
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

IMPROVED STOCHASTIC DETECTION ALGORITHMS WITH APPLICATIONS IN
RADAR AND LADAR BASED ROBOTIC MAPPING

TESIS PARA OPTAR AL GRADO DE DOCTOR EN INGENIERÍA ELÉCTRICA

DANIEL VICENTE LÜHR SIERRA

PROFESOR GUÍA:

Ph.D. MARTIN ADAMS

MIEMBROS DE LA COMISIÓN:
DR. ING. JAVIER RUIZ DEL SOLAR SAN MARTÍN

PH.D. MIGUEL TORRES TORRITI
DR. DANIEL CLARK

Este trabajo ha sido parcialmente financiado por el Programa de Becas para estudios de
Doctorado año 2010 de CONICYT

SANTIAGO, CHILE
2018



RESUMEN DE LA TESIS PARA OPTAR AL GRADO
DE DOCTOR EN: Ingeniería Eléctrica
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FECHA: 2018-01-12
PROFESOR GUÍA: Martin Adams

Improved stochastic detection algorithms with applications in radar
and ladar based robotic mapping

In this work a set of robust tools for noise reduction and feature detection in radar and ladar
environment data for outdoor robotic applications have been developed.

One of these tools is a new noise reduction technique for radar data which combines the
well known spectral noise subtraction with the standard constant false alarm rate (CFAR)
detectors and binary integration. The resulting method exhibited a relatively low time com-
plexity compared to other state-of-the art noise reduction techniques, the Wiener filter and
Wavelet denoising, while retaining a higher Signal-to-Noise ratio. The method was tested
with real data from a local park captured with a scanning radar mounted on a robot platform
and with SAR data available from NASA/JPL UAVSAR missions.

The second component of this framework is the extension of the standard CFAR detectors
used in radar data to be used with 3D ladar point cloud data. More generally, these extensions
can be used with any kind of 3D point cloud data which comply with the stochastic CFAR
assumptions. The extended CFAR detectors are capable of processing a 2D projected version
of the 3D data or they can work directly on the 3D point cloud. The main modifications to
the original methods include making the CFAR window size parameter an adaptive one and
adding the capability to work with sparse data, in contrast to dense data which is what the
original methods expect. The extended CFAR detectors show a more robust performance
than other methods when the point cloud data contains high noise and clutter rates. The
output of these detector applied to ladar 3D data could then be used for algorithms requiring
high accuracy in the detection, for instance, the Iterative Closest Point (ICP) registration
method.
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Chapter 1

Introduction

1.1 Motivation

Mobile robots and autonomous vehicles navigating in outdoor, usually unstructured, envi-
ronments often need to localize themselves and map uncharted terrain in order to perform
their assigned tasks. In order to solve the localization and mapping problem, it is necessary
to perceive the environment, and store a representation of that environment. To accomplish
this, a robot relies on sensing technologies which retrieve data from the environment. A brief
list of sensor technologies used in robotics includes:

• Infrared range sensors

• Sonar range sensors

• Laser range sensors

• Radar sensors

• Video Cameras

Cameras are very rich in information, while laser range sensors provide robust and accurate
range measurements. Laser range sensors are used to build 3D laser scanners or «ladars»,
which are capable of making 3D-representations of targets. In general, electromagnetic waves,
such as those used by radar sensors, can be reflected, absorbed or transmitted through
materials receiving this radiation. How much is reflected, absorbed or transmitted depends
on the nature of the material and the wavelength of the transmitted signal. Because of this,
certain radar systems can be used to detect multiple objects within a single line-of-sight. They
are capable of penetrating the dust, fog, rain and snow conditions usually found in mining,
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construction, agricultural and other environments, which often interfere with measurements
from laser range sensors and cameras. These are the main advantages of radar over other
sensors in field-robotics applications. However, radar data is corrupted by noise from spurious
measurements as well as clutter1. In some situations, before a robot can use radar data to
identify the environment, it has to be pre-processed.

In the literature, the environment has been represented in fundamentally different ways.
In particular, occupancy grid, Feature Based (FB) and topological maps, have been applied
in autonomous mapping research. Of these, occupancy grids and FB maps have emerged
as the most popular means of environmental representation [MVAV11], and are typically
modelled in a probabilistic manner to account for sensor and vehicle motion uncertainty.

FB mapping approaches offer the advantage of compressing sensor data into features
(such as point clusters, circles, lines, corners etc.). The feature map representation has
gained widespread popularity, particularly in the outdoor robotics domain due to its ability
to estimate large scale maps and provide correctional information for simultaneous vehicle
pose estimation.

FB approaches can be computationally appealing since few features need to be detected
and updated per sensor scan and, feature-to-feature and feature-to-vehicle correlations can
be maintained. They fundamentally differ from their grid based counterparts, in that they
are required to estimate the location of an initially unknown number of objects, represented
as features. Hence, the number of features and their locations, which fully describe the
environment, are typically represented by varying the size of a vector.

Once a robust method of landmark detection has been established, its integration into
a robotic navigation and mapping framework is necessary. The Simultaneous Localization
and Mapping (SLAM) in robotics copes with the problem of building a map of an unknown
environment by a mobile robot while, at the same time, navigating the environment using
the map [RB03].

Realistic feature detection algorithms produce false alarms (as well as missed detections),
and estimating the true number of features is therefore central to the SLAM problem. The
stochastic information available from adaptive detection algorithms (such as Constant False
Alarm Rate processors), namely the probability of detection and probability of false alarm,
is not always considered in current detection techniques used to detect features of the envi-
ronment.

Another critical aspect arises when measuring the accuracy of the position and number
of the detected features. Most metrics cannot encapsulate an error in estimating the number
of features and therefore are not suitable for the evaluation of FB estimates [MVAV11].

1clutter : unwanted echoes typically returned from ground, sea, rain, atmospheric turbulence, etc.
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1.2 Research proposal

1.2.1 Proposal

In this thesis work, a set of tools for processing environment data captured with radar
or ladar sensors will be proposed. The final aim of all these tools is to improve target
detection in such data. Also, they are all based on the well established family of stochastic
detection algorithms, collectively known as Constant False Alarm Rate (CFAR) processors,
which are mainly found in radar applications. First, a noise reduction method for radar data
is developed. It is based on stochastic data integration of multiple scans combined with the
spectral noise subtraction. The new method exhibits a low computational complexity when
compared to standard noise reduction techniques and presents a higher performance in terms
of reduced noise. The output of this algorithm can then be used as the input for a detection
stage in order to find radar targets in the data. Then, classical radar-based stochastic CFAR
detection algorithms are extended to new versions which can be used with 3D ladar data,
or any other point cloud data, as feature extraction algorithms, previous to a registration
process. These extensions where designed to work with 3D data projections in 2D or directly
with the 3D point cloud representation.

1.2.2 Hypothesis

It is possible to implement more robust methods for detecting features in complex environ-
ments using radar and ladar sensors:

• The detection algorithm will be improved by using a noise reduction method which
yields a probability of detection higher than a Constant False Alarm Rate processor
for a given probability of false alarm.

• The Constant False Alarm Rate (CFAR) detection algorithms traditionally used with
dense radar data can be modified to work directly with sparse 3D point cloud data
and indirectly with 2D projections of the point cloud data by making some of their
parameters adaptive, namely the reference and guard cells window parameters.

By using all these individual improved components, the resulting set of tools should present
an overall better performance when compared to a standard implementation by means of a
second order Wasserstein metric to jointly assess errors in target locations and number of
estimates.
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1.2.3 General and specific goals

The main goal of this doctoral work is to develop a set of tools, which can be used on radar
or ladar data, based on robust noise reduction methods and detection algorithms. Noise
reduction methods increase detection probability at a desired false alarm rate.

Specific objectives of this work are:

• Develop, implement and analyze a radar data noise reduction method based on stochas-
tic Binary Integration and Spectral Noise Subtraction.

• Extend classical radar CFAR detection methods for use with 3D data projected onto
2D images.

• Extend classical radar CFAR detection methods for direct application on 3D point
cloud data.

• Test the performance of the CFAR extensions in both simulated and real data and
compare it to the performance of other state-of-the art detection methods.

• Create experimental radar data sets.

1.3 Thesis structure

Chapter 2 describes the necessary background concepts: the use of radar in robotics (Section
2.1), radar detection and noise reduction techniques (Section 2.2), Feature detection in 3D
environments (Section 2.3), and the Optimal Sub-pattern Assignment map metric (Section
2.4).

The following three chapters correspond to the main parts of this dissertation. Chapter
3 presents the Binary Integration Noise Reduction method. Its development and implemen-
tation details are described in Sections 3.1 and 3.2, respectively. The performance of the
method is compared with two state-of-the art noise reduction techniques: Wiener filtering
and wavelet denoising. The analysis is carried out on experimental radar data obtained with
a scanning radar in a park in Santiago, Chile (Section 3.3) and with SAR data courtesy
of NASA/JPL-Caltech’s UAVSAR mission (Section 3.4). Extended version adapted from
standard radar-based CFAR methods for use with 3D data are presented in Chapter 4.

Final conclusions and remarks as well as future work is presented in Chapter 5.
Appendix A and B correspond to the published papers related to this thesis work, and

technical specifications of the sensors used in this work are listed in appendix C.
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1.4 Contribution

The contributions of this thesis work are:

• Develop and implement a noise reduction scheme for radar data, based on Binary
Integration and Spectral Noise Subtraction.

• Compare the performance of the Binary Integration Noise Reduction method with other
state-of-the-art denoising techniques.

• Extend and implement CFAR detection algorithms for 3D point cloud data (particu-
larly, ladar data).

• Analyze the performance of the adapted CFAR methods.

• Radar data sets of a park environment and an underground mine tunnel.

• Implement code libraries which can be incorporated in standard data processing tools.

