
Science of Computer Programming 161 (2018) 34–56
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Reducing resource consumption of expandable collections:

The Pharo case

Alexandre Bergel a,∗, Alejandro Infante a, Sergio Maass a,
Juan Pablo Sandoval Alcocer a,b

a Pleiad Lab, DCC, University of Chile, Chile
b Universidad Mayor de San Simón, Bolivia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2017
Received in revised form 11 December 2017
Accepted 19 December 2017
Available online 8 January 2018

Keywords:
Collection
Pharo
Lua
Profiling
Experiment

Expandable collections are collections whose size may vary as elements are added
and removed. Hash maps and ordered collections are popular expandable collections.
Expandable collection classes offer an easy-to-use API, however this apparent simplicity
is accompanied by a significant amount of wasted resources.
We describe some improvements of the collection library to reduce the amount of waste
associated with collection expansions. We have designed two new collection libraries
for the Pharo programming language that exhibit better resource management than the
standard library. We improved the Pharo collection library using two complementary
perspectives.
First, across a basket of 5 applications, our optimized collection library significantly reduces
the memory footprint of the collections: (i) the amount of intermediary internal array
storage by 73%, (ii) the number of allocated bytes by 67% and (iii) the number of unused
bytes by 72%. This reduction of memory is accompanied by a speedup of about 3% for most
of our benchmarks.
Second, we looked for an alternative to the classical expandable collection. The Lua
programming language offers a unique abstract data type called table. We designed,
implemented, and introduced this data type in the Pharo programming language and
we ran a number of micro and macro-benchmarks. Overall, replacing the standard Pharo
collection library by one inspired on Lua’s table data type results in an execution speedup
of up to 15% and a reduction of the memory consumption by up to 19%.
We analyzed the collection implementations of Java, C#, Scala, and Ruby: these imple-
mentations largely behave like Pharo’s, therefore with the same limitations. Our results are
thus likely to benefit designers of future programming languages and collection libraries.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Creating and manipulating any arbitrary group of values is largely supported by today’s programming languages and
runtimes [1]. A programming environment typically offers a collection library that supports a large range of variations in
the way collections of values are handled and manipulated. Collections exhibit a wide range of features [1–3], including

* Corresponding author.
E-mail address: abergel@dcc.uchile.cl (A. Bergel).
https://doi.org/10.1016/j.scico.2017.12.009
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2017.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:abergel@dcc.uchile.cl
https://doi.org/10.1016/j.scico.2017.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.12.009&domain=pdf

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 35
being expandable or not. An expandable collection is a collection whose size may vary as elements are added and removed.
Expandable collections are highly popular among practitioners and have been the topic of a number of studies [4–7].

Expandable collections are typically implemented by wrapping a fixed-sized array. An operation on the collection is then
translated into primitive operations on the array, such as copying the array, replacing the array with a larger one, inserting
or removing a value at a given index.

Unfortunately, the simplicity of using expandable collections is counter-balanced by resource consumption when not
adequately employed [4,5,8]. Consider the case of a simple ordered collection (e.g., ArrayList in Java and OrderedCollection in
Pharo). Using the default constructor, the collection is created empty with an initial capacity of 10 elements. The 11th
element added to it triggers an expansion of the collection by doubling its capacity. This brief description summarizes the
behavior of most of the expandable collections in Java, C#, Scala, Ruby, and Pharo.

We have empirically determined that in Pharo a large portion of collections created by applications are empty. As a
consequence, their internal arrays are simply unused. Moreover, only a portion of the internal array is used. After adding
11 elements to an ordered collection, 9 of the 20 slot arrays are left unused. Situations such as this one scale up as soon as
millions of collections are involved in a computation.

We have selected the Pharo programming language for our study. Pharo1 is an object-oriented dynamically typed pro-
gramming language which offers a large and rich collection library [9]. Pharo is syntactically close to Ruby and Objective-C.
Conducting our experiment in Pharo has a number of benefits. Firstly, Pharo offers an expressive reflective API which greatly
reduces the engineering effort necessary to modify and replace the collection library. Secondly, the open source commu-
nity that supports Pharo is friendly and is looking for contributions for improvement, which means that our results are to
have a measurable impact across Pharo developers. In principle, our technique may be implemented in an highly optimized
environment such as Java or .Net. However, we avoided a statically typed language for two reasons: (i) the runtime and
the JIT depend on the Collection library,2 as such our measurements would measure the implementation of the JIT, which
would radically change the focus of the article; (ii) it is unclear whether Lua’s tables may be implemented in a statically
typed language (again, studying this question would change the focus on the present article). Appendix A briefly presents
the syntax of Pharo.

This article is about measuring wasted resources in Pharo (memory and execution time) due to expandable collections.
Improvements are then deduced and we measure their impact. We made two improvements to the Pharo collection library.

We improve first the way Pharo collection classes behave by using popular techniques: lazy object creation and recycling
objects in a pool of frequently created objects. This article carefully evaluates the application of these well known techniques
on the collection implementation. The analyses that this article describes focus on the profiling of over 6 million expandable
collections produced by 15 different program executions. Note that our intent is not to prohibit a manual setting of the
expansion strategy. Instead, we provide a simple mechanism to complement existing expandable collections.

Second, we looked for an alternative schema of the classical way expandable collections are implemented. Lua is a
popular programming language that offers tables, a hybrid abstract data type combining features of sequential collections
and dictionaries. We describe tables in Lua and compare their performance with the dictionary and the sequential ordered
collection. Our experiments show that when replacing instances of the standard Pharo classes OrderedCollection and
Dictionary by our implementation of Lua’s tables, the memory allocation due to collections is decreased by up to 19%
when executing long-running benchmarks that make extensive use of collections. It also has an impact on execution time,
which is overall decreased, with a maximal reduction of 15%. Our novelty is about (i) porting tables to a language that
contains a different library framework, (ii) adapting code using the Pharo standard library to use tables, and (iii) measuring
the gain in terms of resource consumption.

The research questions we are pursuing are:

A – How to characterize the use of expandable collections in Pharo? Understanding how expandable collections are used is
highly important in identifying whether or not some resources are wasted. And if this is case, how such waste occurs.

B – Can the overhead associated with expandable collections in Pharo be measured? Assuming the characterization of collection
expansions revealed some waste of resources, measuring such waste is essential to properly benchmark improvements
that are carried out either on the application or the collection library.

C – Can the overhead associated with expandable collections in Pharo be reduced? Assuming that a benchmark to measure
resource waste has been established, this question focuses on whether the resource waste accompanying the use of a
collection library can be reduced without disrupting programmer habits.

Our results show the Pharo collection library can be significantly improved by (i) considering lazy array creation and
recycling those arrays, and (ii) by using hybrid collections (OrderedCollection and Dictionary). The expandable collections of Java,
Scala, Ruby and C# are very similar to those of Pharo, and therefore largely exhibit the same deficiencies, as described in
Section 10. We therefore expect our recommendations to be beneficial to these languages as well.

1 http :/ /www.pharo-project .org.
2 https :/ /stackoverflow.com /questions /33317720 /performance-of-collections-emptylist-and-empty-arraylist-with-jit-compiler.

http://www.pharo-project.org
https://stackoverflow.com/questions/33317720/performance-of-collections-emptylist-and-empty-arraylist-with-jit-compiler

36 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
This article is structured as follows: Section 2 describes the Pharo expandable collections and synthesizes their imple-
mentation. Section 3 describes a benchmark composed of 5 Pharo applications and a list of metrics. Section 4 details the
use of expandable collections in Pharo, both from a static and dynamic point of view. Section 5 details the impact on
our benchmark to have lazy array creation. Section 6 presents a technique to recycle arrays among different collections.
Section 7 describes an approach to find missing collection initialization. Section 8 presents another technique to improve
collections by investigating the use of Lua’s tables in Pharo. Section 9 evaluates implementation of Lua’s tables in Pharo.
Section 10 discusses the case of other languages. Section 11 presents the work related to this article. Section 12 concludes
and presents our future work.

This paper is an extended version of our IWST’14 paper.3 Our IWST submission is not available to any Digital Library
(IEEE or ACM).

2. Pharo’s expandable collections

This section discusses expandable collections from the point of view of Pharo. However, the problematic situations we
present here are found in most expandable collections of other languages (see Section 10 for a detailed comparison).

The collection library is a complex piece of code that exhibits different complex aspects [10]. One of these aspects is
whether a collection created at runtime may be resized during the life time of the collection. We qualify a collection with
a variable size as “expandable”. An expandable collection is typically created empty, to be filled with elements later on. In
Pharo 3.0, the collection library is modeled as a set of 77 classes, with each class being a direct or indirect subclass of the
root Collection class. Out of the 77 classes that compose the Pharo collection library, 34 are expandable. Typical expandable
collections include dictionaries (usually implemented with a hash table), lists, growable arrays in which elements may be
added and removed during program execution. Interestingly, expandable collections in Pharo, C#, Ruby, Java, and Scala are
designed to only expand. Although the internal array may be explicitly trimmed (by using trimToSize() in Java), removing
elements from a collection does not trigger any shrinkage of the internal collection. We therefore only focus on element
addition and not removal.4

Issues with expansions. Expandable collections are remarkable pieces of software: most expandable collections have a
complex semantics hidden behind a simple-to-use interface. Consider the class Dictionary. The class employs sophisticated
hashing tables to balance efficiency and resource consumption. Such complexity is hidden behind what may appear as
trivial operations. The programmer has to simply address what to add or remove from the collection while the collection
implementation takes care of managing the collection’s inner storage accordingly.

Expandable collections commonly used in Pharo employ a fixed-sized array as an internal data structure for storage.
Adding or removing elements from an expandable collection are translated into low-level operations on the internal storage,
typically copying, setting or emptying a particular part of the array storage.

The creation of an expandable collection may be parametrized with an initial capacity. This capacity represents the initial
size of the array’s internal storage. The size of the collection corresponds to the number of elements actually stored in the
collection. Adding elements to a collection increases its size and removing elements decreases it (but does not decrease the
size of the inner storage array). When the size of the expandable collection reaches its capacity or close to it, the capacity
of the collection is increased, leading to an expansion of the collection. A collection-specific threshold ratio size/capacity
drives the collection expansion. The values 0.75 and 1.0 are commonly used thresholds (0.75 for collections operating with
hashtags values and 1.0 for every other collection). These thresholds are used to trigger an expansion based on how much
of the internal array is filled. Consider the class OrderedCollection, a frequently used expandable collection. Adding one element
to an ordered collection of a given capacity c increases its size s by one. When s = c, then the collection is expanded to
have a capacity of 2c elements.

Expanding a collection is a three-step operation summarized as follows:

1. Creation of a larger new array – the size of the collection having reached its capacity (i.e., the size of the internal data
storage), a new array is created, typically twice as large as the original array.

2. Copying the old array into the new one – content of the old array is entirely copied into the first half of the new array.
3. Using the new array as the collection’s storage – the expandable collection takes the new array as its internal storage,

realized by simply making the storage variable point to the new array. The old array is garbage collected since it is not
useful anymore.

Although efficient in many situations, expandable collections may result in wasted resources, as described below.

Expansion overhead. Expanding a collection involves creating and copying of possibly large internal array storage. Consider
the following micro benchmark:

3 http :/ /www.esug .org /wiki /pier /Conferences /2014 /IWST14.
4 Intuitively, collection shrinking may have a significant impact on reducing resources. However, no collection offers this behavior.

http://www.esug.org/wiki/pier/Conferences/2014/IWST14

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 37
c := OrderedCollection new.
[30000000 timesRepeat: [c add: 42]] timeToRun

=> 3375 milliseconds

This benchmark simply measures the time taken to add 30 million elements to an ordered collection. In our current
execution setting, the micro benchmarks reported in this section have a variation of 7%.

