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A B S T R A C T

Through same-different judgements, we can discriminate an immense variety of stimuli and consequently, they
are critical in our everyday interaction with the environment. The quality of the judgements depends on fa-
miliarity with stimuli. A way to improve the discrimination is through learning, but to this day, we lack direct
evidence of how learning shapes the same-different judgments with complex stimuli. We studied unsupervised
visual discrimination learning in 42 participants, as they performed same-different judgments with two types of
unfamiliar complex stimuli in the absence of labeling or individuation. Across nine daily training sessions with
equiprobable same and different stimuli pairs, participants increased the sensitivity and the criterion by reducing
the errors with both same and different pairs. With practice, there was a superior performance for different pairs
and a bias for different response. To evaluate the process underlying this bias, we manipulated the proportion of
same and different pairs, which resulted in an additional proportion-induced bias, suggesting that the bias
observed with equal proportions was a stimulus processing bias. Overall, these results suggest that unsupervised
discrimination learning occurs through changes in the stimulus processing that increase the sensory evidence
and/or the precision of the working memory. Finally, the acquired discrimination ability was fully transferred to
novel exemplars of the practiced stimuli category, in agreement with the acquisition of a category specific
perceptual expertise.

1. Introduction

Humans can discriminate an immense variety of sensory stimuli,
ranging from highly dissimilar to highly similar exemplars. Although
stimuli that differ in simple features are easily distinguishable, the
discrimination of highly similar stimuli can be difficult or even un-
attainable. Visual sensory judgements are improved with practice up to
“expert” levels of discrimination. Indeed, trained observers are able to
rapidly distinguish subtle differences between stimuli or identify spe-
cific patterns, for example X-Rays (Boutis, Pecaric, Seeto, & Pusic,
2010) or cytopathological images (Crowley, Naus, Stewart, & Friedman,
2003; Evered, Walker, Watt, & Perham, 2013). In natural conditions,
humans learn to discriminate complex visual stimuli through their daily
experience in an unsupervised manner (Saffran & Kirkham, 2017).
However, the majority of studies that have characterized visual
learning in supervised conditions included explicit labels or/and

feedback on performance, but see Tian and Grill-Spector (2015).
Sensory judgements are typically evaluated by the Signal Detection

Theory (SDT) that distinguishes two independent components: the
sensitivity and the criterion (Green & Swets, 1966). Usually, the effects
of experimental manipulations on the sensitivity are attributed to
changes in the perceptual process and the effect on the criterion to a
decisional process. Interestingly, the manipulation of perceptual aspects
of the task can have an effect on the criterion in certain conditions
(Witt, Taylor, Sugovic, & Wixted, 2015). Thus, the effects on the per-
ceptual processing are not exclusively associated to changes in the
sensitivity as previously assumed. Alternatively, the performance has
been evaluated in a model-free mode by the percentage of correct re-
sponses and the response preference that provides a measure of the
predisposition to select among the response options.

The better performance of experts on discrimination of complex
stimuli, measured as increases in sensitivity or accuracy, is attributed to
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the acquisition of a domain specific ability. A characteristic of the ex-
pert’s discrimination is its generalization to the whole stimuli category.
Moreover, the acquisition of this ability requires stimulus naming or
categorization at the subordinate level and feedback on performance
(Scott, Tanaka, Sheinberg, & Curran, 2006; Scott, Tanaka, Sheinberg, &
Curran, 2008; Tanaka, Curran, & Sheinberg, 2005; Wong, Palmeri, &
Gauthier, 2009), which together is defined as supervised experience or
training. Alternatively, expert discrimination was obtained by the un-
supervised identity training without labeling (Bukach, Kinka, &
Gauthier, 2012) and a greater sensitivity and reduced incorrect re-
sponses to same and different pairs were obtained by unsupervised
exposure to 3D stimuli (Tian & Grill-Spector, 2015). These results
suggest that unsupervised training with stimulus individuation can lead
to expert’s levels of performance. In contrast, the unsupervised ex-
posure to car models did not improve the sensitivity (Scott et al., 2008)
suggesting that mere exposure is not sufficient for visual discrimination
learning.

In addition to the sensitivity effects, visual learning may shift the
criterion, typically associated to a decisional instead of perceptual
process. A few studies have described contrasting results of criterion
shifts. For example, unsupervised learning in a contrast discrimination
and detection task with Gabor patches resulted in a shift in the criterion
towards liberal values (Wenger, Copeland, Bittner, & Thomas, 2008;
Wenger & Rasche, 2006). On the contrary, supervised discrimination
learning in an auditory detection task reduced a bias in the criterion
found in naïve observers (Jones, Moore, Shub, & Amitay, 2015). These
contradictory results on criterion shifts may arise from differences in
the feedback provided. Although feedback appears to be necessary for
learning in perceptual tasks (Herzog & Fahle, 1997), it can also modify
the sensitivity when provided block-wise (Aberg & Herzog, 2012) or
induce a change in the criterion if observers receive a biased feedback
(Herzog & Fahle, 1999). Accordingly, the feedback on performance may
induce a response bias. Alternatively, a perceptual bias may induce
criterion shifts (Witt et al., 2015). In consequence, the improvements in
sensory judgements may involve shifts in the criterion with the con-
sequent bias, in addition to improvements in sensitivity.

Same-different judgments are fundamental processes that take place
during perceptual discrimination (Farell, 1985; Melara, 1992) and do
not require a predefined feature or criterion for discrimination. The use
of same-different tasks to compare the discrimination of naïve and ex-
pert observers has shown a reliably greater sensitivity for human
movements in expert dancers (Calvo-Merino, Ehrenberg, Leung, &
Haggard, 2010) and for cars models in car experts (Bukach, Phillips, &
Gauthier, 2010). Supervised visual training with stimulus naming and
categorization at the subordinate level, resulted in an improvement of
sensitivity for birds (Tanaka et al., 2005) and car models (Scott et al.,
2008). Because these studies were concerned with the modifications in
the accuracy and sensitivity of experts, there were no explicit measures
of accuracy for same and different trials individually or response bias.
However, early perceptual studies with familiar stimuli showed a bias,
characterized by more error with same pairs, in pitch discrimination
(Coltheart & Curthoys, 1968) and simultaneous or sequential letter
discrimination (Proctor & Rao, 1983). In contrast, no bias in the ac-
curacy for same and different pairs was observed in the discrimination
of sequential multi-letter pairs (Proctor, Rao, & Hurst, 1984). Addi-
tional studies of same-different judgements showed no bias on the ac-
curacy for same and different pairs with familiar stimuli (flowers or
human faces, accuracy>0.9, Gauthier, Behrmann, & Tarr, 2004).
However, a bias based on more errors on same pairs, was obtained with
unfamiliar pseudo-Chinese characters (Chen, Bukach, & Wong, 2013).
Moreover, supervised exposure to random viewpoints of unfamiliar 3D
images resulted in a lower reduction of errors on “same” stimuli pairs
(Tian & Grill-Spector, 2015), in agreement with a differential effect of
training for same and different pairs. Overall, these results suggest that
different levels of familiarity with the stimuli may modulate the relative
errors on same and different pairs, and thus the occurrence of a bias in

the response.
In conclusion, there is not enough evidence to demonstrate that

visual discrimination learning equivalent to “expert” levels can be at-
tained through same-different judgements of stimuli pairs in an un-
supervised manner and how increasing grades of familiarity with sti-
mulus patterns shape the performance for same and different pairs and
the contribution of a bias in the criterion. To address this issue, we used
a modified version of the same-different task where participants learned
to discriminate complex visual stimuli in unsupervised conditions. In
this study, we characterized the visual discrimination learning of two
unfamiliar complex multi-exemplar stimuli categories. We evaluated if
perceptual training was accompanied by shifts in criterion and response
preference in addition to the increase in sensitivity and accuracy for
same-different stimuli pairs while the observers acquired familiarity
with the stimuli category. Moreover, we evaluated if perceptual
training led to a generalization of the acquired discrimination abilities
in agreement with perceptual expertise acquisition. In the first experi-
ment, participants performed the same-different judgments with an
equal number of same and different pairs, kanji or checkerboards,
across nine daily sessions. We evaluated the effect of practice on per-
formance and the specificity of learning for the stimuli category. In the
second experiment, we manipulated the proportions of same and dif-
ferent pairs to induce a response bias (Leite & Ratcliff, 2011; Mulder,
Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012) and test if this
manipulation reduced or eliminated the bias in the response observed
in the first experiment. Two different groups of participants learned to
discriminate unequal and inverse proportions of same and different
checkerboard pairs of which they had no prior information, across five
daily sessions. In the present work, we were interested in the processes
of unsupervised experience-dependent visual discrimination learning.
Thus, participants performed the task without either trial- or block-
based feedback on performance.

2. General methods

2.1. Participants

Adults with normal or corrected to normal vision were recruited
through advertisements placed around the Medical School at the
University of Chile and received a monetary compensation (approxi-
mately 40 US$ dollars). Experiments were conducted in accordance
with Protocol #031-2008 approved by the Ethical Committee of the
Medical School in the University of Chile in agreement with the Code of
Ethics of the World Medical Association (Declaration of Helsinki). All
participants gave written informed consent.

