterministic velocity obtained from the interac-
tions between the particle i and Pi, D is the diffusion coefficient,
and ξ⃗ is a random vector, where the components follow a normal
distribution of zero mean and unit variance, and corresponds to
a noise added that takes into account the diffusive Brownian mo-
tion [18].

The force model we use for the simulations describes the inter-
action of self-diffusiophoretic active particles [12]. In this model,
particles can be of different type, characterized by two charges, α
andµ; the former is responsible of creating the concentration field,
while the second describes the response of a particle to the field,
leading to the following interaction law:

F⃗i =
∑
k̸=i

µiαk f⃗ (r⃗i − r⃗k), (2)

where f⃗ (r⃗) = r⃗/r3 for the studied long range force, while f⃗ (r⃗) =
r⃗/r7 for the short range interaction. Both long range and short
range forces can coexist in the same simulation. Note that if αi ̸=

µi, the action–reaction symmetry is broken and self-motion is
possible. Charged colloidal particles are included in this model if
αi = µi = qi, equal to the electric charge of the particles.

Since the short range force decays much faster with distance
compared to the long range force, its calculation considers a cutoff
radius from which the value of the force is considered zero, as
shown in Fig. 1. The short range force is then computed as:

F⃗ij(r⃗ij) =
{
µiαk f⃗ (r⃗ij), if rij ≤ rcutoff
0, otherwise

(3)

We used rcutoff = 2.5σ for the simulated short range force in
our experiments, where σ is the particle diameter.

2.3. Excluded volume

The simulated particles are represented as hard disks with a
uniform diameter σ . Although here we consider only monodis-
perse colloids, it is direct to extend the method to polydisperse

150 F. Carter et al. / Computer Physics Communications 229 (2018) 148–161

Fig. 1. Cutoff of the short range forces. For distances larger than rcutoff , the force is
small and therefore is set to zero to speed up calculations. The jump at rcutoff has
been exaggerated for illustration purposes.

systems where radii dot not differ too much. Since the integration
rule (1) ignores the excluded volume condition, it can happen
that the updated positions produce overlaps between two or more
particles, resulting in a physical impossibility. In order to ensure
this property, at the end of each time step, the members of all
overlapping pairs (pi, pj) are moved apart from each other in a way
that corrects the overlaps:

r⃗1′ = r⃗1 − δ∗
(r⃗2 − r⃗1)
|r⃗12|

r⃗2′ = r⃗2 − δ∗
(r⃗1 − r⃗2)
|r⃗12|

, (4)

where r⃗1 and r⃗2 are the original positions and r⃗1′, r⃗2′ the updated
positions. If δ∗ = (σ − | ⃗r12|)/2, the particles would move in
opposite directions from each other along n̂ = (r⃗2 − r⃗1)/|r⃗12|,
leaving the particles in tangential contact. If δ∗ = σ − |r⃗12|,
the movement is proportional to the magnitude of the previously
existing overlap, simulating a bounce effect resulting from the
collision at some instant t∗ ≤ t + ∆t . This last value is the one
used for processing the overlaps in the simulation and guarantees
that no accumulation is produced at the contact distance.

2.4. Stochastic displacements

The particle displacements on (1) have a random noise compo-
nent ξ⃗ , modeled as a random variable with standard normal (or
Gaussian) distribution with zero mean µ̂ and standard deviation
σ̂ =
√
D∆t (note that these σ̂ , µ̂ have differentmeanings from the

hat-less σ , µ used on other sections of this paper). Reducing ∆t ,
the deterministic and stochastic displacements in each time step
are also reduced. However, for a Gaussian distribution, it is always
possible that large values are generated (at the tail of the distri-
bution), leading to excessively large displacements (see Fig. 2). To
avoid these problems, the simulation ignores values larger than 3σ̂ .
This value is derived from the probability of observation X under
this model is P(µ̂ − 3σ̂ ≤ X ≤ µ̂ + 3σ̂) ≈ 0.997, which means
nearly all observed values lie within three standard deviations of
the mean. We considered two methods in order to achieve this, as
shown in Fig. 3:

(a) Reroll the values outside the range [−3σ̂ , 3σ̂].
(b) Truncate the values to the range [−3σ̂ , 3σ̂].

Both methods produce probability distributions different from
each other and from the original; while the first alternative raises
the probability of all values in range, the second one raises the
probability at the edges. Thesemodifications do not generate a no-
ticeable statistical distortion, since the considered range includes
99.7% of the possible values. In our simulations, we opted for the

Fig. 2. Normal distribution with mean µ̂ and standard deviation σ̂ . The probability
to get numbers in the ranges [µ̂− σ̂ , µ̂+ σ̂], [µ̂−2σ̂ , µ̂+2σ̂], and [µ̂−3σ̂ , µ̂+3σ̂]
are 0.683, 0.954, and 0.997, respectively.

second method, which turns out to be faster and better suited
for parallel execution, since it needs to generate a single random
number instead of a variable quantity of random values in the first
method.

3. Related work

For short-range forces calculation, the standard technique is
the use of Verlet lists [16,17,19]. The authors in [20,21] parallelize
the list construction by having a O(N2) list of all possible pairs of
bodies. A predicate checking closeness between the pair members
is evaluated over all elements of the list, which can then be used for
a key–value sort to group all the neighboring pairs consecutively
in the array. A parallel scan operation allows to get the number of
elements thatmust be copied to the neighbor list. The authors then
combine this algorithm with fixed cell partitioning in order to re-
place distance calculations with less-expensive cell neighborhood
checks.

For the parallel n-body simulation, with full calculation of the
O(N2) forces, Nyland et al. [22] developed a grid-style tiling al-
gorithm, reading the particles from the global space and storing
them on GPU shared memory, increasing performance as multi-
ple threads read from that space at a lower latency. Partitioning
the load/store process on groups of p particles allows fitting an
arbitrary input size on the hardware-limited shared memory size.
Burtscher and Pingali [23] parallelized the Barnes–Hut simula-
tion [14], which computes an approximation for the force, rep-
resenting the cell hierarchy kd-tree as multiple arrays for each
node field. It uses atomic lock operations to build the tree in
parallel, throttling the threads that failed to get the lock so they
do not waste bandwidth with unsuccessful lock requests. The tree
is then filled with the center of mass data, starting from lower
nodes in the tree according to the order of allocation for the scan.
Bedorf et al. [11] uses a Z-order curve to sort the particles spatially.
Each thread is assigned to a particle, applying a mask value to it
to determine the octree cell the particle should be assigned. The
linking of the tree is made by assigning a thread to each cell node
and then doing a binary search over the corresponding Z-order key
to find both the parent and child nodes, if appropriate.

