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Redox reactions are ubiquitous in biological processes. Enzymes involved in redox
metabolism often use cofactors in order to facilitate electron-transfer reactions.
Common redox cofactors include micronutrients such as vitamins and metals. By far,
while iron is the main metal cofactor, riboflavin is the most important organic cofactor.
Notably, the metabolism of iron and riboflavin seem to be intrinsically related across life
kingdoms. In bacteria, iron availability influences expression of riboflavin biosynthetic
genes. There is documented evidence for riboflavin involvement in surpassing iron-
restrictive conditions in some species. This is probably achieved through increase in iron
bioavailability by reduction of extracellular iron, improvement of iron uptake pathways
and boosting hemolytic activity. In some cases, riboflavin may also work as replacement
of iron as enzyme cofactor. In addition, riboflavin is involved in dissimilatory iron reduction
during extracellular respiration by some species. The main direct metabolic relationships
between riboflavin and iron in bacterial physiology are reviewed here.
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INTRODUCTION

Redox reactions involving electron transfers among molecules are highly required in central
biological processes, from CO2 fixation and oxidative phosphorylation to protein folding and cell
signaling. Many of the enzymes that catalyze biological electron transfer utilize diverse vitamins
and/or metals as cofactors. Riboflavin and iron are the main cofactors, each one assisting about
17% of the cofactor-requiring enzymes (Monteverde et al., 2017). Within a cell, iron can function
in a number of different forms, such as being part of heme, forming iron-sulfur clusters or as
mono- and di-nuclear non-heme iron in some proteins (Caza and Kronstad, 2013). Riboflavin,
also known as vitamin B2, is usually transformed into riboflavin-5′-phosphate (FMN) and flavin
adenine dinucleotide (FAD), which are the main flavin cofactors.

Iron is mainly present in two oxidation states, ferrous (Fe2+) and ferric (Fe3+). The
interconversion between these two states enables single electron transfers (Sheldon et al., 2016).
With a few exceptions, iron is essential for bacteria. Although iron is one of the most abundant
elements on earth, due to the oxidative atmosphere and basic pH the insoluble Fe3+ form is
predominant, mainly forming iron oxides. Moreover, under physiological conditions, the iron
concentration is some orders of magnitude lower than that needed to support bacterial growth
(Sheldon et al., 2016). Thus, iron bioavailability is usually limiting. Hence, bacteria have evolved
an assortment of strategies to solubilize and internalize iron and to compete for iron against
a host or other microorganisms. These include the expression of siderophores, which are low
molecular mass, iron-chelating molecules. Siderophores have a high affinity for ferric ion and
can internalize environmental iron or hijack Fe3+ bound to mammalian host proteins such as
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transferrin. Bacteria may also obtain iron through direct
interaction of bacterial receptors with host transferrin, heme and
hemoproteins and subsequent internalization and dissociation
of their coordinated iron molecules. Many species can also
produce iron reductases, which may be secreted or associated
with the membrane, in order to reduce Fe3+ into its more soluble
Fe2+ form and uptake it through ferrous ion transport systems
(Sheldon et al., 2016; Butt and Thomas, 2017; Pi and Helmann,
2017a; Pokorzynski et al., 2017; Sánchez et al., 2017).

A riboflavin molecule consists of an isoalloxazine ring with
a substitution at N10 with a ribityl chain. The main biological
active forms of riboflavin are its phosphorylated derivative FMN
and the adenylated derivative of this, FAD. Flavins may alternate
between three redox forms: oxidized, one-electron reduced or
two-electron reduced. This allows them to mediate both one-
electron and two-electron transfer reactions as well as electron
bifurcation processes, which consists in the branching of two
electrons from a single donor into two different single-electron
acceptors (Abbas and Sibirny, 2011; Haase et al., 2014; Beztsinna
et al., 2016; Buckel and Thauer, 2018). Most bacteria synthesize
riboflavin through the riboflavin biosynthetic pathway (RBP),
which starts from guanosine-5′-triphosphate and ribulose-5-
phosphate. The RBP has been extensively reviewed in previous
works (Fischer and Bacher, 2005, 2011; Haase et al., 2014).
The bacterial enzymes forming the RBP are encoded by the
ribABDEH genes and may be localized within a single operon
or scattered in the genome (Vitreschak et al., 2002; García-
Angulo, 2017). Also, transport systems from different families
may internalize riboflavin in bacteria (Vitreschak et al., 2002;
Vogl et al., 2007; Rodionov et al., 2009; Hemberger et al., 2011;
Deka et al., 2013; García Angulo et al., 2013; Sun et al., 2013;
Gutiérrez-Preciado et al., 2015; Jaehme and Slotboom, 2015;
Rodionova et al., 2015; García-Angulo, 2017). Thus, bacteria
may obtain the riboflavin by de novo biosynthesis and/or by
internalization from the environment.

