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a b s t r a c t

A graph G = (V , E) is weighted-k-antimagic if for each w : V → R, there is an injective
function f : E → {1, . . . , |E| + k} such that the following sums are all distinct: for each
vertex u,

∑
v:uv∈E f (uv)+w(u). When such a function f exists, it is called a (w, k)-antimagic

labeling of G. A connected graph G is antimagic if it has a (w0, 0)-antimagic labeling, for
w0(u) = 0, for each u ∈ V .

In this work, we prove that all the complete bipartite graphs Kp,q, are weighted-0-
antimagic when 2 ≤ p ≤ q and q ≥ 3. Moreover, an algorithm is proposed that computes
in polynomial time a (w, 0)-antimagic labeling of the graph. Our result implies that if H is
a complete partite graph, with H ̸= K1,q, K2,2, then any connected graph G containing H as
a spanning subgraph is antimagic.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A connected graph G = (V , E) with m edges and n vertices is antimagic if there exists a bijective function f : E →
{1, . . . ,m}, such that the following sums are all different: for each vertex u,

∑
e∈E(u)f (e), where E(u) is the set of edges

incident to vertex u. Hartsfield and Ringel conjectured that every connected graph with at least two edges is antimagic [7].
It is easy to see that a graph with n vertices and maximum degree n− 1 is antimagic. It is also easy to see that cycles and

paths are antimagic. Less obvious, in [2], it was proved that the class of antimagic graphs contains every complete partite
graph, except K2, and every graph with n vertices andmaximum degree n−2. This latter result was improved in [14], where
it was proved that every graphwithmaximumdegree at least n−3 is antimagic aswell. Cartesian products of various graphs,
as path and cycles, have also been proved to be antimagic [4,11,12]. More general, in [2], it was also proved that there is a
constant c such that any graph with n vertices and minimum degree at least c log n is antimagic. This result is obtained by
applying Lovász’s Local Lemma and, in fact, shows the existence of a much more general kind of labeling which we discuss
later. In [5], it was proved that regular bipartite graphs are antimagic. This result was extended in [6] to regular graphs of
odd degree, and recently, proved for all regular graphs [3]. However, the conjecture is still open even for trees, where the
best result, proved in [10], shows that trees with at most one vertex of degree two are antimagic.

In order to gain more intuition about the conjecture, it is natural to explore some variations. Among the ideas considered
so far, in [8], the following notion was considered. Given an integer k, a graph G = (V , E) is weighted-k-antimagic if for any
weight function w : V → R, there is an injective function f : E → {1, . . . , |E| + k}, such that the following sums are all
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different: for each vertex u, w(u) +
∑

e∈E(u)f (e). Such a function f is called a (w, k)-antimagic labeling. Clearly, if a graph is
weighted-0-antimagic, then it is antimagic.

The proof of Theorem 2 in [2] actually shows that there is a constant c such that every graphwith n vertices andminimum
degree at least c log n is weighted-0-antimagic. Besides this latter result only a fewmore families are known to beweighted-
0-antimagic. In [8], by using the Combinatorial Nullstellensatz Theorem [1], it was proved that any graph on n vertices
having a 2-factor with each cycle of length 3, is weighted-0-antimagic, if n = 3l, for some integer l. Later, in [9], this result
was extended to any odd prime instead of 3.

On the other hand, not every graph is weighted-0-antimagic, as one can easily see, by considering the complete bipartite
graph K1,n−1 [13]. Then, it is natural to ask if there is a constant k such that every graph is weighted-k-antimagic. A partial
answer to this question was given in [13] where it was shown that K1,n−1 is weighted-2-antimagic, and it is weighted-1-
antimagic, when n is odd. Moreover, it was also proved that a path on n vertices, with n prime, is weighted-1-antimagic.

Themain characteristic of all the proofs, of the previouslymentioned results, is that they are non-constructive as they are
based on the Combinatorial Nullstellensatz Theorem [1]. For instance, for each weight functionw there is a (w, 1)-antimagic
labeling of K1,12 and we do not know how to construct it.

