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Experimental investigation into techniques to predict leak

shapes in water distribution systems using vibration

measurements

Joseph D. Butterfield, Gregory Meyers, Viviana Meruane,

Richard P. Collins and Stephen B. M. Beck
ABSTRACT
Water loss from leaking pipes represents a substantial loss of revenue as well as environmental and

public health concerns. Leak location is normally identified by placing sensors either side of the leak

and recording and analysing the leak noise. The leak noise contains information about the leak’s

characteristics, including its shape. Whilst a tool which non-invasively provides information about a

leak’s shape from the leak noise would be useful for water industry practitioners, no tool currently

exists. This study evaluates the effect of various leak shapes on the vibration signal and presents a

unique methodology for predicting the leak shape from the vibration signal. An innovative signal

processing technique which utilises the machine learning method random forest classifiers is used in

combination with a number of signal features in order to develop a leak shape prediction algorithm.

The results demonstrate a robust methodology for predicting leak shape at several leak flow rates

within several backfill types, providing a useful tool for water companies to assess leak repair based

on leak shape.
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INTRODUCTION
Leakage from water distribution systems (WDS) results in a

number of negative consequences, including revenue loss

and environmental and public health concerns. A variety

of leaks exists in pipelines, of different shapes, sizes and

under different backfill types. Water loss represents a signifi-

cant proportion of the distributed water, and therefore a

substantial amount of research is focussed on developing

new techniques in order to reduce water loss and locate

the position of leaks. Traditionally, leakage levels are

reduced through pressure management which is known to
be a useful technique (Van Zyl & Cassa ), whereby

the pressure within a zone (or ‘district metered area’) is opti-

mised to reduce leakage and maintain a certain level of

pressure at customer taps. Pressure management techniques

are based on the orifice equation, whereby leak flow rate can

be quantified by:

q ¼ CdA
ffiffiffiffiffiffiffiffi
2gh

p
(1)

where Cd is the discharge coefficient, g gravity acceleration,

A hole area, h pressure head and q is the leak flow rate.

Numerous studies have investigated the applicability of the

orifice equation to leaks in WDS, resulting in the develop-

ment of the power equation which is the preferred method
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to model this relationship (Cassa & Van Zyl ):

q ¼ chα (2)

where α is the leakage exponent and c a leakage coefficient.

Evidently there is a strong relationship between pressure

and leak area, and the response to pressure is also governed

by the leak shape. However, within plastic pipe, this

relationship becomes more complex due to pipe hysteresis

(Ferrante ; Ferrante et al. ). It was reported by

Almeida et al. () that longitudinal cracks grow with

pressure and time, whilst there is negligible growth of

round holes in viscoelastic pipe. As the use of PE pipes is

now much more common due to the assumed increased

durability (GPSUK ), the phenomena of increased

crack growth could result in increased leak flow rates and

therefore greater water loss in WDS. Accurate quantification

of leak flow rate can help to inform water companies and

prioritise leak repair strategies. In the UK, water companies

work towards a ‘Sustainable Economic Level of Leakage’

(SELL) which requires water companies to repair leaks pro-

viding this is cheaper than not fixing the leak (Ofwat ).

Therefore, knowledge of the leak flow rate is vital in making

operational decisions on whether or not to repair.

Although pressure management provides a useful tech-

nique for reducing leakage levels, the only way to

completely remove water losses occurring due to the pres-

ence of leaks is by locating and repairing leaks. A

common method to do this is through leak noise correlation

(Puust et al. ). As water discharges from a leak, turbu-

lence around the leak hole is created which transmits a

signal in the form of vibration and acoustic waves, along

the pipe wall and through the fluid (Papastefanou ).

This is known as a leaks vibro-acoustic emission (VAE)

signal. Sensors (usually accelerometers or hydrophones)

are placed either side of the leak, recording and analysing

the leak’s VAE. The signals are then cross-correlated in

order to identify the location of the leak. It has been noted

that a number of factors influence a leak signal including

the pipe material, backfill, flow rate and leak shape (Hunaidi

& Chu ; Muggleton & Brennan ; Pal ; Butter-

field et al. a, b).