To detect and process collisions, Hawick and Playne [24] devel-
oped a multi-GPU algorithm with a tiling scheme similar to the
one used by Nyland et al. [22]. If a pair of particles overlap, the
associated threads store the index of its colliding neighbor and
the time at which the collision occurred. The collisions then are
resolved iteratively starting from the earliest, redoing the previous
process in order to find possible new collisions.

Finally, for overlap correction, Strating [25] describes a brute-
force sequential algorithm that checks all pairs of bodies for pos-
sible overlaps and corrects them following Eq. (4). The algorithm
may need to iterate an unbounded number of times at each time
step because some corrections may generate new overlaps with
neighboring particles.

F. Carter et al. / Computer Physics Communications 229 (2018) 148–161 151

Fig. 3. Distributions that result after discarding values larger than 3σ̂ from the original Gaussian distribution. Two methods are used. Left: Rerolling values out of range.
Right: Truncating the generated values. In this case, Dirac-delta contributions of small amplitude appear at µ̂± 3σ̂ .

4. Algorithm

This section describes the parallel algorithm in detail. It in-
cludes the generation of the initial data, parallel data structures,
overlap detection and correction, and Delaunay condition updates,
including how the above processes are mapped into parallel CUDA
kernels.

4.1. Overview

The simulation consists of two phases: (i) sequential initializa-
tion of the simulation data, followed by a host to device transfer
and (ii) a parallel simulation phase, described in Algorithm 1. The
initial positions are initialized over a triangular mesh with N∗ ≥ N
vertex, where each vertex represents a particle and their types
are assigned randomly according to the specified concentrations. A
sample of N particles is selected from the mesh by Reservoir Sam-
pling [26], resulting in the input particle set,which is homogeneous
in space.

The n-body algorithm for the long range force is based on a grid-
style tiling, which uses the shared memory of the multiprocessor
assigned to each thread block to store the particles in groups. In
this algorithm each thread is mapped to exactly one particle in the
system, and since it is possible to lack action–reaction symmetry
on the force, no redundant computation is done unlike the cases
where f⃗ij = −f⃗ji.

Once the forces are calculated, the particles are advanced one
time step using Eq. (1). As a result, particle overlaps can appear.
When ∆t is small enough, for hard disks of similar or equal
radii, only neighbor particles can overlap. Then, to detect and
correct overlaps, instead of a brute-force algorithm that would
check all O(N2) pairs, only neighbors are checked. The Delaunay
triangulation [27] is particularlywell suited to detect neighbors for
monodisperse or slightly polydisperse disks. In dense systems, the
overlap corrections canbehighly non-local, as the correction of one
pair generate a sequence of other overlaps that need correction.
Therefore, the computational cost of this stage is not clear a priori,
which is the reason why we consider both short and long range
interaction forces.

The triangulation is used as input for overlap correction, with
the edges connecting spatially close particles for distance checking.
The overlaps are solved in pairs of particles (two overlapping parti-
cles are considered a single pair), and each particle can participate
in only one overlap correction. This raises the need of iterating the
previous procedure until there are no overlaps, which is not known
to converge. However, the experiments in Section 6, which rep-
resent extreme testing conditions, show empirical convergence.
Furthermore, similar experiences are reported in [25].

4.2. Data structures

We store the simulation data as a Structure of Arrays (SoA) on
global device memory, using total O(N) space. The particle data
consists of their position (xi, yi) and their charges (αi, µi), stored
as floating point vector types.1 in order to increase bandwidth

1 float2 or double2.

Algorithm 1 Particle system simulation
Input: P = {p1, ..., pN} list of particle positions
Output: P = {p1, ..., pN} list of positions updated to current time
1: procedure RunSimulation(P)
2: Generate starting position of N particles
3: Build the Delaunay triangulation
4: for t ← 0 to Tf do
5: Integrate the N particles on t +∆t ▷ Algorithm 6

repeat
Correct inverted triangles ▷ Algorithm 4
Repair triangulation ▷ Algorithm 3

until inverted triangle count is 0
repeat

Flip non-Delaunay edges ▷ Algorithm 2
Repair triangulation ▷ Algorithm 3

until non-Delaunay edge count is 0
6: repeat
7: Correct overlaps between particles ▷ Algorithm 5
8: until overlap count is 0
9: end for

10: end procedure

utilization [28]. We use an additional buffer array for positions so
that writes are not done at the same addresses for reads, avoiding
a synchronization step. We store the simulation parameters that
remain unchanged during a same instance on a constant device
memory structure [28], such as N,D, ∆t, σ and derived constants
σ 2 and

√
D∆t . Additionally, we store the triangulation data using

the same scheme as [29].

4.3. Delaunay triangulation

The Delaunay triangulation can be built either constructively or
from an existing triangulation. Lawson’s algorithm [30] accepts a
triangulation as input and transforms it into a Delaunay triangu-
lation via a finite sequence of edge-flip operations [27]. Based on
the Lawson algorithm, Navarro et al. [29] developed a parallel im-
plementation for generating quasi-Delaunay triangulations, so it is
possible to keep the triangulation updated without need of further
host-device memory transfers. These are quasi-Delaunay because
exact predicates are too expensive on the GPU; nevertheless, this
approximate construction is sufficient for our problem. The initial
triangulation is built from scratch on host memory once [31], and
is updated on device memory using the Navarro et al. algorithm
during subsequent time steps. As the particle system is simulated
under periodic boundary conditions, the underlying triangulation
must also be periodic [32], which means there are no boundary
edges and the number of edges remains invariant.

