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Abstract

In this article, we study the reconstruction of spatially dependent potentials
in n coupled hyperbolic equations in cascade from n — 1 components of
the solution of the system. More precisely, we prove local uniqueness and
Lipschitz stability for this inverse problem. The main tool is a Carleman
estimate for a cascade system with missing observations.

Keywords: inverse problem, Carleman estimates, potential reconstruction,
cascade hyperbolic systems

1. Introduction

1.1. General setting

Let 2 be a smooth open set in R? with boundary 02, d > 1 and T > 0. Let us consider the
following coupled hyperbolic system in cascade:

Ouy + qiuy = ayuy + g1, inQ x (0,7),

Uuy + qour = arus + g2, inQ x (0,7),

Oup—y + gn—1Un—1 = Ap—1Up + gn—1, in 2 x (O’ T)’ (1.1)
Ou, + guity, = gns inQ x (0,7),

8fuj(0)=uj’»‘, k=0,1,j=1,...,n, in{,

uy=0,j=1,...,n, on 9 x (0,7).
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Here, [0 := 97 — A is the D’ Alembertian operator, a; are non-zero constants, u; € L*({) are
the initial conditions and g; € L*(f2) are the potentials and g; € L*(2 x (0, T)) are the source
terms, forevery k =0,1land j=1,...,n.

It is well known that if g; € L' (0,T:L*(2)), u? € Hj(£2) and u € *(Q), j=1,....n,
system (1.1) is well posed in the sense of Hadamard (see for instance [35]).

Hyperbolic and parabolic systems play an important role in biological, chemical, engineer-
ing, mechanical and medical applications. Nevertheless, some components of such models are
not accessible in practice. Motivated for this kind of limitations, some natural questions arise:
can we observe such systems from incomplete measurements? Can we retrieve information of
the inaccessible components of such systems from information of the accesible ones? These
questions has been studied recently by several authors for different kind of PDE models, see
for instance [1, 5, 15] and the bibliographic discusion below.

In this paper, we are interested in the following inverse problem:

1.1.1. Inverse problem. Is it possible to retrieve the potentials gy, . . ., g, in system (1.1) from
incomplete data, that is to say, from a reduced number of measurements of the solution?

In particular, we are interested in the stability of the potentials in terms of the observations
of the solution of system (1.1) when the last component is missing.

1.2. Literature

Bukhgeim and Klibanov dealt for the first time with uniqueness issues in inverse problems
for the wave equation in [32] using local Carleman estimates. Then, the first results about the
stability of inverse problems for hyperbolic equations were obtained using local Carleman
estimates (see e.g. [11, 13, 26, 29, 30, 38]). Concerning other inverse problems for the wave
equation with a single observation, we refer to [8, 27, 28, 33] and the references therein. In
these articles, the authors consider the case of interior or Dirichlet boundary data observation
satisfying geometric conditions and they use global Carleman estimates. We refer to [10, 12]
for logarithmic stability results when no geometric condition is fulfilled. Let us also mention
the work [31] where the authors proved the uniqueness of the inverse problem of recovering
a spatial component of the source term of the wave equation from the final observation data.

However, to the best of our knowledge, there exist few works concerning inverse problems
for coupled parabolic or hyperbolic systems with incomplete measurements of their comp-
onents. In the recent work [5], the authors study the reconstruction of the spatial distribution
of external forces only from data of one component of a 2 coupled hyperbolic system in cas-
cade. The proof is based on an observability property of such system, following the approach
of [37].

Similar inverse problems for linear and semilinear parabolic systems like reaction-diffu-
sion systems has been studied in [14, 15, 18-20]. In these articles, the authors deal with iden-
tification and stability of the inverse problem of recovering parameters and initial conditions
of such systems from a finite number of measurements of one component using appropriate
Carleman estimates for parabolic equations.

Furthermore, hyperbolic—parabolic systems are considered in [24] with different kinds of
observations. Another relevant work is [25] for the Stokes system, where the authors give a
reconstruction algorithm for a source of the form F(x, ) = f(x)o(¢) from incomplete velocity
measurements.

Exact controllability properties of hyperbolic systems with a reduced number of controls
has been extensively studied and there exist many works published on this topic. In [1], a
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strategy called two-level energy method is developed to prove positive results in the case of
wave-type systems (see also [2, 3, 6], and the references therein). Moreover these results allow
to deduce null-controllability results for the heat or the Schrodinger equations satisfying the
geometric control condition using the transmutation method.