Our contribution
The purpose of this work is to present an algorithmic approach to deal with weighted-k-antimagic graphs. This approach

is new in this context and allows to generalize some known results, together with providing an explicit construction of the
labelings. Even though some proofs appearing in the previously mentioned works on antimagic labeling are constructive, it
is not clear how the associated algorithms can be transferred to the context of weighted-k-antimagic labeling. For instance,
from the proof of Theorem 1.3 in [2], it is possible to deduce the existence of a procedure to construct a (w, 0)-antimagic
labeling of Kp,q, but only for some specific w, those which are zero in the vertices of the smaller independent set.

In Section 2, we prove that there exists an algorithm for arbitrary weights.

Result 1. For each 2 ≤ p ≤ q and q ≥ 3, the graph Kp,q is weighted-0-antimagic. Moreover, there exists an algorithm which on
input w ∈ Rp+q runs in polynomial time and returns a (w, 0)-antimagic labeling of Kp,q.

Result 1 is tight. In [13], it was noticed that K1,n−1 is not weighted-0-antimagic. On the other hand, K2,2 is not weighted-
0-antimagic either. In fact, let {x1, x2} and {y1, y2} be the independent sets of K2,2. Let w be the weight function given by
w(x1) = w(x2) = 0 and w(y1) = w(y2) = 1. For the sake of contradiction, let us assume that f : {x1y1, x2y2, x2y1, x2y2} →
{1, 2, 3, 4} is a (w, 0)-antimagic labeling of K2,2. W.l.o.g., we can assume that f (x1y1) = 1. Hence, since 1 + 4 = 2 + 3, we
are forced to set f (x2y2) = 4. When f (x1y2) = 3 the vertex sum at vertex x1 is 0 + 1 + 3 = 4 and the sum at vertex y1 is
1+ 1+ 2 = 4. Otherwise, when f (x1y2) = 2, the sum at vertex x2 is 0+ 3+ 4 = 7 and the sum at vertex y2 is 1+ 2+ 4 = 7.
Therefore, there is no (w, 0)-labeling of K2,2.

From the graph theoretical point of view, the correctness of our algorithm implies that every complete bipartite graph
with the adequate size is weighted-0-antimagic. To the best of our knowledge, this result is new.

From this, it follows that a large class of graphs are weighted-0-antimagic, thus antimagic. In fact, in Section 3, we prove
the following resultwhich is a generalization of Theorem1.3 in [2] fromantimagic labeling toweighted-0-antimagic labeling.

Result 2. Let H be an arbitrary complete partite graph with at least five vertices and H ̸= K1,n−1. Then, any graph containing H as
a spanning subgraph is weighted-0-antimagic. Moreover, given a weight functionw, a (w, 0)-antimagic labeling can be computed
in polynomial time.

The ideas used in our algorithm allow us to give a short algorithmic proof of a generalization of the previously cited result
about graphs having universal vertices [13].More precisely, our result clarifies how far frombeingweighted-1-antimagic the
graph K1,n−1 is, by giving a complete characterization of those weightsw for which a (w, 0)-antimagic labeling of K1,n−1 does
not exist. This information allows us to prove that the only graphwith a universal vertex which is not weighted-1-antimagic
is the graph K1,n−1, when n is even.

Result 3. Each graph G on n vertices having a universal vertex is weighted-1-antimagic, unless G = K1,n−1 and n is even. Given a
weight function w, a (w, 1)-antimagic labeling can be constructed in polynomial time.

Surprisingly, despite its simplicity, our technique easily works if we replace the set {1, . . . ,m} by any set ofm consecutive
positive integers.

We can further extend previous result to any set of given integers. The proof of this result requires to enhance our
algorithmic techniques to consider new difficulties not appearing in the current setting. We present this result in a
forthcoming paper.