1.4.1 Publications

The following article was published as a result of this research2:

• Lühr, D.; Adams, M., “Radar Noise Reduction Based on Binary Integration”, Sensors
Journal, IEEE , vol.15, no.2, pp.766,777, Feb. 2015, doi: 10.1109/JSEN.2014.2352295

During this work, a multi-sensor data set was produced in a field trip to an underground
mine. The radar data was captured and pre-procesed with some of the tools presented in
this thesis. The full data set has been published in the International Journal of Robotics
Research:

• Keith Y. K. Leung, Daniel Lühr, Hamidreza Houshiar, Felipe Inostroza, Dorit Bor-
rmann, Martin Adams, Andreas Nüchter, and Javier Ruiz del Solar. “Chilean Under-
ground Mine Dataset”. International Journal of Robotics Research (IJRR).

There is also a work in progress to produce a paper about the extensions of radar detection
algorithms to ladar data. Preliminary information about title and authors:

• Lühr, D.; Adams, M.; Houshiar, H.; Borrmann, D.; Nüchter, A., “CFAR-based Auto-
matic Detection of Ladar Features for 3D Laser Surveying”.

2The article was one of the 50 most downloaded Sensors Journal papers in January and February 2015.
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Chapter 2

State of the Art

2.1 Radar in Robotics

Visibility conditions are often poor in field-robotic scenarios. Day/night cycles change il-
lumination conditions. Weather phenomena such as fog, rain, snow, and hail, as well as
dust clouds are usually present in excavation and agricultural sites, and can impede visual
perception. Also, smoke compromises visibility in fire emergencies and battlefield opera-
tions [Foe02a]. Ladar sensors and video cameras are common visually based sensors affected
by these conditions. Millimetre-wave (MMW) radar, on the other hand, provides consistent
range measurements in such environments [FCA99]. Radar can, in addition, provide infor-
mation of distributed and multiple objects in a single reading [Foe02b]. The reliability of
MMW radar sensors under snow conditions was demonstrated in [FCA99] by testing a short
range MMW sensor in a Polar environment. Snow conditions slightly increased noise, but it
was not enough to prevent radar sensing of obstacles.

Radar technology specially developed for robotic applications, like autonomous naviga-
tion and mining operation, has produced new sensors and processing software which match
the specific requirements of the field. Work was conducted to build a radar system compris-
ing a custom made Frequency Modulated Continuous Wave1 (FMCW) MMW radar front
end with a rotating mirror scanner and client-server visualization software [SBH+02] serv-
ing point cloud data and Delaunay triangulation for 2D and 3D visualization. This system
proved to facilitate autonomous operation of vehicles or machinery during periods of poor
visibility. [WCBS+06b] presented an application of MMW radar to environmental mapping
in surface mining with shovel and dragline excavators. The radar system showed a successful
performance in terms of accurate measurement, real-time imaging and penetration capabili-

1For a description of how FMCW radar works see [Wol11]
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ties through dust and water. A low cost MMW radar designed for terrain imaging on board
an Unmanned Aerial Vehicle (UAV) was described in [JB08]. This system also exhibited low
power consumption and weight. These advances in radar technology have made its applica-
tion in robotics feasible, but have also shown that progress is still needed in processing radar
data to achieve robust and reliable solutions.

An early application of radar to the mapping problem was introduced in [FBW01a].
A three dimensional radar-sensor model for occupancy grids was presented. The model
used qualitative rules and a CFAR processor, but it lacked a more rigorous probabilistic
formulation in order to improve the results. A first attempt to incorporate particular features
observed in radar data is described in [JA05]. This work presented an initial formulation
for implementing an augmented state, feature rich FB SLAM formulation with MMW radar,
introducing absorption cross section features. A method for predicting scanned MMW radar
data, based on the FMCW range measurement technique is explained in [JAMP10]. In this
work a power versus range prediction is made taking in consideration the presence of noise
and its statistical characterization. This method can be used for the data association problem
or to simulate radar scans in the presence of noise.

One of the most recent applications of radar in robotics presented an autonomous surface
marine craft incorporating a commercial off-the-shelf X-band marine radar in [MKR+10].
This project was intended as a step towards realizing an autonomous craft capable of per-
forming environmental or security surveillance and reporting a real-time active awareness of
the above-water scene. Landmark detection was carried out using image processing algo-
rithms and an RFS SLAM framework based on a PHD filter was implemented.

2.2 Radar Detection

Radio Detection And Ranging (radar) is a system capable of determining range, altitude,
direction or speed of objects using electromagnetic waves with frequencies ranging from 3 MHz

to 300 GHz. The millimetre wave radar band spans from 40 GHz to 300 GHz offering high
reliability in bad weather conditions. MMW radar has a comparatively long range which can
enable a vehicle to localize even with sparse features in its proximity [Jos09].

The radar system emits radio waves which could be reflected back by objects in their
path. The radar receives these returning echos and process their signal to obtain the desired
information (range, speed, etc.). Relevant information is the amount of power reflected by
objects as it can be used to distinguish relevant objects from noise. The power P returning
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to the receiving antenna is given by the equation:

P =
PtG

2λ2σ

(4π)3R4L
∝ σ

R4
(2.1)

where Pt is the transmitted power, G the radar antennae gain, λ the electromagnetic radiation
wavelength, σ target radar cross section or RCS, R target range, L radar losses. Most of the
parameters in Equation 2.1 are related to the radar sensor itself and can be either measured
or estimated, and can be considered constant for a particular radar system operation. These
parameters are Pt, G, λ and L. However, σ, the RCS depends on the target (material, size,
etc.) and the target’s relative orientation with respect to the radar. This means that echos
from the same target at the same range but received from different angles might return a
different amount of power.

Landmark identification concerns the detection of signals from noisy measurement data.
Targets of interest in radar data are usually embedded in noise and clutter. Thus, landmark
detection is necessary to identify landmark signals from the noisy power measurement data.

The following sections detail radar data representations used in this thesis work, stochastic
detection techniques, and noise reduction methods.

2.2.1 Radar data representation

Returned power received by the radar is usually digitalized for further processing, storage
and visualization. Two different sources of radar data were used in this dissertation.

The first source corresponds to a 94 GHz FMCW scanning radar manufactured by
Acumine [WCBS+06a], available at the robotics laboratory of the Engineering faculty at
Universidad de Chile. This radar was used to capture data from a public park environment
in Santiago, Chile. More specifications of this sensor are listed in appendix C.1

The second source is associated to Synthetic Aperture Radar (SAR) data. This data
has been produced by NASA/JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) mission. The UAVSAR radar is a L-band sensor capable of producing polari-
metric and interferometric radar data. The data retrieved corresponds to a location near
Sacramento, CA, USA. Appendix C.2 lists some technical details of the system.

Specific details of the different radar data is described in the following sections.

Scanning radar data

The simplest way of presenting radar data is in the form of the received power versus range
at a particular bearing angle, also known as an A-Scope (Figure 2.1).
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Figure 2.1: Received power versus range A-Scope.

If the radar beam is scanned about a vertical axis through 360°, the A-scopes can be
combined to form a B-scope (Figure 2.2) which corresponds to an image with range as
its vertical axis and bearing angle as the horizontal axis, and the received power value is
represented as pixel intensities.

Figure 2.2: Received power versus range-bearing B-scope.

The B-scope can be projected into a Cartesian plane using a polar coordinate transfor-
mation, known as a plan position indicator (PPI) as in Figure 2.3.
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Figure 2.3: Plan position indicator (PPI).

SAR data

Synthetic Aperture Radar (SAR) is a side-looking radar2, which simulates an extremely large
antenna or aperture electronically, using the platform flight path. Oftenly, SAR images are
thus taken from airborne or spaceborne vehicles. SAR images are mostly used in remote
sensing and mapping, usually to generate digital elevation models (DEM) which represent
the topography of the scanned surface. Some SAR systems encode radar wave polarization
data in the SAR image’s color channels. Thus, polarimetric3 techniques are used to infer some
information about the materials reflecting the radar waves. Figure 2.4 shows a polarimetric
SAR image taken by the UAVSAR mission over the Gulf of Fonseca in Central America.

2side-looking radar refers to an aircraft or satellite mounted imaging radar pointing perpendicular to the
flight direction.

3the measurement and interpretation of transverse (electromagnetic) wave’s polarization is called po-
larimetry.
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Figure 2.4: Polarimetric image of Gulf of Fonseca, Central America (Feb
2, 2010)

2.2.2 Stochastic adaptive detection with CFAR processors

Adaptive, stochastic, landmark detection techniques offer principled methods of detection
based on a predefined acceptable probability of false alarm and quantifiable probabilities of
detection. The following sections describe some of the most widely used stochastic detection
methods used in radar.

CFAR

The Constant False Alarm Rate (CFAR) concept refers to a family of adaptive algorithms
widely used in radar to detect target returns against a background of noise, clutter and
interference.

The starting point for the processing of radar data is the standard assumption that the
target absence and presence distribution types are known, but not their moments, since these
typically vary and should be estimated. In this case a test statistic must be derived. If such
a statistic can be found, which is independent of any unknowns, then the detection method
is known as a CFAR detector.

In most radar signal processing literature to date, a Cell Averaging (CA) CFAR detector
is the preferred method of target detection [GK94, FBW01b, Lan96]. Figure 2.5 shows an
adaptive CA-CFAR threshold S CA-CFAR

log (dashed line) applied to the A-scope of Figure 2.1.
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Figure 2.5: Sample CFAR threshold superimposed on a power versus
range A-scope.