Furthermore, the literature is also very rich in controllability results for coupled parabolic
systems with a reduced numbers of controls in the one or multidimensional setting. We refer
to the survey article [7, 23], and the references therein.

Coupled systems are also connected with insensitizing control problems, notion introduced
by Lions in [34]. Indeed, these problems are equivalent to the null-controllability of a cascade
system. We reference to [21, 36, 4] for some results about this subject in the case of wave-type
equations, [16, 17, 22] in the case of parabolic equations and systems.

1.3. Main result

In this article, we will give a Lipschitz stability result for system (1.1) stated in the introduc-
tion, from observations in all the components of the system except the last one.

We shall assume some geometrical and time conditions which are classical in the context
of control and inverse problems for hyperbolic equations. Let Xo & €2, Ty C Q and T > 0
such that:

o Geometric condition:
{x€9Q; (x —x0) -v(x) 20} C Ty C N (1.2)

e Time condition:

sup |x — xo| < /BT, forsome S € (0,1). (1.3)
XEQ

Now, we define the admissible set of the unknown potentials. For a positive number m, set
LZ,(Q) = {p € L=(Q); |pllL~(o) < m}.
Let us state the main result of this article:

Theorem 1. Suppose that o C 952, T > 0 and xo ¢ Q satisfy the geometric and time con-
ditions (1.2) and (1.3). Let w C § such that I'y C 0w N O Let (uy, ..., u,) and (i, ..., iy,)

be the solutions of the system (1.1) associated to the potentials q, . ..,q, € L%"m(Q) and
qi,--->qn € L%Om(Q), respectively, with m > 0. Assume that there exists a constant ¢ > 0 such
that

15 (0)| 72y = ¢ Vi=1,2,....n. (1.4)

Furthermore, suppose that

w, ity € H*(0, T; H*(Q) NH(Q)NL®(), j=1,....n,
Un—1,ly—1 € H*0,T; H*(Q) N H(Q) N L>(Q)).

Then, there exists a constant C = C(f3,¢, T,Q, w) such that
n n—2
Z gy = @ll72 0 < CZ 1 = 117 0 722 () F Clltn—1 = Bn1 |3 0,122 (0)) -
! - (15)
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Remark 1. Let us emphasize that inequality (1.5) establishes the Lipschitz stability of the
hyperbolic system (1.1) with incomplete measurements in the sense that u, is missing. Moreo-
ver, notice that the estimate (1.5) does not depend on the observations of the gradients.

Remark 2. Theorem 1 is also valid if we suppose that the coupling coefficients a; are not

constants satisfying
aj(x) 2¢>0, ind,

where w’ C €2 such that Ty C w’ and w’ Nw # (. In other words, the inequality (1.5) holds
if the coupled and the observations regions of each components meet.

The main tool of the proof of theorem 1 is a Carleman estimate for a hyperbolic system
in cascade where we do not have access to the observations associated to the last component.
This inequality depends on a suitable Carleman estimate for the scalar wave equation in the
spirit of the work of Imanuvilov and Yamamoto [27] (see also [9]).

14. Plan of the paper

We conclude this section by giving the outline of the rest of the paper. Section 2 is devoted
to the proof of a new Carleman inequality for a system of wave equations in cascade with
observations in all their components except the last one. In section 3, we prove theorem 1 by
applying the corresponding Carleman estimate proved in the previous section. Finally, we
conclude with some comments in section 4.

2. Carleman estimates

2.1. Technical results

The goal of this section is to prove a Carleman estimate for a system of wave equations in
cascade. In order to do that, our starting point is a suitable Carleman estimate for the scalar
wave equation. But first, we will give a technical

Lemma 1. Let z € L*(—T,T;H)(Y)) be a function such that Oz + pz € L*(2 x (=T, T)),
0,7 € X002 x (=T,T)) and z(£T) = 0 in , with p € L>(R). Let v € R. Let wy,w, C
be two open sets such that w; C wy.