2. Antimagic algorithm

In this section, we present an algorithm, called Antimagic, which receives a weight function w and construct a (w, 0)-
antimagic labeling of Kp,q.
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For the sake of clarity, we present our algorithm in the language of matrices. Let [p] denote the set {1, . . . , p}, for p ∈ N.
It is clear that there is a one-to-one correspondence between edge labeling of Kp,q using integers in [pq] and p× q matrices
filled with integers in [pq]. Given a matrix A = (aij) with p rows and q columns, and d = (i, j) ∈ [p] × [q], we call aij the
value of A at position d; we denote it by A(d). We denote by r(A) ∈ Rp and c(A) ∈ Rq the column and row vectors given by
r(A)i =

∑
j∈[q]aij, for each i ∈ [p], and c(A)j =

∑
i∈[p]aij, for each j ∈ [q], respectively.

By using this terminology, Kp,q is weighted-0-antimagic if and only if for each a ∈ Rp and b ∈ Rq we can find a p × q
matrix A filled with all the integers in [pq] and such that the sequence

S(A, a, b) := r(A)1 + a1, . . . , r(A)p + ap, c(A)1 + b1, . . . , c(A)q + bq,

has no repeated values. When such a matrix A exists we call it an (a, b)-antimagic matrix.
Without loss of generality, in the rest of this paper, we shall assume that a and b are non-decreasing vectors, that is,

a1 ≤ · · · ≤ ap and b1 ≤ · · · ≤ bq. We say that a matrix A with p rows and q columns, filled with all the integers in [pq] is
increasing, if r(A) and c(A) are increasing vectors, that is, r(A)1 < · · · < r(A)p and c(A)1 < · · · < c(A)q, respectively.

Given a and b as before, and A an increasing matrix, we define vectors ra(A) and cb(A) by ra(A) = r(A) + a and
cb(A) = c(A) + b. Since a and b are non-decreasing vectors and, r(A) and c(A) are increasing vectors, the vectors ra(A)
and cb(A) are increasing as well. In this situation, the sequence S(A, a, b) has repeated values if and only if there are indices
i ∈ [p] and j ∈ [q] such that ra(A)i = cb(A)j. We call such a pair (i, j) a collision of S(A, a, b). Hence, an increasing matrix A is
an (a, b)-antimagic matrix if and only if S(A, a, b) has no collisions.

One important property of the set of all collisions is that it is totally ordered by the component-wise order of R2 that we
denote by≤2. That is to say, if (i, j) and (k, l) are two different collisions of S(A, a, b), then either i < k and j < l, or k < i and
l < j.

We call a collision (s, t) with s < p and t < q an inner collision. Otherwise, we say that it is a boundary collision. An inner
collision (s, t) is r-modifiable if

ra(A)s+1 ≤ cb(A)t+1 (1)

and it is c-modifiablewhen

cb(A)t+1 < ra(A)s+1. (2)

Local transformations

Given a matrix A of size p× q filled with distinct elements from the set [pq], we define two local transformations.
Let d = (s, t) ∈ [p] × [q]. When s < p we define a row flip of A at d as the matrix obtained from A by interchanging its

values at positions d and d+ er , where er = (1, 0); we denote it by r-flip(A, d). Similarly, if t < q, then the matrix obtained
from A by interchanging its values at positions d and d+ec , where ec = (0, 1), is called a column flip of A at d and it is denoted
by c-flip(A, d).

It is immediate that for A′ = r-flip(A, d) we have c(A′) = c(A). Moreover, r(A′) and r(A) differ only at coordinates s and
s+ 1, and

r(A)s+1 − r(A′)s+1 = r(A′)s − r(A)s = A(d+ er )− A(d). (3)

Similarly, if A′ = c-flip(A, d), then r(A′) = r(A). Moreover, c(A′) and c(A) differ only at coordinates t and t + 1, and

c(A)t+1 − c(A′)t+1 = c(A′)t − c(A)t = A(d+ ec)− A(d). (4)

Let d = (s, t) be an inner collision. When A satisfies

0 < 2(A(d+ er )− A(d)) < ra(A)s+1 − ra(A)s (5)

we say that A is r-feasible at d. Similarly, when

0 < 2(A(d+ ec)− A(d)) < cb(A)t+1 − cb(A)t (6)

we say that A is c-feasible at d.
We shall prove in the next lemma that under certain conditions, by applying row or column flips, we can reduce the

number of collisions.