The class OrderedCollection, when instantiated using the default constructor, as above, uses an initial capacity of 10 ele-
ments. An expansion of the collection occurs when adding the 11-th element. The capacity is then doubled. The size of the
collection is 11 and its capacity is 20. When the 21st element is added to it, its capacity is 40.

Adding 30 million elements in a collection triggers log2(30 000 000 / 10) = 22 expansions. Such expansions have heavy
cost, both in terms of memory and CPU time. When the capacity is equal to or greater than the number of elements to be
added:

c := OrderedCollection new: 30000000.
[30000000 timesRepeat: [c add: 42]] timeToRun =>

=> 1356 milliseconds

in such a case, no expansion occurs, thus resulting in adding the elements without any expansion phases.

The case of LinkedList. In Pharo, all but one expandable collection use an array as internal storage. LinkedList uses linked
elements instead. For this reason we have voluntarily excluded this class from our analysis. In addition, LinkedList is rarely
used in Pharo applications (Section 4.1). LinkedList is used only once, in the Pharo thread scheduler. Since LinkedList is
largely not used in Pharo, we could not define a reliable benchmark to measure our improvements.

In Java, all collection classes (with the exception of Linked−List, Tree, TreeSet, TreeMap, Queue) use an array as internal storage.
These non-array-based collection classes are not free of problems. For example, a linked list used in place of an ArrayList
may suffer from costly random accesses (e.g., LinkedList.get(int)). By not using an internal array, we leave these issues out of the
scope of this article.

Copying of memory. At each expansion of the collection, the whole internal array content has to be copied into the newly
created array. Consider the OrderedCollection in which 30 million elements are added to it. Since the collection is expanded 22
times, the internal array has been copied 21 times.

At the first expansion, when the internal storage grows from 10 to 20 slots, 10 slots are copied. Since each array slot
is 4 bytes long, 40 bytes have been copied. In total, 80 bytes are copied for the second expansion. Since the internal array
size increases exponentially, the number of bytes that are copied scale up easily. Adding 30 million elements produces
22 expansions, incurring

∑21
i=0 10 ∗ 2i = 41M slot copies. In total, 41 ∗ 4 = 164 Mb of memory that are copied between

unnecessary arrays. Such copying could be reduced or avoided by giving a proper initial capacity to the collection.

Virtual memory. The memory of a virtual machine is divided into generations. Garbage collection happens by copying part
of a generation into a clean generation. Such copying is likely to happen across memory pages [11], since the new array
is likely to be in the young generation (i.e., part of the memory used for short lived objects and new object creations). In
addition, the copying of arrays may activate part of the virtual memory stored on disk if the part of the memory containing
the old array has been swapped to disk [11].

Collector pauses. Garbage collection copies and joins portions of memory to reduce memory fragmentation [7]. Copying
and scanning a large portion of memory, such as collections, may cause large and unpredictable memory recollection pause
times. The garbage collection pauses in proportion to array size [12].

Unnecessary slots. Expanding a collection doubles the size of the internal array representation. As a consequence, a collec-
tion having a size less than its capacity has unused slots.

For example, adding 30 million elements to a collection with the default initial capacity generates 22 expansions. After
the 22nd expansion, the collection has a capacity of 10 ∗222 = 41,943,040, large enough to contain the 30,000,000 elements.
As a consequence, the collection has 41,943,040 − 30,000,000 = 11,943,040 unused slots. Since each slot weighs 4 bytes,
nearly 48 Mb of memory are unused after having added the 30M elements.

Note that the issue of having the unused portion of the array has already been mentioned (Pattern 1, 3, 4 in [13]). Our
article reports the evolution of the amount of unused memory space against the improvement we have designed of the
collection library. Our approach to address this issue is new and has not been considered before.

3. Benchmarking and metrics

To move away from micro-benchmarks and understand this phenomenon better in real applications, we pick a represen-
tative set of Pharo applications and profile their execution.

38 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
Table 1
Description of the benchmark (the #Ref column indicates the
number of references to expandable collection in source code).

Index Application LOC #Ref

1 AST 8,091 57
2 Nautilus 1,566 9
3 Petit 14,919 95
4 Regex 5,055 16
5 Roassal 19,844 133

3.1. Benchmark descriptions

We pick 5 open source software projects from the Pharo ecosystem stored on the Pharo forge5:

• AST is a framework to model, represent, and transform Abstract Syntax Trees of Pharo code. This framework makes
intensive use of recursive trees. The benchmark we consider for AST is parsing a large amount of Pharo code.

• Nautilus is the Pharo standard system code browser: a programmer employs Nautilus to read and write Pharo code. The
browser is a complex user-interface that contains many interconnected graphical widgets. The benchmark programmat-
ically iterates over all the source code elements of Pharo (e.g., packages, classes, and methods). The browser is then
subsequently updated at each selected entity.

• Petit is an advanced parsing framework using PEG (Parsing expression grammar) to build parsers by composing existing
parsers. The benchmark builds a Pharo parser from existing parsers and parses the whole Pharo source code data base.
In some sense, these benchmarks are similar to AST’s, however the implementation is different (and thus, produce a
different execution behavior).

• Regex is a regular expression framework. Regular expressions may be expressed and run over a textual content. The
benchmarks we consider build parsers and run them over large textual contents.

• Roassal is a visualization engine that offers sophisticated visual and graphical representations of data structures. The
benchmarks we consider for Roassal build large visualizations and programmatically simulate user interactions over it.
Note that the first author of this article is involved in the development of Roassal.

These applications, listed in Table 1, have been selected for our study for three reasons:

• The benchmarks we consider for each application are representative of some application usage typically employed by
Pharo developers;

• The applications are actively supported and represent relevant assets for the Pharo community. Therefore, our results
are likely to raise interest from this community composed of several industries. These applications are used daily both
in industries and academia;

• The community is friendly and interested in collaborating with researchers. As a result, developers are accessible and
positive in answering our questions.

We employ the benchmark to approximate how expandable collections are used in general. The 5 applications we have
picked are CPU intensive and the benchmarks are likely to reflect practical and representative execution scenarios. Each
application comes with a set of benchmarks. We have arbitrarily picked 3 for each application. These benchmarks have
been written by the authors of the considered application and represent a typical heavy usage of the application. In case
that the application was shipped with less than three benchmarks, we kindly asked the authors to provide new additional
benchmarks.

3.2. Metrics about the collection library

We propose a set of metrics to understand how expandable collections are used and what the amount is of resulting
wasted resources. The metrics that we propose to characterize the use of expandable collections for a particular software
execution are:

• NC – Number of expandable Collections – This metric corresponds to the number of expandable collections created
during an execution. This metric is used to give relative numbers (i.e., percentages) for most of the metrics described
below.

• NNEC – Number of Non Empty Collections – Number of expandable collections that are not empty, even temporarily,
during the execution.

5 http :/ /smalltalkhub .com.

http://smalltalkhub.com

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 39
• NEC – Number of Empty Collections – Number of expandable collections to which no elements have been added during
the execution. A collection for which elements have been added then removed are not counted by NEC.

• NCE – Number of Collection Expansions – Number of collection expansions happening during the program execution.
• NCB – Number of Copied Bytes due to expansions – Amount of memory space, in bytes, copied during the expansions

of expandable collections.
• NAC – Number of internal Array Creations – Number of array objects created used as internal storage during the

execution.
• NOSM – Number of collections that are filled Only in the Same Methods that have created the collections. A collection

that is both created and filled within a method m is counted. A collection that is created in a particular method, and
then passed to another in order to be filled is not counted.

• NSM – Number of collections filled in the Same Methods that have created them. A collection that is created and filled
in the same method m is counted, regardless if the collection escapes m.

• NAB – Number of Allocated Bytes – Accumulated size of all the internal arrays created by a collection.
• NUB – Number of Unused Bytes – Size of the unused portion of the internal array storage. For a given collection, this

metric corresponds to the difference capacity − size.

These methods will be employed to characterize expandable collections from a perspective of unused allocated resources.
To our knowledge, these methods are new and have not been proposed by any other research effort.

3.3. Computing the metrics

Measuring these metrics involves a dynamic analysis to obtain an execution blueprint for each collection. We have
instrumented the set of expandable collections in Pharo to measure these metrics.

We measure only the collections that are directly created by an application. Computation carried out by the runtime
is not counted. If we counted collections created by the runtime and the application, a residual amount would have to be
determined since the same collections may be counted several times across different applications.

Collections are often converted thanks to some utility methods. For example, an ordered collection may be converted
as a set by sending the message asSet to it. Converting an expandable collection into another expandable collection are
considered in our measurements.

Our measurements, used to characterize the use of expanded collections and measure wasted resources associated with
them, have to be based on representative application executions, close to what programmers are experiencing. Unfortunately,
Pharo does not offer a standard benchmark for measuring performance in the same spirit as DaCapo [14] and SpecJVM. We
have designed our benchmarks from performance scenarios of program executions.

The tables given at the end of the article show the results of our measurements. Table 7 gives the measurement of our
benchmarks using the standard collection library of Pharo. This table is used as the baseline for our improvements of the
library.

Minimizing measurement bias. Carefully considering measurement bias is important since an incorrect setup can easily
lead to a performance analysis that yields incorrect conclusions. Despite numerous available methodologies, it is known
that avoiding measurement bias is difficult [15–17]. An effective approach to minimize measurement bias is called exper-
imental setup randomization [16], which consists in generating a large number of experimental settings by varying some
parameters, each considered parameter being a potential source of measurement variation. Our measurements are program-
matically triggered, meaning that multiple runs of our benchmark are easily automatized. We have considered the following
parameters:

• Hardware and OS – We have used two hardwares running with OSX ((a) a MacBook Air, 1.3 GHz Intel Core I5, 4 Gb
1333 MHz DDR3, with a solid hard disk running OS X 10.10.2 and (b) iMac, Quad-core Intel Core i5, 8 Gb, running OS X
10.9). We avoided any user-defined processes beside Pharo and our measurement tool. The default processes launched
by the operating systems are allowed to reflect a real and unmodified setting.

• Heap size – We run our experiments using different initial sizes of the heap (100 Mb, 500 Mb, 1000 Mb).
• Repeated run – For each execution of the complete benchmark, we averaged 5 runs, with a random pause between each

run.
• Randomized order – The individual performance benchmarks are randomized at each complete benchmark run.
• Reset caches – Method caches located in the VM are emptied before each run.
• GC – The garbage collector has been activated several times before running each benchmark.

In total, we have considered 9 different experimental setups. We did not notice any significant variation between these
experimental setups.

The measurements given in Appendix B are the result of an average of 9 different executions, each considering a different
combination of the parameters given above.

40 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
Fig. 1. References of collection classes in source code.

4. Use of expandable collections in Pharo applications

This section analyzes the use of expandable collections in Pharo applications. The results given in this section answer
the research question A.

4.1. Use of expandable collections in source code

Not all the collection classes share the same popularity among programmers. Fig. 1 gives a distribution of class references
in the Pharo applications we have studied. The histogram indicates the frequency of the most popular expandable and
non-expandable collections in the benchmark.

The class Array represents fixed size collections and is the most popular collection class. There are 458 references of the
class Array found in the 17 applications. This number takes into account explicit instantiations of the class. Use of immediate
values (a.k.a. “literals” in the Pharo jargon) are not considered. For example, the expression v := #(1 2 3), which assigns an array
to the variable v, is not considered as referencing the class Array.