(a) If p € C'([=T,T] x Q), then there exists a constant C > 0 such that

T T T
/ / e>?|Vz|2dxdr <Cs™ax127} / / e¥?|z?dxds 4+ C / / %% |9,z|*dxdr
—T Jw; —T Jw, =T Jwy

T
+Cs™7 / / e*?|0z + pz|*dxd,
—T Jw;
: 2.1)

foralls > 1. B
(b) If the function $ € C' ([T, T]; C*(Q)) satisfies

inf V@) =2 co >0, Vte[-T,T],
x€Q
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then, there exist two positive constants C and sy independent of s such that

/ / %72 dxdr + / / %0,z dxdr
wi wq

< Csmax{0y -2} / / e*?|Vz|*dxdz + Cs™ / / e®?|0z + pz|*dxds, (2.2)
wy =T Jw,

forall s > s
Remark 3. The principal significance of part (a) on lemma 1 is that it allows to drop the
local term of the gradient. This fact plays an important role in some steps of the proof of the

Carleman estimate for the wave system in cascade in section 2.2.

Proof of lemma 1. Let us consider a function £ € C*°(2, R) such that

0<¢éEK], inQ,
E=1, in wi,
£=0, inQ\ @;.

Additionally, we suppose that ¢ has the form ¢ = e? in w, \ @, for some smooth function
¢. We have the following identity:

T
/ / e*PE20%zdxdr — / / e?P ez Azdxdr + / / e¥Pep|z|*drdr = / / e¥?¢2(0z + pz)dxdr.
w2 w2 w2 —T Jwsy

2.3)

Integration by parts yields

T
/ / e¥PEz0%zdxdr = —2s / / e¥?0,pEz0,zdxdt — / / e»%¢£|0,z)?dxdr, 2.4)
w) w T Jw

and

T T
— / / e¥P¢zAzdxdt = 25 / / e¥PEzV - Vzdxdr
—T Jwy =T Jw,
T T
+/ / ezs“’zV&VzdxdtJr/ / 625“”§|Vz|2dxdt. (2.5)
—T Jwy =T Jw,

Substituting (2.4) and (2.5) into (2.3), we have

T
/ /ezwavzﬁdxdz
—T Jwy
T T ~ T -
=2s / / e¥¥£0,(z0,zdxdr + / / e*?¢|0,z|*dxdr + / / e®?¢p|z|*dxdt
—T Jw, —T Jw; =T Jws

T T T

+ / / e*?¢z(0z + pz)dxdr — 25 / / e®PEzVp - Vzdrdr — / / e¥PzVE - Vzdxdt
—T Jw, —T Jw, —T Jw,y

=Ji+ /s (2.6)
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Here, J; is the sum of the first four terms of (2.6) and J; is the sum of the fifth and sixth terms
of the same equation. Straightforward computations show that

T
5 1
\11|<2H€||L°°<wz)/ / ez”’l&z\zdxdwgs‘”/
—T Jw,

T

/ e*?|0z + pz|*dxdr
—T Jwy

- 3 T .
(1001 ey + 36l + [Pl ) el [ [ 9Para,
2.7

and

. 3 T
2| < (3||V80H%w(wzx(_r,r))sz + Z\|V¢||Loo(wz\w7)) €11 () /T/ **?z|*dxdr

2 ! 25p 2
+= e>7¢|Vz|2dxdr.
3 —T Jw;

Combining (2.7), (2.8) with (2.6) we obtain (2.1), which completes the part (a) of lemma 1.
The rest of the proof runs as before but additionally we have to estimate the local term IzI> by
using the weighted Poincaré inequality (see [8], lemma 2.4). O

2.8)

Now, we introduce the classical Carleman weights for the scalar wave equation. Suppose
that Ty, xp and T > 0 satisfy the Geometric and Time condition (1.2) and (1.3). Let 5 € (0, T).
For (x,1) € Q x (=T, T), we define the following functions:

P(x, 1) = |x —xo|* — B + Co,  @(x,1) = e, (2.9)

where A > 0 and Cj > 0 is chosen such that ¢) > 0 (and therefore ¢ > 1) in Q x (=T, T).
For brevity, we shall use the following notation

I(0,0,9) =5° / 0 (2[o(0) + [90(0) + [Vo(0)) dx
Q

T
+ s>t / / e*? (s*[o]* + [00* + | Vo) dxdt.
-rJa

In the remainder of this section, C denotes a generic positive constant which depends at
least on I'y, T and xy and may change from line to line.