CA-CFAR

The adaptive threshold S CA-CFAR
lin necessary for CA-CFAR based detection is derived as fol-

lows.
[Bar05] shows that the detection probability of a Rayleigh fluctuating target, embedded

in exponential noise or clutter, can be determined from the CA-CFAR parameters

P CA-CFAR
D (q) =

[
1 +

τCA-CFAR

Wf

(
1

1 + η̂ SNP(q)

)]−Wf

(2.2)

where Wf is the size of the CFAR window and τCA-CFAR is defined as

τCA-CFAR = Wf

((
P CA-CFAR
fa

) −1
Wf − 1

)
(2.3)

and η̂ SNP(q) is the estimated received SNP calculated as

η̂ SNP(q) =
S radar

lin (q)

T (S radar
lin (q))

(2.4)

where S radar
lin (q) is the linearised received power from the radar in the qth (bearing-range) bin,

referred to as “cell under test” (CUT). The adaptive threshold is then defined as

S CA-CFAR
lin (q) = τCA-CFAR · T (S radar

lin (q)) (2.5)

Hence, for chosen values of Wf and P CA-CFAR
fa , the P CA-CFAR

D of a target, within a single
received power versus range A-scope, as a function of the estimated received SNP η̂ SNP,
can be derived. In general, in order to assure that the cells in the window contain noise
information only, “guard-cells” are selected around the CUT, accounting for the fact that
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some target power can be spread to adjacent cells of the CUT. In this case, another parameter
G corresponding to the number of guard-cells is included. By using the following change of
variable

Wg = Wf −G (2.6)

and replacing Wg for Wg for all the CA-CFAR equations, the guard-cells parameter G is
incorporated into the method.

In the case of scanning radar data where B-scopes are available, the above (1D) CA-CFAR
method could be applied to the range or the bearing angle dimension. Another alternative is
to extend it to 2D and process the range and bearing dimensions simultaneously, thus jointly
analyzing all available information. Also from a computational point of view it has the
advantage of processing the radar data once, instead of sequentially for range, then bearing
and integrating the results at the end. The 1D window used to estimate the test statistic is
extended to a 2D area surrounding the cell under test (CUT) as shown in Figure 2.6.
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Figure 2.6: 1D and 2D CA-CFAR reference windows.

Let Wr and Wb represent the window size in range and bearing, respectively, and Gr and
Gb the number of guard-cells also with respect to range and bearing. Then the Wg cells
surrounding the CUT in all CA-CFAR equations are replaced by (Wr +1)× (Wb+1)− (Gr +

1)×(Gb+1) cells surrounding the CUT. By introducing the former changes andW 2D
G defined
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as
W 2D
G = (Wr + 1)(Wb + 1)− (Gr + 1)(Gb + 1) (2.7)

Equation (2.3) and Equation (2.2) now become

τ = W 2D
G

((
P CA-CFAR
fa

)− 1

W 2D
G − 1

)
(2.8)

P CA-CFAR
D (q) =

[
1 +

τ

W 2D
G

(
1

1 + η̂ SNP(q)

)]−W 2D
G

(2.9)

As can be seen from the equations and their respective plots in Figure 2.7 the 2D CA-
CFAR probability of detection is higher than the 1D CA-CFAR detection probability, for a
given received signal to noise power ratio η SNP.
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Figure 2.7: 1D and 2D CA-CFAR probability of detection. The following
CA-CFAR parameters were used: Wf =Wr =Wb = 20, G = Gr = Gb = 4,
P CA-CFAR
fa = 1× 10−6.

Several other CFAR methods have been developed and current research focuses in CFAR
methods with adaptive parameters [GLZ+09]. In particular, the Ordered Statistic (OS)
CFAR has been reported to perform well for large targets (with respect to the spatial resolu-
tion) and in SAR images, due to their noise and clutter being usually modeled by Weibull or
K distributions, and the higher effect of multiplicative speckle noise present in such images.
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OS-CFAR

In the OS-CFAR method the test statistic T (S radar
lin (q)) is obtained by choosing the kth value

from the ordered set of power values in the CFAR window

S
(1)
lin ≤ S

(2)
lin ≤ . . . ≤ S

(k)
lin ≤ . . . ≤ S

(Wf−1)

lin ≤ S
(Wf )

lin (2.10)

a value of k =
3Wf

4
has been suggested in [Roh83] to represent a good estimate for typical

radar applications. The parameter τOS-CFAR needs to be calculated numerically from

P OS-CFAR
fa =

k−1∏

i=0

Wf − i
Wf − i+ τOS-CFAR (2.11)

while the probability of detection is obtained from

P OS-CFAR
D =

k−1∏

i=0

Wf − i
Wf − i+ τOS-CFAR

1+η̂ SNP(q)

(2.12)

Unfortunately, the noise and target distribution assumptions in CFAR are often violated,
yielding higher false alarm and missed detection rates than those theoretically derived. To
reduce this problem, and if time is available to acquire multiple scans of a fixed environment,
it makes sense to exploit the high target correlation between scans to further reduce the
uncertainty in the existence of objects and reduce the noise. Techniques which implement
this concept are generally referred to as integration methods.

Binary Integration

A simple but effective integration method widely used in the radar community is the Binary
Integration (BI) Method [Bar05].

For the integration of L cells corresponding to a particular range and bearing obtained
in successive scans, the number of power values in cells which exceed the single observation
threshold (i.e. CA-CFAR threshold) is counted. If this number is greater than or equal to
a chosen value M BI, a detection is declared. This detector is then called an M BI out of L
binary integrator. A more detailed description now follows.

Given L and a desired resulting probability of false alarm P BI
fa , an optimum or near

optimum M BI has to be determined. Using an indicator function I(q, l) = 1 when a single
scan detection is declared and I(q, l) = 0 otherwise, the M BI out of L binary integrator
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declares a detection when:
L∑

l=1

I(q, l − 1) ≥M BI (2.13)

q corresponds to an index identifying a particular range and bearing, and l corresponds to
the scan number. When integrating L scans, the probability of detection [Bru90] yielded by
this method is

P BI
D =

L∑

l=M BI

L!

l!(L− l)!
(
P CA-CFAR
D

)l(
1− P CA-CFAR

D

)L−l
(2.14)

where P CA-CFAR
D is the probability of detection in a single scan, 1 − P CA-CFAR

D being the
probability of a miss-detection, and M BI < L is the optimal BI parameter for a given L.
Likewise, if P CA-CFAR

fa is the probability of false alarm in a single scan, then the probability
of false alarm for the binary integration method is

P BI
fa =

L∑

l=M BI

L!

l!(L− l)!
(
P CA-CFAR
fa

)l(
1− P CA-CFAR

fa

)L−l (2.15)

for 1 ≤M BI ≤ L, and 0 ≤ P CA-CFAR
fa ≤ 1

From Equation (2.15) it can be seen that for a desired false alarm rate P BI
fa , the false

alarm requirement for the single-scan CA-CFAR detector is relaxed, i.e. P CA-CFAR
fa for a

single component scan can now be greater than P BI
fa , so that the P CA-CFAR

D is also increased.
This in turn, yields a P BI

D higher than the single observation P CA-CFAR
D . Figure 2.8 shows

detection probability curves for the single observation CA-CFAR and different M BI
opt-of-L

integrators. Over multiple scans, the probability of detection is increased with the number
of observations available.

BI offers a robust technique to identify which parts of signal are noise. The detection
probability obtained by means of the BI method will be used as a target existence probability
estimate in the radar noise reduction method presented in section 3.

2.2.3 Noise reduction techniques

When time is available to obtain multiple sensor data readings from a static scene at the
same location, it is possible to exploit the correlation in the sequence of data readings to
reduce noise, and consequently improve detection. B-Scope or PPI radar data is usually
represented by images which make noise reduction techniques suitable to be used in these
kinds of radar data. Several methods have been developed in the field of image processing to
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Figure 2.8: BI and CA-CFAR probabilities of detection. The 1D CA-
CFAR parameters W = 20, G = 4 and P CA-CFAR

fa = 1× 10−6 were used.

reduce noise in both stationary and dynamic image sequences in applications as diverse as
object tracking surveillance, autonomous navigation, motion analysis, and astronomical and
medical imaging [BKE+95]. A sequence of 2D images is represented by a 3D volume where
the third dimension corresponds to the temporal dimension or the sequence index. Many
of the methods to process such 3D signals have been developed by generalizing well known
2D filtering techniques by extending the support of a filter in the temporal domain. The
classical Wiener filter [Wie64], extended to a 3D form, is an example of such an approach.
The Wiener filter is a linear time-invariant estimator which adopts a Minimum mean square
error (MSE) statistical approach. Adaptive noise canceling, developed as a variation of
the original Wiener optimal filtering theory, was presented in [WGM+75]. The adaptive
noise cancel-ling application uses a reference signal correlated with the noise to obtain a
noise estimate. This estimate is then subtracted from the noisy signal. An application
of Wiener filtering to 3D medical imaging data [MFALRAW07] extends the classical Wiener
implementation by estimating the filter parameters using a sequence of observations based on
the calculation of local statistics (calculated in a small window around the point of interest).
In radar applications, a 2D Wiener filter, also using local statistics, has been used to reduce
noise in weather radar data [DT12].

Work by Donoho and Johnstone [Don95, DJ94b, DJ94c] introduced the denoising capa-
bilities of the Wavelet transform. The basic method is Denoising by Thresholding [BGG98].
It is analogous to frequency domain filtering based on the Fourier transform. The wavelet
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time-frequency approach however, attempts to reduce noise by preserving a number of coef-
ficients associated with components with high information energy, and discarding the rest.
It is assumed that noise (often considered to be additive Gaussian) is spread homogeneously
among all signal frequency components. Thus by discarding the coefficients of the com-
ponents not highly correlated with the signal, a significant amount of noise is eliminated.
Coefficients with a magnitude higher than the threshold are considered to hold mostly signal
information, and those lower than the threshold are considered to carry mainly noise en-
ergy. In radar applications several articles have demonstrated the use of wavelets to reduce
noise. Chen [CC96] proposed a recursive thresholding method for radar image denoising,
while Aly demonstrated the use of wavelet packet transforms and higher order statistics to
detect and localize RF radar pulses in noisy environments [AOE06]. In general, most noise
reduction algorithms (both ‘classical’ and wavelet-based) assume the noise to be additive
Gaussian [BKE+95, BGG98], which is useful for a broad range of applications. However,
in radar imaging, the Gaussian noise assumption is not realistic. Another critical aspect of
wavelet denoising is the appropriate threshold selection. An adaptive threshold method was
introduced by Chen [CH05], which adapts the threshold to the coefficients’ statistics, relaxing
the Gaussian assumption of most wavelet based methods. Another adaptive method, pre-
sented by Jin [JFWJ03] uses abrupt changes in the signal to adapt weights to calculate local
means and variances. This approach is reported to reduce the ripple-like artifacts usually
found around edges when using wavelet denoising techniques.