The class OrderedCollection is the second most popular collection. This class is expandable and gives a large range of facilities
to insert, remove, sort and filter elements. The remaining expandable collections are used less frequently.

All expandable collections but one use an array as internal storage. LinkedList is the only expandable collection that does
not use an array, but instead, a linked list of elements. LinkedList is rarely used however. As far as we are aware, LinkedList is
solely used in the thread scheduler to model the roundtrip when scheduling. No occurrence of LinkedList has been found in
the applications we have studied. We can therefore safely exclude LinkedList from our experiment.

4.2. Dynamic analysis

We have run our benchmarks and profiled their executions. The metrics given in Section 3.2 have been computed and re-
ported in Table 7 for each of the applications’ executions. The execution of the 15 performance benchmarks create 6,129,207
expandable collections. We use the pattern bXY to label each benchmark, where X represents an acronym of the full appli-
cation name, and Y a digit ranging from 1 to 3.

Naturally, very few of these expandable collections live through the whole execution since the garbage collector regularly
cleans the memory by removing unreferenced collections. In our measurements, we do not consider the action of the
garbage collector on the collection themselves since garbage collection is orthogonal to the research questions that we focus
on.

The number of created collections indicates large disparities between the analyzed applications. Benchmarks bReg1 and
bReg2 involve a long and complex execution over a significant amount of data, indicated by the large number of created
expandable collections. Benchmarks bN1, bN2, bN3 create a small number of collections.

Variation in the measurements. Two executions of the same code may not necessarily create the same number of col-
lections, even if no input/output or random number generation is involved. Measurements vary little over multiple runs of
the benchmarks. Values reported in the tables in the appendix have been obtained after multiple runs and have an average
variation of 0.0095%. Although the applications we have selected for our case study do not make use of random number
generation, the use of hash values can make non-deterministic behavior. A hash value is given by the virtual machine when
the object is created. In the case of Pharo, such a hash value depends on an internal counter of the virtual machine. Consider
the following code:

d := Dictionary new.
d at: key1 put: OrderedCollection new.
d at: key2 ifAbsentPut: [OrderedCollection new]

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 41
The class Dictionary uses the equality relation and hash values between keys to insert pairs. If we have the relation key1 = key2

and key1 hash = key2 hash, then the dictionary considers that the two keys are actually the same and we have only one instance
of OrderedCollection. However, in case that the hash is not overridden but = is overridden, the relation key1 hash = key2 hash may be
true only sporadically, thus triggering a non-deterministic behavior over multiple executions.6

Empty collections. Table 7 indicates a surprisingly high proportion of empty collections in our benchmarks. From over
6.1 million expandable collections created by our benchmarks, 4.4 million (73%) were created without having any element
added to them. Only 26% of collections have at least one element added to them during their lifetime.

To understand this phenomenon better, we will take a closer look at the data we obtained. The number of empty
collections created by our benchmark varies significantly across applications. Benchmark bReg2 creates a total of 2.1M of
expandable collections, for which only 0.4M are non-empty. This application is a regular expression engine that applies
pattern matching. The engine is complex due to the underlying optimized logic engine.

Cause of empty collections. We manually have inspected the applications and benchmarks that generate a high proportion
of empty collections. A large proportion of the created empty collections is caused by the object initialization specified in
the constructors. Consider the constructor of the class RBVariableEnvironment:

RBVariableEnvironment >> initialize
super initialize.
instanceVariables := Dictionary new.
classVariables := Dictionary new.
instanceVariableReaders := Dictionary new.
instanceVariableWriters := Dictionary new

This constructor implies that each instance of RBVariableEnvironment comes with at least four instances of dictionaries. Most
instances of RBVariableEnvironment actually have their dictionaries empty. This is not an isolated case. The 5 applications
under study are composed of 1,713 classes. We have 375 of these 1,713 classes that explicitly define at least one constructor.
We have also found that 144 of these 375 classes explicitly instantiate at least one expandable collection when being
instantiated. Expandable collections created in the constructor is a prominent cause of unused collections.

Number of array creations. The standard collection library creates a new array at each collection expansion. Since instan-
tiating a collection results in creating a new array, the number of created arrays (NAC) subtracted from the number of
expansions (NCE) is equal to the number of collections (NC). We have roughly the following relation NAC − NCE = NC in
Table 7. Some differences may be noted due to rehashing operations on hash-based collections (e.g., HashSet, Dictionary)
that may be triggered by an application. Such effects are marginal and have a little impact on the overall measurements,
which is why we do not investigate such minor variations further.

Collection expansions. From the 6.1 million of collections (NC column in Table 7), 1,637,669 (26%) of the collections are
expanded 980,792 times during the execution of the benchmark (NCE column). These expansions result in over 46.9 Mb of
copies between these arrays (NCB column).

Unused memory. Summing up the memory consumed by all the internal arrays yields over 253 Mb (NAB column). More
than 228 Mb of these 253 Mb are actually unused (NUB column) as a result of having expandable collections filled only a
little on average (i.e., the size of the collection being much below its capacity).

4.3. Reducing the overhead incurred by collection expansions

The measurements given in the previous section reveal that the use of expandable collections may result in wasted CPU
and memory consumption. We use the observations made above to reduce the overhead caused by expansions. We propose
three heuristics to reduce the overhead incurred by expandable collections:

Creating the internal array storage on demand. Creating an internal array only when necessary, i.e., upon the first element
addition. Since 76% of arrays are empty, lazily instantiating the internal array will be beneficial.

Reusing arrays when expanding. Expanding a collection involves creating an array larger than the previous one (usually
twice the initial size). After copying, the original array is discarded by removing all references to it. The task to free the
memory is then left to the garbage collector.

Instead of letting the garbage collector discard old arrays, arrays can be recycled: a collection expansion frees an array,
which itself may be used when another collection expands.

Setting an initial capacity. About 10% of expandable collections are created and filled in the same method. These 10% of
the collections have been created by 276 methods across our benchmark. There are 105 of these 276 methods that use the
default construction with the default initial capacity.

Some of these methods may be refactored to create expandable collections with an adequate initial capacity.

6 Redefining = without redefining hash is a classic defect in software programs and it is widely recognized as such. Unfortunately, this defect is frequent
and inferring whether this defect is the cause of non-determinism is not trivial.

42 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
We have designed the OptimizedCollection library, a collection library for Pharo that exhibits better resource manage-
ment than the standard set of collection classes. OptimizedCollection implements the design points made above. Section 5,
Section 6 and Section 7 elaborate on each of these points.

5. Lazy internal array creation

For the programming languages we have studied, expandable collections have been implemented under the assumption
that a collection will be filled with elements. This assumption unfortunately does not hold for the usage scenarios we are
facing in our benchmark. Less than a third of the expandable collections are filled in practice. This suggests that creating the
internal array only when elements are added is likely to be beneficial. We call this mechanism lazy internal array creation.

As far as we are aware of, lazy internal array creation for expandable collections has not been reported in the academic
literature or in engineering notes. Lazy initialization is a well known technique to allocate memory only when necessary.
Surprisingly, using lazy initialization to optimize expandable collections has been little considered (except for a very few
exceptions in the Java and C# collections) despite the significant memory overhead collections may generate [5].7

This section first describes the design points of lazy internal array creation and reports measurements on our bench-
marks.

5.1. Creating the array only when necessary

Introducing a lazy creation of the internal array is relatively easy to implement. Instead of creating the internal storage in
the constructor, we defer its creation when adding an element to the collection. For this, we need to remember the capacity
for the future creation of the array. Methods that add elements to the collection have to be updated accordingly.

This simple-to-implement improvement leads to a significant reduction in memory consumption. Using the default ca-
pacity, an empty ordered collection now occupies 20 bytes only (in comparison to the 64 bytes without supporting lazy
internal array creation). After adding an element to the collection, the internal array is created, thus increasing the size of
the collection to 64 bytes.

We have implemented the lazy internal array creation as described above in all the expandable collection classes. The
following section describes the impact on our case studies.

5.2. Lazy creation on the benchmark

Table 8 gives the metric values of our benchmark when using the lazy internal array creation. Contrasting Table 7 (using
the standard collection library, i.e., without lazy internal array creation) with Table 8 (lazy creation) shows a significant
reduction of unused memory and number of created internal arrays. More specifically, we have:

• The number of array creation (NAC) has been significantly reduced as one would expect. It went from 6,205,920 to
1,874,940, representing a reduction of (6,205,920 − 1,874,940)/6,205,920 = 69.78% of array creation.

• The number of unused bytes (NUB) has also been significantly reduced from 228 Mb to 61 Mb, representing a reduction
of (228,171,448 − 61,393,008)/228,171,448 = 73.09%.

The lazy internal array creation has a slight positive impact on the execution time of the benchmark. By lazily creating
the internal arrays, the execution time of all runs has been reduced by 2.38%.

6. Recycling internal arrays

A collection expansion is carried out with three sequential steps (Section 2): (i) creation of a larger array; (ii) copying
the old array into the new one; (iii) replacing the collection’s storage with the new array. The third step releases the unique
reference of the array storage, entitling the array to be disposed by the garbage collector. This section is about recycling
unused internal arrays and measures the benefits of recycling.

The general mechanism of recycling arrays along a program execution is not new. It has already been shown that for
functional programming avoiding unnecessary array creation by recycling those arrays is beneficial [18]. Recycling arrays in
a context of expandable collections is new and, as far as we are aware of, it has not been investigated.

6.1. Recycling arrays on the benchmark

Principle. Instead of releasing the unique reference of an array, the array is recycled by keeping it within a globally
accessible pool. The array disposed after a collection expansion is inserted in the pool. The first step of expansion has now
to check for a suitable array from the pool. If a suitable array is found, the array is removed from the pool and used as

7 Note that this work by Gil et al. uses an older version of Java. Version 7 and 8 have learned from them and improved their collection.

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 43
Table 2
Effect of the different strategies for the unit test benchmarks (best perfor-
mance is indicated in bold).

Metrics S1 S2 S3

NC 6,127,788 6,127,788 6,127,788
NCE 980,792 977,904 980,805
NCB 46,953,084 45,314,124 47,140,001
NAC 1,874,940 1,875,235 1,876,520
NAB 86,510,132 90,120,012 86,451,502
NUB 61,393,008 70,825,135 61,851,892
#full GC 80 88 80
#incr GC 28,884 28,846 40,628

internal array storage in the expanded collection. If no array from the pool can be used as internal array storage for a
particular collection expansion, a new array is created following the standard behavior.

When an array is inserted into the pool, the array has to be emptied so as to not keep unwanted references. Emptying
an array is done by filling it with the nil value.

Need for different strategies. Consider the following example:

c1 := OrderedCollection new.
50 timesRepeat: [c1 add: 42].
c2 := OrderedCollection new.
c3 := OrderedCollection new.

Filling c1 with 50 elements triggers three expansions, which increases the capacity from 10 to 20, from 20 to 40 and
from 40 to 80. Having c1 of a capacity of 80 is sufficient to contain the 50 elements. The creation of the collection and these
expansions has created and released three arrays sized 10, 20, 40, respectively. These arrays are inserted in a pool of arrays.

When c2 is created, an array of size 10 is needed for its internal array storage. The pool of arrays contains an array of
size 10 (obtained from the expansion of c1). This array is therefore removed from the pool and used for the creation of c2.

Similarly, c3 requires an array of size 10. The pool contains two arrays, of size 20 and size 40. The creation of the ordered
collection faces the following choice: either we instantiate a new array of size 10, or we use one of the two available arrays.