Leaks commonly studied in pipelines in terms of VAE

signals are normally one of three types: round holes
from https://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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(Wassaf et al. ; Pal ; Butterfield et al. a, b,

a, b); artificial leaks from fire hydrants (Almeida

et al. ; Gao et al. ); and slits (Wassaf et al. ;

Pal ). However, a wider variety of leak shapes can

occur in WDS, including pin holes, joint leaks, circumferen-

tial slits and longitudinal slits (UKWIR ), amongst

others. Although there is a large variety of leak shapes in

pipelines, which is likely to influence the accuracy of leak

noise correlation, there has been limited study investigating

the effects of the leak shape on the VAE signal. Brunner &

Barbezat () simulated round holes of different diameters

and subsequently found differences between the power spec-

tra of different leak sizes. Wassaf et al. () compared the

acoustic emission responses of circular holes and rectangu-

lar slits, showing that the shape influenced the signals

frequency spectrum. The use of standpipes to create artificial

leaks (Hunaidi & Chu ; Ferrante et al. ; Butterfield

et al. a, b) is also common in the literature, but

these are not representative of real leaks in WDS. Pal

() compared the signals of artificial leaks created by

fire hydrants, with joint leaks made by loosening the nuts

on a flange plate and split leaks. They found that the fre-

quency spectrum of a leak was strongly governed by its

shape and size. However, the leak flow rates were not con-

trolled in this study and therefore were different for each

leak shape. As the leak flow rate has been shown to have

such a strong influence on the leak signal (Butterfield

et al. a, b), any assessment of a leak shape requires

a good experimental methodology which controls the leak

flow rate between shapes and thus isolating the effect of

leak shape on the leak signal.

Although the aforementioned studies provide a useful

insight into the effect of leak shapes on the VAE signal,

the leak shapes studied are uncommon on plastic pipes in

real WDS (Water Services Association of Australia )

and therefore have limited representation of real leaks in

real WDS. The majority of leaks in plastic pipes actually

occur due to leaky joints (Water Services Association of

Australia ; Tayefi ), which is typically due to con-

tamination of the joint when the pipe is being installed.

This is especially true with electrofusion and butt fusion

joints (Tayefi ). However, there have been no studies

investigating the VAE signal produced by leaky electrofu-

sion joints in laboratory conditions. This highlights a
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significant research gap as leaks representative of ‘real leaks’

in plastic pipe are seldom compared and there has been little

comparison of leak shapes.

A study by Sun et al. () analysed the effect of varying

leak areas for round holes in gas pipes. Their study went one

step further showing that the area of the hole could be pre-

dicted from the VAE signal in combination with Support

Vector Machine (SVM). Although they only investigated

round holes, the classification of a leak shape is a useful

tool. The ability to distinguish between leak shapes would

allow prioritisation of leak repair by fixing those leaks

more likely to grow. Despite the potential shown in gas

pipes by Sun et al. (), a method to identify leak shapes

with VAE in WDS does not currently exist. In this paper a

novel medium density polyethylene (MDPE) pipe rig was

developed and used to simulate various leak shapes at differ-

ent sizes and flow rates. A comparison of the leak signals is

made and then a methodology for predicting the leak shape

from only the VAE signal in combination with a random

forest machine learning model is presented. This paper

therefore presents a new method for predicting leak shape

in WDS from vibration signals.
LEAK SHAPE PREDICTION

Due to the wide variety of variables influencing a leak

signal, a machine learning approach to leak shape predic-

tion may provide the most robust results. Any model relies

on the derivation of a number of signal features which

describe the leak and therefore enable the prediction of

leak shape. Leak VAE signals have been shown to differ in

both time and frequency domains (Ahadi & Bakhtiar ;

Butterfield et al. a, b) and therefore time-frequency

based features could provide useful features. Feature extrac-

tion methods such as the wavelet transform and empirical

mode decomposition (EMD) provide good time-frequency

resolution. EMD derives the intrinsic mode functions

(IMFs) through the following procedure:

1. Locate signal extrema x0 tð Þ.
2. Calculate upper and low envelope connecting the

minima (cf. minima) and maxima (cf. maxima), emin tð Þ
(cf. emax tð Þð Þ by interpolating (spline interpolation).
ttps://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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3. Calculate mean between lower and upper envelopes,

m tð Þ ¼ (emin tð Þ þ emax tð Þ)=2.
4. Subtract mean obtaining modulated oscillation

[24], d tð Þ ¼ x0 tð Þ �m tð Þ.
5. Apply stopping criteria (Mandic et al. ). If d tð Þ

satisfies stopping criteria, let d tð Þ become IMFm.