Spectral noise subtraction [Bol79] (or noise subtraction) is another well known technique
used in signal processing to reduce noise. This method requires an estimate of the noise
power spectrum in order to perform the noise subtraction from the original noisy data.

The following sections describe these three noise reduction methods.

Wiener filter

This method of noise reduction corresponds to the application of a discrete-time minimum-
mean-square-error filter. Such a filter is known as a Wiener-Kolmogorov filter or Wiener filter
for short [Wie49, Kol78]. Wiener filter noise reduction is equivalent [Ein12] to estimating a
signal Y (z) corrupted by noise V (z) from the measurement U(z) = Y (z)+V (z). LetHE(z) be
the (Wiener) filter which minimizes the error E(z) = ||Y (z)− Ŷ (z)||2, where Ŷ (z) represents
an estimate of the original signal Y (z), and z is the discrete frequency-domain variable (see
Figure 2.9).

Wiener filters assume additive noise and that the signals are stationary, linear stochastic
processes. Because radar images, as well as natural images, consist of smooth areas, textures
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Figure 2.9: Estimation problem and the Wiener filter.

and edges, they are not globally stationary, but can be treated as locally stationary. This led
to the derivation of the Lee filter [Lee80], which has been extensively used in video denoising,
where it has proved to be successful in terms of noise removal and preserving some important
image features (e.g. edges) [JFWJ03]. The Lee filter assumes that all samples within a
local window are from the same structure (local stationarity). This assumption is invalid
when sharp edges are encountered within the window, therefore the mean is blurred and the
variance increases near the edges, which results in a degraded image near the edges.

Wavelets

Some of the limitations of the Wiener filter, particularly its inability of preserving non-linear
features in the data, can be overcome by using non-linear filters. However, in general, finding
the parameters for a non-linear filter is a complex task. Since the introduction of the wavelet
denoising methods by Donoho and Johnstone [DJ94b, DJ94c, Don95] a powerful, yet simple
to implement non-linear filter for noise reduction has become available and is widely used in
practical implementations.

Given the discrete wavelet transform (DWT) coefficients, which are analogous to the
Fourier transform coefficients but in a 2D (time-frequency) space, the main idea behind
the wavelet denoising scheme is that most of the signal’s energy is concentrated in a few
coefficients, while the noise energy is spread across all coefficients4. This effect is known
as time-frequency localization. Thus, by preserving the coefficients which hold most of the
signal’s energy and setting the remaining ones to zero, the signal reconstructed through the
inverse DWT using these new coefficients will be a close approximation of the original signal
with reduced noise.

4The way the noise is distributed across the coefficients is highly dependant on the type and distribution
of the noise.
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The application of the DWT and its inverse can be interpreted as a signal being processed
through a filter bank, as shown in Figure 2.10.
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Figure 2.10: Wavelet decomposition and reconstruction as a filter bank.

Wavelet denoising estimators are derived under the minimax criterion. This corresponds
to finding an estimator whose maximal risk is minimal among all estimators, as opposed to the
minimum MSE criterion used in the Wiener filter. In the wavelet denoising approach, noise
and signal spectra might overlap in the frequency domain, but the coefficients associated with
the signal and those related to noise are expected to have different amplitudes. Therefore
clipping, thresholding or shrinking of the amplitude of the transform can be used to separate
signals or remove noise. A thresholding function corresponding to the estimated noise level,
which preserves signal values above the threshold has to be chosen.

The particular thresholding function used in this work is the universal threshold proposed
by Donoho and Johnstone [DJ94a, LZ12]

T = σ
√

2 logeN ; (where N the signal size and σ2 the noise variance) (2.16)

with the soft-thresholding method (refer to Eq. (2.17) and Figure 2.11) proposed in [Don95].

y =





x− T if x ≥ T

x+ T if x ≤ −T
0 if |x| < T

(2.17)

This method generates an estimated signal with a smaller amplitude than the original one,
but it retains the regularity5 of the signal.

5regularity corresponds to areas in which the signal is continuous, while discontinuities correspond to
irregular points
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Figure 2.11: Soft thresholding: (a) original values, (b) soft thresholding
applied to values.

Spectral noise subtraction

The spectral noise subtraction technique, first presented by Boll [Bol79], is based on esti-
mating the magnitude frequency spectrum of the underlying signal of interest by subtracting
the noise magnitude spectrum from a noisy signal. An estimate of the noise spectrum is
required. Such an estimate is approximated by averaging the noise power using parts of the
noisy signal which are known to hold no information of interest. Further modifications to
enhance the noise subtraction method were presented by Berouti et al. [BSM79] which reduce
broadband and background noise.

2.3 Feature detection in 3D environments

Applications such as robot localization, simultaneous localization and mapping (SLAM),
augmented reality and 3D surveying involve the use of sensors to capture the environment.
Three-dimensional data can be generated using the output of different sensing technologies,
such as stereo cameras, structured or modulated light sensors, scanning range finders, etc.
Laser based scanning range finders capable of generating 3D ladar data are widely used in
robotic mapping and surveying applications, due to its relatively simple approach to obtain
the 3D coordinates, in contrast to stereo images calculations, for instance. Also, they are
preferred for its range of operation and high measurement precision. Ladar sensors output a
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set of 3D points (in Cartesian, spherical, cylindrical or other 3D coordinate system, depending
on the sensor). The points correspond to objects in the environment which are illuminated by
the laser beam from the laser range finder and reflect a sufficiently large amount of laser energy
back to the sensor. Some ladar sensors are able to attach to each point extra information
such as the reflected laser intensity or the corresponding color in the light spectrum (as a
Red, Green, Blue triplet) captured with an optical camera. This set of points is referred
to as a 3D point cloud. Although other sensors are capable of generating 3D point clouds,
without loss of generality this section will focus on ladar data.

Because most objects of interest reflect the majority of the laser energy back to the sensor,
a ladar sensor can only detect those objects in direct line-of-sight. To be able to detect the
shaded parts of the environment, the sensor has to scan it from different perspectives, each
generating a new 3D point cloud. Therefore, it is usually required to match successive scans
from the environment, often from different relative locations. In some applications, this
process is referred to as registration. In order to achieve a correct matching, many methods
rely on features present on the environment, which can be identified in the different scans,
and then used as common references. These features need to be detected or calculated from
the sensor data. One approach is to use particular properties which naturally occur in the
environment, thus they are called natural features. Often, natural features are not available
or their quality is not enough to yield a correct matching. In this situations artificial markers
are incorporated to the environment. The state of the art in both approaches is described
next.

2.3.1 Natural features

Fully automatic algorithms favour the automatic extraction of natural features from scans,
which are then exploited to find the correspondences of scan pairs. Lee et al. [LKC04]
presented a matching method in order to find the correspondences of features in two omni-
directional images. Hansen et al. [HCBD07b, HCBD07a] considered an application of scale
invariant feature detection using scale-space analysis suitable for use with wide field of view
cameras.

The reflectance intensity provided by modern laser scanners gives additional information
which can be used for registration. Based on this concept, Böhm and Becker [BB07] sug-
gest the use of SIFT [Low04] features for automatic registration. More recently, Endres et
al. [EHS+14] compare SIFT, SURF [BETVG08] and ORB [RRKB11] as feature descriptors
for visual SLAM with a RGB-D camera. Weinmann et al. [WWHJ11] and Weinmann and
Jutzi [WJ11] present a method that is based on both reflectance and range images. All these
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approaches find the correspondences for registration based on the features extracted from
the images and directly from the point cloud.

Other approaches rely on 3D structure. Brenner et al. [BDR08] use 3D planar patches and
the normal distribution transform (NDT) on several 2D scan slices for registration. These
approaches use the global features of the scans, i.e. features that describe the complete scan.

Several researchers use features that describe small regions of the scan for place recognition
and the registration of scans (Huber [Hub02], Steder et al. [SGB10], Barnea and Filin [BF08]).

Houshiar et al. [HEBN13] present an approach to convert 3D scans into panoramic images,
extract features from these images, use feature descriptors for data association and compute
the transform using RANSAC and a least squares method.

2.3.2 Artificial markers

Marker based registration uses artificially defined landmarks as corresponding points. This
form of supervised data association ensures that the scans are registered at their correct
location. These algorithms can extract the 3D position of the markers either manually or
automatically.

Nevertheless, although the techniques to extract natural features continue to improve,
there are situations in which artificial markers are required or show a superior perfor-
mance [Fia10]. These include the cases in which the environment is highly dynamic and
natural features are not consistent between successive scans [SKC13, NHY+00], when natu-
ral features are not present in the sufficient quantity and uniqueness [Fia10] or a high accuracy
and reliability is required [Fia10, NHY+00]. Moreover, natural features often require large
computational times to extract such features. Applications where artificial landmarks are
used include indoor augmented reality, pose determination in industrial settings, reverse en-
gineering of 3D objects, real-time tracking systems, face recognition, medical imaging, sensor
calibration and 3D laser surveying [Fia10, BPR12, BGG+04].

Due to the lack of adequate analytic approaches in literature, markers are specifically
designed for each task. A proper marker design aims at a highly reliable detection and and
a very low probability of false alarms [Fia10].

Markers designed for the augmented reality (AR) application are usually detected by
video camera. Most of them consist of high contrast (black and white) patters, encoding
some information, such as an identification tag, instructions or commands to be processed
after detection, orientation marks, etc. The standard method to detect these markers begin
with a binarization step based on thresholding, followed by connected component analysis to
locate blobs where a unique feature can be detected by means of shape or line detection. The
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ARTag marker presented in [Fia10] replaces the simple constant threshold method, widely
used in AR markers, with a gradient based edge detection to avoid the dependency on lighting
variations and to add the ability to detect partially occluded markers using heuristics. After
detection, AR markers are subject to a second stage for verification and identification of the
information embedded in the marker.