Lemma 1. Let a ∈ Rp, b ∈ Rq be non-decreasing vectors and let A be an increasing matrix. Let us assume that the smallest (w.r.t
≤2) collision d of S(A, a, b) is an inner collision.

1. If d is r-modifiable and A is r-feasible at d, then A′ = r-flip(A, d) is an increasing matrix.
2. If d is c-modifiable and A is c-feasible at d, then A′ = c-flip(A, d) is an increasing matrix.
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In both cases, the set of collisions of S(A′, a, b) is a proper subset of the set of collisions of S(A, a, b).

Proof.We give the proof only for the first case, as the second one can be proved in a similar manner.
As A is r-feasible at d, from (3) and the left hand inequality of (5) we have that

ra(A)s < ra(A′)s = ra(A)s + A(d+ er )− A(d),

ra(A′)s+1 = ra(A)s+1 − (A(d+ er )− A(d)) < ra(A)s+1

and by the right hand inequality of (5):

ra(A′)s = ra(A)s + (A(d+ er )− A(d))
< ra(A)s+1 − (A(d+ er )− A(d))
= ra(A′)s+1

which implies

ra(A)s < ra(A′)s < ra(A′)s+1 < ra(A)s+1.

Since cb(A) = cb(A′) and r(A)i = r(A′)i, for each i ̸= s, s+ 1, we deduce that A′ is an increasing matrix.
Moreover, since cb(A′)t = ra(A)s < ra(A′)s, we see that (s, t) is not a collision of S(A′, a, b) and since A is r-modifiable,

then ra(A′)s+1 < ra(A)s+1 ≤ cb(A′)t+1, which means that no new collision appears. Finally, as we have ra(A′)i = ra(A)i, for
each i ̸= s, s+ 1, and cb(A) = cb(A′), each collision of S(A′, a, b) is a collision of S(A, a, b). □

Observation 1. Let A and A′ be as in the previous lemma. Let us assume that S(A, a, b) and S(A′, a, b) have collision and let
d = (s, t) and (s′, t ′) be the smallest ones, respectively. From previous lemma, we deduce that

1. If d is r-modifiable and A is r-feasible at d, then s′ > s+ 1 and t ′ > t.
2. If d is c-modifiable and A is c-feasible at d, then s′ > s and t ′ > t + 1.

Moreover, in both cases, if A is r-feasible (resp. c-feasible) at (i, j) with i ≥ s′ and j ≥ t ′, then also A′ is r-feasible (resp.
c-feasible) at (i, j).

Now, we prove our first result:

Theorem 1. For each 3 ≤ p ≤ q, the graph Kp,q is weighted-0-antimagic.

Proof. We prove that given a ∈ Rp and b ∈ Rq, two non-decreasing vectors, there is an (a, b)-antimagic matrix A. To ease
the presentation, we denote by S(A) the sequence S(A, a, b).

The matrix A is constructed iteratively starting with thematrix A0 given by A0(i, j) = (i−1)q+ j, for each (i, j) ∈ [p]× [q].
It is easy to check that A0 is an increasingmatrix. Hence, the conclusion is directwhen S(A0) has no collision. Let us assume

that S(A0) has at least one collision.
Notice that for each i ∈ [p − 1], r(A0)i+1 − r(A0)i = q2 and for each j ∈ [q], A0(i + 1, j) − A0(i, j) = q. As q ≥ 3, we

have that q2 > 2q which implies that A0 is r-feasible at any inner collision of S(A0). On the other hand, for each j ∈ [q− 1],
c(A0)j+1− c(A0)j = p and for each i ∈ [p], A0(i, j+1)−A0(i, j) = 1. Since p ≥ 3, A0 is c-feasible at any inner collision of S(A0).