Both iron and riboflavin may have been present in early earth
and be recruited by primordial biological systems to perform
biotic functions early in evolution. In the highly reductive
atmosphere of the Archean, when life began, the abundant Fe2+

could have been the main electron donor for photosynthesis.
Both cofactors participate in ancient biochemical pathways such
as CO2 fixation, where the electron bifurcation capacity of
flavins is required. (Sousa et al., 2013, 2018; Knoll et al., 2016;
Monteverde et al., 2017; Sánchez et al., 2017). Thus, organisms
across kingdoms have conserved a dependence on riboflavin
and iron to perform basic processes, mainly based on their
redox properties. Moreover, it has been documented a metabolic
crosstalk between riboflavin and iron in a number of organisms
including animals, plants, yeast, and bacteria (Welkie and Miller,
1960; Buzina et al., 1979; Charoenlarp et al., 1980; Powers et al.,
1988; Crossley et al., 2007; Chazarreta-Cifre et al., 2011; Hsu et al.,
2011; Zhang Y. et al., 2015; Chen et al., 2017; Xin et al., 2017). In
many cases, these two cofactors are involved in similar processes,
sometimes with enzymes requiring both cofactors at the same
time. It has also been documented the replacement of enzymes on
the basis of cofactor availability and the development of an iron-
riboflavin regulatory feedback. This review focuses on current

research on the main metabolic interrelationships between iron
and riboflavin in bacteria.

IRON-RIBOFLAVIN REGULATORY
INTERPLAY IN BACTERIA

In bacteria, Fur is the main regulator of iron homeostasis. Fur
is a transcriptional regulator that upon interaction with iron,
binds to consensus DNA operators named Fur boxes close to
promoters of target genes to regulate transcription. Bacterial
Fur regulons include many iron uptake genes. Under low iron,
iron dissociates from Fur leaving it unable to interact with Fur
boxes and thus allowing the expression of such iron acquisition
genes. When intracellular iron levels are sufficient, Fur binds iron
and represses the genes coding for transport of iron, avoiding
toxicity caused by a potential surplus. Excess iron is detrimental
because of generation of reactive oxygen species through the
Fenton reaction. Indirectly, Fur-iron may also positively regulate
the expression of iron-storage and iron-utilizing proteins as well
as iron efflux systems (Massé et al., 2007; Pi et al., 2016; Pi and
Helmann, 2017a). Although initially recognized as a repressor,
the Fur-iron complex is also able to directly activate genes
not related to iron metabolism (Craig et al., 2011). Moreover,
evidence for iron-independent Fur regulation has been obtained
in some bacteria (Carpenter et al., 2009; Agriesti et al., 2014).

In many cases, the expression of RBP and riboflavin uptake
genes are under the control of the FMN riboswitch (Vitreschak
et al., 2002; Pedrolli et al., 2012; García Angulo et al., 2013;
Pedrolli and Mack, 2014; Gutiérrez-Preciado et al., 2015; Pedrolli
D.B. et al., 2015; Pedrolli D. et al., 2015; García-Angulo,
2017). This is a sequence conserved in the leader regions of
messenger RNA which switches between alternative secondary
structures depending on FMN binding status. Under high flavins
concentrations, FMN binds the aptamer sequence within the
riboswitch, promoting the formation of a secondary structure
that blocks transcription, translation or both, of downstream
coding sequences. When intracellular flavins concentration drop,
FMN dissociates from the riboswitch, which allows genetic
expression. This way, the expression of both riboflavin supply
pathways, biosynthesis and uptake, is keenly linked to the
intracellular flavin requirements. Nonetheless, not all bacterial
RBP and riboflavin transport genes conserve a FMN riboswitch
and likely, other species-specific regulatory traits may exist
(García-Angulo, 2017).