2.2. Stimuli

Two types of black and white stimuli, kanji characters (45 ex-
emplars, 17 and 18 strokes), and scrambled checkerboard-like patterns
(45 exemplars, 10×10 squares) were selected. Both stimuli were
previously used in visual studies (Chen et al., 2013; Civile et al., 2014).
Participants had no prior experience with either stimuli as specified in
the recruiting interview. Checkerboards were designed with similar
average luminance to kanji stimuli, calculated as the mean number of
white pixels in the image. Stimuli (1× 1 visual degrees) were presented
over a black background at the center of the screen, at a distance of
57 cm from the eyes in a CTR 19 in. monitor (Samsung SyncMaster
1100P Plus, refresh rate of 120 Hz), with the software Experiment
Builder (v1.6.121, SR Research Ltd., Mississauga, Canada) or in a LCD
20.1 in. monitor (Dell E207WFPc, refresh rate 60 Hz), with NI Lab-
windows CVI (Austin, Texas, USA).
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3. Experiment 1. Unsupervised same-different practice with an
equal proportions of stimuli is sufficient for discrimination
learning and generalization

The aim of this experiment was to examine the properties of un-
supervised visual discrimination learning based on the sensory experi-
ence acquired through practice of same-different judgements.
Specifically, we evaluated (1) if the improvements in sensitivity and
accuracy were accompanied by changes in the criterion and the emer-
gence of a bias in the response, respectively and (2) the generalization
of the acquired discrimination ability to new exemplars of the practiced
category.

3.1. Method

Twenty right handed college students and professors ages 18–48
participated in this experiment. All participants received detailed in-
formation about the experimental sequence before the behavioral ses-
sions. Participants were seated in a dimly lit room with reduced noise.
Each trial (Fig. 1A) began with a fixation dot (1.5–2.0 s), followed by a
sequence of two stimuli, S1 and S2 (0.1 s each) and a perceptual mask
M (0.1 s) between S1 and S2. The perceptual mask, consisting of a
single image of the same category and different from S1 and S2, was
introduced to reduce the priming effect of S1 on S2 for same pairs. S1
and M were followed by a white noise image (0.5 s) and S2 was

followed by a white noise image (5 s). The fixation dot was present (1 s)
between the noise image and the succeeding M or S2 images to facil-
itate the eye fixation at the center of the screen. Participants began each
trial by pressing a button to reduce the effect of variable attention on
the first stimulus. After the presentation of S2, the participants had to
respond, by pressing one of two buttons, if the stimuli pair was per-
ceived as same or different. Half of the participants responded same with
the right hand and the other half with the left hand. They were in-
structed to respond as accurately and as fast as possible. To avoid the
discrimination based on the retinal matching of S1 and S2 on same pairs
and to promote object discrimination, S2 was rotated 90 degrees
clockwise or counter-clockwise in a pseudo-random manner (Tian &
Grill-Spector, 2015). Participants were informed that the third stimulus
was rotated.

Because the aim of this work was to characterize discrimination
learning in unsupervised conditions, participants performed the task in
the absence of stimulus labeling and without feedback on performance
to minimize the effect of feedback on sensitivity (Aberg & Herzog,
2012) and criterion (Herzog & Fahle, 1999). Participants were assigned
to two groups in a random manner, one group (n= 10) performed the
task with kanji and a different group (n=10) with checkerboard sti-
muli (Fig. 1B). The experiment consisted of nine daily practice sessions
and an evaluation session, each lasting on average 1 h. For the practice
sessions, we built ten stimuli lists with the same set of 30 exemplars,
consisting of a random sequence of same and different pairs with an
equal frequency of each exemplar as S1, S2 and M. The list was ran-
domly selected for each participant. In the evaluation session, partici-
pants performed the task with a set of 15 exemplars of those used in the
practice sessions (practice set) and the 15 remaining exemplars not
presented during the practice sessions (novel set). Each pair of stimuli
was from either the practiced set or the novel set. We built ten eva-
luation lists with a randomized order of pairs with an equal frequency
of the exemplars as S1, S2 and M. All sessions had an equal number of
same and different pairs (50/50). Participants were informed of the
equal proportions the first session. Sessions consisted of 480 trials, di-
vided into 8 blocks of 60 trials. Between blocks, participants were free
to rest and received food and/or beverages upon request.

Because there was no feedback on performance, we anticipated a
high variability in their attention and motivation. To promote moti-
vation and attention, each participant’s performance was evaluated at
the end of each session and if there was no increase in performance in
two successive sessions, participants were told verbally that they should
make an effort to be more attentive and perform better during the task.
No quantitative information regarding correct or incorrect responses
was provided. Moreover, all participants were encouraged to perform
well at the beginning of each session.

3.2. Data processing

The performance in a same-different task relies on stimuli dis-
crimination and response selection. In the signal detection theory, sti-
muli discrimination is quantified as the discrimination index (d prime,
d') or sensitivity, and the response selection is quantified by the cri-
terion. The sensitivity is an indicator of the participant’s ability to de-
tect a signal in the presence of noise (Green & Swets, 1966) and with
the proper corrections; it can be applied to same-different tasks (Sorkin,
1962). With several exemplars, an observer assumes the differencing
strategy, where the decision is based on the absolute difference between
stimuli (Macmillan & Creelman, 2005). Thus, sensitivity and criterion
were calculated with the differencing model, using the Palamedes
toolbox (www.palamedestoolbox.org, PAL_SDT_1AFCsame-
Diff_DiffMod_PHFtoDP routine, Kingdom & Prins, 2010) written in
Matlab (The MathWorks Inc.) according to the following equations:

Fig. 1. Trial sequence and experimental protocols. A. An example of a same-
different trial consisting of the sequence of images: stimulus 1 (S1), perceptual
mask (M) and stimulus 2 (S2), all followed by a noise image and five exemplars
of the two stimuli categories. B. Protocol for the practice sessions (1–9) and the
evaluation session (10) of experiment 1. C. Protocol applied in the practice
sessions (1–5) of experiment 2. http://dx.doi.org/10.17504/protocols.io.
h5ub86w.
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where pH is the probability of a different response to different pairs, pFA
is the probability of a different response to same pairs, ϕ the cumulative
probability, d′ the sensitivity and k the criterion. The criterion (k) va-
lues correspond to the minimum difference between stimuli being
classified as different. The k values are all positive and a k equal to 1
corresponds to a pFA of 0.5. A scheme of the differencing model before
and after discrimination learning is shown in Fig. 2, where d′ and k are
shown only on the right side for simplicity. Here, the probability den-
sity function for the pairs formed by exemplars 1 (E1) and 2 (E2) are
shown as a function of the difference between first and second stimulus
(S1, S2). Same pairs (E1E1, E2E2) are represented by the middle dis-
tribution and the different pairs by the left (E1E2) and right (E2E1)
distributions. Before discrimination learning (Fig. 2A), there is overlap
of the same and different distributions. The vertical grey line represents
the criterion (k), whereas the pHits are represented by the area to the
right of k in the right hand distribution and pFA are represented by the
area to the right of k in the central distribution.

After discrimination learning (Fig. 2B), there is a reduction in the
overlap of the central and right- and left-hand distributions corre-
sponding to an increase in d’. The criterion may: 1) decrease (left grey
arrow) corresponding to a reduction in the minimum difference be-
tween the stimuli classified as different, 2) increase (right grey arrow),
corresponding to an increase in the minimum difference between the
stimuli classified as different, or 3) remain unchanged (vertical gray
line). The observers in a same-different task may adopt the strategy of a
constant criterion (k) with a shift in the likelihood ratio of same and
different events as accuracy increases, of a constant likelihood ratio
with a shift of the criterion values as the accuracy increases or an ad-
justment of both criterion and likelihood.

The accuracy for same (or different) pairs estimated as the percen-
tage of correct same (or different) responses was calculated as the
number of correct same (or different) responses divided by the total
number of same (or different) pairs multiplied by 100. We calculated
the response preference as the number of same responses divided by the
total responses multiplied by 2. This index is 1.0 when the participant's
responses are equally distributed between the same and different op-
tions, greater than 1.0 when same responses exceed different responses
and smaller than 1.0 when different responses exceed same responses.

3.3. Statistical analysis

Statistical differences in sensitivity, criterion and response pre-
ference were evaluated with a repeated measures two factor analysis of
variance (ANOVA) with between-subject factors of stimulus type (two
levels, kanji and checkerboards) and within-subject factor of practice
(nine levels, sessions 1 through 9. The differences in the percentage of
correct responses were evaluated with a repeated measures two factor
ANOVA with within-subject factors of stimuli pair (two levels, same and
different) and practice (nine levels, sessions 1 through 9). F values were
corrected using Greenhouse-Geisser for significant Mauchly s sphericity
test values. Significance values were set at p < 0.05. Differences be-
tween means were assessed with t-tests and differences between a mean
and a fixed value were evaluated by a one-sample t-test. T-tests alpha
values were adjusted for multiple comparisons using Bonferroni cor-
rection (0.05/number of comparisons). All tests were done using SPSS
(16.0. Chicago, SPSS Inc.). Unless otherwise specified, all values are
reported as mean+ SD from the mean. Data from each participant are
shown in the supplementary figures (SF).