6. Subtract the new IMF from signal x0 tð Þð Þ, so

x0 tð Þ :¼ x0 tð Þ � IMFm.

7. Sift until IMF calculated in step 5 becomes a monotonic

function.
Sun et al. () found that taking the root mean square

(RMS) of individual IMFs was a useful feature in classifying

leak diameter, however EMD has also been demonstrated to

be limited by a mode mixing problem whereby the physical

meaning of signal can be lost (Huang et al. ). To over-

come this problem, the ensemble empirical mode

decomposition (EEMD) was developed by Wu & Huang

() whereby Gaussian white noise is added to the

signal. The EEMD is given by:

Ensemble: Sn tð Þf gNn¼1¼ x tð Þ þ wn tð Þf gNn¼1, (3)

where wn tð Þf gNn¼1 N 0, σð Þ indicates Gaussian noise and x tð Þ
represents the leak signal.

The RMS of the raw time-domain signal was described

by Butterfield et al. (a, b) to correlate well with

increasing leak flow rate. Shannon entropy following local

mean decomposition was used by Sheng et al. () to pre-

dict bearing condition and Sun et al. () used Shannon

entropy of individual IMFs in order to predict leak aperture

in gas pipes. The maximum and mean dB of a signal’s power

spectral density was used by Chen et al. () to describe

leak flow rate in gas pipes. Prime & Shevitz () found

that the fundamental frequency varied due to cracks in

beams. Spectral shape methods such as kurtosis, skewness

(Kakur & Jurecka n.d.) and Crest factor (Pachoud et al.

) as well as signal descriptors such as the standard devi-

ation and signal power (Picone ) have been used in

speech and audio recognition/detection type problems and

have shown to be useful features. A similar set of features

was used by Butterfield et al. (a, b) for the quantifi-

cation of leak flow rates in plastic pipe.
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Crucial to the task of predicting leak shape is use of pat-

tern recognition algorithms. Random forest (models) have

been shown encouraging results in identifying patterns in

speech (Su et al. ) and a similar approach may recognise

patterns in leak VAE signals. Random forest (RF) models are

a machine learning method that can be considered as an

ensemble of many decision trees, where each decision tree

is trained to optimally split the data into separate classes

(Breiman ). Each decision tree is provided with a

random subset of the data for training and identifies the

best split between classes based on a small subset of features.

Therefore each individual decision tree alone is a weak

classifier, however good performance, scalability and gener-

alisation can be obtained by combining all decision trees in

the ensemble. Class prediction on unseen test data is then

obtained from a majority vote from the ensemble. A prob-

ability can also be calculated of how certain the model is

in the prediction.
METHODOLOGY

Experimental setup

The state-of-the-art LiVE (leaks in viscoelastics) pipe rig

at the University of Sheffield, UK is used in this study. The

rig consists of a 26 m long MDPE, 63 mm diameter pipe

loop. A schematic of the pipe rig is shown in Figure 1.

Water is supplied to the pipe rig using a 3.5 kW variable

speed pump (Wilo, Burton-on-Trent, UK) from an upstream

reservoir (0.95 m3 by volume). Water passes a magnetic flow

meter (Flow Systems 91DE) recording system flow rate.
Figure 1 | Schematic of the pipe rig (not to scale). Adapted from Butterfield et al. (2016a, 201

from https://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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System pressure is measured with two pressure sensors

(Gems Plainville 2200) located upstream and downstream

of the leak, recording at a sample rate of 2,000 Hz.

A 5.5 m long ‘test section’ is located in the middle of the

pipe rig (indicated between points e and g in Figure 1). This

section of pipe is removable at two flange plates and was

used in order to create leaks of different shapes and sizes.