The triangulation data structure consists of vertices V , edges E
and triangles T . An edge e = (v1, v2) contains the indices to its
endpoint vertices on array V ; likewise, a triangle t = (v1, v2, v3)
contains the indices of the vertices that compose it. An edge also
knows the two triangles adjacent to it: ta = (ta1, ta2) is one of the
triangles adjacent to an edge ei ∈ E. Its components ta1, ta2 are
indices of the triangles array T . Likewise, tb = (tb1, tb2) represents

152 F. Carter et al. / Computer Physics Communications 229 (2018) 148–161

Algorithm 2 Flip non-Delaunay edges
Input: Triangulation τ = (V , E), array of triangles T , empty array

of triangle rotations R, array of triangle locks L
Output: Delaunay triangulation τ , R with recorded triangle rota-

tions
1: procedure DelaunayEdgeFlip(τ , T , R, L)
2: for all edges ei in the triangulation in parallel (i← 0 to |E|)

do
3: Thread i maps to edge ei
4: ta and tb are adjacent triangles sharing ei
5: if ei is not a Delaunay edge then
6: Try to get locks L[ta] and L[tb]
7: if thread has locks L[ta] and L[tb] then
8: Flip ei

R[ta/3] stores the rotation of ta with tb
R[tb/3] stores the rotation of tb with ta

9: end if
10: end if
11: Synchronize threads
12: end for
13: end procedure

the other triangle neighboring the same edge, and is empty if
the edge belongs to the triangulation boundary for non-periodic
triangulations. When the triangulation is valid, the endpoints of an
edge may be accessed directly by v1 and v2, or indirectly by either
of the pairs (T [ta1], T [ta2]) or (T [tb1], T [tb2]). However, this is not
the case after an edge flip changes the member vertices of ta and
tb, meaning the triangulation is in an invalid state as the triangles
have outdatedmember information. An array R of size equal to the
number of triangles records the triangle rotations associated with
each edge flip, which then are used to restore the triangles whose
vertices are no longer consistent with the updated state of the
triangulation after the flip. Note that for a given ti ∈ T , the index of
its triangle in R can be found as i = ti/3, as a triangle is composed
of three consecutive indices in T . Amore detailed description of the
involved processes and data structures is contained in [29].

If an edge violates the empty circle property after the inte-
gration step, it needs to be flipped because it is not a Delaunay
edge, which renders it invalid for overlap correction. The data
structure allows a single thread to get the two triangles sharing an
edge tested for the Delaunay condition, which allows the parallel
algorithm to use a mapping of one thread per edge in the triangu-
lation. It is not possible to perform a flip in parallel of two edges
sharing a same triangle without compromising the consistency
of other neighboring edges, thus creating a race condition. This
is prevented by implementing an array of locks, in where each
element represents a triangle in the structure and each edge needs
to hold the locks corresponding to its two neighboring triangles
before proceeding with the flip operation. If a thread is not capable
of claiming both locks, itwill skipwork and the functionwill iterate
until there are no more edges to be flipped.

After each edge flip iteration, the edges neighboring the flipped
edge end upwith outdated information, still containing references
to triangles formed by the unflipped, obsolete edges. The triangle
array T and the references to the neighboring triangles for each
edge have redundant information contained in the triangle pairs
(ta1, tb1) and (ta2, tb2),which allows the algorithm to check for these
inconsistencies efficiently. Using this, a second kernel mapping
one thread per edge updates the triangle references of the edges
that were not flipped. These edges may have changed their neigh-
bor triangles, because of the new triangles generated by the flip
edges [29].

Algorithm 3 Repair Delaunay triangulation
Input: Triangle array T , Array of triangle rotations R
Output: R reflecting the state of Delaunay triangulation τ

1: procedure DelaunayRepair(R)
2: for all edges ei in the triangulation in parallel (i← 0 to |E|)

do
Thread i maps to edge ei
ta1 and tb1 are adjacent triangles sharing ei
tra ← R[ta1/3], trb ← R[tb1/3]
if ta1 ̸= tra or tb1 ̸= trb then

Repair ta2 and tb2
end if

3: end for
4: Synchronize threads
5: end procedure

e

(a) Starting situation. (b) Inverted triangle.

Fig. 4. Inverted triangle detection using barycentric coordinates. Particle sizes are
scaled down compared to distances.

4.4. Inverted triangle detection

As the particles move due to integration, the vertices of the
triangulation may end in an invalid state if one or more triangles
end up inverted. The stored data structure would stop being a
triangulation, and as such it cannot be passed as input to the
Navarro et al. algorithm. There are two ways an inverted triangle
can be formed:

1. A pair of particles ends up in opposite directions after inte-
gration, meaning they went right through each other.

2. A particle ends up at the opposite half-plane of an edge in the
triangulation, which can also be interpreted as the particle
crossing or going through that edge.

The first problem is a physical impossibility that violates the
excluded volume property, and as such it must not be allowed. The
criterion r⃗0ij · r⃗

1
ij < 0 allows to check if any such particles existed

during the current time step, where r⃗ij = r⃗j − r⃗i is the distance
vector between the particles, r⃗0ij , r⃗

1
ij are the distances before and

after integration respectively. The test is ran as a CUDAkernel using
a mapping of one thread per triangulation edge, meaning each
thread compares a pair of nearby particles. Once an invalid move-
ment is detected, the last positions are discarded and integration
is repeated with a lower ∆t value than the currently used.

The second problem requires different treatment whether the
particle has crossed a single edge or more of them. The first case
is the most common and is equivalent to a point-in-triangle check,
where a positive result means a neighboring particle crossed over
one of the edges composing the triangle. Fig. 4 shows cases where
the check is both true and false (left and right figures, respectively).

The data structure for edges holds the indices of its endpoints
and the two opposite vertices; for example, in Fig. 4 the edge
e = (e1, e2) also holds the vertices (o1, o2) opposite to it, which
is all the data needed for executing the test. Then, the point-in-
triangle test can be executed in parallel on a per-edge basis, where

F. Carter et al. / Computer Physics Communications 229 (2018) 148–161 153

(a) Starting situation. (b) Particle b moves over the edge bc.

(c) Edge flip between ab and cd. (d) Edge flip between cd and be.

Fig. 5. Inverted triangle correction. The cyan shaded triangle was inverted by the movement of particle b. Particle sizes are scaled down compared to distances.