3.4. Results

We evaluated the accuracy and bias during unsupervised dis-
crimination learning and its generalization to the practiced stimuli ca-
tegory. Participants learned to discriminate an equal proportion of
same-different (50/50) pairs. First, we show a shift in criterion in ad-
dition to the improvements in sensitivity across sessions, along with the
increase in accuracy and the emergence of a bias in the response. Lastly,
we show that the unsupervised learning generalizes to novel exemplars
of the practiced category.

3.4.1. Sensitivity
Each participant’s sensitivity was estimated for each session. There

was an approximately two fold increase in d′ between the first and ninth
sessions for both kanji and checkerboard stimuli (Fig. 3A and supple-
mentary Figs. 1 and 2, SF1, SF2). With kanji stimuli, d’ increased from
M=1.84, SD=0.72 in the first to M=3.68, SD=0.87 in the ninth
session. Likewise, with checkerboard stimuli d’ increased from
M=1.67, SD=0.83 in the first to M=3.83, SD=0.50 in the ninth
session.

A 2×9 repeated measures ANOVA (stimulus type x session
number) showed an unsurprising main effect of session number (F
(3.79, 68.3)= 64.2, p < .001, ηp2= 0.781), no effect of stimulus type
(F (1, 18)= 0.012, p= .915, ηp2= 0.001) and no interaction between
stimulus type and session number (F (3.794, 68.293)= 0.859,
p= .488, ηp2= 0.046). Pairwise comparisons between the first and
succeeding sessions confirmed an increase in d’ beginning with the
second session (p < .001, alpha= 0.05/8 test= 0.00625). In sum-
mary, unsupervised practice of same-different judgements with un-
familiar stimuli resulted in a similar improvement in visual dis-
crimination with both kanji and checkerboards categories

3.4.2. Criterion
The criterion (k) exhibits about a 35% increase with practice for

both kanji and checkerboard stimuli (Fig. 3B and SF3 and SF4). With
kanji, k increased from M=1.37, SD=0.29 in the first to M=1.87,

Fig. 2. Scheme of the decision space for the differencing model before and after
discrimination learning. A. Scheme of the probability density distributions as a
function of the difference between stimuli 1 and 2 (S1-S2) before discrimination
learning. Same pairs of exemplars 1 and 2 (E1E1, E2E2) are represented by the
middle distribution and of different pairs (E1E2, E2E1) by the right- and left-
hand side distributions. D prime (d’) and the criterion (k vertical gray line) are
shown in the x axis. B. Scheme of the probability density distributions after
discrimination learning. An increase in d’ and the possible outcomes of the
criterion (k) are shown. An increase in criterion is represented by the right
arrow and a decrease by the left arrow.
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SD=0.50 to the ninth session, corresponding to a reduction from 0.33
to 0.19 in the fraction of “same” pairs classified as different, respec-
tively. Likewise, with checkerboards k increased from M=1.30,
SD=0.35 in the first to M=1.76, SD=0.33 in the ninth session,
corresponding to a reduction from 0.36 to 0.21 in the fraction of “same”
pairs classified as different, respectively. The ANOVA indicated a main
effect of session number (F (3.17, 57.0)= 7.00, p < .001,
ηp2= 0.280), no effect of stimulus type (F (1, 18)= 1.64, p= .217,
ηp2= 0.083) and no interaction between session number and stimulus
type (F (3.17, 57.0)= 0.582, p= .638, ηp2= 0.031). Pairwise com-
parisons of the criterion between the first and succeeding sessions re-
vealed an increase in the criterion beginning at the fourth session
(p≤ .003, alpha= 0.00625), with the exception of the sixth session
(p= .018). In summary, unsupervised practice resulted in a similar
increase in the criterion for both kanji and checkerboard categories.

3.4.3. Accuracy
The increase in the sensitivity and criterion are consistent with an

increase in correct responses for both same and different pairs across
sessions. To further examine this effect, we estimated the percentage of
correct responses for same and different pairs individually, and the
response preference. As expected, task practice with kanji and check-
erboard stimuli resulted in increases in accuracy for same and different
pairs (Fig. 4 and SF5 and SF6). Surprisingly, the increase in the accu-
racy was greater for different pairs with both kanji and checkerboards.

With kanji, the accuracy for same pairs increased from M=0.66,

SD=0.10 in the first to M=0.79, SD=0.11 in the ninth session and
the accuracy for different pairs increased from M=0.66, SD=0.10 in
the first to M=0.88, SD=0.06 in the ninth session (Fig. 4A and SF5).
A two factor repeated measures ANOVA (session number and pair type)
showed a main effect of session number (F (3.13, 28.1)= 21.4,
p < .001, ηp2=0.704), no effect of pair type (F (1, 9)= 2.59, p= .142,
ηp2 = 0.223), and an interaction between session number and pair type
(F (2.36, 21.2)= 3.59, p= .039,ηp2= 0.285). Pairwise comparisons of
the correct responses between the first and succeeding sessions revealed
an increase from the second session (p≤ .001, alpha= 0.05/
8= .00625). Pairwise comparison of accuracy between same and dif-
ferent pairs from the second to the ninth sessions revealed a marginally
greater accuracy with different pairs in sessions seventh (p= .0064,
alpha=0.00625) and eight (p= .0061). Thus, unsupervised learning
resulted from both, an increase in correct responses for both same and
different pairs and a greater accuracy for different pairs with greater
levels of familiarity with the stimuli.

With checkerboards, the accuracy for same pairs increased from
M=0.63, SD=0.12 in the first to M=0.78, SD=0.09 in the ninth
session, and the accuracy for different pairs increased from M=0.63,
SD=0.19 in the first to M=0.92, SD=0.05 in the ninth session
(Fig. 4B and S6). The ANOVA indicated a main effect of session number
(F (8, 72)= 31.8, p < .001, ηp2= 0.779) and pair type (F (1,
9)= 11.7, p= .008, ηp2= 0.565) but no interaction between pair type

Fig. 3. Unsupervised discrimination practice increased the sensitivity and the
criterion. A. d’ during practice sessions for kanji (grey) and checkerboard
(black) stimuli. B. Criterion (k) as a function of practice sessions for kanji and
checkerboards stimuli. Error bars are SE of the mean.

Fig. 4. Unsupervised discrimination practice increased the accuracy and a
change in the response preference. A. Percentage of correct responses (PCR) for
same (gray diamond) and different (black diamond) kanji pairs during dis-
crimination practice. B. Percentage of correct responses for same (grey square)
and different (black square) checkerboards pairs during discrimination practice.
C. Response preference for kanji (diamond) and checkerboards (square) stimuli.
Asterisks indicate statistical differences between pair types and stimuli types (*,
p < .01). Error bars are SE of the mean.
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and session number (F (1.83, 16.5)= 1.83, p= .193, ηp2= 0.217).
Pairwise comparisons of accuracy between the first and succeeding
sessions revealed a significant increase of performance from the fifth
session (p≤ .004, alpha= .00625). Pairwise comparison of accuracy
between same and different pairs from the second to the ninth sessions
revealed a greater accuracy with different pairs in sessions six through
nine (p≤ .005, alpha= .00625). Thus, unsupervised learning resulted
from both, an increase in corrected responses for same and different
pairs and an effect or pair type indicated by the greater performance of
different pairs in the last sessions.

Taken together, these results indicate that unsupervised practice
improved the discrimination of same and different pairs for both kanji
and checkerboards, with a greater accuracy for different pairs in the last
sessions, suggesting the emergence of a bias the in response selection.

3.4.4. Response bias
Does the greater performance with different pairs reflect a bias in

the response? As illustrated in Fig. 4C and SF7, there was a small but
significant decrease in the response preference across sessions. With
kanji, the response preference decreased from M=1.00, SD=0.14 in
the first to M=0.91, SD=0.11 in the ninth session. Likewise, with
checkerboards the response preference decreased from M=0.99,
SD=0.26 in the first to M=0.86, SD=0.12 in the ninth session. As
expected, the ANOVA resulted in a main effect of session number (F
(2.34, 42.2)= 4.26, p= 0.016, ηp2= 0.191), no effect of stimulus type
(F (1, 18)= 1.95, p= .179, ηp2= 0.098) and no interaction between
session number and stimulus type (F (2.34, 42.2)= 0.706, p= .521,
ηp2= 0.038). The response preference decreased from the first to the
nine session (p= .046, paired t-test). Moreover, a one sample t-test of
the response preference with respect to the value of an unbiased ob-
server (1.0) was no different in sessions second to fifth and ninth
(p≥ .008, alpha= 0.05/8 tests= 0.0065) but smaller than 1.0 in the
seventh and eight sessions (p≤ .006) with kanji. Likewise, with
checkerboards the response preference was not different from 1.0 in the
second to fifth sessions (p≥ .012, alpha=0.006) but was smaller than
1.0 from the sixth through ninth sessions (p≤ .005, alpha= 0.006).
These results suggest that discrimination practice resulted in a bias in
the response selection in agreement with the greater performance for
different pairs in the last sessions.