Round holes measuring various diameters and longitudinal

slits were drilled using standard drill bits. Two leaky electro-

fusion joints of different sizes were created by excavating a

small void from the pipe wall before welding two pipe sec-

tions together. This ensured that a gap measuring the size

of the void was present and water could discharge through

the remaining hole. A schematic is shown in Figure 2 in

order to illustrate this process. The leak shapes were all

sized in order to have equivalent leak areas of ∼10, ∼16,
∼24 and ∼32 mm2. Details of the exact dimensions of the

leak shapes investigated are shown in Table 1 along with

the total number of simulations per leak flow rate. Ranging

in area size, a total of four round holes, four longitudinal

slits and two leaky electrofusion joints were tested. Each

leak shape was drilled into a separate length of straight

pipe (measuring 5.5 m in length) and inserted into the ‘test

section’. Photographs of the leak shapes are shown in

Figure 3.

The leaks discharged into a 0.5 × 0.5 × 0.5 m cubic box.

In order to simulate the influence of backfill type on the

leak signal, the backfill type was changed for each test.

The cubic box was filled with 5–12 mm diameter pea

gravel backfill in accordance with British Standards for

backfill of plastic pipe (BSI ) and therefore represents

a standard external porous media. The alternative backfill
6b).



Table 1 | Leak shape and sizes

Area (mm2)
Flow
(L/min)

# of Slit
samples

# of Round
samples

# of Electro
samples

Total
samplesa

9.62–10 39 20 20 0 40

44 20 20 0 40

47 20 20 0 40

49 20 20 0 40

56 0 0 0 0

15.9–16 39 20 20 20 60

44 20 20 20 60

47 20 20 20 60

49 20 20 20 60

56 20 20 20 60

23.76–24 39 20 20 0 40

44 20 20 0 40

47 20 20 0 40

49 20 20 0 40

56 20 20 0 40

32–33.18 39 20 20 20 60

44 20 20 20 60

47 20 20 20 60

49 20 20 20 60

56 20 20 20 60

Totals 380 380 200 960

aThe number of samples for all leak shapes.

Figure 2 | Demonstration of the void created before welding the electrofusion joint.
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types were geotextile fabric and completely submerging the

pipe in water. The geotextile fabric was also used by Fox

() and represents a constrained external porous media.

Photographs of the external media types are shown in

Figure 4. Five different leak flow rates (approximately 39–

40, 44–45, 47–48, 49–51 and 56–57 L/min were used in

the simulations. These were kept the same across all leak
ttps://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
 CHILE user
shapes and area sizes by controlling system pressure with

the downstream gate valve. Therefore, each leak shape is

assessed on three backfill types at five different leak flow

rates. The pump was run continuously whilst acquiring

data for each simulation, but was turned off when replacing

the test section and varying backfill. The wave speed in the

pipe rig is estimated to be 347 m/s using theoretical calcu-

lations (Almeida et al. ).

Signal processing

The leak’s VAE signal was recorded at 2,500 Hz using an

accelerometer (PCB Piezotronics 393B12, sensitivity 10 V/g)

placed approximately 30 cm away from the leak. This

sensor was powered by a current source power unit

(Dytran Instruments type 4102C). Signals were digitised

using a data acquisition unit (National Instruments cDAQ)

and imported into Matlab. Signals were then pre-processed

with a 4th Order Butterworth bandpass filter set at 10–

1,000 Hz. Each signal sample was measured with the accel-

erometer for 5 seconds.

Due to physical phenomena within the pipe rig, 20

samples from each simulated leak shape, area size and

leak flow rate were taken to examine the variation between

samples. It was found that there was little variation between

samples, suggesting repeatable results. Table 1 shows the

aggregate of the number of samples and simulations carried

out over all the flow rates. The smallest of the area sizes for

each leak shape has fewer simulations as they were too

small for the highest flow rate of 56–57 L/min to be

achieved. Table 2 lists the features extracted from each

leak VAE signal used in this paper.

The RF in this paper consists of 1,000 decision trees and

the entropy splitting criterion was used to measure the qual-

ity of a split. The number of features considered when

looking for the best decision tree split and the maximum

depth of each decision tree was determined by hyperpara-

meter tuning using 5-fold cross-validation on the training

data.