It has long been known that iron physiological status
influences riboflavin biosynthesis. A study on a Clostridium
acetobutylicum strain used for large scale production of
riboflavin, showed that the presence of iron decreased riboflavin
yield, while the iron chelator bipyridine highly increased the
production of the vitamin (Hickey, 1945). More recently, it was
shown in this species that both iron starvation and Fur deletion
highly increase the transcription of the RBP operon (Vasileva
et al., 2012). Iron starvation induces the secretion of riboflavin in
Methylocystis sp., a methanotrophic bacterium (Balasubramanian
et al., 2010). Also, both iron deprivement and elimination of Fur
increase the riboflavin uptake activity in Campylobacter jejuni
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(Crossley et al., 2007). Riboflavin production and transcription
of the bifunctional ribBA gene are highly increased in low iron
in Helicobacter pylori. In this species, a putative Fur box is
found in ribBA (Worst et al., 1998). Transcriptomics approaches
have also confirmed that iron and Fur negatively regulate
the expression of the RBP operon in C. acetobutylicum and
Caulobacter crescentus (da Silva Neto et al., 2013; Nguyen et al.,
2016). In the latter, a putative Fur box is upstream of the RBP
operon. In C. acetobutylicum, iron uptake genes and RBP genes
are co-regulated by the carbon starvation regulator CsrA (Tan
et al., 2015). These studies suggest that in some bacteria, a fall
in iron supply may induce an increase in riboflavin biosynthesis
and/or uptake. Nonetheless, iron effects over the expression of
riboflavin provision genes are not always equal. Vibrio vulnificus
is a bacterium causing wound infections and septicemia whose
pathogenic potential is tightly related to the iron availability. In
this pathogen, iron restriction was found to upregulate ribH, but
to downregulate ribE, ribA, and ribB homologs, while elimination
of Fur downregulated ribA and ribB but overexpressed ribE and
ribH (Pajuelo et al., 2016). In V. cholerae, a phylogenetically
related pathogen, the riboflavin regulon presents a high degree
of overlap with the iron regulon (Mey et al., 2005; Sepúlveda-
Cisternas et al., 2018). In this bacterium, iron regulates the
expression of the RBP genes and of the ribN riboflavin importer
in a riboflavin-dependent way. This regulation is gene-specific,
as while iron repressed ribB in the presence of extracellular
riboflavin, it induced the expression of ribD and ribN in
the absence of exogenous riboflavin. Reciprocally, riboflavin
repressed the expression of the tonB1 gene encoding a protein
involved in the function of various iron uptake systems, but
only under iron-replete conditions (Sepúlveda-Cisternas et al.,
2018). Thus, iron levels may regulate the status of riboflavin
provision in a gene-specific fashion and reciprocally, riboflavin
exerts regulatory effects over iron acquisition genes.

RIBOFLAVIN PRODUCTION AS A MEAN
TO INCREASE IRON AVAILABILITY

Increases in riboflavin biosynthesis may help overcome iron
restrictive conditions. H. pylori ribBA bifunctional gene has
been shown to restore growth in low iron to a siderophore-
deficient Escherichia coli strain. The mechanism through which
riboflavin biosynthesis relieves iron stress in this species has
not been fully elucidated. It was shown that the riboflavin
production mediated by H. pylori RibBA increases extracellular
iron reduction (Worst et al., 1998). Conversion of exogenous
Fe3+ into Fe2+ increases iron solubility and may make it
suitable for uptake through ferrous ion internalization systems.
In C. jejuni, riboflavin biosynthesis also increases reduction of
extracellular Fe3+ through an unknown mechanism (Crossley
et al., 2007) (Figure 1A). In addition, both the bifunctional
RibBA and a monofunctional RibA protein of H. pylori are
able to confer hemolysis properties to E. coli. (Bereswill et al.,
1998; Worst et al., 1998). Likely, hemolysis itself may be a
strategy to increase iron bioavailability by releasing the iron
contained in erythrocytes in an infection setting. Nonetheless,

the mechanism through which riboflavin biosynthesis boosts
hemolysis is not clear. Riboflavin has been shown to direct light-
mediated rat and human erythrocytes hemolysis but only in the
presence of other factors such as serum, oxygen, copper, azide,
and aminophylline (Suzuki et al., 1982; Ali and Naseem, 2002;
Ali et al., 2005). Moreover, riboflavin alone does not directly
promote hemolysis in agar plates were H. pylori experiments
were conducted (Bereswill et al., 1998). Thus, hemolysis may
be given by augmented riboflavin biosynthesis intermediaries or
increases in the expression and/or activity of a hemolysis factor
(Figure 1A).