3.4.5. Exemplar and category specific discrimination learning
A distinctive feature of expert performance is generalization of the

domain specific ability within the trained category (Tanaka et al.,
2005). Thus, we evaluated how much of the visual learning is gen-
eralized to novel exemplars of the trained category. Thus, the kanji and
checkerboard groups performed same-different judgements with a
randomized sequence of pairs of practiced exemplars and pairs of novel
exemplars of the practiced category on the tenth session. The mean d'
with novel pairs was slightly smaller than d' for practiced pairs for both
checkerboards and kanji stimuli (Fig. 5). D-prime exhibited a small
decreased from M=3.89, SD=1.10 for practiced kanji to M=3.49,
SD=0.96 for novel kanji pairs (p= .023, alpha= 0.05, Fig. 5A), but
was similar (p= .256) with practiced checkerboards (M=4.02,
SD=0.62) and novel checkerboards (M=3.78, SD=0.69, Fig. 5B),
denoting a nearly full generalization of the learning. Moreover, the
sensitivity with novel exemplars was greater than the sensitivity of
naïve participants in the first session for both stimuli (M=1.84,
SD=0.72, p < .001 and M=1.67, SD=0.83, p < .001) for kanji
and checkerboards respectively. To sum up, these results show a nearly
complete generalization of the acquired discrimination learning to
novel exemplars of the practiced category.

3.5. Discussion of experiment 1

We examined the performance while participants learned to dis-
criminate complex visual stimuli in unsupervised conditions. We

evaluated the modifications on the criterion and response preference in
addition to the sensitivity and accuracy for two types of unfamiliar
multi-exemplar stimuli and the generalization of learning to novel ex-
emplars of the trained category. The main findings of this experiment
were that 1) practice of same-different judgments in unsupervised
conditions leads to discrimination learning based on shifts in the cri-
terion and the emergence of a bias in addition to the increase in the
discriminability and 2) this learning generalizes to novel exemplars of
the trained category.

Specifically, our results show that unsupervised practice with an
equiprobable fraction of same and different pairs results in a significant
enhancement in the discriminability regardless of the stimulus type
(Fig. 3). Our results are consistent with previous findings of supervised
training for several stimuli types (reviewed by Fine & Jacobs, 2002; Op
de Beeck, Baker, Dicarlo, & Kanwisher, 2006; Wong, Folstein, &
Gauthier, 2011) and of unsupervised training with artificial 3D stimuli
(Tian & Grill-Spector, 2015). Thus, our results confirm that extended
practice of visual comparisons in the absence of stimulus labeling and
feedback on performance were sufficient to attain significant visual
discrimination learning.

In addition to the effect of practice on sensitivity, there was a small
but significant shift in the criterion for both types of stimulus (Fig. 3).
The criterion index k is proportional to the z transform of false alarms
(see methods), a response different to same pairs. Thus, an increase in k
reflects a reduction of the same pairs classified as different and that the
minimum difference between the stimuli classified as different increased
as accuracy increased (Fig. 2). Our results are consistent with previous
shifts of the criterion in unsupervised learning (Wenger & Rasche, 2006;
Wenger et al., 2008). A shift in the criterion is typically attributed to
modifications in the decision criterion that takes place after the ac-
quisition of the sensory evidence. Thus, our results suggest that

Fig. 5. Generalization of learning to novel exemplars of the practiced category.
A. d’ with practiced and novel kanji exemplars in the evaluation session and in
the first practice session. B. d’ with practiced and novel checkerboard exemplars
in the evaluation and the first practice session, (*, p < .05; **, p < .001; ns,
non-significant). Error bars are SE of the mean.
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discrimination practice modify the decision criterion.
To better characterize the modification of the criterion, we used a

model-free approach to assess the performance of same-different pairs
individually. Our results show an important increase in the accuracy
with discrimination practice indicated by the robust effect size of ses-
sion number for both stimuli, kanji and checkerboards. Moreover, the
performance of same and different pairs individually was dependent on
the extent of practice for kanji and checkerboards. The post hoc tests
show a marginal difference in the last sessions for kanji but a significant
difference for checkerboards. Although, the differences in the perfor-
mance with same and different pairs for kanji and checkerboards have a
low power due to the small number of participants in each group, the
consistency of the results with both stimuli categories represent a re-
plication and thus, a validation of the better performance with different
stimuli pairs. Additional studies should be done to confirm the effect of
practice on the discrimination of same and different pairs. In general,
the majority of studies on visual perceptual studies have focused on the
changes in sensitivity and the overall performance, without examining
the accuracy for same and different pairs individually. Nonetheless, a
few studies showed a distinct performance for same and different pairs
described in supervised and unsupervised perceptual studies (Aly &
Yonelinas, 2012; Chen et al., 2013; Krueger, 1978; Proctor & Rao,
1983). A recent study described an equal decrease in errors for same
and different pairs in unsupervised training with 3 D artificial images
(Tian & Grill-Spector, 2015), although the absolute accuracy levels
were not reported. In conclusion, we found a distinct effect of dis-
crimination training on the accuracy for same and different pairs in
unsupervised conditions.

The criterion shift and the superior performance for different pairs
are consistent with the emergence of a bias in the response selection
(Fig. 4). Thus, these results suggest that response preference is modu-
lated by the observer’s familiarity with the stimuli. On average, naïve
observers showed no bias, although there was a greater variability in
the individual responses (SF 7). After the accumulation of sensory
evidence with task practice, a bias in the response preference emerged.
Again, the main effect of training on response preference was margin-
ally significant in the pairwise comparisons for kanji and significant for
checkerboards, likely due to the low number of participants. None-
theless, the replication of the effect with both stimuli support the effect
of training on response preference.

In conclusion, our results show that the discrimination learning does
not require stimulus labeling and feedback on performance. More im-
portantly, that discrimination practice in unsupervised conditions im-
proves stimuli discriminability and modifies the decision criterion re-
vealing a bias in the response selection.

3.5.1. Generalization of learning
Here we show that the unsupervised learning generalized to pairs of

novel exemplars, in agreement with a category specific processing
ability and a small contribution of explicit memory for the practiced
exemplars (Fig. 5). The generalization of the learning to new exemplars
and categories has been examined for different stimulus types in a
variety of tasks and overall, the results show different degrees of gen-
eralization. Our results are consistent with the large generalization of
face view discrimination (Bi, Chen, Weng, He, & Fang, 2010) and of a
“greeble” identification task (Gauthier, Williams, Tarr, & Tanaka,
1998), in agreement with a low specificity for the trained stimuli. On
the contrary, our results are in contrast to the low transfer of learning
observed in different tasks with different stimulus types (Baeck,
Windey, & Op de Beeck, 2012; Gölcü & Gilbert, 2009; Husk, Bennett, &
Sekuler, 2007; Op de Beeck et al., 2006). In summary, the extent of
transfer to novel stimuli correlates with the similarity or feature sharing
between the trained and the novel exemplars (Baeck et al., 2012; Gölcü
& Gilbert, 2009) typical of a perceptual expertise (Bukach et al., 2010).
Therefore, our results are consistent with the acquisition of perceptual
expertise for complex stimuli in supervised (Gauthier & Tarr, 1997;

Gauthier et al., 1998; Op de Beeck et al., 2006; Scott et al., 2008; Wong
et al., 2011) and unsupervised conditions (Tian & Grill-Spector, 2015).
The improvement of performance during learning likely includes sti-
mulus specific as well as task specific abilities. In our work, several
properties of the stimulus and task may have contributed to a high
transfer of learning to new exemplars. Among these, the variety and
similarity of exemplars and the orientation diversity (upright, 90 de-
grees clockwise and counter-clockwise rotation). In addition, the same-
different task may have contributed by encouraging perceptual com-
parison of the stimuli, and restraining its labeling and individuation.
Finally, task-related abilities include fast feature extraction, coding and
maintenance of S1 in working memory and mental rotation of S1, all of
them ought to transfer to new stimuli categories. Further studies should
evaluate how much of the performance improvement is a task-related
ability.

In conclusion, our results suggest that unsupervised practice of
same-different discrimination with a group of representative stimuli is
sufficient for the generalization of the discrimination learning in
agreement with the acquisition of a perceptual expertise.

4. Experiment 2. Unsupervised same-different practice with
unequal proportion of same and different stimuli

A bias in an observer’s perceptual decisions can be dissociated into a
perceptual bias, originated on shifts in the perceptual processing, or in a
response bias, originated in beliefs or information about the stimuli
proportions or rewards (Leite & Ratcliff, 2011). Specific experimental
manipulations can dissociate a response bias from a perceptual bias. For
instance the manipulation of the stimuli proportions can induce a re-
sponse bias (Ashby, 1983). The aim of the second experiment was to
test whether the bias observed in the first experiment is modified by
manipulations that induce a response bias. To do so, we manipulated
the proportions of same and different pairs and evaluated the perfor-
mance across five practice sessions. We hypothesized that unequal and
inverse proportions of stimuli would reduce or eliminate the bias in the
response observed in the first experiment, in agreement with this being
a response bias.