Artificial markers are also used align 3D point clouds for reverse engineering of objects
captured with a 3D scanner such as a stereo vision system as reported in [BPR12]. Natural
features, usually shape descriptors from the scanned object surface are not available due to
the properties of the surface (flat or uniform curvature geometries). The markers used in the
presented method are patterns of black and white stripes or circular black and white markers
with similar properties as those used for the AR application mentioned above.

In robot localization and robot SLAM the use of artificial landmarks is required to achieve
high accuracy in highly dynamic environments or when there are few natural features avail-
able. When laser sensors are used on board a robot or automated vehicle the artificial
landmark used is usually a laser reflecting surface [ROSF11]. A global localization method
for automated guided vehicles (AGV) in an industrial environment using reflective markers
is presented in [ROSF11]. The method is able to work in large industrial environments with
several hundred markers, which surpass the capability of commercial off-the-shelf system han-
dling only a few dozen markers at a time. The method assumes the location of the markers in
the map and the map itself are known a priori. In an off-line phase run once at the beginning
to calibrate the position of the reflectors and thus, reduce the effect of false alarms (outliers)
from reflecting surfaces other than the actual landmarks. These outliers are removed using an
heuristic which converges with fewer iterations than comparable RANSAC-based methods.

Another example of SLAM using artificial retro-reflective markers is presented in [NHY+00].
A robot is used to monitor children activities in a Kindergarten environment. The children
also interact with the robot, thus a high accuracy SLAM is required to avoid accidents. The
reported SLAM approach achieve an average error of 24 mm, corresponding to an error rate
of 0.14% of the total running distance. The markers’ design consists of of 5 stripes of alter-
nating reflective and non-reflective material. The detection method finds wall lines in the
environment using a Hough transform, and search for the reflective pattern [NS12] on the
detected lines.

In 3D laser surveying application it is required to rapidly and automatically de-
tect points marked by retro reflectors. The process and device described in US Patent
6,734,952 [BGG+04] assigned to Leica Geosystems is used to detect retro reflective markers
using a geodetic measuring system (total station, theodolite or similar device). The device
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includes a specific hardware called automatic locating unit (AZE6). The AZE unit is respon-
sible of marker seeking, positioning and marker point measuring. Once the AZE has detected
the markers, their positions are stored along the actual data measured by the device. There
are multiple approaches to build an AZE. Most AZE units are not robust with respect to the
detection of foreign objects reflecting sunlight or the AZE’s laser beam. The unit disclosed
uses two fan-shaped laser beam of narrow spectrum to scan on wide field of view for reflective
surfaces. The narrow spectrum allows the AZE to reject false reflections of sunlight. The
rejection of foreign objects reflecting the sensor’s laser is done by specific heuristics depend-
ing on the estimated distance of the target. For close targets (less than 10 m) a special
arrangement of the fan axes allows to discard false detections. When the distance to the
target is larger than 10 m a two dimensional intensity image is used. The target’s widths
are calculated from this image and thus validated as a marker if they fall within tolerance
values. This method requires a considerable amount of time during the setup phase to detect
the markers before starting the normal 3d surveying procedure.

2.4 Optimal Sub-pattern Assignment (OSPA) map met-

ric

Target detection is a state estimation problem. As such, the concept of estimation error
is of great importance. Many methods used to compare estimated detections with ground
truth information are only defined if the estimated set has the same number of objects as
the ground truth set [BAL+17], such as root mean squared (RMS) and normalized estima-
tion error squared (NEES) metrics [BSLK04, HHD10, CMCTN07, WEL07]. Nevertheless,
in most real applications the number of detected objects and the number of ground truth
objects will be different, which often lead to pruning the estimated state or the ground truth
vectors commonly used to represent these two sets. The metric used here (which jointly
considers errors in target location, and number estimates) is based on a pth order Wasser-
stein construction [SVV08]. This metric has been recently introduced and has been shown
to produce more consistent results than others (Hausdorff, OMAT) in multi-object systems.
It is formulated in terms of the ground truth set of targets M̂ and the detected set M. If
|M| > |M̂|, it is given by,

d̄(v)(M̂,M) =

(
1
|M|

(
minπ∈Πk

∑|M̂|
i=1 d

(v)(m̂i,mπ(i))p + vp(|M| − |M̂|)
))1/p

(2.18)

6AZE: from german Automatische Zielauffindungseinheit
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where π correspond to the permutation in Πk (the set of permutations on {1, 2, . . . , k}) which
minimizes the sum of the distances between the elements from M̂ andM, while

d(v)(m̂i,mπ(i)) = min(v, ||m̂i −mπ(i)||) (2.19)

is the minimum of the cut-off parameter, v, and the Euclidean distance between the ground
truth target location, m̂i and the detected target location mπ(i). If |M| < |M̂| the metric
is obtained through d̄(v)(M,M̂). To find the optimal π ∈ Πk is a special case of integer
linear programming, which can be solved efficiently using the Hungarian method [Fra04] for
optimal point assignment.
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Chapter 3

Binary Integration Noise Reduction

In this work a new approach for radar image denoising is introduced and compared to the
classical Wiener filter and to the more recent wavelet based denoising approaches. The
proposed method’s implementation presents a lower computational complexity than both the
3D Wiener filter and the 3D wavelet approaches. The method further reduces the mean noise
value when compared with the other two methods. It uses statistical information provided
by the Binary integration detector to identify parts of the received signal corresponding to
noise. It uses those parts to obtain an estimate of the noise power spectrum by recursive
averaging. This noise estimate is then used for power spectral subtraction [Bol79] (or noise
subtraction) to reduce noise. In particular, Binary Integration (BI) combines the output of
several single-observation detectors to improve the detection probability, while maintaining
the desired, acceptable false alarm rate. The single-observation detector used is a member
of the Constant False Alarm Rate (CFAR) family of stochastic detectors, widely used in
radar [Sko08]. In the case of radar data, the binary integrator’s probability of detection can
be used to identify sections which have low probability of having any target information and
therefore they can be used to estimate the noise magnitude. This new method has been
called Binary Integration Noise Reduction or BINR for short.

3.1 Integrating BI with spectral noise subtraction

The noise power estimate Σ̂n(l) can be calculated as in Equation (3.1), which corresponds to
a recursive smoother using a fixed parameter αd, and the binary integration probability of
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detection from Equation (2.14).

Σ̂n(l) =
(
αdΣ̂n(l − 1) + (1− αd)S radar

lin (l)
)(

1− P BI
D (l)

)

+ Σ̂n(l − 1)× P BI
D (l)

(3.1)

The first term on the right of Equation (3.1) represents the smoothed (averaged) noise power,
weighted by

(
1 − P BI

D (l)
)
during target absence sections of the signal, while the second one

shows that the previous estimate is preserved and not updated if there is a high probability
of target presence

(
P BI
D (l)→ 1

)
. Introducing

α̃d(l) = αd + (1− αd)P BI
D (l) (3.2)

Equation (3.1) can be rewritten as

Σ̂n(l) = α̃d(l)Σ̂n(l − 1) +
[
1− α̃d(l)

]
S radar

lin (l) (3.3)

In Equation (3.2), α̃d(l) is a time varying smoothing parameter. Hence the noise spectrum
can be estimated using past spectral received power values, together with a smoothing pa-
rameter which itself varies according to the BI probability of detection P BI

D (l). The adaptive
noise estimator is summarized in the block diagrams of Figures 3.1 and 3.2.

P BI
D (l) 1− αd Σ α̃d(l)

αd

+

+

Figure 3.1: Block diagram summarising the time varying parameter α̃d.

1− α̃d(l) Σ

α̃d(l) z−1

S radar
lin (l) +

+

Σ̂n(l − 1)

Σ̂n(l)

Figure 3.2: Binary integration noise reduction block diagram.

The noise power estimate Σ̂n(l) can be used to obtain a Binary Integration Noise Reduc-
tion (BINR) power estimate Ŝ BINR

lin (l) using the method of power spectral subtraction [Bol79].

28



In the basic spectral subtraction algorithm, the average noise power, Σ̂n(l) is subtracted from
the noisy range spectrum. In [BSM79], a method which further reduces background noise
for SNPs between -5 and 20 dB was devised based on subtracting an over-estimate of the
noise power and preventing the resultant spectral components from reaching below a preset
minimum level, termed the “spectral floor”. This method leads to a reduced noise power
estimate Ŝ BINR

lin (l) given by

Ŝ BINR
lin (l) =




S radar

lin (l)− cΣ̂n(l) if S radar
lin (l) > cΣ̂n(l)

d× Σ̂n(l) otherwise
(3.4)

where c is an over-subtraction factor (c ≥ 1) and d is the spectral floor parameter (0 < d < 1).
A value of c which is larger than 1 represents the fact that it is necessary to subtract more than
the expected value of the noise (which is a smoothed estimate) to make sure that most of the
noise peaks are removed. The spectral floor parameter d, when greater than zero, ensures
that the remnants of the noise peaks are masked by neighbouring spectral components of
comparable magnitude. This results in a reduction of broadband noise, when compared
with the original power spectral subtraction method. [BSM79] further demonstrated the
advantages of an adaptive over-subtraction factor c, which varies between frames of recorded
spectra, as a function of the estimated signal.