Another five-fold cross-validation was used for splitting

the training and test datasets, also known as nested cross-

validation. In this outer five-fold cross-validation data are

split into five equally sized sections and the model is trained

on four sections (i.e. 80% of the data) and tested on the



Figure 3 | Photographs of leaks: (a) round hole; (b) longitudinal slit; (c) electrofusion joint.

Figure 4 | Photographs of leaks in different backfill: (a) gravel media; (b) submerged; (c) geotextile fabric.

Table 2 | Derived features from the VAE signal

Feature no. Name

1–6 RMS of IMFs1-6

7–12 Shannon entropy of IMFs 1–6

13 Shannon entropy of whole signal

14 RMS of whole signal

15 Mean dB of power spectral density

16 Maximum dB of power spectral density

17 Minimum dB of power spectral density

18 Standard deviation

19 Signal power

20 Fundamental frequency

21 Spectral flux

22 Kurtosis

23 Skewness

24 Crest factor
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remainder section (i.e. 20%). Four additional identical

models are each independently trained using a sum of four

sections worth of data but each model is tested using a
from https://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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t 2018
different remaining final section. This way all the data

were used in training and testing but no individual model

is trained on its testing data. The average test accuracy of

all five model results in an accuracy score that is almost

completely unbiased of how the data were split up into train-

ing and testing sets (Varma & Simon ). A process flow

diagram of the whole experimental, signal processing and

machine learning programme is shown in Figure 5.
RESULTS

Characteristics of leaks with different shapes

VAE signals from the three different leak shapes of equival-

ent leak area are plotted in Figure 6 at ∼40 L/min in the

frequency domain as a representation of the ratio of leak:

no-leak in order to fully demonstrate the contribution of

the leak shape to the leak signal. The contribution of the

leak noise to the received signal is at frequencies >63 Hz

for all leak shapes. The leak signal has a wide spectral



Figure 5 | Process flow diagram.

Figure 6 | Ratio of leak:no-leak for comparing different leak shapes at ∼40 L/min leak

flow rate.
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range which differs depending on leak shape. The highest

amplitude signals appear between 250 and 570 Hz for all

leak shapes. Between frequencies 200 and 300 Hz, leak sig-

nals are very similar for all leak shapes. The round holes

tended to have a slightly wider spectral range compared

to the other two leak shapes. The electrofusion joint had

the lowest amplitude signals, whereas the round holes

were consistently the highest amplitude at frequencies

>250 Hz. The round hole and longitudinal slit observed a

steady decline in amplitude at frequencies >570 Hz,

although this was more rapid for the longitudinal slit. The

electrofusion joint, however, decreases amplitude rapidly

at frequencies >430 Hz. The electrofusion joint and longi-

tudinal slit actually became markedly similar at

frequencies of 560 Hz.
ttps://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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Feature extraction of leak signals

The signal processing method involved the use of 24 differ-

ent features which were extracted from the signal in time

and frequency domains. All leak shapes and sizes were

decomposed via EEMD generating individual IMFs. These

IMFs were transposed in to the frequency domain via the

Fourier transform for comparative purposes and the fre-

quency spectrums of the first six IMFs are presented in

Figure 7.

All IMFs represent signals of low frequency (<800 Hz).

The highest frequency signals within this range are located

within the first IMF (IMF1), but this was distinctly low

amplitude. Frequency decreases as IMF number increases.

The comparison between leak shapes reveals differing fre-

quency distributions across different IMFs depending on

leak shape. IMF1 is mainly dominated by signals from the

round hole which has the widest spectral band of all the

IMFs, the electrofusion joint is largely within IMFs 2, 3

and 4 whilst the longitudinal slit is dominant in IMF5 and

6. The electrofusion joint appears to have power in IMF2,

3 and 4 whilst the longitudinal slit has more power in

IMF5. It is therefore possible that an analysis of the IMFs

could provide information on the leak shape.
Classifying leak shape

Shape classification

Only the 24 features derived from the accelerometer signal

were used as inputs to each model, e.g. the models were



Figure 7 | Comparison of leak shapes at individual IMFs following EEMD. All leak flow rates are set between 47 and 49 L/min and equivalent hole area is 32–33.18 mm2.
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not told the leak shape or the leak flow rate. All leak shapes

were initially divided up by their leak area, creating five sep-

arate datasets: 10, 16, 24 and 33 mm2; and All (all leak areas

used and the model not told the leak area size). As the

leak shape corresponds to a matching leak area of another

shape, the effect of leak shape is isolated. As electrofusion

joint data were only available for datasets of leak areas 16

and 33 mm2, the datasets 10 and 24 mm2 contained fewer

input data.