4.1. Method

Twenty-three right-handed participants age 19–24 participated in
this experiment. The trial sequence was identical to that in experiment
1. We selected the checkerboards because there was an early occurrence
of the superior performance with different pairs. Participants completed
5 daily practice sessions with the same set of exemplars. Each session
consisted of 480 trials, divided in 8 blocks of 60 trials. Participants were
assigned to two groups in a random manner; one group performed the
task with a majority of same pairs, 80% same and 20% different pairs
(80-same, n= 12), and another group performed the task with a ma-
jority of different pairs, 20% same and 80% different pairs (80-diff,
n= 11, Fig. 1C). One participant in the 80-same group was eliminated
because there was no change in performance, leaving 11 participants in
the 80-same group. No feedback on performance was provided.

4.2. Data processing and statistical analysis

D prime, criterion, percentage of correct responses and response
preference were calculated as in experiment1. Statistical differences in
sensitivity, criterion, accuracy and response preference were evaluated
as previously described for experiment 1.

Statistical differences in sensitivity, criterion and response pre-
ference were evaluated with a repeated measures two factor analysis of
variance (ANOVA) with between-subject factors of stimuli ratio (two
levels, 80-same and 80-diff) and within-subject factor of practice (five
levels, sessions 1 through 5). The differences in the percentage of cor-
rect responses were evaluated with a repeated measures two factor
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ANOVA with within-subject factors of stimuli pair (two levels, same and
different) and practice (five levels, sessions 1 through 5).

4.3. Results

In the second experiment, we evaluated if the bias of experiment 1 is
modified by manipulations that induce a response bias. Thus, we ma-
nipulated the proportions of pairs and two groups of participants
learned to discriminate checkerboards with unequal and inverse pro-
portions of same and different pairs, of which the participants had no
prior knowledge.

4.3.1. Sensitivity
Task practice resulted in an increase in d’ with both 80-same and 80-

diff proportions. Although there was a slightly higher d’ for majority of
different pairs in the fourth and fifth sessions (Fig. 6A and SF8), this
difference was not significant. Specifically, in the 80-same group d’
increased from M=1.89, SD=0.910 in the first to M=3.25,
SD=0.940 in the fifth session and in the 80-diff group d’ increased
from M=1.86, SD=1.04 in the first to M=3.66, SD=0.869 in the
fifth session. The ANOVA showed a main effect of session number (F
(2.24, 44.8)= 33.0, p < .001, ηp2= 0.622), no effect of proportion (F
(2.24, 44.8)= 33.0, p= .515, ηp2= 0.021) and no interaction between
session number and proportion (F (2.24, 44.8)= 0.844, p= .448,
ηp2= 0.040). Pairwise comparisons of d’ means between the first and
subsequent sessions indicated an increase in sensitivity from the third
session (p≤ .001, alpha=0.05/4=0.0125). In sum, practice with

unequal and inverse proportions of same-different pairs resulted in
better discriminability of checkerboards stimuli as observed in experi-
ment 1.

4.3.2. Criterion
The criterion increased for both proportions (Fig. 6B and SF9). For a

majority of same pairs (80-same), k increased from M=1.32,
SD=0.298 in the first to M=1.87, SD=0.607 in the fifth session,
representing a reduction in the incorrect responses to same pairs from
0.35 and 0.19, respectively. Likewise, for a majority of different pairs
(80-diff) there was an increase in k from M=1.34, SD=0.433 in the
first to M=1.65, SD=0.647 in the fifth session, representing a re-
duction in the incorrect responses to same pairs from 0.34 and 0.24,
respectively. The ANOVA indicated a main effect of session number (F
(2.56, 51.3)= 8.21, p < 0.001, ηp2= 0.291), no effect of proportion
(F (1, 20)= 0.378, p= .546, ηp2= 0.019) and no significant interac-
tion between proportion and session number (F (2.56, 51.3)= 0.844,
p= .461, ηp2= 0.040). Pairwise comparisons of the k values between
the first and the succeeding sessions revealed an increase from the third
session (p≤ .002, alpha= 0.0125). Thus, task practice with both pro-
portions resulted in an equivalent increase in the criterion.

4.3.3. Accuracy
Because the participants had no information on the stimuli pro-

portions, the performance should rely initially on the participant’s prior
belief about the proportions and, as practice progresses, the perfor-
mance should be a consequence of the sensory evidence accumulated
throughout practice. Moreover, the manipulation of the proportions
should induce a response bias in the opposite directions for the 80-same
and 80-differerent groups. As expected, each group had a differing
performance for same and different pairs as shown in Fig. 7A and SF10.
For a majority of same pairs (80-same), there was a similar increase in
accuracy of same and different pairs and for a majority of different pairs
(80-diff), there was a greater increase in accuracy of different pairs.

Specifically, in the 80-same group, the accuracy for same pairs in-
creased from M=0.639, SD=0.097 in the first to M=0.778,
SD=0.152 in the fifth session and from M=0.670, SD=0.186 in the
first session to M=0.823, SD=0.104 in the fifth session for different
pairs. The ANOVA showed a main effect of session number (F (4,
40)= 24.7, p < .001, ηp2= 0.712), no effect of pair type (F (1,
10)= 0.636, p= .444, ηp2= 0.060) and no interaction between ses-
sion number and pair type (F (4, 40), p= .982, ηp2= 0.010). Pairwise
comparisons between the first and the succeeding sessions showed an
improvement in accuracy from the second session (p≤ .002,
alpha=0.0125). These results demonstrate that unsupervised learning
with a majority of same pairs was based on an equivalent increase in
performance for same and different pairs.

In contrast, in the 80-diff group the accuracy for same pairs in-
creased from M=0.635, SD=0.139 in the first session to M=0.716,
SD=0.172 in the fifth session and the accuracy for different pairs in-
crease from M=0.680, SD=0.165 in the first session to M=0.899,
SD=0.078 in the fifth session (Fig. 7B and SF11). Interestingly, the
ANOVA showed a main effect of pair type (F (2.02, 20.2)= 6.42,
p < .001, ηp2= 0.391) in addition to the effect on session number (F
(2.02, 20.2)= 11.9, p < .030, ηp2= 0.544) but no interaction be-
tween session number and pair type (F (1.65, 16.5)= 2.77, p= .100,
ηp2= 0.217). Pairwise comparisons of accuracy between the first and
the succeeding sessions showed a difference from the third session
(p≤ .006, alpha= 0.0125). Pairwise comparisons of accuracy for same
and different pairs from the second to the fifth sessions showed a
marginal but significant difference in the fourth (p= .008) and fifth
(p= .0124) sessions (alpha= 0.0125). These results indicate that with
a majority of different pairs, unsupervised learning was based on a
greater increase in performance for different pairs. Overall, these re-
sults demonstrate that unsupervised learning for different proportions
leaded to asymmetrical performance, indicating that this manipulation

Fig. 6. Unsupervised discrimination practice with unequal and inverse pro-
portions of stimuli. A. d’ during practice sessions with a majority of same pairs
(80-same, circle) and with a majority of different pairs (80-diff, triangle). B.
Criterion (k) values during practice sessions for a majority of same pairs (80-
same, circle) and for a majority of different pairs (80-diff, triangle). Error bars
are SE of the mean.
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induced a proportion-related response bias.

4.3.4. Response bias
In the hypothetical condition of perfect performance, for a majority

of same pairs the response preference should be 1.6, calculated as 80
divided by 100, multiplied by 2, and for a majority of different pairs the
response preference should be 0.4, calculated as 20 divided by 100,
multiplied by 2. If the manipulation of the proportions do not reduce or
eliminate de bias observed in experiment 1 as would be expected if
these biases were founded on independent processes, the response
preference should include the bias of experiment 1 in addition to the
response bias for the unequal proportions of stimuli. Therefore, the
response preference should be the mirror image pattern expected for
unequal and inverse proportions shifted towards different responses.

Because participants did not receive information about the stimuli
proportions, both groups likely had an initial response preference based
on individual prior beliefs, and because these are expected to be vari-
able, we anticipated a group average close to the response preference of
1.0, corresponding to equal same and different responses. As the practice
increased, the response preference should move away from 1.0, towards
2.0 for a majority of same pairs and in the opposite direction (0.0) for a
majority of different pairs. Our results are consistent with this config-
uration as shown in Fig. 7C and SF12 including a proportion-induced
response bias and a perceptual bias. Specifically, in the 80-same group,
the response preference increased from M=1.17, SD=0.164 in the
first to M=1.31, SD=0.223 in the fifth session, indicative of a re-
sponse preference towards same. In the 80-diff group, the response

preference decreased from M=0.690, SD=0.202 in the first to
M=0.448, SD=0.144 in the fifth session, indicating a shift in re-
sponse preference towards different. To compare the response pre-
ference for both proportions, the values for the 80-same group were
inverted (2 – response preference, see methods). Interestingly, the
ANOVA showed a main effect of session number (F (2.59,
51.9)= 11.03, p < .001, ηp2= 0.356) and proportion (F (1,
20)= 6.96, p= .016, ηp2= 0.258), and no interaction between session
number and stimuli proportions (F (2.59, 51.9)= 1.63, p= .198,
ηp2= 0.076). Pairwise comparisons of response preference between the
first and succeeding sessions showed an increase beginning with the
third session (p < .001, alpha= 0.0125). Pairwise comparison of re-
sponse preference between proportions from the second to the fifth
sessions revealed a greater response preference for 80-diff proportion in
the fourth and fifth sessions (p≤ .007, alpha= 0.0125). Moreover, the
response preference for both proportions was different from 1.0
(p≤ .009, alpha= 0.0125) in all sessions. These results show that task
practice resulted in a distinct response preference for 80-same and 80-
diff proportions, in agreement with a proportion-dependent response
bias in addition to the bias towards different response observed in ex-
periment 1. In summary, these results suggest that these biases are
based on independent processes and suggests that the bias observed in
experiment 1 is a perceptual bias.