This simple example illustrates the possibility of having different strategies for picking an array from the pool. We
propose three strategies and evaluate their impact over the benchmark:

S1: requiredSize = size – Pick an array from the pool of exactly the same size that is requested
S2: requiredSize <= size – Pick the first array with a size equal to or greater than what is requested
S3: size * 0.9 < requiredSize < size * 1.1 – Pick an array of a size within a range of what is requested.

The effect of the different strategies on the benchmarks is summarized in Table 2. We consider 8 metrics: NC (number
of created expandable collections), NCE (number of collection expansions), NCB (number of copied bytes), NAC (number
of internal array creations), NAB (number of allocated bytes), NUB (number of unused bytes), the number of full garbage
collections and the number of incremental garbage collections.

S1 generates less unused array portions (NUB) than S2 and S3. S2 incurs less collection expansions than S1 and S3, which
also result in fewer copied bytes (NCB). Oddly, the number of incremental garbage collections is higher with S3. The results
given in Table 9 use Strategy S1 since this strategy is more effective than the two other regarding the number of unused
bytes (NUB metric).

Effect on the benchmark. When supporting the lazy internal array creation without recycling arrays (Table 8), the number
of unused bytes (NUB column) has increased by (61,420,484 − 61,393,008)/61,393,008 = 0.04%. The reduction of the number
of created arrays (NAC column) is (1,798,578 − 1,874,940)/1,874,940 = 4%. In all, 35,063 collections have been recycled. More
interestingly, the technique of reusing arrays has reduced the number of allocated bytes by 9.4% (column NAB: (86,510,132
− 78,373,588)/86,510,132 = 9.4%).

After profiling the benchmark, the number of collections left over in the pool is rather marginal. Only 216 collections
are in the pool, totaling less than 89 kB.

Using the pool of arrays incurs a relatively small execution time penalty. This represents an increase of 5.8% of execution
time when compared with the lazy array creation and an increase of 2.8% with the original library.

Recycled arrays. The techniques described in this section recycle arrays of different sizes. Fig. 2 shows the distribution of
size of recycled arrays for Strategy S1. The vertical axis indicates the number of recycled arrays. The horizontal axis lists the
size of arrays that are effectively recycled.

44 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
Fig. 2. Distribution of recycled arrays.

Fig. 3. Impact of execution time of the optimized collection library.

Arrays that are the most recycled have a size of 5 and 10. The standard Pharo library is designed as follows: 5 corre-
sponds to the minimum capacity of hash-based collections, and 10 is the default size of non-hashed collections.8 The value
20 corresponds to the size of the internal array of default collection after expansion. An array of size 40 is obtained after a
second expansion.

Multi-threading. The pool of recycled internal arrays is globally accessible. Access to the pool needs to be adequately
guarded by monitors to avoid concurrent addition or removal from the pool. Several of the applications included in our
benchmark are multi-threaded. Previous work on pooling reusable collections [19] shows satisfactory performance in a
multi-threaded setting.

6.2. Variation in time execution

If we consider the global figures, recycling arrays has a penalty of 3% of execution time in the average. However, if we
have a close look at each individual benchmark, we see that most of the performance variation indicates that our optimized
collection library performs slightly faster than the standard collection library (in addition to significantly reduce the memory
consumption, as detailed in the previous sections).

Fig. 3 shows the variation of execution time of the performance benchmarks between the standard collection library
and our optimized library. All but two benchmarks are slightly faster with our library. The execution of benchmarks bN2
takes 6,738 seconds with the standard collection library and takes 6,789 with our library. Since this represents a variation
of (6,789 − 6,738)/6,738 = 0.7%, we consider this variation as insignificant.

Benchmark bPP3 goes from 6,330 seconds with the standard library to 7,010 with our optimized library, which represents
an increase of 9.7%. The reason for this drop in performance is not completely clear to us. This benchmark parses a massive
amount of textual data. Private discussion with the authors of the considered application revealed the cause of this variation
may be due to the heavy use of short methods on streams. Traditional sampling profiler does not identify the cause of the
performance drop, indicating it stems from particularities of the virtual machine (for which its execution is not captured
by the standard Pharo profiler). These short methods have an execution time close to the elementary operations performed
by the virtual machine to lookup the message in method cache. Although we carefully designed our execution by emptying

8 Note that we are not arguing whether 5 and 10 are the right default size. Other languages including Scala and Ruby use a different default capacity
size. We are simply considering what the Pharo collection library offers to us.

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 45
different caches and multiply activating the garbage collection between each execution, the reason of the performance drop
may be related to some particularities of the cache in the virtual machine.

It turns out that our optimized library performs better except for two benchmarks. By excluding the benchmark bPP3,
our library performs 3.01% faster than with the standard collection library.

7. Setting initial capacities

A complementary approach to improving the collection library is to find optimization opportunities in the base applica-
tion (which makes use of the collection library).

Example. We have noticed recurrent situations for which an expandable collection is filled in the same method that creates
the collection. The following method, extracted from a case study, illustrates this:

ROView>>elementsToRender
"Return the number of elements that will be rendered"
| answer |
answer := OrderedCollection new.
self elementsToRenderDo: [:el | answer add: el].
^ answer

The method elementsToRender creates an instance of the class OrderedCollection and stores it in a temporary variable
called answer. This collection is then filled by iterating over a set of elements.

The method elementsToRender uses the default constructor of the class OrderedCollection, which means a default capac-
ity to the collection is given. As described in the previous sections, such a method is a possible source of wasted memory
since a view may contain a high number of elements, thus recreating the situation we have seen with the micro-benchmark
in Section 2.

By inspecting the definition of the method elementsToRenderDo:, we have noticed that the number of elements to
render is known at that stage of the execution. The method may be rewritten as:

ROView>>elementsToRender
"Return the number of elements that will be rendered"
| answer |
answer := OrderedCollection new: (self elements size).
self elementsToRenderDo: [:el | answer add: el].
^ answer

This new version of elementsToRender initializes the ordered collection with an adequate capacity, meaning that no resource
will be wasted due to the addition of elements in the collection referenced by answer.

Profiling. The metrics NOSM and NSM identify methods that create a collection and fill it. The instance of OrderedCollection cre-
ated by the method elementsToRender is counted by NSM since the collection is created and filled in this method. The collection
is also counted by NOSM in the case that no other methods add or remove elements from the result of elementsToRender.

We see that about 8% of the expandable collections are immediately filled after their creation. We also notice that slightly
fewer collections are only filled in the same method in which they were created. We focus on these collections since they
are likely easy to refactor without requiring a deep knowledge about the application internals.

The NOSM and NSM metrics are computed by instrumenting all the constructors of expandable collection classes and all
the methods that add and remove elements.

Refactoring methods. The 670,064 collections (NOSM column) that are filled solely in the methods that have created them
have been produced by exactly 276 methods. We have manually reviewed each of these methods. We have refactored 105
of the 276 methods to insert a proper initialization of the expandable collection. The remaining 171 methods were not
obvious to improve. Since we did not author these applications and had a relatively low knowledge about the internals of
the analyzed applications, we took a conservative approach: we have refactored only simple and trivial cases for which we
had no doubt about the initial capacity, as in the example of elementsToRender given above. We use unit-test to make sure we
did not break any invariant captured by the tests.

Impact on the benchmark. Table 10 details the profiling for the benchmark by lazily creating internal arrays, reusing
these arrays and refactoring the applications. By comparing from Table 9 to Table 10, the reduction gain for the number of
allocated bytes is 0.05% (column NAB, which goes from 78.37 Mb to 78.33 Mb). The amount of unused space was reduced
by 0.06% (column NUB, which goes from 61.42 Mb down to 61.38 Mb). No variation in terms of execution time was found.

Setting the capacity. We ran the modified version of our benchmark with the original collection library, without the recycling
and the lazy array creation. Gains are marginal. Only a reduction of 0.05% of the number of allocated bytes was measured.
We conclude that the obtained gain by allocating a proper initial capacity is marginal.

8. Reducing resource consumption with Lua’s table

As an application of our finding presented above, we investigate the use of another data structure to reduce the con-
sumption of resources (both memory and CPU).

46 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
8.1. In a nutshell

Lua9 is a highly popular language: it is within the top languages present on github10 and is intensively used in the
gaming industry. In Lua, a table is the unification of what is commonly perceived as a hashtable (e.g., Hashtable in Java and
Dictionary in Pharo) and a sequential ordered collection (e.g., ArrayList in Java and OrderedCollection in Pharo).

A table is the unique abstract data-type provided by Lua to manipulate collections. Since Lua 5.0,11 released in 2005,
a table is a hybrid data structure, composed of a hash part and an array part. Despite the fact that Lua has a deserved
reputation for performance, tables have not been carefully studied by the research community as far as we are aware.

Our experiments show that when replacing instances of the standard Pharo classes OrderedCollection and Dictio-
nary by our implementation of Lua’s tables, the memory allocation due to collections is decreased by up to 19% (the
variation from our optimized version over the non-optimized ranges from 0.8% to −19.3%) when executing long-running
benchmarks that make extensive use of collections. It also has an impact on execution time, which is overall decreased,
with a maximal reduction of 15% (the variation ranges from 4.2% to −15.7%).

The following two subsequent sections make the following contributions:

• Description of the Lua collection – The internal representation of Lua’s table is carefully presented and discussed. Currently,
Lua’s table is only superficially described in various textbooks about Lua (Section 8.2).

• Comparing table against Dictionary and OrderedCollection – After having implemented tables in Pharo, we carried
out a number of measurements to assess the various aspects of our table implementation and compare its performances
with two highly popular collections in Pharo (Section 9).

8.2. Lua’s table

To handle collections of values Lua offers only one data-structure, called table. To cope with all the typical usages of
collection [10] (e.g., filtering, sorting, transforming), a large set of functions are provided. A table is a particular data type
that has two facets: a table is an efficient combination of both an associative array and an expandable sequential collection.

Two usages. Being an associative array refers to the fact that a table may be composed of a collection of (key, value) pairs,
as any implementation of hashtable. For example, the expression { x = 10, y = 20 } creates a table having two keys, x
and y, bound to the values 10 and 20, respectively.

A table is also an expandable sequential collection, referring to the fact that it may dynamically grow when data is
added to it and shrink when data is removed. For example, the expression {5, 6, 7} creates a table with three sequential
elements. Lua offers built-in functions to manipulate a table and dedicated iterators to traverse a table. The functions
insert and remove add and remove elements for a table.

Internal structure. The internal structure of a table accommodates this radically two different usages. A table is imple-
mented as a hybrid data structure: it contains a hash part and an array part. A table automatically and dynamically adapts
its two parts according to their contents: the array part tries to store values corresponding to integer keys from 1 to some
limit n. Values corresponding to non-integer keys or to integer keys outside the array range (i.e., > n) are stored in the
hash part. Consider the table a = {10, 20, x=40}. Three keys are used, 1, 2, and x. The two first keys are stored in the
array part, which means that the expression a[4] = 1 stores the value 1 at the index 4 of the array. On this example, we
have n = 4. The expression a[1000] = 1 inserts the value 1 for the key 1000 in the hash part since the key is outside the
allowed range.

Grow. During an insert() operation or a direct assignation as in a[4] = 1, a table grows if it cannot accommodate a
key which is being assigned to a value. Either the hash part or the array part may grow. For example, consider the a table
described previously. The expression a[8] = 1 first tries insert the binding in the array part. The insertion in the array
part fails since the array has a size of n = 4 and 8 > 4. The table insertion algorithm then tries to insert the binding in the
hash part. If the key cannot be accommodated in the hash part without growing then the grow algorithm is triggered. This
algorithm considers all integer keys in both the array part and the hash part. It computes the maximal size n, which is the
greatest power of 2 such that (i) at least 50% of the slots between 1 and the candidate n are used and (ii) there is at least
one slot used between n

2 + 1 and n. The algorithm assigns a size n to the array part and inserts in it all integer keys that
are less or equal to n that were previously in the hash part. Subsequently, the hash part is then rehashed.