3.2 Implementation and computational complexity

This section discusses the implementation and computational complexity, as a function of
the data size, of all three noise reduction methods. All the algorithms were implemented
using the SciPy signal processing toolbox [JOP+ ]. The same received radar power signal
S is used as the input for all the methods. The signal includes additive noise. It is a 3D
array formed by stacking L radar scans. Each radar scan S(l) corresponds to a B-scope of
size Np = Nr ×Nb cells (pixels), where Nr represents the number of range bins (rows) while
Nb the number of bearing bins (columns). The first dimension in the 3D array represents
range (r), the second represents bearing (b) and the third represents the scan number (l).
The sequence of L power values for a particular range and bearing is denoted as Sr,b while an
individual voxel is indicated by Sr,b,l. The total number of voxels in S is Nv = Nb ×Nr × L.
The complexity analysis will be carried out in terms of Np and L (Nv = Np×L), to separate
the effects of the radar image size from those related to the number of observations.
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3.2.1 Wiener filter implementation and complexity

The Wiener filter noise reduction technique used in this work requires a support volume, in
order to calculate the local means and variances. For a given voxel, the cells contained in
the support volume around it will be used to calculate the local statistics (see lines 4 and 7
in Algorithm 1) . Let (2Kr + 1), (2Kb + 1), (2Kl + 1) be the dimensions of this volume in the
range (rows), bearing (columns) and observation (depth) dimensions. Kr and Kb are related
to the expected range and bearing size of targets. If these parameters are set too high the
local mean and variance of a target voxel will incorporate not only target values but also
undesired noise values. On the other hand, if they are to small, the local mean and variance
estimates would be degraded. 2Kl + 1 = L has been chosen for the window to incorporate
information from all observations at each value in the temporal (l) dimension. The for loop

Algorithm 1 Wiener filter
1: procedure wiener(signal S, 3D support volume dimensions Kr, Kb, Kl)
2: Kv ← Kr ×Kb ×Kl

3: for all Sr,b,l ∈ S do . Estimate local mean

4: µr,b,l ← 1
Kv

r+Kr∑
kr=r−Kr

b+Kb∑
kb=b−Kb

l+Kl∑
kl=l−Kl

Skr,kb,kl

5: end for
6: for all Sr,b,l ∈ S do . Estimate local variance

7: σ2
r,b,l ← 1

Kv

r+Kr∑
kr=r−Kr

b+Kb∑
kb=b−Kb

l+Kl∑
kl=l−Kl

(
Skr,kb,kl − µr,b,l

)2

8: end for
9: np ← mean(σ2) . Estimate noise power
10: for all Sr,b,l ∈ S do . Calculate output
11: if σ2

r,b,l < np then
12: Swiener

r,b,l ← σ2
r,b,l

13: else
14: Swiener

r,b,l ←
(
Sr,b,l − µr,b,l

)(
1− np

σ2
r,b,l

)
+ µr,b,l

15: end if
16: end for
17: return Swiener

18: end procedure

in line 3, which estimates the local mean, is of the order O(Np × L2) as is the case for the
second for loop in line 6 used to calculate the local variance. The noise power estimation in
line 9 and the for loop in line 10 are of complexity O(Np×L) each. This algorithm exhibits
an overall complexity of the order O(Np × L2).
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3.2.2 Wavelet denoising implementation and complexity

The 3D wavelet denoising method has been separated into two sequential wavelet denoising
problems. The first carries out scan by scan 2D spatial wavelet denoising, while the second
executes 1D time domain wavelet denoising for each range-bearing cell sequence. This method
is presented in Algorithm 2. General wavelet methods have a complexity of orderO(N logN),

Algorithm 2 3D Wavelet denoising

1: procedure wavelet(signal S, 1D wavelet W 1D, 2D wavelet W 2D, noise variance σ2)

2: for all S(l) ∈ S do . 2D spatial wavelet denoising

3: kl ←
⌊
log2

(
S(l) length
W 2D length

)⌋

4: S dwt2D ← wavedec2
(
S(l),W 2D, kl

)

5: kth ← σ2 ·
√

2 log2

(
size
(
S(l)

))

6: S dwt2D
th ← soft_thresh

(
S dwt2D, kth

)

7: S den(l)← waverec2
(
S dwt2D

th ,W 2D
)

8: end for

9: for all Sdenr,b ∈ S den do . 1D temporal denoising

10: S dwt1D ← wavedec
(
S den
r,b ,W

1D
)

11: kth ← σ2 ·
√

2 log2

(
length

(
S den
r,b

))

12: S dwt1D
th ← soft_thresh

(
S dwt1D, kth

)

13: S wavelet
r,b ← waverec

(
S dwt1D

th ,W 1D
)

14: end for
15: return S wavelet

16: end procedure

whereN corresponds to the data size (total number of pixels for 2D, or signal length for the 1D
case). Therefore, the first part is of the order O(L×Np logNp) while the second part presents
a complexity of the order O(Np×L logL). Hence the total complexity of the wavelet method
is of the order O(L×Np logNp +Np × L logL) which reduces to O

(
(Np × L) log(Np × L)

)
.
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3.2.3 BINR implementation and complexity

The optimum parameters required for Binary Integration, M BI
opt and P CA-CFAR

fa , can be cal-
culated off-line and they are not included in the algorithm, but given as inputs. Also, the BI
probability of detection, which is dependent on M BI

opt and L, can also be defined offline, and
the corresponding polynomial in P CA-CFAR

Dr,b,l
is therefore, pre-calculated. The first for loop in

Algorithm 3 Binary Integration Noise Reduction

1: procedure binr(signal S, prob. of false alarm P CA-CFAR
fa , BI parameter M BI

opt, recursive
averaging parameter αd, noise subtraction parameters c, d)

2: τ ← 2W
((
P CA-CFAR
fa

)− 1
2W − 1

)

3: for all Sr,b,l ∈ S do
. Estimate SNP

4: η̂ SNP
r,b,l ←

Sr,b,l

1
2W

q+W∑
j=q−W

Sj,b,l (for j 6= q)

. Calculate CA-CFAR PD

5: P CA-CFAR
Dr,b,l

←
[
1 + τ

2W

(
1

1+η̂ SNP
r,b,l

)]−2W

. Calculate BI PD

6: PBI
Dr,b,l

←
L∑

l=M BI
opt

L!
l!(L−l)!

(
P CA-CFAR
Dr,b,l

)l(
1− P CA-CFAR

Dr,b,l

)L−1

7: end for

8: for all S(l) ∈ S do
. Calculate α̃d

9: α̃d(l)← αd +
(
1− αd

)
P BI
D (l)

. Update noise power estimate
10: Σn(l)← α̃dΣn(l − 1) + (1− α̃d)S(l)

. Apply noise subtraction
11: if S(l) > cΣn(l) then
12: S BINR

lin (l)← S(l)− cΣn(l)
13: else
14: S BINR

lin (l)← d× Σn(l)
15: end if
16: end for
17: return S BINR

lin

18: end procedure

line 3 has a complexity of the order of O(Np×L). The second for loop in line 8 involves op-
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erations on each pixel for each observation, which yields a complexity of the order O(Np×L).
The combination of the CA-CFAR, BI and noise subtraction parts of the algorithm yields a
complexity of the order O(Np × L).

In summary, with respect to observations L, the Wiener filter algorithm has the highest
complexity (quadratic), followed by the linearithmic1 complexity of the Wavelet approach,
while the binary integration noise reduction’s linear complexity makes it the least complex.
On the other hand, the Wiener filter and the binary integration noise reduction are the least
complex (linear time) with respect to the data size Nv.

3.2.4 Experimental computational time results

The computational time used by the different algorithms, plotted against observation number
L, is shown in Figure 3.3. The results are consistent with the analysis presented in the
previous sections. The Wiener filter’s complexity grows approximately quadratically with L,
while the wavelet exhibits linearithmic complexity. A linear time complexity is achieved by
the BINR method.
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Figure 3.3: Elapsed computational time measurement.

1A linearithmic function is of the form n log n. An algorithm with a time complexity of the order O(n log n)
is said to run in linearithmic time.
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L 2 5 10 15 20
MBI 1 2 4 5 7

Table 3.1: Optimal MBI parameter for different number of observations
L.

3.3 Noise reduction and detection in scanning radar data

An experimental radar data set, captured2 in a public park in Santiago, is used to test the
noise reduction schemes.

The data set contains scans from 12 different locations along a line in the main paved
track of Parque O’Higgins in Santiago. At each location 160 or more scans were obtained with
a scanning radar. The ground truth was labelled by hand using satellite images from Google
Earth and Bing services, and a Geographic Information Software to align GPS information
recorded at the targets using a hand-held GPS and by the sensor which was mounted on a
Husky robot with onboard GPS. The results shown in the following sections correspond to
the location where the ground truth labels exhibited a lower position error.

3.3.1 Noise reduction in scanning radar data

Noise values in real radar data do not conform to perfect Gaussian or exponential distribu-
tions, as assumed by the noise reduction methods, which impairs their performance.

An analysis of the noise reduction methods considering the park environment now follows.
Although the methods were applied to the B-Scope radar data (range vs. bearing), the
results are shown in plan position indicator (PPI) form for clearer visualization. The test
environment is shown in Figure 3.4.

The area corresponds to a main paved track approximately 65 m wide. On the sides of
the track there are lamp posts and some trees. There are also fences and concrete walls. The
radar was located in the track.

The CA-CFAR window size was 9 bins in the bearing direction and 7 bins in the range
direction. The guard cells window size was 5 in the bearing dimension and 3 bins in the range
direction. These parameters were found suitable, on preliminary experiments, for detecting
the lamp posts and trees surrounding the radar, by considering the power spread this features
present in the acquired data.

The BI false alarm rate used was 1×10−6. The optimalMBI has been previously obtained
for different L values. Some of the values are listed in Table 3.1 The results presented corre-

2using an Acumine 94GHz, scanning radar [WCBS+06a].
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Figure 3.4: Park environment where radar data was captured (obtained
from Google Earth).

spond to L = 20 observations. For the noise subtraction algorithm, the chosen parameters
were αd = 0.9, c = 50.0 and d = 0.1. A high αd ensures that the previous value of the noise
estimate has more weight than the new observation which is desirable given the high amount
of noise present in radar data. Parameter c, controlling over-subtraction, was selected by
testing different values between 10 and 100. Similarly, spectral floor parameter d was tested
for different values between 0.05 to 0.5, with the chosen value yielding good results in the
reduction of the broadband noise.