4.4. Discussion of experiment 2

The main objective of the second experiment was to test if the bias
of experiment 1 was a response bias. In perceptual decisions, two types
of biases have been distinguished: a response bias and a stimulus pro-
cessing or perceptual bias (White & Poldrack, 2014). A response bias
occurs when there is a preference for a specific response, for example if
the feedback is biased or if one of the options receives a greater reward.
A stimulus processing bias occurs if there are differences in how the
evidence extracted from the stimuli is used to select the behavioral
choice. A response bias can be dissociated from a perceptual bias
through manipulations of stimuli proportions and rewards (Leite &
Ratcliff, 2011). Earlier work showed that manipulations of the stimuli
proportions modify the response bias, but had no effect on the per-
ceptual bias (Ashby, 1983). Using this evidence, in the second experi-
ment we manipulated the proportion of stimuli without the partici-
pant’s knowledge, to induce a response bias. Thus, we evaluated if this
manipulation reduced or eliminated the bias observed in experiment 1,
as would be expected if both biases were rooted on the same process.
First, we confirmed the unsupervised learning for unequal proportions
as an increase in sensitivity and criterion with practice (Fig. 6). Our
results show no significant differences in the sensitivity and criterion
between proportions. Interestingly, there was a tendency for a greater
sensitivity and lower criterion in the 80-diff group, suggesting that with
additional sessions, greater difference in proportions or more partici-
pants may reach significance. Further studies are necessary to evaluate
this possibility.

Nonetheless, a proportion-induced bias was evident in the accuracy
for same and different pairs individually and in the response preference.
There was a response preference of greater than 1.0 in the 80-same
group and a response preference lower than 1.0 in the 80-diff group and
both increased as the practice increased. In addition to the expected
proportion-induced bias in the response preference, there was an ad-
ditional shift in the response preference in the same direction for the
80-same and 80-diff groups, corresponding to the bias observed in ex-
periment 1. Although, the differences in the performance with same
and different pairs for kanji and checkerboards exhibit a low power due
to the small number of participants in each group, the consistency of the
results of experiment 1 and 2 represent a replication and thus, a vali-
dation of the greater accuracy with different pairs and the response
preference. In summary, the manipulation of proportions induced a
response-bias without reducing or eliminating the bias observed in

Fig. 7. Accuracy and response preference for unequal proportions of same-
different stimuli. A. Percentage of correct responses (PCR) for same (gray circle)
and different (black circle) pairs during discrimination practice with a majority
of same pairs (80-same). B. PCR for same (gray triangle) and different (black
triangle) pairs during discrimination practice with a majority of different pairs
(80-diff). C. Mean response preference for the 80-same (circle) and the 80-diff
(triangle) groups (*, p < 0.05; **, p < 0.01). Error bars are SE of the mean.
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experiment 1. We conclude that the bias from experiment 1 is very
likely of perceptual nature and in consequence, it takes place in the
stimulus processing stages (Leite & Ratcliff, 2011).

5. General discussion

Our study investigated whether discrimination learning is accom-
plished through unsupervised practice of same-different judgments and
if this learning generalizes to the trained category. Our main findings
are: 1) unsupervised training leads to visual discrimination learning, 2)
the discrimination learning is characterized by increases in the stimuli
discriminability and shifts in the criterion that reflect a perceptual bias
and 3) unsupervised discrimination practice leads to the acquisition of
domain specific abilities for the trained category in agreement with the
acquisition of perceptual expertise.

5.1. Unsupervised training

Here we show that unsupervised practice of a visual discrimination
task with multi-exemplar complex stimuli is sufficient for visual dis-
crimination learning. By unsupervised learning we mean task condi-
tions that do not include information about the correct category of each
exemplar during training, such as stimulus labeling and feedback on
performance (Tian & Grill-Spector, 2015). Several studies indicated that
visual learning of complex unfamiliar stimuli requires stimulus naming
or categorization at the subordinate level (Scott et al., 2006; Scott et al.,
2008; Tanaka, Curran, & Sheinberg, 2005; Wong et al., 2009) to reach
expert-like levels of performance. More recently, this idea has been
challenged as discrimination learning was obtained during training
with individuation, in the absence of stimulus naming or categorization
at the subordinate level (Bukach et al., 2012) and during same-different
training with artificial 3 D images in unsupervised conditions (Tian &
Grill-Spector, 2015).

In addition to the stimulus label and categorization at the sub-
ordinate level, the provision of feedback on performance constitutes
another source of information about the correct responses and thus,
contributes to supervised learning. The feedback on performance in-
creases the performance levels (Herzog & Fahle, 1997) and modify the
sensitivity or the criterion depending on the feedback regime provided
(Aberg & Herzog, 2012). The majority of studies on visual learning of
complex unfamiliar stimuli have provided feedback on performance
(Scott et al., 2006; Scott et al. 2008; Tanaka, Curran, & Sheinberg,
2005; Wong et al., 2009), with a few exceptions (Bukach et al., 2012;
Scott et al., 2008; and Tian & Grill-Spector, 2015). In supervised con-
ditions, the feedback provided may reduce or eliminate any bias that
occurs during unsupervised learning. Therefore, the feedback may
provide additional information to the accumulated sensory evidence
that may increase performance. However, we cannot rule out that su-
pervised training will lead to greater performance levels by speeding up
learning or by modifying the sensitivity or the criterion (Aberg &
Herzog, 2012), which results in greater proportion of correct responses
if there is a reduction in a bias. According to the SDT model, the
maximum proportion of correct performance for a given sensitivity
index is obtained by an observer that has no bias. Further studies should
compare the progression and the maximum levels of performance in
unsupervised and supervised conditions. In conclusion, we show that
unsupervised discrimination training is sufficient for discrimination
learning.

5.2. Bias

In addition to the expected increase in discriminability with prac-
tice, there was a shift in the decision criterion and a significant bias in
the response with both stimuli types. Even though the number of par-
ticipants was low, the results were similar with kanji and checkerboards
in experiments 1 and in the different response preference for the 80-

same and 80-diff groups in experiment 2. Thus, we considered this a
replication of the results and a validation of the observed bias towards
different after several sessions of practice. There is limited evidence on
biased response selection or differences in performance for same and
different pairs individually, because the majority of studies have fo-
cused on practice-dependent modifications on sensitivity and total ac-
curacy. However, a few studies reported differences in the performance
for same and different pairs. In supervised tasks with familiar stimuli,
greater errors on same pairs were found in pitch discrimination
(Coltheart & Curthoys, 1968) and simultaneous letter discrimination
(Proctor & Rao, 1983). In supervised tasks with unfamiliar stimuli, a
small but greater accuracy for different pairs was reported (Chen et al.,
2013). On the contrary, supervised auditory discrimination practice
reduced a bias observed in novices (Jones et al., 2015). A single study in
unsupervised discrimination of artificial 3D images resulted in greater
reduction of errors for different pairs in certain conditions (Tian & Grill-
Spector, 2015). Finally, there was no learning after unsupervised at-
tentive exposure to car models (Scott et al., 2008). We considered two
main differences in the tasks and procedures between these studies that
might explain the incongruous results, such as the feedback on per-
formance and the familiarity with the stimuli. Specifically, the feedback
on performance may induce or modify a bias (Herzog & Fahle, 1999)
and the familiarity with the stimuli might modify its processing from
featural to holistic or configural processing, typical of expertise acqui-
sition (Wong et al., 2009).

Typically, a bias in the response selection originates from a response
bias, based on a conscious decision to select one of the response options;
or from a perceptual bias, based on differences in stimulus processing.
In turn, a response bias may originate from a feedback on performance
(Chen, Jimura, White, Maddox, & Poldrack, 2015; Herzog & Fahle,
1997; Herzog & Fahle, 1999), instructions on stimuli proportions (Leite
& Ratcliff, 2011) or differential rewards (Herzog & Fahle, 1999). In our
experiment, participants did not receive feedback or differential re-
wards, and were informed about an equal proportion of stimuli. Thus,
either feedback- or a proportion-related decisional process did not
generate the observed bias. However, the presence of a bias in our
experiments may arise from the absence of feedback on performance,
which when present might reduce or eliminate the bias observed in
unsupervised conditions.