Algorithm 4 Correct inverted triangles
Input: Invalid triangulation τ = (V , E), array of triangles T , array

of triangle rotations R, array of vertex locks L
Output: Delaunay triangulation τ , R with recorded triangle rota-

tions
1: procedure DelaunayTriangleCorrect(τ , T , R, L)
2: for all edges ei in the triangulation in parallel (i← 0 to |E|)

do
3: Thread i maps to edge ei
4: ta and tb are adjacent triangles sharing ei
5: if ei fails the inverted triangle test then
6: Try to get locks L[ta] and L[tb]
7: if thread has locks L[ta] and L[tb] then
8: Flip ei

R[ta/3] stores the rotation of ta with tb
R[tb/3] stores the rotation of tb with ta

9: end if
10: end if
11: Synchronize threads
12: end for
13: end procedure

each thread is assigned to a single edge in the triangulation. This
matches the mapping used in [29], meaning the inverted triangle
correction algorithm (Algorithm 4) is identical to the edge flipping
algorithm (Algorithm 2), save for the predicate used to determine
which edges have to be flipped.

As the triangle correction procedure involves edge flips, the
triangle data needs to be updated by running Algorithm 3. Finally,
the test for inverted triangle correction is implemented efficiently
using barycentric coordinates d, s, and t on triangles (see Fig. 4). The
data structure for the edges does not ensure that the triangles used
during the test will be built in a consistent ordering (clockwise or
counter-clockwise), so the signs of the cross products between dis-
tance vectors enable performing the check regardless of the actual
ordering of the vectors. This is shown at the flip predicate, which
takes the four vertices associated to an edge to answer if an edge
needs to be flipped. The lines of the final logical operation check if

o1 lies inside triangle (e1, e2, o2), or if o2 lies inside (e1, e2, o1). Also,
for each operation, the predicate also considers the two possible
orderings of the vertices of the respective triangle, which accounts
for the four lines of logical operations in the predicate.

d = r⃗2 × r⃗0 s = r⃗1 × r⃗0 t = r⃗2 × r⃗1 (5)

flip(e1, e2, o1, o2) =

⎧⎪⎨⎪⎩
(d < 0 ∧ s ≤ 0 ∧ t ≤ 0 ∧ s+ t ≥ d)∨
(d > 0 ∧ s ≥ 0 ∧ t ≥ 0 ∧ s+ t ≤ d)∨
(s < 0 ∧ d ≤ 0 ∧−t ≤ 0 ∧ d− t ≥ s)∨
(s > 0 ∧ d ≥ 0 ∧−t ≥ 0 ∧ d− t ≤ s).

(6)

It is worth noting that the movement of point b across edge
(c, d) creates an intersection between it and edge (b, e), as shown in
Fig. 5. The edge flip between (a, b) and (c, d) removes the inverted
triangle, restoring the local triangulation. The triangulation may
still not satisfy the Delaunay property, so additional edge flips may
be needed on further steps. For this stage, we use the Navarro et al.
algorithm [29].

The point-in-triangle equivalence holds true only when a par-
ticle crosses no more than one edge. If not, it is possible to repair
the triangulation via a sequence of edge-flips, where the number of
flips is number of edges crossed by the particle. Fig. 6 shows a situ-
ation where particle f moves across edges (b, e) and (c, e), needing
two consecutive flips in order to restore the local triangulation.
Upon visual inspection, it is clear that the offending edges need to
be flipped because they intersect with edge (a, f), a situation that
invalidates the triangulation.

In order to execute this sequence of flips, an algorithm would
need to identify the sequence of edges that were trespassed by an
offending particle. The currently implemented triangulation data
structure has not enough locality information to create this set
efficiently, so function (6) cannot properly evaluate this case or
similar movements across further distances, even when it should
be possible to do so. The simplest possible test would be checking
if the two opposite vertices to an edge lie at the same side after
integration, but this is not enough to identify the single edge that
needs to be flipped. For Fig. 6b), note that all three edges of the
inverted triangle (b, e, f) satisfy this condition:while c and f are on
the same side of (b, e) (the right answer), so are a and b regarding
(e, f), and a and e regarding (b, f).

154 F. Carter et al. / Computer Physics Communications 229 (2018) 148–161

(a) Starting situation. (b) Particle f after integration.

(c) Edge flip between be and cf. (d) Edge flip between ce and df.

Fig. 6. Inverted triangle correction with two edge flips. Particle sizes are scaled down compared to distances.

However, when a movement of this kind is detected, the algo-
rithm can undo the last integration and redo it with a lower ∆t ,
since small time steps guarantee that this situation is extremely
unlikely to happen. This means the triangulation can be repaired
via edge-flipping if the inverted triangles were produced by small
perturbations, which is the case if small time steps are used when
simulating. Moreover, movements large enough to produce these
kind of problems are undesirable for the accuracy of the simula-
tions for the studied problem, which makes the current solution
sufficient for small time-step simulations. More details on this
issue are included in the discussion section.

4.5. Overlap correction

The overlap correction algorithm (Algorithm 5) uses the topo-
logical information contained in the edges of the Delaunay tri-
angulation, which allows for each particle fast access to the
neighborhood of particles that may be overlapping with it. The
algorithm maps threads to edges in such a way that each thread
handles one edge of the triangulation. A thread gets the positions
of the particles that form the edge, checking if there exists an
overlap between them (rij < σ). If the check is positive, the
algorithm computes the displacements of the involved particles
according to (3). Since the same particle can be part of many edges
at once, the algorithm sums atomically the displacements in a
global array, in order to avoid concurrency hazards. As stated on
the main algorithm, the corrections must be made until there are
no more detected overlaps, which is indicated by the workFlag
global variable that communicates with the host for control flow.
If the flag is false, none of the edges has length less than σ , meaning
there are no more overlaps present in the system.

The distance vector calculation must follow the minimum im-
age convention imposed by the periodical boundary. The origin
is placed at the lower left corner of the square simulation box
with size L, which allows to define the distance formula without
conditional operators that would cause warp divergence during
kernel execution.