Let Ai be an increasing matrix obtained at step i. If S(Ai) has no collisions, then Ai is (a, b)-antimagic. Otherwise, we
eliminate its smallest inner collision d = (s, t). We define Ai+1 = r-flip(Ai) if d is r-modifiable or Ai+1 = c-flip(Ai) if d is
c-modifiable. From Lemma 1 and Observation 1, we know that Ai+1 is an increasing matrix such that the smallest collision
(s′, t ′) of S(Ai+1), if it exists, satisfies s′ > s+ 1 and t ′ > t , when Ai+1 = r-flip(Ai), and s′ > s and t ′ > t + 1, otherwise. We
obtain a finite sequence of increasing matrices A0, A1, . . . , Al such that for each i < l, S(Ai+1) has less collisions than S(Ai).
Since the set of collision of S(A0) is finite, then S(Al) either has no collision or it has exactly one boundary collision. In the
first case, Al is an (a, b)-antimagic matrix and the proof is finished. Otherwise, let d = (s, t) be the boundary collision of S(Al).
From Observation 1 we know that no r-flip was applied at row p− 1 and no c-flip was applied at column q− 1. Hence, the
values of Al in the last row and in the last column are those of A0. In particular, ra(Al)p = ra(A0)p and cb(Al)q = cb(A0)q.

If s < p and t = q, let A = r-flip(Al, d). By Observation 1, Al coincides with A0 in column q and in all rows with index at
least s, then

Al(s+ 1, q)− Al(s, q) = A0(s+ 1, q)− A0(s, q) = q

and r(Al)s+1 − r(Al)s = q2. These facts and q ≥ 3 imply that

cb(A)q = ra(Al)s
< ra(Al)s + q = ra(A)s
< ra(Al)s + q2 − q = ra(A)s+1.

Hence, A is an increasingmatrix. Since cb(A)q is themaximumvalue of cb(A), the sequence S(A) does not have any collision.
Therefore, A is an (a, b)-antimagic matrix.
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If s = p and t < q, let A = c-flip(Al, d). As before, it can be shown that A is an (a, b)-antimagic matrix.
Finally, when (s, t) = (p, q), we still have two subcases. We first consider the case ra(Al)p−1 ≤ cb(Al)q−1. In this case,

let A = c-flip(Al, (p, q − 1)). From Observation 1, we know that the smallest collision (s′, t ′) of S(Al−1) satisfies s′ ≤ p − 1,
t ′ ≤ q− 1 and (s′, t ′) ̸= (p− 1, q− 1). Hence, Al(p, q− 1) = A0(p, q− 1) and Al(p, q) = A0(p, q) = A0(p, q− 1)+ 1. Hence,

ra(A)p−1 ≤ cb(Al)q−1 < cb(A)q−1 = cb(Al)q−1 + 1.

Moreover, from the definition of flips, we know that cb(Al)q−1 ≤ cb(A0)q−1 (strict inequality holds when a c-flip was applied
at some collision in column q− 2). This implies that cb(Al)q − cb(Al)q−1 ≥ cb(A0)q − cb(A0)q−1 = q ≥ 3. Therefore,

cb(Al)q−1 + 1 < cb(A)q = cb(Al)q − 1 < ra(A)p.

Thus, A is an (a, b)-antimagic matrix.
When ra(Al)p−1 > cb(Al)q−1, one can prove with a similar argument that A = r-flip(Al, (p − 1, q)) is an (a, b)-antimagic

matrix. □
From the proof of Theorem 1, we can describe an algorithm for the case q ≥ 3. The algorithm, called Antimagic, receives

as input two non-decreasing vectors a ∈ Rp and b ∈ Rq, and computes an increasing matrix A with p rows and q columns
such that the sequence S(A, a, b) has no collision (see Fig. 1).

Algorithm 1 Antimagic(case p ≥ 3)
Require: Two non-decreasing vectors a ∈ Rp and b ∈ Rq , 3 ≤ p ≤ q.
Ensure: A – an (a, b)-antimagic matrix.
Initialization: A(i, j) = (i− 1)q+ j, for each (i, j) ∈ [p] × [q].
while the sequence S(A, a, b) has a collision do

find d = (s, t) the smallest, w.r.t.≤2, collision in S(A, a, b)
if d is an inner collision then
if ra(A)s+1 ≤ cb(A)t+1 then A← r-flip(A, d).
else A← c-flip(A, d).

else if s < p and t = q, then A← r-flip(A, d).
else if s = p and t < q, then A← c-flip(A, d).
else if ra(A)p−1 ≤ cb(A)q−1 then A← c-flip(A, d− ec)
else A← r-flip(A, d− er ).

end while
return A

Let us discuss the complexity of the algorithm. The direct implementation of the algorithm takes time proportional to pq
as it has tomanagematrices of size p×q. We notice that the only relevant information in order to obtain the (a, b)-antimagic
matrix is the set of flips that the algorithm performs in the initial matrix A0. Hence, one can obtain a linear time version of
the algorithm by only using the values of ra(A0) and cb(A0), if we allow to represent the output in terms of a set of flips.