Alternatively, the bias may arise from an internal signal related to
stimulus processing such as information extraction, maintenance in
memory and posterior evaluation of the sensory evidence, all reflecting
a bias in stimulus processing (Jones et al., 2015). It is known that dif-
ferent types of practice can improve the ability to discriminate between
stimuli shapes (Gauthier & Tarr, 1997; Op de Beeck et al., 2006) and
this improvement has been attributed to the acquisition of holistic or
configural processing of the stimulus (Richler, Wong, & Gauthier,
2011). The holistic or configural processing may contribute to changes
in stimulus information extraction, which may have distinctive effects
on same and different pairs if there are differences in the type of in-
formation required for the correct classification of different and same
pairs as proposed by Aly and Yonelinas (2012). For example, if the
detection of differences requires the selection of the relevant parts of
the stimulus and the detection of matching pairs requires the evaluation
of the whole stimulus. In addition to the differences in stimulus in-
formation extraction, the bias may originate of differences in the
working memory processes involved either in the discrimination of
sequential stimuli or in the mental rotation of the first stimulus required
to compare it with the second stimulus. For example, if the information
of the first stimulus is not fully coded in working memory because of
reduced resolution for unfamiliar stimuli (Scolari, Vogel, & Awh, 2008;
Lorenc, Pratte, Angeloni, & Tong, 2014; Brady, Störmer, & Alvarez,
2016), or if the information in working memory is subjected to varia-
bility during its maintenance (Fougnie, Suchow, & Alvarez, 2012;
Lepsien, Thornton, & Nobre, 2011) reducing the matching of same pairs
compared to detection of differences. Interestingly, the matching of a
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stimulus with working memory contents for same pairs requires less
information (Gayet, van Maanen, Heilbron, Paffen, & Van der Stigchel,
2016). Thus, the holistic or configural processing of stimulus typical of
expertise performance would promote faster information extraction for
short stimulus durations, better coding in memory (Scolari et al., 2008),
and better mental rotation as parts and relations of the stimulus are
kept together with holistic processing (Xu & Franconeri, 2015). In
conclusion, the bias with increasing sitmuli familiarity reveals practice-
dependent modifications of the stimulus processing.

5.3. Specificity of the discrimination learning

Our results show an almost complete generalization of the learning
to novel exemplars of the practiced category, indicating that practice
led to expert-like learning with both kanji and checkerboards stimuli as
previously shown in supervised training conditions (Gauthier & Tarr,
1997; Gauthier et al., 1998; Tanaka, Curran, & Sheinberg, 2005; Wong
et al., 2009). Our results suggest that unsupervised discrimination
learning is consistent with modifications in the stimulus processing that
increase the sensory evidence (Sigman & Gilbert, 2000) and/or the
precision of the working memory in a domain specific manner (Curby &
Gauthier, 2010).

In our study, we did not evaluate additional properties of expert-like
object perception such as the sensitivity to configural changes and the
holistic processing of the stimulus (Richler et al., 2011; Wong et al.,
2009). Further studies should evaluate the changes in the stimulus
processing. We conclude that unsupervised discrimination of complex
stimuli lead to a domain specific ability to process a stimuli category
and to achieve high discrimination sensitivity distinctive of experts
(Bukach et al., 2010).

6. Conclusions

This study provides evidence for expert-like unsupervised learning
of complex stimuli during practice of perceptual comparisons based on
the adjustment of the criterion in addition to the increase in the stimuli
discriminability. In naïve observers, accuracy for same and different
pairs was low and equi-probable. As observers became familiar with the
stimuli, accuracy for different pairs became greater, and a marker of
this divergence was the bias in the response preference towards different
response. The manipulation of proportions to induce a response bias
indicated an independent process underlying the bias with equi-prob-
able stimuli. Overall, these results suggest that unsupervised learning is
rooted in changes in the stimulus processing that include a better per-
ceptual sensitivity, which increase the sensory evidence and/or the
precision of the working memory for the stimuli, and a perceptual bias.
Despite the limited number of practice sessions in the present work, it
was sufficient for the acquisition of a domain-specific ability for pro-
cessing the stimuli category and for achieving high discrimination
sensitivity. Moreover, participants learned to discriminate complex
stimuli without practicing explicit object naming or categorization at
the subordinate level, previously held as necessary to achieve expert-
like performance. We conjecture that in conditions of greater levels of
expertise than the ones obtained in this work, observers may reach an
equivalent performance with same and different pairs, as has been
observed for simple stimuli. Further studies are needed to evaluate how
the different levels of familiarity modulate the perceptual bias and the
contribution of the perceptual processing and the precision of the
working memory to the visual discrimination learning. The under-
standing of the properties of unsupervised learning is highly relevant as
learning from natural statistics is typical of humans (Li & DiCarlo, 2010;
Saffran & Kirkham, 2017) and some animals (Santolin & Saffran, 2018).

Acknowledgements

The authors are grateful to David Gomez and Michelle Dragan for

the comments on an earlier version of this manuscript. This work was
supported by Becas CONICYT and Becas Chile (RMS), Fondecyt
1150289, Fundación Puelma, Basal Funds for Centers of Excellence
FB0003 (MT, MLA) and Iniciativa Científica Milenio ICM P04-068-F
(PM, MLA).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.visres.2018.05.002.

References

Aberg, K. C., & Herzog, M. H. (2012). Different types of feedback change decision cri-
terion and sensitivity differently in perceptual learning. Journal of vision, 12(3), 1–11.

Aly, M., & Yonelinas, A. P. (2012). Bridging consciousness and cognition in memory and
perception: Evidence for both state and strength processes. PLoS One, 7(1), e30231.

Ashby, F. G. (1983). A biased random walk model for two choice reaction times. Journal
of Mathematical Psychology, 27(3), 277–297.

Baeck, A., Windey, I., & Op de Beeck, H. P. (2012). The transfer of object learning across
exemplars and their orientation is related to perceptual similarity. Vision Research,
68, 40–47.

Bi, T., Chen, N., Weng, Q., He, D., & Fang, F. (2010). Learning to discriminate face views.
Journal of Neurophysiology, 104(6), 3305–3311.

Boutis, K., Pecaric, M., Seeto, B., & Pusic, M. (2010). Using signal detection theory to
model changes in serial learning of radiological image interpretation. Advances in
Health Sciences Education, 15(5), 647–658.

Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed- ca-
pacity: More active storage capacity for real- world objects than for simple stimuli.
Proceedings of the National Academy of Sciences of the United States of America, 113(27),
7459.

Bukach, C. M., Kinka, D., & Gauthier, I. (2012). Training experts: Individuation without
naming is worth it. Journal of Experimental Psychology: Human Perception and
Performance, 38(1), 14–17.

Bukach, C., Phillips, W., & Gauthier, I. (2010). Limits of generalization between cate-
gories and implications for theories of category specificity. Attention, Perception, &
Psychophysics, 72(7), 1865–1874.

Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all:
Configural effects in action observation. Psychological Research, 74(4), 400–406.

Chen, H., Bukach, C. M., & Wong, A. C. N. (2013). Early electrophysiological basis of
experience- associated holistic processing of chinese characters. PLoS One, 8(4),
e61221.

Chen, M. Y., Jimura, K., White, C. N., Maddox, W. T., & Poldrack, R. A. (2015). Multiple
brain networks contribute to the acquisition of bias in perceptual decision- making.
Frontiers in Neuroscience, 9(63), 1–13.

Civile, C., Zhao, D., Ku, Y., Elchlepp, H., Lavric, A., & McLaren, I. P. L. (2014). Perceptual
learning and inversion effects: Recognition of prototype-defined familiar checker-
boards. Journal of Experimental Psychology: Animal Learning and Cognition, 40(2),
144–161.

Coltheart, M., & Curthoys, I. (1968). Short-term recognition memory for pitch: Effect of a
priori probability on response times and error rates. Perception & Psychophysics, 4(2),
85–89.

Crowley, R. S., Naus, G. J., Stewart, J., & Friedman, C. P. (2003). Development of visual
diagnostic expertise in pathology: An Information- processing Study. Journal of the
American Medical Informatics Association, 10(1), 39–51.

Curby, K. M., & Gauthier, I. (2010). To the trained eye: Perceptual expertise alters visual
processing. Topics in Cognitive Science, 2(2), 189–201.

Evered, A., Walker, D., Watt, A. A., & Perham, N. (2013). To what extent does nonanalytic
reasoning contribute to visual learning in cytopathology? Cancer Cytopathology,
121(6), 329–338.

Farell, B. (1985). “ Same”–“ Different” Judgments: A review of current controversies in
perceptual comparisons. Psychological Bulletin, 98(3), 419–456.

Fine, I., & Jacobs, R. (2002). Comparing perceptual learning across tasks: A review.
Journal of Vision, 2, 190–203.

Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of visual
working memory. Nature Communications, 3, 1229.

Gauthier, I., Behrmann, M., & Tarr, M. J. (2004). Are Greebles like faces? Using the
neuropsychological exception to test the rule. Neuropsychologia, 42(14), 1961–1970.

Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for
face recognition. Vision Research, 37, 1673–1682.