Once the algorithm computes the total displacements, it maps
each threadwith a particle in the sameway as described previously
for edges. Each thread then updates the position of its particle,
applying the periodic boundary conditions when necessary. It is
possible that the updated positions may still have some of the

Algorithm 5 Overlap correction loop
Input: Triangulation τ = (V , E).
Output: D displacements over each particle
1: procedure correctOverlaps(V , E,D)
2: for all edges ei in the triangulation in parallel (i← 0 to |E|)

do
3: Thread i maps to edge ei = (v1, v2)
4: v1, v2 ∈ 0 to |V | are indices of the endpoints to ei
5: r⃗1 ← V [v1], r⃗2 ← V [v2]

6: r⃗12 ← distance(r⃗1, r⃗2)
7: if |r⃗12| < σ then
8: workFlag← true
9: δi ← σ − |r⃗12|

10: atomicAdd(D[v1],−δr⃗12)
11: atomicAdd(D[v2], δr⃗12)
12: end if
13: end for
14: end procedure

previous overlaps or even have some newly generated ones. In this
case, the algorithm repeats the previous process until no overlaps
are present.

If a particle overlaps with multiple particles on the same gen-
eral direction and orientation, the net displacement is likely to
be more than needed if there are no overlapping particles in the
opposite general direction (see Fig. 7, in where particle C is over-
lapped twice from the same direction by A and B). Those larger,
more than needed displacements can generate new overlaps if the
neighborhood is dense enough. Eventually, the correction of those
new overlaps can result in an instability, where the displacements
increase with alternating sign and the iterative procedure does
not converge. A solution is truncating the displacement with the
heuristic value σ/4 (half the particle radius), preventing the emer-
gence of the instability.

Finally, it is worth mentioning that the parallel correction algo-
rithm presented here does not correspond to a parallelization of
the Strating’s sequential algorithm [25], which displaces particles
sequentially, while in our case the displacements are added and
performed in parallel. Hence, due to the chaotic dynamics of the
system, the small differences in these algorithms will produce
different outputs for finite ∆t .

F. Carter et al. / Computer Physics Communications 229 (2018) 148–161 155

(a) Starting situation. (b) After correction.

Fig. 7. Possible instability with the parallel overlap correction. The displacement over C caused by the overlaps with A and B can be greater than needed, which can generate
a larger overlap with a neighboring particle D. This problem is prevented by truncating the displacements to a maximum amount.

Algorithm 6 Particle system integration
Input: P0 particles
Output: P1 updated particle positions
1: procedure integrate(P0, P1)
2: for all particles pi in the system in parallel (i ← 0 to |P|)

do
3: Thread imaps to particle pi = (xi, yi, αi, µi)
4: li is the current lane id for thread i
5: v⃗i ← 0 ▷ Particle velocity
6: for j← 0 to |P|; j← j+ warpSize do
7: pj ← P0[j+ li]
8: for k← 0 to warpSize do
9: pk ← shuffle(pj, k)

10: r⃗ik ← distance(pi, pk)
11: v⃗i ← v⃗i − r⃗ik · (αiµk)/r3ik
12: end for
13: Synchronize threads
14: end for
15: end for
16: P1[i] ← b⃗i + v⃗i∆t + ξ⃗i

√
D∆t

17: end procedure

4.6. Long range forces

An improvement to the long range force calculation (Listing 6)
consists on using the intrinsic warp shuffle instruction, which
allows a thread access to the registers of other threads belonging
to the same warp. Each thread is assigned a lane number li that
identifies it from the other warp members, allowing them to read
different particles from global memory. Then, each warp member
takes turns in propagating the data of its corresponding particle
to the other threads, who can read it via the shuffle instruction by
passing as argument the lane number of the thread currently in
turn. Once thewholewarp has shared the data among itsmembers,
each member reads a particle from global memory and repeats
the same process until all particles have been visited. The main
advantage of this optimization is a greater efficiency of memory
accesses, since most of the time the threads are sharing data at
registry level instead of more expensive load requests on global
memory. Also, the concurrent execution of the warp members
makes unnecessary the explicit synchronization at the inner warp
shuffle loop.

The integration and interaction functions calculate Eqs. (1) and
(2) respectively, while the random noise value is generated once
per thread. It is worth noting from Eq. (2) thatµj is not used, which
allows the algorithm to skip the shuffle instruction for fetching
bj.w.

5. Implementation

The parallel algorithms described in the previous section were
implemented on CUDA 7.5 and C++11, using function templates

Table 1
Parameters used for the tests, where each configuration is identified by a digit and
all of them contain two types of particles. φi is the concentration of particles of type
i, αi, µi are the charges used in the force calculation, and ρ is the area fraction of
particles on the simulation box.

to choose between float and double precision formats at com-
pile time. We use the CGAL library [31] to create the 2D peri-
odic Delaunay triangulation, which is then sent to device memory
alongside the particle data before starting the simulation. The ran-
dom numbers used on the parallel implementations when initial-
izing the starting positions and generating noise during integration
are createdwith the XORWOWpseudorandomnumber generation
algorithmof thecuRAND library [33], using thehost anddeviceAPIs
respectively. Each configuration has two particle types, although
the program can support a variable number of particle types for
simulating. For comparison purposes, we also implemented a fully
sequential long range forces algorithmwith the overlap correction
discussed in [25], and a parallel short range forces algorithm using
Verlet lists and a discrete grid over the simulation box. The neigh-
bor list computation during the Verlet lists construction in parallel
is similar to the one described in [34], grouping together all the
particles that belong to the same cells.

When the simulation finishes, the final positions are brought
back to host memory and written to an output file. The visual-
izations in Figs. 8, 13–15 were generated reading the respective
output files.

6. Performance results

Parameters. We generated inputs for 11 different values of N and
5 parameter configurations, as described in Table 1. The starting
positions are generated semi-randomly as described in Section 4,
keeping the same seed value for the random number generator
across all simulation instances.

Each configuration has two types of particles with charges
αi, µi. The fraction of particles of each type is given by φi = Ni/N ,
whereNi is the number of particles of each type andN = N1+N2 is
the total number of particles. The area fraction ρ = N(σ/2)2/L2 is a
measure of the particle density. To study scaling times, we change

156 F. Carter et al. / Computer Physics Communications 229 (2018) 148–161

(a) Configuration 0. (b) Configuration 1.

(c) Configuration 2. (d) Configuration 3.

(e) Configuration 4.

Fig. 8. Particle positions after 104 iterations, with N = 4096 and ∆t = 0.01. Type 1 particles are in green and type 2 in blue. The configurations and particle types for each
system are described in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the length of the simulation box to keep density constant when
increasing N:

L(N) =

√
Nπ (σ/2)2

ρ.
(7)

The values for N start at 210, raising the exponent by 1 until N =
220. Finally,we kept constant the values forσ = 1, ∆t = 0.01,D =
0.01, δ = 1.0 for all configurations and input sizes.