For example, consider the table produced by the Lua code a = {10, 20, 4 = 30, x = 25}. This table has a hash part
holding the key x associated to the value 25 and an array part with capacity 4 but with the third slot unused (see Fig. 4).
When applying the operation insert(a, 40) the array part grows to accommodate the additional value 40, and the new
size for it will be twice the number of used slots (largest n such that at least half the slots between 1 and n are in use).

As a consequence, if a table is being used as an array, it performs as an array, as long as its integer keys are dense, i.e.,
at least 50% of the array slots are used. If keys are consecutively ordered, this is satisfied. In case only the array part is used,

9 http :/ /www.lua .org.
10 http :/ /githut .info.
11 Lua is now at version 5.3.4.

http://www.lua.org
http://githut.info

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 47
Fig. 4. Lua table a = {10, 20, 4 = 30, x = 25} before and after the operation insert(a, 40).

the hash part does not incur any memory penalty since it is not even created. Conversely, if the table is being used as an
associative array, and not as an array, then the array part is empty and will not incur any penalty.

9. Evaluating Lua’s tables

9.1. Methodology

To evaluate the performance of Lua’s tables to be used as a data structure to be employed in Pharo, we use the following
5-steps methodology:

S1- Determine frequently used expandable collections in Pharo. These collections will then be evaluated against Lua’s table.
S2- Determine commonly employed features of the Pharo collections identified in Step S1.
S3- Implement Lua’s table data structure in Pharo. Features offered by the table have to be accessible with the same name

as the methods frequently used identified in Step S2.
S4- Performing micro-benchmarks to measure the execution time and memory cost of the features identified in S2 and

individually measure the cost of these features.
S5- Performing macro-benchmarks using some representative Pharo applications. These applications will be automatically

adapted to uses tables instead of the popular expandable collections identified in S1. Thanks to the polymorphism
exhibited by our implementation of Lua’s table data structure, references to collections can be automatically replaced
with our new table while preserving the overall application invariant.

Ultimately, results obtained from Step S5 will position Lua’s table against Pharo collections.

9.2. Step S1: identifying popular expandable collection in Pharo

We picked 124,292 methods found in a large Pharo source code base. Among these methods, 11,995 methods (9.64%) are
using a collection. From these methods, we found:

• 2,281 methods (19%) are referencing the class OrderedCollection,
• 2,067 methods (17%) are referencing the class String,
• 1,967 methods (16%) are referencing the class Array,
• 774 methods (6%) are referencing the class Dictionary.

The remaining 4,906 methods are referencing at least one of the other 150 collection classes. Since the classes Array

and String are non expandable collections, they cannot be replaced by Lua’s table. As a result, OrderedCollection and
Dictionary are the two most popular expandable collections in Pharo. Our measurements will therefore compare Lua
table against these two Pharo collection classes.

9.3. Step S2: determine commonly employed features

The classes OrderedCollection and Dictionary define 73 methods and 82 methods, respectively. Some of these
methods are private, or rarely used. We have profiled the usage of these two classes during the execution of 5 large Pharo
applications. We have identified 7 non-private methods that are the most frequently used. We excluded private methods
since they are not meant to be invoked by end-user applications.

48 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
Table 3
Micro-benchmark results (1000 iterations) for SLua and OrderedCol-
lection (OC). Times are in milliseconds. �% is 100 ∗ (tS Lua − tO C)/tO C .

Benchmark OC SLua �%

addFirst: 30.56 ± 0.11 32.38 ± 0.17 5.9 ± 0.7
addLast: 34.5 ± 0.13 41.42 ± 0.14 20 ± 0.6
do: 9.2 ± 0.084 9.34 ± 0.088 1.5 ± 1.3
reduce: 199.35 ± 0.11 237.76 ± 0.1 19.3 ± 0.1
remove: 130.9 ± 0.26 105.86 ± 0.25 −19.2 ± 0.2

Table 4
Micro-benchmark results (n = 1000) for SLua and Dictionary (Dic).
Times are in milliseconds. �% is 100 ∗ (tS Lua − tDic)/tDic .

Benchmark Dic SLua �%

at:ifAbsent: 21.83 ± 0.27 22.47 ± 0.24 2.9 ± 1.7
at:put: 30.92 ± 0.14 32.63 ± 0.28 5.5 ± 1

In the class OrderedCollection, the most frequently employed methods are addFirst: (add an element at the be-
ginning of the collection), addLast: (add an element at the end), do: (iterate over the collection), reduce: (iterate and
fold the collection), and remove: (remove a particular element). In the class Dictionary, the method at:ifAbsent: (get
a value from a key and use a default value in case the key is not found) and at:put: (insert a value for the given key).

Since these methods are frequently used, our micro-benchmarks measure the cost of each of these.

9.4. Step S3: the SLua implementation

We then implemented Lua’s table in Pharo. Our implementation, which we refer to as SLua, is based on the Lua docu-
mentation, source code of the table implementation in Lua, and the source code of the Lua virtual machine. SLua slightly
differs from the Lua’s table implementation for a number of reasons:

• Lua is a procedural language and Pharo is a class-based object-oriented language. Lua offers numerous functions to
manipulate tables. These functions had to be implemented as methods in SLua.

• Services offered by SLua use the method names we have identified in Step S2. This will make the class SLua poly-
morphic to the class OrderedCollection and Dictionary. Doing so will ease the implementation of the macro-
benchmarks, in Step S5.

Despite these two differences, we are confident that our implementation is semantically close to the original implemen-
tation of tables. While Lua’s table is a structure that is manipulated by Lua’s built-functions, SLua is a class whose instances
are objects that are mutated by sending messages to them.

Methods defined on SLua that correspond to the methods of OrderedCollection will essentially affect the array part
while methods that correspond to Dictionary will affect the hash part. Some essential methods, such as at:put:12 may
access both the array and the hash parts, as described in Section 8.2.

9.5. Step S4: micro-benchmarks

Micro-benchmarks allow us to compare each of SLua’s methods with the original implementation offered by the classes
OrderedCollection and Dictionary. The benchmarks have been defined using the SMark framework [20].

Table 3 compares the execution of individual methods in SLua and in plain Pharo. The first column lists the name of the
micro-benchmarks. The second column gives the measurement of the micro-benchmarks for the class OrderedCollection.
The third column gives the performance for SLua. The last column gives the performance variation using the Pharo class as
base. A positive variation indicates an overhead for SLua, while a negative variation indicates a performance improvement
of SLua compared with the Pharo class.

We have considered only the most used methods, as identified in Step S2. Performance exhibited by SLua is lower than
the same methods than OrderedCollection. This result is not surprising since the algorithms related to element insertion
are more complex in Lua than in OrderedCollection. One notable exception is remove:, which is faster in SLua than in
Pharo classes. At this stage, we are still unsure the reasons of the difference. We will investigate it in the future.

Table 4 compares methods that are directly involving the hash part of SLua compared with Dictionary. SLua is slightly
slower than the standard Pharo dictionary when inserting and retrieving bindings. Again, this is not surprising due to the
complexity of SLua’s growing algorithm.

12 This method is equivalent to the Lua syntactic code a[4] = 1, written in Pharo a at: 4 put: 1.

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 49
Table 5
Execution time of benchmarks with normal Pharo collections (NC), lazy Pharo
collections (LC) and SLua. NC is represented in seconds while LC and SLua are
shown as a percentage of variation in relation to NC.

Benchmark NC (s) LC (%) SLua (%)

CircularTreeMap 58.26 ± 5.08 −8.3 ± 9.1 −15.7 ± 7.4
ForceBasedLayout 73.02 ± 2.07 0.9 ± 3.7 −0.9 ± 5.4
Mondrian 29.2 ± 0.18 −7.1 ± 1 −11.8 ± 0.7
NameCloud 2.31 ± 0.09 1.7 ± 5.6 4.2 ± 30
Spectrograph 15.81 ± 0.13 2.2 ± 1.1 2.5 ± 1.2

9.6. Step S5: macro-benchmarks

We conducted a number of macro-benchmarks to measure SLua’s performance in representative application executions.
We compare the performance along two complementary aspects: execution time and memory consumption.

Benchmark executions. We consider five benchmarks that are data intensive. Each of these benchmarks produces and ma-
nipulates large data sets of a couple millions of entries. Carrying out significant benchmarks is know to be challenging [16].
We have taken care to (i) clean the memory by multiply triggering the garbage collector to clean memory, (ii) warming
the just-in-time compiler (JIT) and caches with some a few initial benchmark executions, and (iii) multiply executing each
benchmark.

Comparing SLua and standard collections. The five applications we selected designed using the standard Pharo collection,
without using SLua before. Each benchmark is run twice, a first time using the standard Pharo collections and a second
time using SLua. Since we have designed the class SLua to be polymorphic to OrderedCollection and Dictionary, we
replaced all references of these two classes by SLua. As a consequence tables are produced instead of Pharo collections by
the application when the benchmark is run.

The Pharo runtime has been left untouched: this means if an application A invokes an API offered by a standard Pharo
library (e.g., socket), then the API may produce a standard Pharo collection. Having this behavior is critical for our experience
since we do not wish to measure the effect of SLua on the standard Pharo libraries. The class replacement has been carried
out using the Spy profiling framework [21].

The original Lua implementation, and therefore SLua, uses lazy internal array creation and initialization. It is known that
lazy creation reduces the overhead when instantiating OrderedCollection and Dictionary. Comparing SLua (which uses
lazy internal array creation) against the standard Pharo collections (which do not use a lazy internal array creation) will
introduce a significant bias. We therefore added a version of the OrderedCollection and Dictionary that have a lazy
internal array creation.

Results for execution time. Table 5 gives the result of the benchmark executions. Each benchmark is executed 10 times. The
first column lists the macro-benchmarks. The second column gives the execution time, including its range, in seconds. The
third column gives the variation of the execution time of the lazy version of the collections against the standard, non-lazy,
version of the Pharo collection. The fourth column gives the execution times version of the benchmark using SLua, using
the non-lazy Pharo collection as base. A negative variation indicates a benchmark execution time reduction and a positive
variation indicates a longer execution time.

Table 5 shows that SLua offers better performance for 3 benchmarks than the standard and lazy Pharo collections. For the
benchmarks CircularTreeMap and Mondrian, SLua is 15.7% and 11.8% faster than the standard Pharo collections, respectively.
The table also indicates that these better performances are not solely due to the lazy support of SLua.

Differences in ForceBasedLayout and NameCloud benchmarks are not significant because of the high variance. It can be
seen that the lazy collections (LC) increase performance in the cases of CircularTreeMap and Mondrian, so part of SLua’s
performance boost in those benchmarks (in relation to NC) is due to lazy initialization. It is also noted that LC produces a
slowdown in the Spectrograph benchmark, which is then increased when using SLua. This suggests that lazy initialization
can also slightly degrade performance in some cases.

Results for memory consumption. To measure the memory consumption of the macro-benchmarks we built a dedicated
profiler that monitors all instances of OrderedCollection, Dictionary, and SLua during the benchmark execution. After
the benchmark execution, our memory profiler outputs statistics regarding the memory consumed by these collections.