Gauthier, I., Williams, P., Tarr, M. J., & Tanaka, J. (1998). Training 'greeble' experts: A
framework for studying expert object recognition processes. Vision Research, 38,
2401–2428.

Gayet, S., van Maanen, L., Heilbron, M., Paffen, C. L., & Van der Stigchel, S. (2016). Visual
input that matches the content of visual working memory requires less (not faster)
evidence sampling to reach conscious access. Journal of Vision, 16(11), 26.

Gölcü, D., & Gilbert, C. D. (2009). Perceptual learning of object shape. Journal of
Neuroscience, 29(43), 13621.

Green, M. D., & Swets, A. J. (1966). Signal detection theory and psychophysics New York.
Herzog, M. H., & Fahle, M. (1997). The role of feedback in learning a vernier dis-

crimination task. Vision Research, 37, 2133–2141.
Herzog, M. H., & Fahle, M. (1999). Effects of biased feedback on learning and deciding in

R. Montefusco-Siegmund et al. Vision Research 148 (2018) 37–48

47

http://dx.doi.org/10.1016/j.visres.2018.05.002
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0005
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0005
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0010
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0010
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0015
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0015
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0020
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0020
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0020
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0025
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0025
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0030
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0030
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0030
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0035
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0035
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0035
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0035
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0040
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0040
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0040
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0045
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0045
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0045
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0050
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0050
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0055
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0055
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0055
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0060
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0060
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0060
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0065
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0065
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0065
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0065
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0070
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0070
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0070
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0075
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0075
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0075
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0080
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0080
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0085
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0085
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0085
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0090
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0090
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0095
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0095
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0100
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0100
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0105
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0105
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0110
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0110
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0115
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0115
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0115
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0120
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0120
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0120
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0125
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0125
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0130
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0135
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0135
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0140


a vernier discrimination task. Vision Research, 39, 4232–4243.
Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2007). Inverting houses and textures:

Investigating the characteristics of learned inversion effects. Vision Research, 47(27),
3350–3359.

Jones, P. R., Moore, D. R., Shub, D. E., & Amitay, S. (2015). The Role of Response Bias in
Perceptual Learning. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 41(5), 1456–1470.

Kingdom, F. A. A., & Prins, N. (2010). Psychophysics: A practical introductionAcademic
Press.

Krueger, L. E. (1978). A theory of perceptual matching. Psychological Review, 85(4),
278–304.

Leite, F. P., & Ratcliff, R. (2011). What cognitive processes drive response biases? A
diffusion model analysis. Judgment and Decision Making, 6(7), 651–687.

Lepsien, J., Thornton, I., & Nobre, A. C. (2011). Modulation of working-memory main-
tenance by directed attention. Neuropsychologia, 49(6), 1569–1577.

Li, N., & DiCarlo, J. J. (2010). Unsupervised natural visual experience rapidly reshapes
size-invariant object representation in inferior temporal cortex. Neuron, 67(6),
1062–1075.

Lorenc, E., Pratte, M., Angeloni, C., & Tong, F. (2014). Expertise for upright faces im-
proves the precision but not the capacity of visual working memory. Attention,
Perception, & Psychophysics, 76(7), 1975–1984.

Macmillan, A. N., & Creelman, C. D. (2005). Detection theory: A user's guide. New York:
Psychological Press.

Melara, R. D. (1992). The concept of perceptual similarity: From psychophysics to cog-
nitive psychology. Advances in Psychology, Psychophysical Approaches to Cognition: D.
Algom, 92, 303–388.

Mulder, M. J., Wagenmakers, E. J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012).
Bias in the brain: A diffusion model analysis of prior probability and potential payoff.
Journal of Neuroscience, 32(7), 2335–2343.

Op de Beeck, H. P., Baker, C. I., Dicarlo, J. J., & Kanwisher, N. G. (2006). Discrimination
training alters object representations in human extrastriate cortex. Journal of
Neuroscience, 26(50), 13025.

Proctor, R. W., & Rao, K. V. (1983). Evidence that the same-different disparity in letter
matching is not attributable to response bias. Perception and Psychophysics, 34(1),
72–76.

Proctor, R. W., Rao, K. V., & Hurst, P. W. (1984). An examination of response bias in
multiletter matching. Perception and Psychophysics, 35(5), 464–476.

Richler, J. J., Wong, Y. K., & Gauthier, I. (2011). Perceptual expertise as a shift from
strategic interference to automatic holistic processing. Current Directions in
Psychological Science, 20(2), 129–134.

Saffran, J. R., & Kirkham, N. Z. (2017). Infant statistical learning. Annual Review of

Psychology, 69, 181–203.
Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across species.

Trends in Cognitive Sciences, 22(1), 52–63.
Scolari, M., Vogel, E., & Awh, E. (2008). Perceptual expertise enhances the resolution but

not the number of representations in working memory. Psychonomic Bulletin & Review,
15(1), 215–222.

Scott, L. S., Tanaka, J. W., Sheinberg, D. L., & Curran, T. (2006). A reevaluation of the
electrophysiological correlates of expert object processing. (Author abstract). Journal
of Cognitive Neuroscience, 18(9), 1453.

Scott, L. S., Tanaka, J. W., Sheinberg, D. L., & Curran, T. (2008). The role of category
learning in the acquisition and retention of perceptual expertise: A behavioral and
neurophysiological study. Brain Research, 1210, 204–215.

Sigman, M., & Gilbert, C. D. (2000). Learning to find a shape. Nature Neuroscience, 3(3),
264–269.

Sorkin, R. D. (1962). Extension of the theory of signal detectability to matching proce-
dures in psychoacoustics. Journal of the Acoustical Society of America, 34(11),
1745–1751.

Tanaka, J. W., Curran, T., & Sheinberg, D. L. (2005). The training and transfer of real-
world perceptual expertise. Psychological Science, 16(2), 145–151.

Tian, M., & Grill-Spector, K. (2015). Spatiotemporal information during unsupervised
learning enhances viewpoint invariant object recognition. Journal of Vision, 15(6),
1–13 7.

Wenger, M., Copeland, A., Bittner, J., & Thomas, R. (2008). Evidence for criterion shifts in
visual perceptual learning: Data and implications. Perception & Psychophysics, 70(7),
1248–1273.

Wenger, M., & Rasche, C. (2006). Perceptual learning in contrast detection: Presence and
cost of shifts in response criteria. Psychonomic Bulletin & Review, 13(4), 656–661.

White, C. N., & Poldrack, R. A. (2014). Decomposing bias in different types of simple
decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2),
385–398.

Witt, J. K., Taylor, J. E., Sugovic, M., & Wixted, J. T. (2015). Signal detection measures
cannot distinguish perceptual biases from response biases. Perception, 44(3),
289–300.

Wong, Y. K., Folstein, J. R., & Gauthier, I. (2011). Task- irrelevant perceptual expertise.
Journal of vision, 11(14), 3.

Wong, A. C., Palmeri, T. J., & Gauthier, I. (2009). Conditions for facelike expertise with
objects: Becoming a Ziggerin expert–but which type? Psychological Science, 20(9),
1108–1117.

Xu, Y., & Franconeri, S. L. (2015). Capacity for visual features in mental rotation.
Psychological Science, 26(8), 1241–1251.

R. Montefusco-Siegmund et al. Vision Research 148 (2018) 37–48

48

http://refhub.elsevier.com/S0042-6989(18)30078-6/h0140
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0145
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0145
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0145
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0150
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0150
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0150
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0155
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0155
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0160
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0160
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0165
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0165
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0170
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0170
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0175
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0175
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0175
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0180
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0180
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0180
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0185
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0185
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0190
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0190
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0190
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0195
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0195
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0195
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0200
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0200
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0200
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0205
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0205
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0205
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0210
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0210
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0215
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0215
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0215
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0220
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0220
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0225
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0225
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0230
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0230
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0230
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0235
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0235
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0235
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0240
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0240
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0240
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0245
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0245
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0250
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0250
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0250
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0255
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0255
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0260
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0260
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0260
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0265
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0265
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0265
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0270
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0270
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0275
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0275
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0275
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0280
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0280
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0280
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0285
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0285
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0290
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0290
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0290
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0295
http://refhub.elsevier.com/S0042-6989(18)30078-6/h0295

	Unsupervised visual discrimination learning of complex stimuli: Accuracy, bias and generalization
	Introduction
	General methods
	Participants
	Stimuli

	Experiment 1. Unsupervised same-different practice with an equal proportions of stimuli is sufficient for discrimination learning and generalization
	Method
	Data processing
	Statistical analysis
	Results
	Sensitivity
	Criterion
	Accuracy
	Response bias
	Exemplar and category specific discrimination learning

	Discussion of experiment 1
	Generalization of learning


	Experiment 2. Unsupervised same-different practice with unequal proportion of same and different stimuli
	Method
	Data processing and statistical analysis
	Results
	Sensitivity
	Criterion
	Accuracy
	Response bias

	Discussion of experiment 2

	General discussion
	Unsupervised training
	Bias
	Specificity of the discrimination learning

	Conclusions
	Acknowledgements
	Supplementary data
	References