Fig. 8 displays the particle positions after 104 time steps for
each configuration. The election of the parameters help to test
the algorithms under different conditions of fluidity, density and
homogeneity. For c0, there is an asymmetric attraction between
particles of type 1 and 2, resulting in a homogeneousmixture, with
fluid-like motion. In c1, there is a larger concentration of type 2
particles, which self-attract forming a dense cluster, segregated
from type 1 particles, which self-repel forming in a gas-like state.

In configuration c2, equal particles repel, while dissimilar particles
attract, favoring the formation of chain-like structures, where 1
and 2 particles alternate. In c3, the situation is the opposite, where
equal particles attract, while dissimilar particles repel, leading to
the formation of dense segregated clusters. Finally, the interactions
in c4 are analogous to those of c2, in a dilute regime, resulting in
the formation of small clusters.

System. We ran the tests on a machine with a Tesla K40c GPU
and an Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz. The tests for
both the sequential and parallel implementations were made on
the same machine.

Compilation. We compiled the program using nvcc V7.5.17
with compiler options --std=c++11 -gencode arch=
compute_30,code=sm_30. For the sequential code, we used g++
4.9.2with options --std=c++11 -O3.

F. Carter et al. / Computer Physics Communications 229 (2018) 148–161 157

(a) Long range forces. (b) Short range forces.

Fig. 9. Average execution time per time step for simulations using long and short range forces, using the parameters shown in Table 1.

(a) Long range forces. (b) Short range forces.

Fig. 10. Average overlap correction iterations per time step for short and long range forces simulation, using the parameters shown in Table 1.

Metric. We ran simulations for 100 iterations, long enough to en-
sure that particle collisions happen frequently, except for the first
iterations where the bodies are separated from each other. There
we compute the average execution time and iteration averages for
overlap correction cycles and edge flips.

The average execution time per time step, presented in Fig. 9,
shows two interesting features. First, for the case with long range
forces the execution time is O(N2), while for short range forces
it is O(N). Since both include the overlap correction algorithm,
this implies that the execution time for the later is O(N). Second,
except for small systems, in the case of long range forces the
execution time does not depend on the configuration, while for
the short range forces, there is a clear dependence, with increasing
complexity for c4, c1, c2, c0, c3 (the same order of complexity is
observed for long range forces at small N). This result is consistent
with a cost O(N) for the overlap correction, with a prefactor that
may depend on the density and extension of the clusters.

To study the dependence of different configurations on the
complexity of the overlap correction, in Fig. 10 we plot the average
per time step of iterations needed to correct all overlaps. The in-
creasing complexity for c4, c1, c2, c0, c3 is consistent with the pre-
vious results in Fig. 9, because in c3 most of the particles participate
in corrections, while in c2 almost half of the particles are excluded
due to repulsion between same-type particles. However, this does

not explainwhy c4 has the least complexity factor, even thoughhalf
of the particles overlap. This happens because all the overlaps on
c4 are corrected on the first iteration, which is probably due to the
small size of the clusters. The number of iterations follow the same
order in complexity as the execution time. Except for c4 where
clusters are disconnected, the number of iterations grow with N .
This effect is due to the percolation of the large clusters, which
cover the entire box and, therefore, the corrections become non-
local and system size dependent. This growth is neverthelessweak,
following an approximate logarithmic law. It is also noteworthy
that the curves for long range forces are constant on c4, c1 and c0,
slightly grow on c2 and is relatively greater on c3.

We also measured the performance of the Delaunay triangu-
lation update algorithm, reporting the average of edge flip iter-
ations made for both inverted triangle corrections and Lawson’s
algorithm. The curves obtained in Fig. 11 are less regular than the
previous results, but keep the same general tendency. Unlike the
curves for overlap correction, on where c4 shows much smaller
values than the other configurations, here the curve is comparable
to c0 and c1. This happens because the underlying triangulation
for c4 has a great number of slivers, formed by the small particle
density that forms relatively long edges. Then, according to the
inverted triangle condition in Section 4, it is more likely for c4
to produce inverted triangle than the other configuration, whose

158 F. Carter et al. / Computer Physics Communications 229 (2018) 148–161

Fig. 11. Average edge-flip iterations per time step for long range forces integration,
using the simulation parameters shown in Table 1. The short range forces algorithm
is not analyzed, since it does not use Delaunay triangulations.

Fig. 12. Comparison between execution times inmilliseconds for both implementa-
tions of the quadratic n-body algorithm, using configuration c0 described in Table 1.

triangles are more equilateral. The average for edge-flip iterations
for long range forces has linear growth for all configurations, noting
that c2 and c3 are the hardest cases to solve, as is the case in Fig. 10.
Though the number of iterations grows with N , it still remains
negligible regarding the total time of a time step, so it is not a
priority target for optimization.

Finally, in Fig. 12 we compare the n-body algorithms for long
range forces, used on the different implementations without con-
sidering overlap corrections. shuffle is the presented optimiza-
tion usingwarp-shuffle, while sharedMem is the GPU devicemem-
ory algorithm described in Section 4, observing a performance
improvement of up to 2.4 times from optimizing the parallel im-
plementation for all tested values of N . It is also noteworthy that
the optimized n-body algorithm allows simulation ofN = 106 par-
ticles at the same time that the sequential implementation solves
the problem for 105 bodies. For input sizes relevant to this study
(N ≥ 104), the time used by the sequential implementation is two
orders ofmagnitude higher than the parallel solution,which allows
the simulation of bigger particle systems for a longer physical time.

7. Validation

In order to verify that the developed overlap correction algo-
rithm is efficient enough, we made two validation experiments.

First, we test the locality of the correction, that is, how far it
propagates through the system. For configurations c0 and c3 we
print the result after 105 time step iterations, painting with red
the particles that took part in overlaps during the last simulated
time step. Particles that did not take part in overlaps were painted
green, so that every particle has a color. We repeat the process for
decreasing values of ∆t , expecting that the number of overlaps
will decrease as the time step produces smaller movements. The
results in Fig. 13 allow us to verify the complexity factor associated
to each configuration that shows up on the previous performance
curves. Configuration c0 involves much less particles on overlap
corrections than c3 upon lowering the time step. This decrease in
execution time by reducing ∆t does not compensate, however, for
the larger number of steps that are needed to achieve a specified
physical time.