Riboflavin is also required as cofactor for enzymes involved
in iron acquisition. In Staphylococcus aureus, FAD functions
as cofactor for IruO, a reductase of IsdG and IsdI, which are
enzymes required for the degradation of heme. IruO is also
directly required for iron reduction during its release from
siderophores (Kobylarz et al., 2017). In addition, two more other
bacterial reductases required for iron release from siderophores
depend upon FAD as cofactor, YqjH in E. coli (Bamford et al.,
2008) and FscN in Thermobifida fusca (Li et al., 2015). Moreover,
dihydroflavin produced by the NADH:flavin oxidoreductase
FerA acts as the electron donor during reductive release of
Fe3+ bound to siderophore in Paracoccus denitrificans. This
process is necessary for this species to grow under iron limitation
(Mazoch et al., 2004; Sedlácek et al., 2009; Sedláček et al., 2016).
Thus, by increasing riboflavin production, bacteria may increase
the activity of some components of iron acquisition pathways
(Figure 1A).

RIBOFLAVIN TO REPLACE IRON AS
COFACTOR

In many bacteria, iron restriction highly induces the expression
of iron uptake systems and also triggers a response known
as iron-sparing. This consists in the downregulation of
non-essential iron-dependent enzymes in order to prioritize
iron for fundamental functions. For example, iron-starving
Mycobacterium tuberculosis and Bacillus subtilis downregulate
aconitase and succinate dehydrogenase (Janagama et al., 2010;
Smaldone et al., 2012), while Agrobacterium tumefaciens
downregulates a system encoding a multicopper oxidase,
cytochrome c556 and a NAD-dependent formate dehydrogenase
complex, all of them needing iron as cofactor (Heindl et al.,
2015). Strikingly, the iron-sparing response may also include
the replacement of iron-cofactored enzymes by flavin-dependent
enzymes. Early work showed that ferredoxin and flavodoxin
alternate to catalyze a dehydration reaction depending on the
iron status during fermentation of glutamate in Acidaminococcus
fermentans (Thamer et al., 2003). In C. acetobutylicum, the
expression of ferredoxin is decreased and a flavodoxin encoded
by fdl1 is highly induced under iron deficiency (Vasileva et al.,
2012; Nguyen et al., 2016). The fdl1 gene conserves a Fur box.
In these conditions the riboflavin biosynthetic operon is also
induced. In B. subtilis, the Fur-regulated flavodoxins YkuNOP
are expressed under iron deprivement also likely to replace
ferredoxin (Baichoo et al., 2002). Notably, in this species the
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FIGURE 1 | Main direct metabolic relationships among riboflavin and iron in bacteria. (A) Riboflavin may help overcome iron restriction status in three principal ways.
Riboflavin increases extracellular iron reduction by a yet uncharacterized mechanism. This increases iron solubility and could make it prone to uptake by ferrous iron
uptake systems. Increases in bacterial riboflavin expression produce a higher degree of hemolysis, which can increase hemoglobin availability. Also, flavins function
as cofactor for enzymes involved in heme utilization and iron release from siderophores. (B) Under iron restriction, enzymes using iron as redox cofactor to catalyze a
reaction may be replaced by enzymes that use flavins as cofactor. (C) Riboflavin increases dissimilatory ferric reduction. In S. oneidensis, extracellular ferric iron is
used as final electron acceptor to complete the electron transport chain from quinol. This is achieved by a set of cytochromes and an outer membrane protein with
the aid of flavins. In other bacteria, the mechanism has not been characterized.

YkuN and YkuP flavodoxins, which use FMN as prosthetic
group, have been experimentally shown to substitute ferredoxin
to transfer electrons for desaturation of membrane phospholipids
(Chazarreta-Cifre et al., 2011) (Figure 1B). A recent study
demonstrated that the B. subtilis Fur regulon is induced in three
sequential steps, the first one including the expression of iron-
uptake systems, while expression of flavodoxins putatively to
replace ferredoxin is included in the second wave. The third
stage is comprised by the downregulation of superfluous iron-
dependent enzymes (Pi and Helmann, 2017b).