We measured the memory consumption for the five benchmarks. In each case, we computed the allocated bytes when
using normal collections, lazy collections, and SLua. The results are shown in Table 6.

Table 6 shows that while lazy Pharo collections (LC column) consumes marginally less memory than NC, SLua consumes
significantly less memory (around 19%) in four of our benchmarks. In one of our benchmark, SLua consumes marginally
more (0.8%). There is no apparent correlation between this memory consumption reduction and the execution time im-
provement presented in Table 5.

50 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
Table 6
Total memory allocated by normal collections (NC), lazy collections (LC) and
SLua. NC is represented in KB while LC and SLua are shown as a percentage
of variation in relation to NC.

Benchmark NC (KB) LC (%) SLua (%)

CircularTreeMap 3,373.4 −0.1 0.8
ForceBasedLayout 98.2 −0.1 −18.6
Mondrian 42,788.4 −0.4 −19.4
NameCloud 176.9 −0.1 −18.9
Spectrograph 205,965.7 −0.0001 −19.3

9.7. Summary

This section presented an evaluation of a Pharo implementation of Lua’s table data structure. Since we designed the table
to be polymorphic with OrderedCollection and Dictionary, we were able to automatically adapt a set of applications and run some
benchmarks. In some cases, speedup is significant (15%) and memory consumption is significantly reduced (19%). For two
of the five benchmarks, execution time is slightly degraded by Lua’s table (−4.2% and −2.5%).

10. Other programming languages

This section reviews four programming languages (Java, C#, Scala, and Ruby) by briefly describing how collections are
handled in them and how our results may be applied to them.

Java. The Java Collection Framework is composed of 10 generic interfaces implemented by 10 classes. In addition, the frame-
work offers 5 interfaces for concurrent collections. We restrict our analysis to general purpose collections since concurrent
collections are often slower due to their synchronization.

JDK 6 suffers from the same problems as the Pharo implementation of the collections. In JDK 7 and 8, the classes ArrayList,
TreeMap, HashMap have been improved with the lazy internal array creation.

However, several classes suffer from the problem we have identified, even in JDK 8. For example, the classes Hashtable,
Vector, and ArrayDeque create an internal array of size 10 when instantiated, therefore presenting the very same problem we
have identified in Pharo.

C#. ArrayList is similar to its Java sibling and Pharo’s OrderedCollection. The C# version of ArrayList initializes its internal array with
an empty array, resulting in an implementation equivalent to the lazy internal array creation (Section 5). Similarly to ArrayList,
Stack initializes its internal array storage with an empty list, thus triggering an expansion at the first element addition.

On the other hand, Hashtable, Dictionary, and Queue do not lazily create the internal array, making these classes suffer from
the problems we have identified in this article.

Scala. Instead of simply wrapping Java collections as many languages do when running on top of the Java Virtual Machine,
Scala offers a rich trait-based collection library that supports statically checked immutability [22] (which Java does not
support). The implementation design of expandable collections in Scala is similar to Pharo.

However, Scala collections suffer from the very same problems we have identified in Pharo. For example, the class
ArrayBuffer which is the equivalent of Java’s ArrayList creates an empty array of default size 16. The array creation occurs in
the ResizableArray superclass.13 All classes deriving from ResizableArray face the problematic situation we have identified in this
article.

Ruby. Ruby provides a complete implementation of array, the most used expandable collection in Ruby, in the virtual
machine. All the arithmetic operations, copy, element addition and removing are carried out by the virtual machine. Ruby
associates to each empty collection an array of size 16, thus recreating the problematic situations identified in Pharo.

VisualWorks. VisualWorks is another Smalltalk dialect. VisualWorks’ collection class library is very similar to Pharo’s.
A notable difference is (i) OrderedCollection is initialized with an internal array storage with a size of 5, while in Pharo initializes
a new ordered collection with a capacity of 10, and (ii) Dictionary is initialized with an internal array of size 3, while Pharo
uses 5 as a default size. VisualWorks provides many collections that are related to text processing, and cannot be considered
as generic containers.

Applicability of our results. In our experiment we have identified a significant amount of empty collections. Similar be-
havior was found in other situations. For example, when conducting the case studies in Java with Chameleon [4], a high
proportion of empty collections were also identified.

The collection frameworks of Java, C#, Scala, and Ruby largely behave similarly to Pharo. We therefore expect our im-
provement on the Pharo library to have a positive and significant applicability on these collection libraries. As future work,
we plan to verify our assumption by modifying the standard library and running established benchmarks: DaCapo [14] and

13 http :/ /bit .ly /ResizableArrayScala.

http://bit.ly/ResizableArrayScala

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 51
SPECjbb are commonly used benchmarks. Note that it has been shown that SPECjbb is a more demonstrative collection user
than DaCapo [23].

11. Related work

Patterns of memory inefficiency. A set of recurrent memory patterns have been identified by Chis et al. [13]. Overheads
in Java come from object headers, null pointers, and collections. Three of their 11 patterns (P1, P3, P4) are about unused
portions of internal arrays of collections. The model ContainerOrContained has been proposed to detect occurrences of these
patterns.

We have proposed the lazy internal array creation technique to efficiently address pattern P1 – empty collections. Address-
ing pattern P3 – small collections is unfortunately not easy. P4 – Sparsely populated collections is addressed by our SLua table
implementation. Our collection profiler identifies the provenance of collections having an unnecessary large capacity. How-
ever refactoring the base application to properly set the capacity does not result in a significant impact (only a reduction of
0.13% of allocated bytes has been measured). As future work, we plan to verify whether some patterns, depending on the
behavior of the application, may be identified (e.g., a method that always produces collections of a same size).

This paper gives our preliminary results about the effect of Lua’s table implementation to reduce resources consumption.
As future work, we plan to explore how tables are filled and expanded. Such future research will be key to understanding
the gain shown in some of our measurements.

Storage strategies. Use of primitive types in Python may trigger a large number of boxing and unboxing operations. Storage
strategies [6] significantly reduce the memory footprint of homogeneous collections. Each collection has a storage strategy
that is dynamically chosen upon element additions. Homogeneous collections use a dedicated storage to optimize the re-
sources consumed by the storage.

Our approach focuses on reducing the memory footprint of expandable collections, which is different, but complementary
to the approach of Bolz, Diekmann and Tratt which focuses on the representation in memory of homogeneous collections.

Discontiguous arrays. Traditional implementations of memory models use a continuous storage. Associating a continuous
memory portion to a collection is known to be a source of wasted space which leads to unpredictable performance due
to garbage collection pauses [24]. Discontiguous arrays is a technique that consists in dividing arrays into indexed memory
chunks [25,26,12,7]. Such techniques are particularly adequate for real-time and embedded systems.

Implementing these techniques in an existing virtual machine usually comes at a heavy cost. In particular, the garbage
collector has to be aware of discontiguous arrays. A garbage collector is usually a complex and highly optimized piece of
code, which makes it very delicate to modify. Bugs that may be inadvertently introduced when modifying it may result in
severe and hard-to-trace crashes.

Our results show that a significant improvement may be carried out without any low-level modification in the virtual
machine or in the executing platform. Many of our experiments about memory profiling in Pharo have been carried out
having simultaneously multiple different versions of the collection library. Nevertheless, research results about discontinuous
arrays, in particular Z-rays [12], may be beneficial to expandable collections. In the future, we plan to work on this.

Tables use a form of discontinuity since some data may be contained in the array part of the table and other in the
hash part. On the other hand, tables use continuous arrays for the array part. Therefore, combining discontiguous arrays are
likely to be beneficial. We will also investigate this as future work.

Dynamic adaptation. Choosing the most appropriate collection implementation is not simple. The two collections ArrayList

and HashSet are often chosen because their behavior is well known, which makes them popular. Improperly chosen collection
implementations may lead to unnecessary resource consumption. Xu [8] proposes an optimization technique to dynamically
adapt a collection into the one that fits best according to its usage (e.g., replacing a LinkedList with an ArrayList).

Xu’s approach is similar to the storage strategies mentioned above, which makes it complementary to our approach.

Adaptive selection of collections. In the same line as dynamic adaption, Shacham et al. [4] describe Chameleon, a profiler
specific to collections which outputs a list of appropriate collection implementations. The correction can be either made
automatically, or presented to the programmer for correction. A small domain-specific language is described to define rules
to characterize the use of collections.

Chameleon assumes (i) a set of interchangeable implementation for every collection type and (ii) different implementa-
tions have the same logical behavior. For example, a set may be implemented using an array or a linked-list, while insuring
that the collection has no duplicates.

Chameleon maintains a list of rules performed on dynamically gathered data. A rule may be an ArrayList on which
many contains(...) operations are performed. If the condition expressed by the rules is found, then replacing the ArrayList by
a LinkedHashSet is offered to the developer to avoid iterating over the collection at each contains(...) operation.

The effort of Chameleon is orthogonal to the technique presented in this article. Chameleon makes suggestions on a
proper abstract data type, while our research is about optimizing the use of the internal storage array.

Recycling collections. The idea of recycling some collections classes has been investigated in the past. For example, func-
tional languages create a new copy, at least in principle, at each element addition or removal. Avoiding such copies has
been the topic of numerous research work [18,27].

52 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
Recycling collections when possible is known to be effective [28]. For example, Java Performance Tuning [19], Chapter 4,
Page 79, mentions “Most container objects (e.g., Vectors, Hashtables) can be reused rather than created and thrown away.” How-
ever, no evidence about the gain is given. In the case of Pharo, recycling internal arrays of expandable collections reduces
the number of allocated bytes by 9.4%. The book also argues that recycling collections is effective in a multi-threaded set-
ting. It supports the idea that programmers should make their collections reusable, whenever is possible. Our work embeds
this notion of recycling arrays within the collection library itself.

The notion of unnecessary or redundant computation within loops has been the topic of some recent work [29–32].
An efficient model for reusing objects at the loop iteration level are provided. For example, reusing collections within a
loop leads to a “20–40% reduction in object churn” and “the execution time improvements range between 6–20%.” Object
churn refers to the excessive generation of temporary objects. Our approach essentially embeds the improvement within the
collection library, which has the advantage to not impact the programmer’s habits. However, our performance improvements
are smaller.

Adaptive collection. The Clojure programming language14 offers persistent data structures. Such data structures have
their implementation based on the usage of the internal array storage. For example, a PersistentArrayMap is promoted to a
PersistentHashMap once the collection exceeds 16 entries. This behavior is therefore related to Lua’s table data structure, except
that some of Clojure’s data structure automatically migrate their internal representation.

12. Conclusion and future work

Expandable collections are an important piece of the runtime. Although intensively used, expandable collections are a
potential source of wasted memory space and CPU consumption. This work shows that the collection code libraries may be
significantly improved regarding time and memory performance, without impacting the behavior of applications that use
them.

We have improved the performance of expandable collections by using two different approaches. The first approach went
through three different steps, as described in Section 5, Section 6 and Section 7. We have defined a total of 32 executions
of 17 different applications, which generate over 6M of expandable collections. The execution blueprint of these collections
obtained with the standard collection library is given in Table 7. We have developed OptimizedCollection, a collection library
that supports lazy array creation and array recycling. The execution profile of the benchmark is given in Table 9. The positive
effect of our collection is given by contrasting Table 9 against Table 7. OptimizedCollection has:

• reduced the number of created intermediary internal array storage by (6,205,920 − 1,798,380)/6,205,920 = 71.02%
(column NAC)

• reduced the number of allocated bytes by (253,288,572 − 78,336,068)/253,288,572 = 69.07% (column NAB)
• reduced the number of unused bytes by (228,171,448 − 61,383,684)/228,171,448 = 73.09% (column NUB)

Recycling arrays incurs a time penalty during the execution. Our benchmark runs 3% faster for all but one performance
benchmark.