The Wiener support region was 3 bins in the range and bearing direction, which is the
expected power spread of the targets of interest.

In the case of the spatial (2D) wavelet denoising, the Daubechies 3 wavelet function was
used, while the Haar wavelet was selected for the 1D (temporal) dimension.

The noisy raw radar input data from the park is presented in Figure 3.5.
The ground truth location of lamp posts and trees are marked with green circles and a

cross in their center.
Wiener filtering (Figure 3.6) exhibits a smoother noise background but the main objects

identified in the scene are blurred by the filter, thus losing localization detail.
Wavelet denoising (Figure 3.7), is able to preserve the location and edges of targets. It

does, however, produce several negative values in noise only sections, which are truncated to
a small value to allow visualization. Nevertheless, the average noise level is reduced.

Finally, the BINR method in Figure 3.8 shows its ability to retain details as well as to
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Figure 3.5: PPI showing noisy input data from the park environment.
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Figure 3.6: PPI showing Wiener filtered data from the park environment.

reduce the noise level. It can, however, be observed that some of the maximum power peaks
have been reduced in magnitude (e.g. tree at (−49.1 m, 48.6 m); with a raw power value
of 86.02 dB and a BINR power value of 82.73 dB). This is due to the fact that at some
observation l those particular targets are not detected, therefore their value is considered
noise and thus subtracted from them. Note that wavelet denoising (Figure 3.7) reduces some
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Figure 3.7: PPI showing Wavelet denoised data from the park environ-
ment.

noise-only areas to very low values. However, the noise background is not homogeneous,
therefore, the sharp edges between noise areas near the average noise level and those greatly
reduced by the wavelet method can yield several false detections as will be shown, after
applying the CA-CFAR detector.
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Figure 3.8: PPI showing BINR data from car park environment.
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Figure 3.9 shows mean noise power values from each method, in an area which is known
to contain no targets.
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Figure 3.9: Noise mean values and variances from a noise only area.

The BINR method exhibits the the lowest mean noise power for all L values. Its variance,
on the other hand, is higher than that of the Wiener for small L values, but as more obser-
vations are included, BINR achieves also the lowest noise variance. The Wiener filter mean
noise power stays above that of the raw data, but keeps the variance at a low value. The
Wavelet denoising method is able to reduce the mean noise power lower than the raw data
but is not able to reach the value of the BINR method. The Wavelet’s variance remains high
and oscillates due to the ripple effect mentioned before. The noise assumptions which form
the basis of all three noise reduction techniques are violated in practice. In particular, the
Wiener filter is not optimal for non-Gaussian noise distributions. In the case of the wavelet
method, the universal threshold is not able to correctly estimate a noise threshold to separate
the noise and information based wavelet coefficients. Furthermore, noise information is no
longer spread homogeneously across all wavelet coefficients. Likewise, the CFAR method
used in the BINR yields a higher false alarm rate than expected, since exponential noise is
assumed, as will be shown in the next section.
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3.3.2 Target detection in scanning radar data

The CA-CFAR detector is applied to the reduced noise data, in order to demonstrate the
usefulness of each reduction method. In this case a more relaxed CA-CFAR probability of
false alarm is applied (Pfa = 1×10−3), which reduces τCA-CFAR and increments the P CA-CFAR

D

(see Equations (2.3) and (2.2)). This is important as all reduction methods output target
power which is lower than the raw data. Also, this is possible since the reduced noise data
is expected to yield a lower false alarm rate.

Figure 3.10 shows the result of the detector applied to the raw noisy input data. The
detector itself is able to reduce false alarms to some extent in the raw data. Again, the green
circles in the figure denote the ground truth location of some relevant targets (trees and lamp
posts at the side of the track) obtained using multiple scans from a laser scanner. Red square
markers are used to show missed detections, while magenta coloured diamonds are used to
mark false alarms.
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Figure 3.10: CA-CFAR PPI showing noisy input data from park envi-
ronment.

The Wiener filter (Figure 3.11), interestingly, shows a remarkable reduction of background
noise, but its blurring effects present some problems. In particular, small and medium size
targets with low SNP are blurred in such a way that their size is reduced and even com-
pletely removed from the CA-CFAR detector output. On the other hand, high SNP targets
become increased in size (more pixels surrounding the landmark are marked as detections),
for instance, the tree at coordinates (−27.0 m, 48.4 m). In general, edge details are lost.

39



-40.0

-20.0

0.0

20.0

40.0

60.0

-60.0 -40.0 -20.0 0.0 20.0 40.0 60.0 80.0 100.0

Wiener CA-CFAR

X /m

Y 
/m Groundtruth [18]

Missed Detections [4]
False Alarms [7]

Figure 3.11: CA-CFAR PPI showing Wiener filtered data from park
environment.

Figure 3.12 presents the results of applying the detector to the wavelet denoised data. The
method, is able to keep feature details but it shows more false alarms than expected, especially
in broad “noise-only” areas. This is due to the noise background not being homogeneous,
which leads to the ripple effect of the chosen wavelet function, and the universal threshold
not being able to correctly discriminate between information and noise wavelet coefficients.

The BINR method (Figure 3.13), is able to preserve localization details, e.g. targets at
(−25.1 m,−26.6 m), (68.4 m,−37.6 m) and (100.7 m,−33.4 m), as well as reduce the number of
false alarms when compared to the detector applied to raw data and the other noise reduction
methods.
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Figure 3.12: CA-CFAR PPI showing Wavelet denoised data from park
environment.
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Figure 3.13: CA-CFAR PPI showing BINR data from car park environ-
ment.

A posteriori detection and false alarm rates can be derived from the results. Detection
rate, RD, is obtained by dividing the number of correctly detected ground truth targets,
TD, and the total number of ground truth targets, TG, i.e. RD = Td/TG. The False alarm
rate, Rfa, on the other hand, is calculated by dividing the number of pixels corresponding to
false alarms, Tfa, and the sum of pixels correctly identified as noise, TN , plus the false alarm
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Method TD TG Tfa TN RD Rfa /10−3

Raw 16 18 23 81919 0.89 0.2807
Wiener 14 18 14 81943 0.78 0.1708
Wavelet 17 18 88 81712 0.94 1.0758
BINR 15 18 2 81977 0.83 0.0244

Table 3.2: A posteriori detection (RD) and false alarm (Rfa) rates.

pixels, i.e. Rfa = Tfa/(Tfa + TN).
Table 3.2 summarizes the detection and false alarm rates calculation. Note that the

area, where the experiment was carried out, exhibits a lower false alarm rate than expected
(0.281× 10−3), with a detection rate of 89%. The Wiener filter yields a lower false alarm rate
(0.171× 10−3) but in the same order of magnitude. The detection rate is also lower (78%)
than in the raw image. Wavelet denoising’s detection rate is higher (94%), but its false alarm
rate is higher in an order of magnitude (1.076× 10−3). BINR is able to reduce the false
alarm rate in an order of magnitude (0.024× 10−3, with a detection rate (83%) higher than
the Wiener, but lower than the raw data. From this result, it can be seen that using BINR
it is safe to increase the P CA-CFAR

fa value in order to get a higher detection rate while still
achieving a low false alarm rate.

The metric presented in Section 2.4 was applied to the CA-CFAR output of the reduced
noise images to quantify the performance of each method. The results for different L values
are shown in Table 3.3. Because of the range and angular resolution of the radar used in this
experiment, for each ground truth landmark, more than one point is marked as a detection.
This increases the error measured by the metric because extra points are considered false
alarms. Thus, the metric output starts to converge to the cut-off parameter, as the second
term to the right of Equation (2.18) dominates. A method to reduce this effect is to combine
multiple detections in close proximity using a clustering method, e.g. connected component
labeling [SS02]. A different approach, consisting of duplicating the elements of the ground
truth set, was used in this implementation, which effectively reduces the effect described
above, without altering the results. For all L values, the BINR methods yields a smaller
value of the metric meaning that the produced map is closer to the ground truth than
that generated by the raw data an the other methods. The Wiener filter is also capable of
producing a map with a lower error than the raw data. On the other hand, the Wavelet
denoising shows a poor performance due to the false alarms in the noise background caused
by the ripple effect which affects the Wavelet transform.
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L Raw power Wiener Wavelet BINR

2 1.6747 1.6225 1.6565 1.5401
5 1.7055 1.6174 1.8435 1.5230
10 1.6770 1.6377 1.7328 1.4486
15 1.7013 1.6230 1.8673 1.4365
20 1.6796 1.6025 1.7878 1.5114

Table 3.3: OSPA metric applied to each method.

3.4 Noise reduction and detection in SAR data

Detection and noise reduction methods in radar are not only used in classical A-Scopes,
B-Scopes and PPIs, they can also be used in other forms of radar data such as SAR im-
ages [dBG01, GLZ+09].

SAR images, being constructed in a fundamentally different way than the classical radar
images, are affected by noise in a different way. In SAR images, noise and clutter are usually
modeled by a Weibull or K distribution. Also, the effect of multiplicative speckle noise
in SAR images is higher than in other forms of radar data. Under these conditions, the
Ordered Statistics (OS) CFAR detection method has proven to be effective when applied to
SAR images [KC94].

In this section the results of using the BINR method on a set of SAR images obtained from
NASA Jet Propulsion Lab (JPL)’s Uninhabited Aerial Vehicle SAR (UAVSAR) mission3 are
presented.

The images correspond to a location near Sacramento, CA, which covers an area of crop
fields with isolated buildings in the north-most part (top) of the image and a suburban area
with high density housing in the south-most part (bottom). The UAVSAR mission captured
data from this location in six different times. Figure 3.14 (left) shows a Yahoo Satellite image
of the area, and its corresponding SAR image (right). The area is 1.6 km in the horizontal
(east-west) direction and 2.88 km in the vertical (north-south) direction.