The performances of the models in classifying leak shape

by individual areas is shown in the form of confusionmatrixes

in Figure 8. The confusion matrices are further divided by

leak area size, the 10 mm2 dataset (Figure 8(a)), 16 mm2 data-

set (Figure 8(b)), 24 mm2 dataset (Figure 8(c)), 33 mm2

dataset (Figure 8(d)) and All leak area sizes (Figure 8(e)).

The model was able to classify leak shape for all areas at

all leak flow rates within all backfill types to >81%. Gener-

ally, it appeared that classification accuracy was notably

higher for round holes compared to the other leak shapes.

In the case of the 24 mm2, the model correctly classified

99% accuracy. An investigation into the ‘All’ dataset
from https://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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(Figure 8(e)) suggests that the round holes also achieved

the highest prediction accuracy at 90%, followed by the elec-

trofusion joint at 81%. The worst performance in this dataset

was the longitudinal slit with a classification accuracy of

75%.

Figure 8(e) demonstrates the average classification accu-

racy for each leak area, each leak shape and each leak flow

rate when using the ‘All’ dataset. Note, this is not the aver-

aged-output of the model in Figure 8, it is the individual

subset results for the model using the ‘All’ dataset. An inves-

tigation into the performance of the model for different leak

areas within the ‘All’ dataset shows increased average classi-

fication accuracy with the 24 mm2 dataset (98%) (Table 3).

However, this may be due to a smaller dataset as electro-

fusion joints are not included. Despite the fact that there

were five different leak flow rates studied, the model was

able to classify the leak shape independent of leak flow

rate at >82% accuracy for all leak shapes at all leak areas.

Figure 9 demonstrates the breakdown of the perform-

ance of the RF model using the ‘All’ dataset for each

leak shape by leak area (Figure 9(a)), leak flow rate



Figure 8 | Model accuracy for each hole shape by leak area.

Table 3 | Classification accuracies of the ‘All’ dataset

Dataset
(mm2)

Training classification
accuracy (%)

Testing classification
accuracy (%)

10 93 87

16 94 90

24 100 98

33 97 90

All 91 82
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(Figure 9(b)) and backfill type (Figure 9(c)). For all leak

areas studied, shape classification accuracy is greatest for

round holes (>90% accuracy) (Figure 9(a)). The model per-

forms well at 10 and 24 mm2 (>85%), but again this may be

due to the fact that these leak areas do not include the elec-

trofusion joint data and therefore there is a smaller dataset.

The breakdown of individual leak flow rates for the ‘All’

dataset shows that there is no observable trend between

leak flow rate and shape prediction accuracy (Figure 9(b)).

However, the round holes tended to have greater
ttps://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
 CHILE user
consistency in prediction accuracy at all flow rates. The elec-

trofusion joint performed comparably to the round hole at

the lower flow rates, whilst accuracy dropped to <68% at

the higher leak flow rates. Generally, prediction of slits

shape was similar at all leak flow rates, between 68% and

78%. The breakdown of the performance of the models

within individual backfill types shows that at the lowest

leak flow rates, classification of leak shape performed

better on the gravel media (Figure 9(c)). However, predic-

tion accuracy was improved under geotextile fabric at the

highest leak flow rates. The submerged backfill tended to

perform worst at the mid to high range leak flow rates.
Feature importance

Figure 10 ranks feature importance of the RF model by rank-

ing the use of the 24 different features input into the model.

This is broken down by the ‘All’ dataset into individual leak

areas and all leak areas. It was found that the most impor-

tant feature to the model was the RMS of IMF1. This was



Figure 9 | Classification accuracy by different subsets: (a) leak shape by shape area; (b) leak shape by leakage rate; (c) leakage rate by media type.

Figure 10 | Feature importance when classifying leak shape.
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true no matter what the leak area and the leaks shape. The

model also found other features useful, however the degree

to which the model found these features important

depended on whether the model was predicting based on

individual leak areas of the ‘All’ dataset.