As our second approach to improve the performance of collections, we have implemented Lua’s table data structure in
Pharo, polymorphic with OrderedCollection and Dictionary. We were able to run a number of benchmarks by replacing these two
Pharo collections with our table implementation. In some cases, the obtained speedup is significant (15%) and the memory
consumption is significantly reduced (19%). For two of the five benchmarks, execution time is slightly degraded by Lua’s
table (−4.2% and −2.5%).

Our results were obtained with representative and well-supported Pharo applications. Although these applications make
use of threads and concurrency, they are not commonly considered as truly concurrent applications. We deliberately ex-
cluded concerns about concurrent aspects of our work by considering the abilities of the applications we have.

Our improvement of the Pharo library is available on http :/ /smalltalkhub .com /# !/~abergel /MCollection. The Pharo imple-
mentation of Lua table is available on http :/ /smalltalkhub .com /# !/~smaass /SmartCollection. Our implementation is available
under the MIT license. The inclusion of our work into the Pharo distribution is currently under way. The Pharo community is
concerned with reducing the memory footprint of its applications and it is widely recognized that improving the collection
library has a global positive impact. Our new collections are backward compatible with the old collection.

Some future directions of this work are to consider other incrementation strategies rather than doubling the size of the
internal array. It is likely that gain may be gained by considering an incrementation strategy per collection creation site.
Another future work will consider the garbage collection activity when monitoring the memory consumption. Currently, we
are monitoring the object creation without considering whether they are kept in memory and for how long. Interfacing our
profiler to the garbage collector would add a new dimension to our effort.

We have carefully reviewed the collection implementations of Java (JDK6, JDK7, JDK8), C#, Ruby and Scala. These im-
plementations suffer from the same symptoms found in Pharo. We hope this article will contribute to improving collection
libraries across programming languages and serve as a guideline for future collection designers.

14 http :/ /clojure .org.

http://smalltalkhub.com/#!/~abergel/MCollection
http://smalltalkhub.com/#!/~smaass/SmartCollection
http://clojure.org

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 53

1
2
3
4
5
6

Acknowledgements

We thank Oscar Nierstrasz, Lukas Renggli, Eric Tanter, and Renato Cerro for their comments on an early draft of this
article. We also thank Aleksandar Prokopec for his help with Scala collections.

We gratefully thank LAM Research for its financial support. Juan Pablo Sandoval Alcocer is supported by a Ph.D. schol-
arship from CONICYT, Chile. CONICYT-PCHA/Doctorado Nacional para extranjeros/2013-63130199. Alejandro Infante is sup-
ported by CONICYT-PCHA/MagísterNacional/2015-22150809.

Appendix A. Pharo syntax

Pharo is a dynamically typed programming language, with a syntax relatively close to Ruby, Objective-C, and Smalltalk.
Pharo’s syntax is designed to that program text can be read aloud as though it is a simplified English. Consider the code
given in Section 7:

ROView>>elementsToRender
"Return the number of elements that will be rendered"
| answer |
answer := OrderedCollection new: (self elements size).
self elementsToRenderDo: [:el | answer add: el.].
^ answer

Line 1 indicates that the given source code defines the method elementsToRender on the class ROView. Line 2 is a
method comment. Line 3 declares the answer temporary variable. Since Pharo is dynamically typed, no type annotation comes
with the variable definition. Line 4 creates an instance of the class OrderedCollection, with an initial capacity. The capacity is
the value of the expression self elements size. The pseudo variable self represents the object which has received the message
elementsToRender. To that object, the message elements is sent, and size is sent to the result. Lines 5 takes a block closure as
argument.

Appendix B. Application benchmark detail & measurement

Table 7
Original benchmark (baseline for all the other measurements).

Bench. NC NNEC NEC NCE NCB

bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200
bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000
bPP1 90,600 46,200(50%) 44,400(49%) 5,600 436,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,860 6,475,120

bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680

bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,530 1,583(62%) 947(37%) 117 15,608
bR3 79,456 53,259(67%) 26,197(32%) 4,809 686,196

total 6,129,207 1,637,669(26%) 4,491,538(73%) 980,792 46,953,084

Bench. NAC NOSM NSM NAB NUB

bAST1 210,000 38,000(18%) 38,000(18%) 6,752,000 6,468,000
bAST2 183,000 41,000(22%) 41,000(22%) 5,928,000 5,580,000
bAST3 431,220 87,570(20%) 87,570(20%) 13,795,440 13,212,720
bN1 150 0(0%) 0(0%) 3,000 3,000
bN2 240 120(66%) 120(66%) 22,440 7,680
bN3 300 180(75%) 180(75%) 22,680 7,560
bPP1 96,200 46,200(50%) 46,200(50%) 4,214,400 3,033,600
bPP2 84,600 44,800(57%) 44,800(57%) 3,790,400 2,571,200
bPP3 599,570 398,420(72%) 398,420(72%) 29,103,720 17,192,120

bReg1 1,000 100(10%) 100(10%) 34,400 33,600
bReg2 2,162,860 10(0%) 10(0%) 86,513,920 84,799,800
bReg3 1,950,010 10(0%) 10(0%) 78,001,720 76,093,720

bR1 400,055 0(0%) 3(0%) 17,263,480 13,023,236
bR2 2,642 289(11%) 299(11%) 141,056 99,404
bR3 84,073 13,365(16%) 13,454(16%) 7,701,916 6,045,808

total 6,205,920 670,064(10%) 670,166(10%) 253,288,572 228,171,448

54 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
Table 8
Lazy internal array creation.

Bench. NC NNEC NEC NCE NCB

bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200
bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000
bPP1 90,600 46,200(50%) 44,400(49%) 5,600 436,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,860 6,475,120

bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680

bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,422 1,583(65%) 839(34%) 117 15,608
bR3 78,145 53,259(68%) 24,886(31%) 4,809 686,196

total 6,127,788 1,637,669(26%) 4,490,119(73%) 980,792 46,953,084

Bench. NAC NOSM NSM NAB NUB

bAST1 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 53,000 41,000(22%) 41,000(22%) 1,016,000 668,000
bAST3 113,040 87,570(20%) 87,570(20%) 2,389,680 1,806,960
bN1 0 0(0%) 0(0%) 0 0
bN2 210 120(66%) 120(66%) 21,840 7,080
bN3 300 180(75%) 180(75%) 22,680 7,560
bPP1 78,000 46,200(50%) 46,200(50%) 3,490,400 2,309,600
bPP2 70,200 44,800(57%) 44,800(57%) 3,218,400 1,999,200
bPP3 543,770 398,420(72%) 398,420(72%) 26,952,320 15,040,720

bReg1 200 100(10%) 100(10%) 7,200 6,400
bReg2 428,000 10(0%) 10(0%) 17,120,000 15,405,880
bReg3 476,070 10(0%) 10(0%) 19,044,600 17,136,600

bR1 52 0(0%) 3(0%) 5,263,360 1,223,116
bR2 1,698 289(11%) 299(12%) 109,356 67,704
bR3 63,400 13,365(17%) 13,454(17%) 7,034,296 5,378,188

total 1,874,940 670,064(10%) 670,166(10%) 86,510,132 61,393,008

Table 9
Lazy internal array creation + reuse of array.

Bench. NC NNEC NEC NCE NCB

bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200
bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000
bPP1 91,000 46,400(50%) 44,600(49%) 5,600 437,600
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480

bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720

bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,422 1,583(65%) 839(34%) 117 15,608
bR3 78,145 53,259(68%) 24,886(31%) 4,872 699,036

total 6,128,188 1,637,869(26%) 4,490,319(73%) 980,165 46,941,124

Bench. NAC NOSM NSM NAB NUB

bAST1 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 110,370 87,570(20%) 87,570(20%) 2,361,480 1,806,960
bN1 0 0(0%) 0(0%) 0 0
bN2 153 120(66%) 120(66%) 13,400 7,080
bN3 243 180(75%) 180(75%) 14,240 7,560
bPP1 72,603 46,400(50%) 46,400(50%) 3,058,196 2,312,800
bPP2 63,604 44,800(57%) 44,800(57%) 2,743,088 2,000,000
bPP3 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560

bReg1 200 100(10%) 100(10%) 7,200 6,400
bReg2 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 476,011 10(0%) 10(0%) 19,042,492 17,136,640

bR1 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 1,597 289(11%) 299(12%) 94,656 67,712
bR3 58,872 13,365(17%) 13,454(17%) 6,375,776 5,390,776

total 1,798,578 670,264(10%) 670,366(10%) 78,373,588 61,420,484

A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56 55
Table 10
Lazy internal array creation + reuse of array + code refactoring.

Bench. NC NNEC NEC NCE NCB

bAST1 210,000 38,000(18%) 172,000(81%) 0 0
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200
bN1 150 0(0%) 150(100%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000
bN3 240 240(100%) 0(0%) 60 9,000
bPP1 90,600 46,200(50%) 44,400(49%) 5,600 437,600
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480

bReg1 1,000 200(20%) 800(80%) 0 0
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720

bR1 400,011 7(0%) 400,004(99%) 46 2,631,600
bR2 2,422 1,583(65%) 839(34%) 117 15,608
bR3 78,145 53,259(68%) 24,886(31%) 4,872 699,036

total 6,127,788 1,637,669(26%) 4,490,119(73%) 980,165 46,941,124

Bench. NAC NOSM NSM NAB NUB

bAST1 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 110,370 87,570(20%) 87,570(20%) 2,329,080 1,774,560
bN1 0 0(0%) 0(0%) 0 0
bN2 154 120(66%) 120(66%) 11,280 4,920
bN3 244 180(75%) 180(75%) 12,120 5,400
bPP1 72,403 46,200(50%) 46,200(50%) 3,057,396 2,312,800
bPP2 63,604 44,800(57%) 44,800(57%) 2,743,088 2,000,000
bPP3 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560

bReg1 200 100(10%) 100(10%) 7,200 6,400
bReg2 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 476,011 10(0%) 10(0%) 19,042,492 17,136,640

bR1 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 1,597 289(11%) 299(12%) 94,616 67,672
bR3 58,872 13,365(17%) 13,454(17%) 6,375,736 5,390,736

total 1,798,380 670,064(10%) 670,166(10%) 78,336,068 61,383,684

References

[1] W.R. Cook, On understanding data abstraction, revisited, SIGPLAN Not. 44 (10) (2009) 557–572, https://doi.org/10.1145/1639949.1640133, http://www.
cs.utexas.edu/~wcook/Drafts/2009/essay.pdf.

[2] K. Wolfmaier, R. Ramler, H. Dobler, Issues in testing collection class libraries, in: Proceedings of the 1st Workshop on Testing Object-Oriented Systems,
ETOOS ’10, ACM, New York, NY, USA, 2010, pp. 4:1–4:8, http://doi.acm.org/10.1145/1890692.1890696.

[3] S. Ducasse, D. Pollet, A. Bergel, D. Cassou, Reusing and composing tests with traits, in: Tools’09: Proceedings of the 47th International
Conference on Objects, Models, Components, Patterns, Zurich, Switzerland, 2009, pp. 252–271, http://hal.archives-ouvertes.fr/docs/00/40/35/68/
PDF/Reusing_Composing.pdf.

[4] O. Shacham, M. Vechev, E. Yahav, Chameleon: adaptive selection of collections, in: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, ACM, New York, NY, USA, 2009, pp. 408–418, http://doi.acm.org/10.1145/1542476.1542522.