Initially, we compute ra(A0)i = ai+ q(q+ 1)/2+ (i− 1)q2 for each i ∈ [p] and cb(A0)j = bj+ p(1+ q(p− 1)/2)+ (j− 1)p,
for each j ∈ [q]which can be done in time O(p+q). It is clear that by checking the values ra(A0) and cb(A0), we can determine
all the collision of S(A0) and also those where the Antimagic algorithm performs some flips, together with the type of the
flips. Obviously, we can extend the algorithm to arbitrary inputs a ∈ Rp and b ∈ Rq by first sorting each of them. This adds
time O(p log p+ q log q) to the complexity of the algorithm.

We now consider the case p = 2.

Lemma 2. Let q ≥ 3. Let A0, A1 and A2 be the matrices defined by A0(i, j) = 2(j − 1) + i, for each (i, j) ∈ [2] × [q], A1 =

r-flip(A0, (1, 1)) and A2 = r-flip(A1, (1, 2)). Then, for every two non-decreasing vectors a ∈ R2 and b ∈ Rq, at least one of these
matrices is an (a, b)-antimagic matrix.

Proof. We assume that neither A0 nor A1 are (a, b)-antimagic and we prove that A3 is (a, b)-antimagic. Let j and l are
integers in [q] such that cb(A0)j ∈ {ra(A0)1, ra(A0)2} and cb(A1)l ∈ {ra(A1)1, ra(A1)2}. From the definition of A0 we have
that ra(A0)2 − ra(A0)1 ≥ q ≥ 3. Since ra(A1)1 = ra(A0)1 + 1 and ra(A1)2 = ra(A0)2 − 1, we have ra(A1)1 < ra(A1)2 and l ̸= j.
We also obtain from the definition of A0 that consecutive values of cb(A0) differs by at least 4. Hence, cb(A0)j = ra(A0)1 if and
only if cb(A0)l = ra(A1)2. When cb(A0)j = ra(A0)1, we have that cb(A0)l = ra(A1)2 and j < l. Hence,

cb(A0)j < ra(A2)1 = ra(A0)+ 2 < cb(A0)j+1

and

cb(A0)l−1 < ra(A2)2 = ra(A1)2 − 1 < cb(A0)l.

Therefore, A2 is (a, b)-antimagic. In the case of cb(A0)j = ra(A0)2, we can proceed in a similar way. □
In this case, we need a simpler algorithm.
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Fig. 1. Five iteration of Antimagic algorithm. The input vectors are a = (126, 126, 126, 126, 126, 126) and b = (0, 30, 35, 126, 140, 161, 252). The initial
matrix A0 has five collisions: (1, 1), (2, 3), (4, 4), (5, 6) and (7, 7). The (a, b)-antimagic matrix is obtained from A0 by applying c-flips at (1, 1) and (4, 4), and
r-flips at (2, 3), (5, 6) and (6, 7).

Algorithm 2 Antimagic-2 (case p = 2)
Require: Two non-decreasing vectors a ∈ R2 and b ∈ Rq , 3 ≤ q.
Ensure: A – an (a, b)-antimagic matrix.

Initialization: A(i, j) = 2(j− 1)+ i, for each (i, j) ∈ [2] × [q].

if S(A, a, b) has a collision then A← r-flip(A, (1, 1)).
if S(A, a, b) has a collision then A← r-flip(A, (1, 2)).

return A

3. Antimagic graphs

From the results of the previous section, we obtain the following corollary which for further use we present in terms of
graphs.

Corollary 1. Given two integers p, q with 2 ≤ p ≤ q and q ≥ 3, the complete bipartite graph Kp,q is weighted-0-antimagic.
Moreover, given a function w, a (w, 0)-antimagic labeling can be computed in polynomial time.