Proposition 1.  Assume that Ty, T and x, satisfy the Geometric condition and Time condi-
tion (1.2) and (1.3) and let p € L%"m(Q) with m > 0. Let us consider the Carleman weight
functions defined in (2.9). Let wy C Q be an open subset such that To C Owy N 0. Then,
there exist two positive constants C; = Cy(Lo, T, xp, w2) and sy = so(Lo, T, x,w>) independ-
ent of s such that for all s > sy, we have

T

/ e®? (s*|v]* + |9,0]*) dxdt,
T Jwy
(2.10)

T
1(0,0,9) gcl/ /ezs“"\Dv+pv\2dxdt+ Cls/
—-TJQ

forallv € L*(—T,T; H{(Q)) such that Ov + po € L*(Q x (=T, T)), d,v € L2(0Q x (—-T.T))
and v(£T) = Oo(£T) = 0in QL
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Remark 4. In contrast to the theorem 2.5 in [8] in the case of the Carleman estimate of
the scalar wave equation with a single boundary observation, we emphasize that proposition
1 requires the assumptions z(£7T) = 0,z(£T) = 0 in 2. This point becomes important if we
want to eliminate more components in the inequality (1.5) of theorem 1.

Let us point out that the proof of the proposition 1 is straightforward and many of the ingre-
dients of the proof are already available in the literature (see for instance [9, 27]). Nevertheless,
for our purposes, it is convenient to write the Carleman estimate for wave equation under the
form of proposition 1. For the sake of completeness, we will give the proof of this result.

Proof of proposition 1. Fors > 1, let us define

E\(1) = % /Q &0 (|90(0)F + Vo)) dv, Vi e (T.7).

Differentiation with respect to ¢ and integration by parts in space yields

dj‘ (1) =s / W a0(t) (100(1)* + [Vo(r)]?) dx + / e?* 0 d0(r) Do (r)dx
Q Q

gy / 2090 Vo(t) - Vo(t)dy, Vi € (=T, T).
Q

After integration on (—7',0) in time we obtain

0 0
E(0) =s / / e*?0yp (|00* + |Vo|*) dxdr + / / e*?9,00vdxdt
—TJQ —TJQ

0
—2s / / e*?0,0Vv - Vddt,
-TJQ

where we have used v(—T) = d,v(—T) =0 in . Applying Young’s inequality and the
weighted Poincaré inequality to v (see [8], Lemma 2.4) we obtain

/ 2¢O (2[0(0) + [9,0(0) + |Vo(0)2) dx
Q

T T
<Cs/ / e™? (s*[v]* + |90* + |Vo[?) dxdt + C/ / e¥?|0v + po|dxds, Vs > s.
—TJQ —-TJQ
2.11)

On the other hand, let us recall the classical Carleman estimate for the wave equation with
A =)o fixed applied to v:

T T T
s/ / > (s*[0)? + |00 + |Vo|*)dxdr < C/ /ezs“’“:lv + po|Pdxdt + Cs/ / e*?9,v|*dodr.
-rJa -rJa —1.J1, 2.12)

Let us consider an open subset wj C wy such that w)) C w and dw) N I C dwy N .
Consider the function n € C* (£, R) satisfying
0<n<l, in €,
n=1, in \wi('),
n=0,mn=0, only.
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Replacing v by 1o in (2.12), we have

T
s/ /elw (s*[0]* + |00 + |Vv|*) dxds
—-TJQ
T T
gc/ /eZW\Dv +pv|2dxdt+C/ /em ([of* + [Vo|*) dxds
—_TtJQ —-TJQ
T
+s/ /ezw (s*[0]* + |00)* + |Vu|*) dxdt, (2.13)
=T Jwj

where we have used that ((nv) = nCv — Anv — 2V - Vo in Q x (=T,T) and Vi =0 in
Q \ @y. Notice that the second term of the right-hand side of (2.13) can be absorbed taking s
large enough. Finally, combining the previous estimate obtained with (2.11) and applying the
estimate (2.1) with ¢ = ¢, w; = wy), w2 = wp and ¥ = 1, the proof of (2.10) is complete. []

2.2. A new Carleman estimate for a hyperbolic system

The aim of this section is to prove a Carleman estimate for a wave-type system with potentials.
In order to formulate our result, let us consider the following system:

Ooy + rioy = vy + hy, in ) x (—T, T),

Loy + v, = v3 + hy, in Q) x (—T, T),

Hop—1 + 1ri—10p—1 = 0, + hp—_q, in Q x (—T, T), (2.14)
Ov,, + r,0, = hy, inQx (=T,T),

852)](:|ZT)ZO, k=0,1,j=1,...,n, inQ,

v;,=0,j=1,...,n, on Q) x (=T,T).

Here, r; € L>°(f2) are the potentials and h; € L*(Q x (=T, T)) are the source terms, for
each j=1,...,n.