ROLE OF RIBOFLAVIN IN
DISSIMILATORY IRON REDUCTION

Under anoxic conditions, some bacteria are able to reduce
extracellular insoluble metals as final electron acceptors to
complete the respiratory chain. In this case, riboflavin may
also work as intermediary for dissimilatory iron reduction and
this phenomenon has been extensively studied in Shewanella
oneidensis, a facultative anaerobe model for electrochemically
active microbes (Kouzuma et al., 2018). S. oneidensis is able to
reduce environmental Fe3+ and other metal oxides due to a
system to transport electrons from the inner membrane across
the periplasm and outer membrane to the metal surface. This

pathway, known as the metal reducing (Mtr) pathway, consists
of the multiheme domain c type cytrochromes CymA, MtrA,
MtrC, and OmcA and the outer membrane porin MtrB. The
inner-membrane CymA is proposed to transfer electrons from
quinol to MtrA, which is localized in the outer membrane and
interacting with MtrB. The MtrAB complex conveys the electrons
to the MtrC and OmcA c cytrochromes in the bacterial surface
which in turn act as reductases to transfer electrons to oxides
(Brutinel and Gralnick, 2012; Shi et al., 2012; Breuer et al., 2015).
Although MtrC and OmcA are able to directly transfer electrons
to Fe3+ oxides, secreted riboflavin and FMN highly enhance this
activity (Marsili et al., 2008; von Canstein et al., 2008). In this
species, flavins are secreted through the Bfe exporter and flavin-
mediated reduction accounts for most (up to 75%) of extracellular
electron transfer to insoluble acceptors (Kotloski and Gralnick,
2013). Although originally a mechanism where freely diffusing
flavins working as electron shuttles for Fe3+ reduction was
proposed, later research documented that flavins directly interact
with MtrC and OmcA to transfer electrons (Okamoto et al., 2013,
2014; Hong and Pachter, 2016; Babanova et al., 2017). While
riboflavin binds OmcA (Hong and Pachter, 2016), FMN binds
MtrC to form a highly reductive flavocytochrome (Edwards et al.,
2015) (Figure 1C). The presence of Fe3+ in the medium increases
the secretion of riboflavin and FMN (Wu et al., 2013).

Frontiers in Microbiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 1478

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01478 July 3, 2018 Time: 18:27 # 5

Sepúlveda Cisternas et al. Iron and Riboflavin in Bacteria

Extracellular riboflavin as intermediary for dissimilatory
iron reduction has been reported in other bacteria species.
Geothrix fermentans, an isolate of an aquifer contaminated
with petroleum, uses secreted riboflavin to shuttle electrons
toward environmental Fe3+ (Mehta-Kolte and Bond, 2012).
Carbohydrate oxidation is increased when using riboflavin as
electron transfer mediator in the presence of crystalline Fe(OH)3
as extracellular electron sink in Clostridium beijerinckii and
an uncharacterized novel rhizobial solventogenic bacterium
(Popovic et al., 2017). Also, riboflavin is likely involved in
the reduction of extracellular Fe3+-citrate and solid phase
hydrous ferric oxide by Desulfotomaculum reducens, a sulfate-
reducing Gram-positive species (Dalla Vecchia et al., 2014) and in
anaerobic Fe3+ reduction by an alkaliphilic bacterial consortium
(Fuller et al., 2014). Nonetheless, the mechanism through which
these species achieve extracellular iron reduction with the aid of
flavins has not been investigated (Figure 1C). Notably, flavins
may also mediate electron transfer in the opposite direction.
Riboflavin and FAD increase extracellular iron oxidation of
stainless steel, a process that provides the electrons required for
intracellular sulfur reduction in Desulfovibrio vulgaris (Zhang P.
et al., 2015).

CONCLUDING REMARKS

Many bacteria have developed a regulatory interplay on which
iron levels influence the expression of riboflavin biosynthesis
and uptake systems. This is probably the reflex of the fact that
there is a number of physiological traits on which riboflavin
and iron metabolism directly relate. First, riboflavin could help
surpass eventual iron restriction conditions. Many species have
complex life cycles, being able to colonize different niches with

fluctuating physical conditions and nutrient availability. Thus,
iron availability may change drastically. Riboflavin increases
iron bioavailability and improves iron acquisition pathways.
The ability of riboflavin to transfer electrons is used by
some bacteria to reduce extracellular ferric oxides making it
more suitable for uptake. Flavins are used as cofactor for
some proteins directly involved in iron uptake, so increasing
riboflavin concentration may also make the process more
active. Also, some species may economize iron by replacing
iron-requiring enzymes with enzymes that perform similar
functions but use riboflavin as cofactor instead. This comprises
a remarkable outline of the common redox properties of
both molecules. Second, riboflavin participates in dissimilatory
iron reduction. Riboflavin-mediated extracellular iron reduction
is employed by some species to accomplish the respiratory
electron chain. Altogether, this high degree of metabolic cross-
talk may be reminiscent of an early recruitment of both
molecules to perform related functions during biological redox
reactions.
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