The second validation consists in testing the overlap correction
on another colloidal model. We consider the Active Brownian Par-
ticle (ABP)model [4], where particlesmove in 2Dwith velocities of
fixedmagnitudeV0, with a direction that is specified by the director
angle θi. The integration rule for the positions after an interval ∆t
is:

r⃗i(t +∆t) = r⃗i(t)+ V0(cos θix̂+ sin θiŷ)∆t. (8)

In the same time interval, the angles θi are subjected to diffusive
rotational Brownian motion, of amplitude D, and therefore evolve
as:

θi(t +∆t) = θi(t)+
√
2D∆t ni, (9)

where ni is a random Gaussian variable of zero mean and unit
variance.

We simulate the system with the same parameters used in
Ref. [35], for two different packing fractions, obtaining the same
phenomenology. At large packing fractions, the system evolves to
the formation of a dense percolating dynamic cluster (see Fig. 14).
Reducing the packing fraction, small clusters form, whichmerge in
a slow coarsening process in the course of time as shown in Fig. 15.

8. Discussion

We presented algorithms for simulating colloidal particles sub-
ject to Brownian motion, interacting with short or long range
force interactions, and presenting excluded volume. The overlap
correction algorithm using periodic Delaunay triangulations is a
novel method. The algorithms implemented in CUDA for simu-
lation are fully parallel, transferring data back to host only for
measurements or outputs. The overlap correction algorithm can
be used independently from the forces calculation, allowing to
simulate different colloidal models including charged particles or
self-propelled active systems. The Delaunay triangulation and the
parallel edge-flip algorithmproved to be useful for solving overlaps
efficiently. This opens the possibility for using the Delaunay tri-
angulation for solving related problems in the simulation, such as
short range force calculation or approximated n-body simulations.
The parallel n-body implementation was also successfully adapted
and optimized to the particular conditions of colloidal particles,
which opens up simulations of up to two orders of magnitude the
number of particles used in the previous sequential implementa-
tion.

8.1. Considerations for non-periodical triangulations

While the problem presented on this work considers periodic
boxes, under some conditions it is desirable tomodel non-periodic
systems, hence needing Delaunay triangulations without periodic
boundaries. An advantage of periodic triangulations comes from
the fact that each edge e ∈ E is shared by two triangle faces

F. Carter et al. / Computer Physics Communications 229 (2018) 148–161 159

(a) ∆t = 10−2 . (b) ∆t = 10−3 . (c) ∆t = 10−4 .

(d) ∆t = 10−2 . (e) ∆t = 10−3 . (f) ∆t = 10−4 .

Fig. 13. Overlap correction locality visualizations of configurations c0 and c3. The red particles participated in at least one overlap correction on the same time step, while
green particles did not. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) 2500 iterations. (b) 5000 iterations.

(c) 7500 iterations. (d) 10000 iterations.

Fig. 14. Snapshots of an ABP system N = 104, L = 105.9,D = 0.01 and packing fraction ρ = 0.7.

160 F. Carter et al. / Computer Physics Communications 229 (2018) 148–161

(a) 2500 iterations. (b) 5000 iterations.

(c) 7500 iterations. (d) 10000 iterations.

Fig. 15. Snapshots of an ABP system rescaled to fit the packing fraction ρ = 0.4. The other parameters are the same as presented in Fig. 14.

f ∈ F , which can be expressed with the ratio |E| = 3|F |/2. As the
edge flips preserve the number of triangles, the number of edges
also remains the same, which does not hold true for boundary
edges in non-periodical triangulations (consider the case where an
internal vertexmoves right onto a boundary edge). In this case, the
triangulation cannot be maintained using only edge flips.

This problem is solved by adding extra triangulation vertices
not representing any particle in the system, placing them outside
the corners of the simulation box. The new convex hull becomes
a square with a bigger size than the simulation box, forming an
impassable barrier as the particles cannot physically trespass the
non-periodic simulation boundaries. This allows to preserve the
edge-triangle ratio in the triangulation, which in turn allows the
edge flip algorithm to correctly update the triangulation at each
time step. The new vertices can be simply excluded from physical
operations such as integration and overlap correction, as they do
not represent colloidal particles.

8.2. Computational considerations for a multi-GPU implementation

The extension to a multi-GPU implementation requires several
technical considerations that are not straightforward, therefore
some insights are given to parallelize both particles and triangu-
lation. First of all, the parallel design has to consider a distributed
memory scenariowhere parts of theproblemare assigned todiffer-
ent GPUs, i.e., the particle set with its corresponding triangulation
is not global anymore. In this case it is the data domain the one
that can be partitioned, since the functional domain has time-
dependencies coming from the physical simulation process. An
efficient partition scheme of the data must satisfy the following
three properties if possible; (1) work balance, (2) locality and
(3) minimal communication.

A reasonable approach for balanced work is to subdivide the
set of particles into subsets of similar size and assign one for each
GPU. Locality adds another degree of difficulty as the partition
must be made in such a way that the subsets of particles belong to
continuous two-dimensional regions of the whole domain, from
which Delaunay sub-triangulations can be built. Such partition
may be achieved with the help of a quad-tree or kd-tree. All
integration, corrections andDelaunayupdates that are local to each
GPU would work with a high level of efficiency. Lastly, the inter-
GPU communication coming from the interactions and updates
between particles of different sub-sets and sub-triangulations can
be kept low by using a hierarchical multi-GPU design based on the
organization of nodes and GPUs per node. Lastly, the possibility of
asynchronous computation among GPUs may provide additional
performance benefits as long as the physical model allows it.

8.3. Considerations for the inverted triangle correction

As shown in Section 5, it is possible to correct inverted triangles
by executing a specific sequence of edge flips. However, finding
such method in the context of parallel computing has proven to
be a non-trivial task and an interesting topic for further research.
Finding the inverted triangles is easily done but not sufficient, as a
possible implementation would also need to find the specific edge
among the three that compose each respective triangle. From the
example in Fig. 6, it is possible to notice that the flipped edges come
from the same direction, which hints at a topological nature of the
problem. Then, an efficient solution would likely need additional
topological information in the triangulation data structure, such as
the list of neighbors to each vertex, or the list of vertices that have
it as endpoint.