Now, we are in position to state the Carleman estimate for system (2.14), which is one of
the main results of this article:

Theorem 2.  Let us consider the Carleman weights defined in (2.9), where I'y C 082, T > 0
and xo & € satisfy the geometric and time conditions (1.2) and (1.3). For m > 0, suppose that
rj € L%"m(Q), j=1,...,n andletw C Qbeanopen set such that Ty C dw N IQ. In addition,
consider h; € L*(Q x (=T, T)) for each j=1,...,n—2 and h,_y,h, € H' (=T, T;L*(2))
such that

v, € H' (-T,T;H*(Q)NH)(Q), j=1,....n,
Vg1 € H* (=T, T; H*(2) N H)(2)).

Furthermore, we choose 1 < o <2. Then, there exist two constants C, = C,
(T, Qw, T,x0) > 0 and so = s0(Ly, Q,w, T, xo) independent of s such that for all s > so, the
solution (vy, . ..,v,) of system (2.14) satisfies
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n—1

> (e, 9,Q) +1(0,0,,Q)

j=1
+IZ/ / 2 (2 [v;* + |00;]*) dxdt + Cos® Z/ / % |h;|*dxdr

+ C2S3/ / e (S’ |vu—1|* + 57001 |* + 0701 |*) dxdt
—TJw

T
o [ (s 510+ 0) (2.15)
—-TJQ

Remark 5. We emphasize that the Carleman estimate (2.15) depends only on 4, and 0,h,
in the last component.

Eoof of theorem 2. Let w; and w; be two subsets of w be two open sets such that
I'g C Ow; N 0N foreach j = 1,2 and Wy C w; and @, C w.

We start applying the Carleman inequality of proposition 1 to vy,...,7, in system (2.14)
with wy = w;. We have:

n—1

Z I, v}, Q) +1(0,0,,9)

j=1

n T n—1 T T
<Cs™ /T/Qe2‘w|vj|2dxdt+Cs"‘§ j/T/QeZW\thddec/T/Qezwhnﬁdxdr
= /- = /- _

T
““Z/ / e¥?(s’|oy* + [0, )dxdt+Cs/ /em(sz\vn|2+|a,vn\2)dxdt.
—T Jw

Note that the first term of the right-hand side of the inequality above can be absorbed by
taking s large enough since | < a < 2. Therefore, we can rewrite this inequality as follows:

n—1
Zl a,0;, Q) +1(0,0,,82)
j=1
<Cs® Z/ / e??|h; \2dxdz+c/ / ®®|h,|*dxdr
a+lZ/ / 26 (2[0;? + Oy, )dxdt+Cs/

-T

T
/ % (2 [0al? + 10,04]%) drd.
wi

(2.16)

Now we are going to estimate the local term of v, and 0,v, in (2.16). To do this, we con-
sider a cut-off function & € C*° (€2, R) such that
0<éE<K1T inQ,
E=1 in wy,
£E=0 in Q\ ws.
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Using the equation of U,—1 in (2.14), we see that:

T T
5 / / e®¥¢|v, | dxdt =57 / / e*?€0, (O0y—1 + Fy—10p—1) dxdt
—T Jwy —T Jwy

T
-5 / / ¥ €v,h,_dxdt. (2.17)
—T Jwy

Let us estimate each term of the equation above. First, by Young’s inequality for every
d > 0, there exists a constant C = C(4) such that

T T T
$ / / e>Eh,_ v,dxdt < 0s° / / e*#|v,|?dxdr + Cs® / / e |, [*dxdr.
—T Jwy =T Jwy —T Jwy
(2.18)

On the other hand, integration by parts yields

T
52 / / e»¥ 0%, v,dxdr
—T Jwy

T .
=5 / / X (45| 0rp|? 4 250%0)v,_10,dxdr + 45 /
—T Jw,

=T

T
+5° / / e*?€0,_10%v,dxdt, (2.19)
—T Jwy

T

/ ez‘“"ﬁ 01U, 10,0, dxdt

and

T
—s / / eXPEAU,_ v,dxdr
—T Jw;

T
=2s* / / e®EV e (0,VU,_1 — U, V0,) dxdf + s° /
—T Jw,

-T

T
/ e®°VE (0,V, | — U,_1Vv,) dxdt
w2

T
-5 / / e¥¥€v,_ Av,dxdr. (2.20)
—T Jw;

By (2.19) and (2.20) Uv,, + r,,0, = h,, we have
T
SS / / ez‘wﬁvn (‘:’vnfl + rnflvnfl) dxdr
—T Jw,
T
<C/ / e (2 |hp—1|* + |ha|*) dxdt
—T Jw,