In [13], the authors made the following observation.

Observation 2. If a graph contains a weighted-k-antimagic spanning subgraph, then it is weighted-k-antimagic.

We use Observation 2 and Corollary 1 to show the following result.

Theorem 2. Let H be an arbitrary complete partite graph with n ≥ 5 vertices and H ̸= K1,n−1. Then, any graph containing H as a
spanning subgraph is weighted-0-antimagic. Moreover, given a weight function w, a (w, 0)-antimagic labeling can be computed
in polynomial time.

Proof. From Observation 2, it is enough to prove that any complete partite graph H ̸= K1,n−1 with at least five vertices
is weighted-0-antimagic. One can see that a such graph H always contains a spanning complete bipartite graph Kp,q, with
2 ≤ p ≤ q and q ≥ 3. From Corollary 1, we get the conclusion. □

We already mentioned that K1,m is not weighted-0-antimagic and that it is weighted-k-antimagic, where k ∈ {1, 2} is
such that k+m is odd.

In terms of matrices, this means that there are a ∈ R and b ∈ Rm such that no (a, b)-antimagic matrix of size 1 × m
exists. By using the ideas given in Antimagic algorithm, we give a complete characterization of those a and b preventing the
existence of (a, b)-antimagic matrices of size 1×m.

This provides a new proof of Theorem 13 in [13]. This proof is shorter than the original one and, additionally, it provides
an effective procedure to obtain the desired antimagic matrix.

We say that a matrix A filled with coefficients in [m + k] is an (a, b, k)-antimagic matrix if its coefficients are all distinct
and S(A, a, b) has no repetitions.
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Theorem 3 (Theorem 13, in [13]). Given a ∈ R and b ∈ Rm a non-decreasing vector, there is an (a, b, k)-antimagic matrix, where
k ∈ {1, 2} is such that m+ k is odd.

Proof. Let d0 = (1, . . . ,m). If d0 is not an (a, b, 0)-antimagicmatrix, then there is a unique i such that bi+i = a+m(m+1)/2.
Let p be the largest integer such that bi = bi+p and let α := a+m(m+ 1)/2.

Given t ∈ N and k ∈ {1, 2}, let dt,k denote the matrix of size 1×m given by

dt,k = (1, . . . , t, t + 2, . . . ,m,m+ k).

Let α′ be the sum of the values of dt,k. Then, α′ = α + m + k − (t + 1). We prove that there are t and k such that dt,k is
(a, b, k)-antimagic.

When p = m− 1, we have that i = 1, α = b1 + 1 and b is constant. Let t = ⌈m/2⌉ and k ∈ {1, 2} such thatm+ k is odd.
Then,m+ k− 1 = 2t . Hence, α′ = b1 + 1+ t . Therefore, dt,k is an (a, b, k)-antimagic matrix since

dt,kt + bt = t + b1 < α′ < t + 2+ b1 = dk,tt+1 + bt+1.

If p < m− 1 ≤ 2p+ i, then let t = m− p− 2 and k = 1. Then, α′ = α +m− t = α + p+ 2. Since, 2p+ i ≥ m− 1 we
have that i+ p ≥ t + 1. Then,

dt,ki+p + bi+p = i+ p+ 1+ bi = α + p+ 1 < α′.

If i+ p = m, then we conclude that dt,km + bm < α′. Otherwise, by the definition of p, we get that

α + p+ 2 = α′ < dt,kp+i+1 + bp+i+1 = i+ p+ 2+ bp+i+1.

The last case is when 2p+ i < m− 1. Let t = m− p− 1 and k = 1. Then, i+ p < m− p− 1 = t . Hence,

dt,ki+p + bi+p = i+ p+ bi = α + p < α + p+ 1 = α +m− t = α′.

As t ≥ i+ p+ 1, from the definition of p, we get that

α + p+ 1 = α′ < dt,ki+p+1 + bi+p+1 = i+ p+ 1+ bi+p+1. □

Observation 3. From the proof of Theorem 3, it is clear that given a ∈ R and b ∈ Rm, we can construct an (a, b, k)-antimagic
matrix in polynomial time.