Finally, it is worth noting that the intermediate flips in the
sequence all produce inverted triangles, which can be corrected by

F. Carter et al. / Computer Physics Communications 229 (2018) 148–161 161

successive executions of the inverted triangle correction algorithm
until all crossed edges are flipped. This means the current imple-
mentation has a natural mechanism that the proposed method
could use to handle multi-edge crossings, that while inefficient
(a single kernel of thousands of threads would be launched to
possibly correct a small percentage of inverted triangles), is a way
to guarantee the correctness of a simulation in scenarios where
multiple edge crossings are more likely to happen.

Acknowledgments

The authors would like to thank the NVIDIA GPU Research
Center of the Department of Computer Science of the Universidad
de Chile for supplying the equipment used for the tests presented
here. This work was partially supported by the FONDECYT projects
No. 1140778 and No. 3160182, and by project No. ENL009/15, VID,
Universidad de Chile.

References

[1] W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions, Cambridge
university press, 1989.

[2] T. Vicsek, A. Zafeiris, Phys. Rep. 517 (3) (2012) 71–140.
[3] M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A.

Simha, Rev. Modern Phys. 85 (3) (2013) 1143.
[4] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys.

J. Spec. Top. 202 (1) (2012) 1–162.
[5] J.L. Anderson, Annu. Rev. Fluid Mech 21 (1) (1989) 61–99.
[6] C.A. Navarro, N. Hitschfeld-Kahler, L. Mateu, Commun. Comput. Phys. 15 (2)

(2014) 285–329.
[7] B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media: Between Fluid and

Solid, Cambridge University Press, 2013.
[8] T. Pöschel, T. Schwager, Computational Granular Dynamics: Models and Algo-

rithms, Springer, 2005.
[9] M. Weigel, J. Comput. Phys. 231 (8) (2012) 3064–3082.

[10] M. Weigel, Comput. Phys. Comm. 182 (9) (2011) 1833–1836.

[11] J. Bédorf, E. Gaburov, S. Portegies Zwart, J. Comput. Phys. 231 (7) (2012) 2825–
2839.

[12] R. Soto, R. Golestanian, Phys. Rev. Lett. 112 (6) (2014) 068301.
[13] R. Soto, R. Golestanian, Phys. Rev. E 91 (5) (2015) 052304.
[14] J. Barnes, P. Hut, Nature 324 (6096) (1986) 446–449.
[15] Z. Yao, J.S. Wang, G.R. Liu, M. Cheng, Comput. Phys. Comm. 161 (1–2) (2004)

27–35.
[16] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford university

press, 1989.
[17] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to

Applications, Vol.1, Academic press, 2001.
[18] M.S. Miguel, R. Toral, in: Instabilities and Nonequilibrium Structures VI, vol. 5,

2000, pp. 35–120.
[19] L. Verlet, Phys. Rev. 159 (1) (1967) 98–103.
[20] T.J. Lipscomb, S.S. Cho, in: ACM Conference on Bioinformatics, Computational

Biology and Biomedicine, 2012. pp. 321–328.
[21] A.J. Proctor, T.J. Lipscomb, A. Zou, J.A. Anderson, S.S. Cho, in: Proceedings of

the 2012ASE International Conference on BioMedical Computing, BioMedCom
2012, 2013. pp. 14–19.

[22] L. Nyland, M. Harris, J. Prins, Simulation 3 (1) (2007) 677–696.
[23] M. Burtscher, K. Pingali, GPU Computing Gems Emerald Edition, 2011, pp. 75–

92.
[24] K.A. Hawick, D.P. Playne, in: Conferences in Research and Practice in Informa-

tion Technology Series, vol. 127, 2012, pp. 13–21.
[25] P. Strating, Phys. Rev. E 59 (2) (1999) 2175–2187.
[26] J.S. Vitter, ACM Trans. Math. Software 11 (1) (1985) 37–57.
[27] M. De Berg, O. Cheong, M. Van Kreveld, M. Overmars, Computational Geome-

try: Algorithms and Applications, Computational Geometry, Vol. 17, 2008.
[28] NVIDIA, Program. Guides (September) (2015) 1–261.
[29] C. Navarro, N. Hitschfeld, E. Scheihing, Commun. Comput. Inf. Sci. 458 (2014)

36–49.
[30] C.L. Lawson, Discrete Math. 3 (4) (1972) 365–372.
[31] The CGAL Project, CGAL User and Reference Manual, fourth ed., CGAL Editorial

Board, 2016.
[32] N. Kruithof, 2D Periodic Triangulations, in: CGAL User and Reference Manual,

fourth ed., CGAL Editorial Board, 2016.
[33] NVIDIA, CURAND Library: Programming Guide, Version 7.0, NVIDIA, 2015.
[34] S. Green, NVIDIA whitepaper 6 (2010) 121–128.
[35] Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108 (23) (2012) 235702.

http://refhub.elsevier.com/S0010-4655(18)30106-1/sb1
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb1
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb1
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb2
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb3
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb3
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb3
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb4
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb4
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb4
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb5
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb6
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb6
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb6
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb7
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb7
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb7
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb8
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb8
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb8
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb9
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb10
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb11
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb11
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb11
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb12
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb13
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb14
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb15
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb15
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb15
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb16
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb16
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb16
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb17
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb17
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb17
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb18
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb18
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb18
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb19
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb22
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb23
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb23
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb23
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb24
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb24
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb24
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb25
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb26
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb27
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb27
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb27
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb28
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb29
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb29
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb29
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb30
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb31
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb31
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb31
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb32
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb32
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb32
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb33
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb34
http://refhub.elsevier.com/S0010-4655(18)30106-1/sb35

	GPU parallel simulation algorithm of Brownian particles with excluded volume using Delaunay triangulations
	Introduction
	Description of the model
	Preliminaries
	Particle interaction without excluded volume
	Excluded volume
	Stochastic displacements

	Related work
	Algorithm
	Overview
	Data structures
	Delaunay triangulation
	Inverted triangle detection
	Overlap correction
	Long range forces

	Implementation
	Performance results
	Validation
	Discussion
	Considerations for non-periodical triangulations
	Computational considerations for a multi-GPU implementation
	Considerations for the inverted triangle correction

	Acknowledgments
	References