T
+Cs° / / P& (s*[va—1* + |00n—1* + |VUu—1]?) dxdt + 61(0,v,, w2),
—T Jwy
(2.21)

for every § > 0, where we have used the Young inequality. Moreover, by part (a) of lemma 1
applied to Uy—1, wy, and w with v = 3 one has

10
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T T
s5/ / e*?|V,_ [*dxds <cs2/ /ez“” ([oa* + |hp—1]*) dxdt
wy w

T

T
e / / % (Y0012 + 10,001 [2) drdr. (2.22)
—T Jw

Substituting (2.22) into (2.21) and substituting the obtained estimate into (2.18), we con-
clude that

T
s / / e*?|v, | dxds
—T Jw;

T
<C/ /eZW (8 |hn—1]* + |1a|*) dxdt
—TJw
T T
+ st / / e®?|v,_1|*dxdr + Cs° / / ? |00, |2dxdt + 61(0, v, w), (2.23)
TJw —TJw

for every 6 > 0, where we have included the integral term of |v,|> which has in front s> in

01(0,v,,w) by taking s large enough. In the same manner, we can estimate the local term of
0,v, as follows:

T T
s/ / |00, | *dxdt <C/ / ™% (5[0hn—1|” + |0rha|*) dxds
—T Jw; -TJQ

T
4 cs / / 5% (50,01 + |02001[2) didt + 61(0, 0y ).
—T Jw
’ (2.24)

Finally, by substituting (2.23) and (2.24) into (2.16), by taking the Carleman parameter
s > 1 large enough and by choosing § > 0 sufficiently small, we obtain

n—1
> (0,9, 9) +1(0,0,, Q)

j=1
n—2 T T
ngaZ/ /ezw|hj\2dxdt+C/ /ehtp (S3|h,,,1|2+ ‘hn|2) dxdr
= _rJo —-TJQ
T
+C [ ] & (o + ) as
—-TJQ
n—2 T
+Csa+12/ /ezw (*[o]* + |8,v5]*) ddr
=1 T Jw

T
+ Cs3/ / ™% (8°[0g1|* + 5°[00a—1 [* + 07041 |?) dxdt,
—TJw

which completes the proof of theorem 2. O

1
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3. Proof of theorem 1

The plan of the proof of theorem 1 contains three parts:

Step 1 In the same spirit of the Bukhgeim—Klibanov method, we rewrite appropriately
system (1.1) to apply the estimate (2.15) in theorem 2.

Step 2 After applying the Carleman estimate of theorem 2 to the new system, we estimate
the residual and source terms.

Step 3 We conclude the proof gathering the estimates of the previous steps and eliminating
the small order terms.

e Step 1: Setting
For each j=1,...,n, let us denote by y; = u; — u;, p; = q;, fj = q; — ¢; and R; = u;.

Then, following this notation, yi,...,y, solves:
Uyi +piy1 = y2 + iRy, inQ x (0,7),
Oyz + p2y2 = y2 + foRa, inQ x (0,7),
Oyu—1 + Pa1Yn—1 = Yn + fom1Ra—1,  in Q2 x (0,7), (3.1
Oy, + pryn = fuRn, inQ x (0,7),
6lky(0)=0,k:0,1,j:1,...,n, in €,
yi=0,j=1,...,n on 9 x (0,7).
For each j=1,...,n, we set w; = fyj. Then, the new variables solve the following
system:
Owy + piwi = wa + fi0Ry, inQ % (0,7),
Ows + pawy = w3 + H07R,, inQ x (0,7),
Own1 + Pn—1Wn—1 = Wy +fn—1812Rn—l, in Q x (0, T), (3.2
Owy + puwn = f,07Ry, inQ x (0,7),
Okw;(0) = f0FR;(0), k=0,1, j=1,...,n, inQ,
wi=0,j=1,...,n, on 9N x (0,7).

Now, we want to apply theorem 2 to a suitable system. In order to do that, we extend
system (3.2) in an even way, setting w;(x, 1) = w;(x, —1) for all (x,7) € Q x (—T,0). We
also extend the functions R;, ,R; and §7R; in an even way and keep the same notations for
the new system.

To be able to apply the Carleman estimate (2.15), the functions w; must satisfy
OFw(£T) =0 in Q, for k = 0, 1. However, this condition does not hold. To avoid this
difficulty, we consider a cut-off function § € C°((—T,T), R) defined as follows:

0<6<1, in(-T,7),
0=1, in(=T+7,T—1).