[5] J.Y. Gil, Y. Shimron, Smaller footprint for Java collections, in: Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, SPLASH ’11, ACM, New York, NY, USA, 2011, pp. 191–192, http://doi.acm.org/
10.1145/2048147.2048201.

[6] C.F. Bolz, L. Diekmann, L. Tratt, Storage strategies for collections in dynamically typed languages, in: Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA ’13, ACM, New York, NY, USA, 2013, pp. 167–182,
http://doi.acm.org/10.1145/2509136.2509531.

[7] S. Joannou, R. Raman, An empirical evaluation of extendible arrays, in: Proceedings of the 10th International Conference on Experimental Algorithms,
SEA’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 447–458, http://dl.acm.org/citation.cfm?id=2008623.2008663.

[8] G. Xu, Coco: sound and adaptive replacement of Java collections, in: Proceedings of the 27th European Conference on Object-Oriented Programming,
ECOOP’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 1–26, https://doi.org/10.1007/978-3-642-39038-8_1.

[9] A. Bergel, D. Cassou, S. Ducasse, J. Laval, Deep into Pharo, Square Bracket Associates, http://rmod.lille.inria.fr/pbe2/, 2013.
[10] D. Cassou, S. Ducasse, R. Wuyts, Traits at work: the design of a new trait-based stream library, Comput. Lang. Syst. Struct. 35 (1) (2009) 2–20,

https://doi.org/10.1016/j.cl.2008.05.004, http://scg.unibe.ch/archive/papers/Cass08a-NileNewKernel-ComputerLanguages.pdf.
[11] S. Wilson, J. Kesselman, Java Platform Performance, Prentice Hall PTR, 2000, http://java.sun.com/docs/books/performance.
[12] J.B. Sartor, S.M. Blackburn, D. Frampton, M. Hirzel, K.S. McKinley, Z-rays: divide arrays and conquer speed and flexibility, in: Proceedings of the

2010 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’10, ACM, New York, NY, USA, 2010, pp. 471–482,
http://doi.acm.org/10.1145/1806596.1806649.

[13] A.E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky, P. O’Sullivan, T. Parsons, J. Murphy, Patterns of memory inefficiency, in: Proceedings of the
25th European Conference on Object-Oriented Programming, ECOOP’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 383–407, http://dl.acm.org/
citation.cfm?id=2032497.2032523.

[14] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosking, M.
Jump, H. Lee, J.E.B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, B. Wiedermann, The DaCapo benchmarks: Java benchmarking

https://doi.org/10.1145/1639949.1640133
http://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf
http://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf
http://doi.acm.org/10.1145/1890692.1890696
http://hal.archives-ouvertes.fr/docs/00/40/35/68/PDF/Reusing_Composing.pdf
http://hal.archives-ouvertes.fr/docs/00/40/35/68/PDF/Reusing_Composing.pdf
http://doi.acm.org/10.1145/1542476.1542522
http://doi.acm.org/10.1145/2048147.2048201
http://doi.acm.org/10.1145/2048147.2048201
http://doi.acm.org/10.1145/2509136.2509531
http://dl.acm.org/citation.cfm?id=2008623.2008663
https://doi.org/10.1007/978-3-642-39038-8_1
http://rmod.lille.inria.fr/pbe2/
https://doi.org/10.1016/j.cl.2008.05.004
http://scg.unibe.ch/archive/papers/Cass08a-NileNewKernel-ComputerLanguages.pdf
http://java.sun.com/docs/books/performance
http://doi.acm.org/10.1145/1806596.1806649
http://dl.acm.org/citation.cfm?id=2032497.2032523
http://dl.acm.org/citation.cfm?id=2032497.2032523

56 A. Bergel et al. / Science of Computer Programming 161 (2018) 34–56
development and analysis, in: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, ACM, New York, NY, USA, 2006, pp. 169–190, http://doi.acm.org/10.1145/1167473.1167488.

[15] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous Java performance evaluation, in: Proceedings of the 22nd Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems and Applications, OOPSLA ’07, ACM, New York, NY, USA, 2007, pp. 57–76, http://doi.acm.org/
10.1145/1297027.1297033.

[16] T. Mytkowicz, A. Diwan, M. Hauswirth, P.F. Sweeney, Producing wrong data without doing anything obviously wrong!, in: Proceeding of the 14th
International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’09, ACM, New York, NY, USA, 2009,
pp. 265–276.

[17] T. Kalibera, R. Jones, Rigorous benchmarking in reasonable time, in: Proceedings of the 2013 International Symposium on Memory Management, ISMM
’13, ACM, New York, NY, USA, 2013, pp. 63–74, http://doi.acm.org/10.1145/2464157.2464160.

[18] A. Kagedal, S. Debray, A Practical Approach to Structure Reuse of Arrays in Single AssignmentLanguages, Tech. rep., Tucson, AZ, USA 1996.
[19] J. Shirazi, Java Performance Tuning, 2nd edition, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.
[20] C. Bruni, Optimizing Pinocchio, Master’s thesis, University of Bern, Jan. 2011, http://scg.unibe.ch/archive/masters/Brun11a.pdf.
[21] A. Bergel, F. Bañados, R. Robbes, D. Röthlisberger, Spy: a flexible code profiling framework, Comput. Lang. Syst. Struct. 38 (1) (2012) 16–28,

https://doi.org/10.1016/j.cl.2011.10.002, http://bergel.eu/download/papers/Berg10f-Spy.pdf.
[22] M. Odersky, A. Moors, Fighting bit rot with types (experience report: Scala collections), in: R. Kannan, K.N. Kumar (Eds.), IARCS Annual Conference

on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, in: Leibniz International Proceedings in Informatics (LIPIcs),
vol. 4, Schloss Dagstuhl–Leibniz-Zentrum Fuer Informatik, Dagstuhl, Germany, 2009, pp. 427–451, http://drops.dagstuhl.de/opus/volltexte/2009/2338.

[23] A. Potanin, M. Damitio, J. Noble, Are your incoming aliases really necessary? Counting the cost of object ownership, in: Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, IEEE Press, Piscataway, NJ, USA, 2013, pp. 742–751, http://dl.acm.org/
citation.cfm?id=2486788.2486886.

[24] P. Wilson, M. Johnstone, M. Neely, D. Boles, Dynamic storage allocation: a survey and critical review, in: H. Baler (Ed.), Memory Management, in:
Lecture Notes in Computer Science, vol. 986, Springer, Berlin, Heidelberg, 1995, pp. 1–116, https://doi.org/10.1007/3-540-60368-9_19.

[25] D.F. Bacon, P. Cheng, V.T. Rajan, A real-time garbage collector with low overhead and consistent utilization, in: Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’03, ACM, New York, NY, USA, 2003, pp. 285–298, http://doi.acm.org/
10.1145/604131.604155.

[26] G. Chen, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, B. Mathiske, M. Wolczko, Heap compression for memory-constrained Java environments, in: Pro-
ceedings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Applications, OOPSLA ’03, ACM, New
York, NY, USA, 2003, pp. 282–301, http://doi.acm.org/10.1145/949305.949330.

[27] N. Mazur, P. Ross, G. Janssens, M. Bruynooghe, Practical aspects for a working compile time garbage collection system for mercury, in: P. Codognet
(Ed.), Logic Programming, in: Lecture Notes in Computer Science, vol. 2237, Springer, Berlin, Heidelberg, 2001, pp. 105–119.

[28] G. Xu, Finding reusable data structures, in: Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’12, ACM, New York, NY, USA, 2012, pp. 1017–1034, http://doi.acm.org/10.1145/2384616.2384690.

[29] N. Mitchell, G. Sevitsky, The causes of bloat, the limits of health, in: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications, OOPSLA ’07, ACM, New York, NY, USA, 2007, pp. 245–260, http://doi.acm.org/10.1145/1297027.1297046.

[30] S. Bhattacharya, M.G. Nanda, K. Gopinath, M. Gupta, Reuse, recycle to de-bloat software, in: Proceedings of the 25th European Conference on Object-
Oriented Programming, ECOOP’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 408–432, http://dl.acm.org/citation.cfm?id=2032497.2032524.

[31] G. Xu, D. Yan, A. Rountev, Static detection of loop-invariant data structures, in: Proceedings of the 26th European Conference on Object-Oriented
Programming, ECOOP’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 738–763, https://doi.org/10.1007/978-3-642-31057-7_32.

[32] A. Nistor, L. Song, D. Marinov, S. Lu, Toddler: detecting performance problems via similar memory-access patterns, in: Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, IEEE Press, Piscataway, NJ, USA, 2013, pp. 562–571, http://dl.acm.org/
citation.cfm?id=2486788.2486862.

http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033
http://refhub.elsevier.com/S0167-6423(17)30294-0/bib4D79746B303961s1
http://refhub.elsevier.com/S0167-6423(17)30294-0/bib4D79746B303961s1
http://refhub.elsevier.com/S0167-6423(17)30294-0/bib4D79746B303961s1
http://doi.acm.org/10.1145/2464157.2464160
http://refhub.elsevier.com/S0167-6423(17)30294-0/bib4B616765393661s1
http://refhub.elsevier.com/S0167-6423(17)30294-0/bib53686972303261s1
http://scg.unibe.ch/archive/masters/Brun11a.pdf
https://doi.org/10.1016/j.cl.2011.10.002
http://bergel.eu/download/papers/Berg10f-Spy.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/2338
http://dl.acm.org/citation.cfm?id=2486788.2486886
http://dl.acm.org/citation.cfm?id=2486788.2486886
https://doi.org/10.1007/3-540-60368-9_19
http://doi.acm.org/10.1145/604131.604155
http://doi.acm.org/10.1145/604131.604155
http://doi.acm.org/10.1145/949305.949330
http://refhub.elsevier.com/S0167-6423(17)30294-0/bib4D617A75303161s1
http://refhub.elsevier.com/S0167-6423(17)30294-0/bib4D617A75303161s1
http://doi.acm.org/10.1145/2384616.2384690
http://doi.acm.org/10.1145/1297027.1297046
http://dl.acm.org/citation.cfm?id=2032497.2032524
https://doi.org/10.1007/978-3-642-31057-7_32
http://dl.acm.org/citation.cfm?id=2486788.2486862
http://dl.acm.org/citation.cfm?id=2486788.2486862

	Reducing resource consumption of expandable collections: The Pharo case
	1 Introduction
	2 Pharo's expandable collections
	3 Benchmarking and metrics
	3.1 Benchmark descriptions
	3.2 Metrics about the collection library
	3.3 Computing the metrics

	4 Use of expandable collections in Pharo applications
	4.1 Use of expandable collections in source code
	4.2 Dynamic analysis
	4.3 Reducing the overhead incurred by collection expansions

	5 Lazy internal array creation
	5.1 Creating the array only when necessary
	5.2 Lazy creation on the benchmark

	6 Recycling internal arrays
	6.1 Recycling arrays on the benchmark
	6.2 Variation in time execution

	7 Setting initial capacities
	8 Reducing resource consumption with Lua's table
	8.1 In a nutshell
	8.2 Lua's table

	9 Evaluating Lua's tables
	9.1 Methodology
	9.2 Step S1: identifying popular expandable collection in Pharo
	9.3 Step S2: determine commonly employed features
	9.4 Step S3: the SLua implementation
	9.5 Step S4: micro-benchmarks
	9.6 Step S5: macro-benchmarks
	9.7 Summary

	10 Other programming languages
	11 Related work
	12 Conclusion and future work
	Acknowledgements
	Appendix A Pharo syntax
	Appendix B Application benchmark detail & measurement
	References