Effect of different backfill types on classification

accuracy

In real WDS, a variety of backfill types exist and the backfill

has been shown to influence the leak signal. The effect of
from https://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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backfill type on model performance was evaluated by train-

ing and testing on individual backfill types rather than all

backfill types. The results for this are shown in Table 4. Evi-

dently, backfill type has a large impact on the performance

of leak shape prediction. Overall, training on only one

type of backfill and testing the model on a separate backfill

type had a largely negative impact on model performance.

The worst performance appeared to be training the model

on gravel but then testing on submerged data. Therefore,

either backfill type should be known or the model needs

to be trained and tested on more backfill types.



Table 4 | Model accuracy on non-trained media

Trained on Tested on Testing accuracy (%)

Gravel only Geotextile 41

Submerged 21

Geotextile only Gravel 36

Submerged 32

Submerged only Gravel 25

Geotextile 46
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DISCUSSION

Influence of leak shape on leak signal characteristics

Leak shape was found to influence leak signal amplitude and

frequency when the leak flow rate was isolated by controlling

system pressure (Figure 6). Although there has been limited

investigation in the literature, this study is coherent with exist-

ing literature study that the leak shape influences the leak

signal (Pal ). However, across the whole shape spectrum

(Figure 6), it is difficult to separate leak shapes based on fre-

quency alone although this may be possible if just comparing

electrofusion joints and round holes. Differences in the spec-

trum of leak shape were also identified when the signal was

divided into different frequency bands using EEMD, where

the power of the signal in each IMF differed depending on

each leak shape (Figure 7). This appears to suggest that leak sig-

nals differ in both time and frequency domains, also shown by

previous authors (Ahadi & Bakhtiar ; Butterfield et al.
Figure 11 | RMS of IMF1 for all leak shapes of different leak areas at 44.7 L/min. RH¼ round

ttps://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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a, b). Differing signal spectra due to changes in leak

shape may be due to varying jet angles (Ferrante et al. )

as the leak discharges the hole. In turn, this will likely create

varying turbulence regimes around the leak hole specific for

that leak shape, where the signal is created (Papastefanou

). Therefore, this study has experimentally determined

that leak shape is another key variable in determining leakage

behaviour in addition to leak flow rate and leak area (Cassa&

VanZyl ; Ferrante ) and these results can better inform

the design of leak noise correlators.
Model performance and feature importance

The model presented herein demonstrates that it is possible

to predict leak shape to high classification accuracy at all the

leak flow rates and within all the backfill types studied

(>80%). The use of this model provides practitioners with

a tool to predict leak shape. Due to the fact that certain

leak shapes have time- and pressure-dependent growth

(Ferrante ; Fox ), knowledge of the leak shape will

allow for prioritisation of leak repair. Moreover, the tool

provides an opportunity for water companies to collect more

data about the shapes of leaks, and thus this information can

be linked to further parameters (such as pipe failure mode).

The RMSof IMF1was found to be themost important fea-

ture when classifying leak shape (Figure 10). The Fourier

spectrum of this feature demonstrates that the amplitude

within this IMF is dependent on leak shape (Figure 7). Further

investigation into this feature is demonstrated in Figure 11,
hole; LS¼ longitudinal slit; and EJ¼ electrofusion joint.



Figure 12 | Leak spectrum of a 12 × 2 mm longitudinal slit at 47 L/min leak flow rate

under three media types compared to a no-leak scenario.
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showing the individual RMS of IMF1 for each leak shape and

leak area. For all leak shapes, it appears generally possible to

distinguish between all shapes (of all leak area) individually

using this feature. However, in some cases it becomes difficult

due to overlap between leak shapes, especially for the electro-

fusion joint at 32 mm2. This highlights the necessity for a

machine learning based tool to provide the best separation

between signal features. Leak signal RMS has previously

been shown to correlate well with an increase leak flow rate

(Chen et al. ; Kaewwaewnoi et al. ; Papastefanou

) and therefore describes information about the leak

signal. It was also found by Sun et al. () that the RMS of

each IMF could provide a good descriptor of the leak area. It

is therefore logical that the IMF most related to the leak

signal and the RMS of this would provide a good method of

classifying the leak signal. However, this feature represents

the higher frequency content (350–650 Hz) andwhenmeasur-

ing further away from the leak these frequency bands would

normally be attenuated due to the pipe acting like a low pass

filter (de Almeida et al. ). Therefore, this feature will

become less effective when moving sensors further away

from the leak.