12
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According to the definition of 6, it is clear that z; = 6w;, for j=1,...,n, solves
Uzi +p1z1 = 22+ F1, inQx (-T,T),
Uz +pazo = 23 + Fa, inQx (=7T,7T),
Danl +pn—1Zn71 = Zn + an], in Q X (—T, T), (33)
Uzn + puzn = Fy, inQ x (-T,7),
0kz(0) = f,OFR(0), k=0,1, j=1,....,n, inQ,
7 (£T) =0, k=0,1,2, j=1,...,n,  inQ,
z7=0,j=1,...,n, on 9Q x (=T,T).

Here, the functions Fj are defined by
Fi = 9]38,2R, 4+ 8,29w, =+ 28,98,wj, in  x (—T, T),

foreach j=1,...,n.

e Step 2: Applying Carleman estimate for hyperbolic systems
In this step, we denote by C a generic positive constant which depends at least of
Iy, m, T,w and xo and may change from line to line.
Applying the Carleman estimate of theorem 2 to the system (3.3) with v; = z;, r; = p; and
hj = Fj, we see that

> (002, Q) +1(0,2,.2)

n—2 T T
<CsZ/ /eZW|F,-|2dxdt+c/ /e%@ (S*|Fuct|* + |Fal?) dxdt
= J-re -rJQ

T
+c/ /ezw (S|0:Fu—1|* + |OF,|*) dxdt (34)
-rJo
n—2 T
Cs*t! Z/ / e (s?|z]* + |91zj|*) dxdt
j:1 -T wy

T
3 / / e2s¥ (s5|zn_1 \2 + s3|8,z,,_1 |2 + \3lzzn_1 |2) dxdzr.
—-T wy

Note that the assumption (1.4) implies

c<|R(O) Vji=1,2,....n

Then, the following estimate holds:

o [ @ OlgPax< [ @ OlROPL= [ @O0 Gs)
Q Q Q

Hence, summing (3.5) over j, we deduce that
! Z @g) +L1(0.5,) > 572 Z / #0| a5t [ O P

Now we estimate the global terms of F; and its derivatives, for each j=1,...,n. By
definition,

13
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T T T
/ / e™?|Fj|*dxdr <2 / / e |0f,07R;|*dxdt + 2 / / e*?120,00,w; + 0} Ow;|*dxdt
—-TJQ —-TJQ —TJQ
T
<C / O fi2dx + 2 / / % |20,00,w; + O20w;|2dxdt. (3.6)
Q —-TJQ

Now, we focus our attention on estimating the global term of 29,08,w; + 8?6w;, for
j=1,...,n.Notice that if the Time condition (1.3) holds, the Carleman weight ¢ defined
in (2.9) satisfies

Y(x, +T) = |x — xo[* — BT* 4+ Cp < Cp,  in QL.
Then, we choose 7 > 0 such that

Y(x, 1) < Cy, mQAx(-T,-T+7|U[T—71,T)]),
and therefore,

P(x,1) = 0 < MED = (x,0), InQx ([-T,-T+7|U[T —7,T]).

Since the derivatives of @ vanish in [-7 + 7, T — 7] we see that

T
/ / e?120,00,w; + 92 0w;|*dxdt
—TJQ

—T+T T 25eXCo ) 5
<C (/ +/ )e 5 / (|0w;]* + |w;I?) dxdr.
—-T T—1 Q

Now, we will estimate the last term of the above inequality. To do this, we will use the
following energy estimates of (3.2):

[ 1aasopac+ [ [wwoPac<c [0k c [ ma@Pa we 1)
Q Q Q Q
foreach j=1,...,nand

/|8twn(t)|2dx+/ |Vw,,(t)|2dx<C/ \fl2dx, V1 € (~T, 7).
Q Q Q

where have used that R; € H*(—T,T;L>(f)) for each j=1,...,n. Integrating on
(=T,—T + 1)U (T — 7,T) the estimate above and using the Poincaré inequality to w;,
we see that:

—T47 T . o T
(/ +/ ) ezseA 0 / (‘ath|2 + |Wj‘2) dxdr < / 62s¢(0)|‘fj‘2dx+ CeseA 0 / / |Wj+1 \2dxdt,
-T T—1 Q Q -TJQ

for each j = 1,...,n — 1. Furthermore, due to the structure in cascade of system (3.3),
we obtain