Observation 4. We notice that in the proof of Theorem 3, the only case where k is forced to be 2 is when p = m−1 and m is odd.
This situation happens if and only if a is constant and a+m(m+ 1)/2 = b1. Hence, the only vectors preventing the existence of
an (a, b, 1)-antimagic matrix is when a and b satisfy bi = m(m+ 1)/2+ a, for each i ∈ [m].

Observation 5. Theorem 3 remains valid if we use any set of m+k consecutive integers instead of the set [m+k], in the following
sense: given a set I of m + k consecutive integers, a non-decreasing vector b ∈ Rm and a ∈ R, then there is a 1 × m matrix A
filled with integers in I and such that S(A, a, b) has no repetitions unless bi = m(m+ 1)/2+ a, for each i ∈ [m]. In fact, given I, a
and b, we can find a′ and b′ such that by adding a constant to each entry of an (a′, b′, k)- antimagic matrix, we obtain the desired
matrix A.

The information given in Observations Observations 4 and 5 leads us to the following generalization of Theorem 3. As in
the previous cases, from its proof, we can obtain an efficient algorithm that, given a weight function, w computes a (w, 1)-
antimagic labeling.

Let G be a graph on n ≥ 3 vertices and of maximum degree n− 1. From Theorem 13 in [12], we know that G is weighted-
1-antimagic when n is odd, and it is weighted-2-antimagic when n is even. In the next theorem, we improve this conclusion
by showing that G is weighted-1-antimagic unless G = K1,n−1 and n is even.

Theorem 4. Each connected graph G on n ≥ 3 vertices having K1,n−1 as a spanning subgraph is weighted-1-antimagic unless
G = K1,n−1 and n is even.

Proof. Let K1,n−1 be a spanning subgraph of G and let x be the vertex of degree n− 1 of K1,n−1. Let w : V (G)→ N be a weight
function. We assume that w(y1) ≤ · · · ≤ w(yn−1), where y1, . . . , yn−1 are the leaves of K1,n−1.

Let E be the set of edges ofG and letm be its cardinality. Let g be any labeling from the set of edges ofG−x to [m+1]\[n−1].
Then, g defines partial sums at the leaves of K1,n−1 that we denote by

bi(g) = w(yi)+
∑

v ̸=x,yiv∈E

g(yiv),

for each i ∈ [n− 1].
We apply Theorem 3 and Observation 4 to K1,n−1 with weight function b = b(g) ∈ Rn−1 and a = w(x). When b(g) is

non-constant or it is constant and n is odd, there exists an (b(g), b, 1)-antimagic matrix d. Then, we can extend g to E by
g(xyi) = di, for each i ∈ [n− 1], and to obtain a (w, 1)-antimagic labeling of G.
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We can proceed in a similar waywhen b(g) is constant, n is even and G−x has at least two edges. In fact, by interchanging
the values of g in two edges of G− x, we get a new labeling g ′ such that the vector b(g ′) is non-constant.

It remains to consider the casewhen b(g) is constant,G−xhas atmost one edge and n is even, thus n ≥ 4. SinceG ̸= K1,n−1,
the graph G−x has exactly one edge e = yjyl and g(e) = m+1 = n+1. Let g ′′ be the labeling assigning to e the value 1. Since
n ≥ 4, there exists at least one vertex yi isolated in G− x. Then, b(g ′′)i = b(g)i = w(yi) = b(g)j = b(g ′′)j + n. Then, a(g ′′) is
non-constant. By Observation 5, we can use the set [m+1]\{1} in the proof of Theorem 3 to obtain an (b(g ′′), b, 1)-antimagic
matrix. As before, from this matrix, we get a (w, 1)-antimagic labeling of G. □

It is still possible that each G with n vertices and maximum degree n− 1 is weighted-0-antimagic, unless G = K1,n−1. In
order to analyze this possibility, it would be worth to characterize those b ∈ Rn−1 and a ∈ R for which an (a, b, 0)-antimagic
matrix of K1,n−1 does not exist. We leave this as an open problem.
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