Influence of backfill type

The effect of pipe backfill was explored by altering the par-

ameters of the model, training and test on differing

combinations of backfill type (Table 4). Backfill type was

found to strongly influence the accuracy of the RF model,

most likely because the leak signal is strongly influenced

by the surrounding backfill (Muggleton & Brennan ;

Butterfield et al. a, b). Further investigation into

the effect of backfill on the leak signal is shown in Figure 12

when the leak flow rate is consistent between backfill types

(∼47 L/min is shown). Similar frequency components

between ∼250 and 570 Hz were found for all backfill

types. After 570 Hz, there was a drop in signal amplitude

for all backfill types and this is in agreement with the results

shown in Figure 12. However, the gravel backfill remained

at a higher amplitude at frequencies >570 Hz, followed by

geotextile and then submerged backfill types. Both the

gravel and geotextile fabric are similar in that they are a con-

strained media type (Fox ), which will have an impact

on the water jet as it leaves the leak hole. However, as is
from https://iwaponline.com/jh/article-pdf/20/4/815/244914/jh0200815.pdf
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not possible to achieve good prediction results when train-

ing on gravel but testing on geotextile fabric, these results

suggest that these media types play a differing role in impact-

ing the generation or transmission of the leak noise. The

submerged pipe had the lowest amplitude signals (Figure 12)

but only at frequencies >570 Hz. A similar effect of backfill

was noted by Muggleton & Brennan () who found smal-

ler signal attenuation in the submerged pipe compared to a

pipe in soil, however there was a disappearance of the leak

signal in the submerged pipe. These results demonstrate that

the model is more robust when trained on more backfill

types, and future work should include a wider range of con-

ditions such as soil saturation, fluidisation and further types

which have all been shown to influence leak-media hydrau-

lics (van Zyl et al. ; Fox ). Moreover, the impact of

these aforementioned variables is still a major research

gap in terms of leak VAE signals.

Study limitations

Whilst the tool provided herein provides a tool for water com-

panies to prioritise leak repair, it is not without limitations. A

key weakness of this study is the fact that leak shape predic-

tion was undertaken approximately close to the leak. In

real-world conditions, it is unlikely that any measurements

would take place within such close proximity to the leak. In

fact, accelerometers/hydrophones are normally placed on

or in nearby fittings, such as valves and hydrants at some
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distance away. The value of the model has not been tested at

further distances, and this remains a key element of future

work. However, a number of developments exist in other

areas such as pipeline robotics (Chatzigeorgiou et al. ),

which will allow a sensor to travel to a position next to a

leak and the systemdeveloped here can possibly be integrated

into these tools. This study also only addresses a limited

number of leak shapes, flow rates, sizes and shapes under

only three different backfill types. In real systems, the variety

of leaks under varying conditions is huge, and therefore the

validity of this system to real world leaks is not known. How-

ever, the study has shown that it is possible to differentiate

between the leak shapes studied, independent of leak flow

rate, leak area and backfill type.
CONCLUSIONS

The research presented herein has demonstrated that the

leak’s VAE signal contains enough information within it to

predict the leak shape. A unique experimental investigation

used high quality experimental data from various leak

shapes of several leak areas at five leak flow rates. Leak

shape was found to be a significant factor influencing the

leak signal. Twenty-four features were derived from the

leak signal and in combination with a random forest

model it was possible to predict leak shape to a relatively

high accuracy. It was also found that the external backfill

had a strong impact on the classification accuracy, but train-

ing on all backfill types provided a more robust tool with

higher classification accuracy. While the variety of leaks

under varying conditions is huge, and therefore the validity

of this system to real world leaks is not known, the proposed

technique provided in this paper demonstrates that it is poss-

ible to predict the leak shape independent of leak area, leak

flow rate and backfill type. Therefore, this investigative study

is the first to demonstrate that there is enough information

within a leak signal in order to predict the leak shape.
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