T u -
[ [ @tfaa< o Y [ ppac< e Y [ @90 pras

i=j+1 i=j+1

foreach j =2,...,n — 1. Therefore, for every j = 1,...,n, we deduce that

T n
/ / e*?(20,00,w; + 0 6w,[*dxdr < C Y / e O] fi*dx. (3.7)
-TJQ = 7

=j

14
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Substituting (3.7) in (3.6), we see that
n—2 T T
saz/ /ez“"|Fj|2dxdt+/ /em (53| Fuet|* + |Fu?) dxdr
j=1 —-TJQ —_TJQ

n—2
< Cs® Z/ ezx“"(o)|ﬁ|2dx+ C/ e?#(0) (53|fn—l *+ |fn\2) dx. (3.8)
/e Q

In the same manner we can see that

/ / ZWJ S|az n— l‘ +‘8;F| dth / / 2“9 s|f” l|2+|f”| )dth

(3.9
Thus, substituting (3.8) and (3.9) into (3.4), and taking s large enough, we have
n—1
Sor‘rZZ/ eZS@(O)‘f]‘_lde_’_sZ/ |fn|2dx
= Ve Q
a+1 Z/ / 2s¢ Z‘ZJ|2+ |8[ZJ| )dxdt
s3/ / e®? (8 |za—1* + 5°|Oizn—1]* + |07 201 *) dxdr. (.10)
—-T w2

e Step 3: Last arrangements and conclusion

From (3.10), we fix the parameter s and put it into the constant C:

n n T
Z/ | fi|Pdx <CZ/ / e??(|z* + |91zj]*)dxdt
=170 j=17 T we

T
+c/ /(|zn_1|2+|8,zn_1|2+|8,2zn_1|2) dudr,
—TJw

where we have used that the Carleman weights defined in (2.9) are bounded. Moreover,
by definition of each z; we see that
n—1

Z ||ﬁ||i2(9) < CZ ”yjH%P(—T,T;LZ(oJ)) + ||y"||12L14(—T,T;L2(w))' (3.1D)
— =

Finally, replacing f; = ¢q; — g; and y; = u; — u; by (3.11) for each j = 1,...,n, we con-
clude the proof of theorem 1.

U
4. Conclusions and further comments
In this article we proved Lipschitz stability result for the reconstruction of the spatially depen-

dent potentials in n coupled hyperbolic system in cascade from n—1 components of the solu-
tion of the system using suitable global Carleman estimates for a cascade system with missing
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observations. Let us conclude with some comments and possible extensions of the present
results.

First of all, concerning the special structure of the cascade system we considered in this
study, notice that in (3.7), the source terms f;,...,f, arise in the estimate of Fj, for each
j=1,...,n, because of the cascade structure of system (1.1) and the Carleman estimate
of proposition 1, see also remark 4. This is the main difficulty to recover the potentials
(g1, - - -»qn) with less components of (1.1). Then, the stability of the inverse problem treated
in this article with two or more inaccesible components is open.

Regarding relationships of the present work with controllability, let us notice that in the
particular case of ;=0 for each j=1,...,n in (2.15) and under strong assumptions on
the regularity of the solutions of (2.14), one can obtain a Carleman inequality of (2.14) with
internal measurements of the first component of the system. To be more precise, for each
Jj=1,...,n, we define «; such that

aj+1+1<aj<aj+1+2, j=1,...,n—1,
a, = 0.

Then, there exist two constants C = C(Q,w, T, xp) > 0and sy > 1 such that for all s > s, the
following inequality holds:

2)1— 1

n T
Z[(O[j,vj) < CZsﬂf/ / %10 v, |*dxdt,
=1 j=0 o

T

for each solution of system (2.14) and for some positive constants /3;, j = 0,...,2"~!. In princi-
ple, this would allow to construct a control that would require stronger regularity assumptions.
Finally, let us remark that a slight change in the proof of proposition 1 shows that

T T
1(0,0,Q) < G, / / e”?|0v + po|*dxds + Cys / / e | Vol dxdt,
-TJQ —T Jw,
’ 4.1)
forallo € L*(—T,T; H}(Q))suchthatOov + pv € L*(Q x (=T, T)),0,v € L*(0Q x (~T,T))
and v(£7T) = 0 in Q. The main ingredient of the proof are the part b) of lemma 1 and the

weighted Poincaré inequality (see [8]). Under that form, estimate (4.1) can be used in the
study of wave systems with first order coupling terms.
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