These SAR images represent backscatterred radar power, polarized in the HH, HV and
VV components. The magnitude of each component is encoded in the image’s red, green
and blue channels, respectively. Each component was processed independently, and the final
results were encoded back in the red, green and blue channels.

BINR based on the OS-CFAR detector has been used to first reduce the noise in a series
of multiple (L = 6,MBI = 3) observations of the same area. Then the OS-CFAR detector
is applied to the reduced noise data to detect buildings. The OS-CFAR window size was

3UAVSAR data courtesy NASA/JPL-Caltech. http://uavsar.jpl.nasa.gov/
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Figure 3.14: Yahoo Satellite view (left) and Raw SAR image of the area
(right).

7 bins in the x and y coordinates, while the guard cells window size was 3 bins in both
directions. The threshold constant parameter chosen was τOS-CFAR = 4.16707. Finally, the
noise subtraction parameters used were αd = 0.9, c = 50.0 and d = 0.1.

The parameters for Wavelet denoising and Wiener filtering were the same as those used
in the experimental data set presented in Section 3.3.

All three components have been processed. Buildings, in general, reflect radar waves
similarly in all polarizations while vegetation and other terrain considered clutter, in this
case, usually exhibit different back-scatter intensity at the different polarizations.

The raw power (left) and the output of the OS-CFAR detector are shown in Figure 3.15.
In the OS-CFAR image, the red, green and blue pixels corresponds to detections in the HH,
HV and VV polarizations, respectively. Cyan, magenta and yellow pixels represent detections
in the respective combinations of two polarizations, while white pixels represent detections in
all three polarizations. Buildings appear in the OS-CFAR image with with pixels (detections
in all polarizations), while parks and crop fields present detections in single polarizations or
no detection at all.
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Figure 3.15: Raw power SAR image (left) and OS-CFAR applied to it
(right).

Wiener filtering results are presented in Figure 3.16. The reduced noise image looks
blurred, as expected from the Wiener filter, and the OS-CFAR detector is unable to detect
buildings from the crop fields.
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Figure 3.16: Wiener reduced noise SAR image (left) and OS-CFAR ap-
plied to it (right).

The wavelet denoising output is shown in Figure 3.17. The power image shows darker
colours meaning that the average noise power has been reduced, but several areas present a
high variance, particularly in the crop fields. The OS-CFAR output confirm this, and the
detector is unable to detect building structures.

Figure 3.18 corresponds to BINR output. It can be observed that the areas corresponding
to crop fields appear smoothed when compared to the raw image. It can also be observed
that the number of detections in single polarizations, mostly located in areas corresponding
to crop fields is reduced in the BINR image. On the other hand, most pixels corresponding
to building like structures are preserved.

In this data set it is not possible to apply the OSPA metric as the real ground truth is
unavailable. An analysis on the noise statistics in an area with no targets, as was carried out
in the park data set, quantifies the performance of the noise reduction methods. Table 3.4
shows the mean noise power and variance per polarization channel. It can be observed that
the Wavelet presents the lowest mean noise power, but at the same time it yields a very high
variance. The Wiener and BINR methods keep a variance similar to that of the original data,
but BINR is able to reduce the mean noise level considerably, while the Wiener filter noise
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Figure 3.17: Wavelet reduced noise SAR image (left) and OS-CFAR ap-
plied to it (right).

Raw Wiener Wavelet BINR
Pol. Mean Var. Mean Var. Mean Var. Mean Var.

HH 24.96 160.85 27.58 159.20 -13.64 1434.88 14.38 166.84
HV 29.14 350.91 36.59 437.78 -9.62 916.63 20.30 383.10
VV 28.62 169.56 32.74 180.68 -9.75 1042.87 19.26 204.06

Table 3.4: Mean noise power and variance in noise only area in dB.

level stays at a similar or higher value than the raw data.
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Figure 3.18: BINR SAR image and OS-CFAR applied to it.
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Chapter 4

Detecting ladar features with a Constant
False Alarm Rate in 3D point cloud data

4.1 Introduction

In several applications, when there are multiple observations (or measurements) of the same
object(s), each captured into a single data set, control points are needed to identify the same
part of the object(s) in the different data sets. These applications include image alignment,
tracking moving objects in a scene, ladar surveying, among others and they can belong to
research fields as diverse as computer vision, medical imaging, augmented reality, vibrational
analysis or robot mapping. Regardless of the application, the general procedure to obtain
such control points is similar. This involves the detection of some identifiable features of
the objects in each data set and matching the detected features of the corresponding objects
across the different data sets. Depending on the application, the features and methods of
extracting them can vary widely. If the measured objects exhibit some unique characteristic
which can be used for identification, this feature is usually calculated or "extracted" directly
from the data set. These features are referred to as natural features and some examples of
this approach include the well known SIFT [Low04], SURF [BETVG08], ORB [RRKB11]
and surface normal features used in 2D or 3D [MN03] image processing. Another example
of natural features occurs in the analysis of the waves in an electrocardiogram (ECG). In
particular, the so-called R peak (specific part of the QRS complex in the cardiac cycle) is
used to identify the cycle and to measure the cardiac frequency (see Fig. 4.1).

When the objects lack an identifiable characteristic, or the ability to extract this type of
feature is not accurate enough, artificial markers are added to the observed objects. Then, the
markers provide the needed features in the data set, which can be measured depending on the
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Figure 4.1: Schematic cardiac cycle showing the R peak and other wave
complexes.

nature of the marker. For instance, the widely used QR (Quick Response) codes incorporate
black squares as position and alignment markers (see Fig. 4.2). Depending on the marker’s
distinguishable information, which can be shape, reflectivity, colour, pattern, texture or local
gradient, different methods for detecting these features should be used. Often, combinations
of these characteristics are exploited simultaneously.

Alignment marker

Position markers

Figure 4.2: Sample QR code with position and alignment markers.

The detection of both, natural or artificial features can be used for the fundamental
task of transforming different sets of data into a common coordinate system, called registra-
tion [Bro92, Gos05]. When a high level of accuracy is required, the use of artificial landmarks
is unavoidable [SWB02].

In the particular case of ladar surveying, retro-reflective targets are used as artificial
markers, due to the great variability in the measured data, which would make it difficult
to extract natural features in some situations. These targets provide a high intensity mea-
surement, which usually stands out from the rest of the data. They also provide a distin-
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guishable shape. Commercially available 3D ladar scanning solutions include sets of artificial
landmarks, such as those shown in Figure 4.3 and Figure 4.4.

Figure 4.3: Riegl Retroreflector targets

Figure 4.4: Riegl Retroreflector targets (schematic)

The detection of these markers can be manual, interactive or automatic. Manual methods
require a person to identify and tag the markers, whereas interactive methods require human
intervention to guide the process. These two methods are both time-consuming and a poten-
tial source of error [KHW+03]. Fully automated methods, on the other hand, do not require
any intervention from the user. These are usually desirable as reliability can be increased or
quantified, while time and costs can be reduced. Most automated feature extractors for 3D
data, such as that obtained from ladar scanners, are currently based on 2D algorithms de-
veloped for camera images, and thus, usually discard the range information available from a
3D ladar. Further, current feature detection methods do not take into consideration feature
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probabilities of detection or false alarm, thus generating a non-negligible number of weak
features, usually leading to false matches.

As described in section 2.3, there are a number of scenarios in which artificial markers
are preferred to natural features. Highly dynamic environments, environments with a small
number or low quality natural features, when high accuracy and reliability is required or
when the high computational complexity of extracting natural features is not affordable are
situations in which artificial landmarks are either unavoidable or perform better than natural
features [SKC13, BPR12, Fia10, BGG+04, NHY+00, TS13, NS12, ROSF11].

Some standard automated procedures to detect artificial markers are [Kal10]:

Template matching: This is a technique used to find small specific parts of an image which
match a template image or computer generated model. It is commonly found when the
shape of the template is known, such as a circle with a known radius or a coded target.

The basic method of template matching uses a convolution mask (containing the tem-
plate) which is scanned over the searched image to detect similar features in it. The
convolution output will be highest at places where the image structure matches the
mask structure.

The drawback of template matching is that every position in the search image has
to be considered to find matching features, this makes the technique computationally
inefficient.

Edge detection and ellipse fitting: In this method, edges are detected and used as image
structures for object and pattern recognition, as well as image measurements. All
objects of interest stand out from the background on the basis of a characteristic change
in the relevant image structure, i.e. significant changes in pixel values occurring along
physical object edges. Edges can also be used to measure some characteristics of the
target, such as its centre or surface area, by fitting, for example, arbitrary ellipses to
the edges using a least squares method.

There are several edge detection methods, such as the Canny edge detector, which are
able to detect weak or not clearly visible edges even in the presence of noise. The
Canny detector consists of the following steps:

1. Image smoothing is used to reduce noise from the original image.

2. An image gradient is calculated to highlight regions with high spatial partial
derivatives.

3. An edge direction is computed from the gradient values in the x and y directions.
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4. An edge direction is related to the eight directions, which can be traced in the
image (connected pixels).

5. Non maximum suppression is applied by tracing along the edge directions and any
pixel value that is not considered to be an edge is removed.

6. Breaks in the edges are removed by using a threshold. If the difference is below
the threshold the broken edges are joined, otherwise they remain disconnected.

Image segmentation This method partitions an image into non-overlapping regions and
boundaries, so that pixels belonging to a region have uniform values. Several segmen-
tation methods are available. The most common and simplest method used is based
on thresholding. Pixels with values above the threshold are identified as target pixels,
while those below it are discarded as non-target pixels. Threshold segmentation is a
simple but fast method. It’s main drawback is the appropriate selection of the thresh-
old value to separate the targets from the rest of the data. Often, a second method is
applied after thresholding to discard false alarms.

It will be shown that the nature of the 3D data produced by ladars can affect the perfor-
mance of these techniques.

In this work, automatic methods for detecting reflective markers using received power
and combined power-range information from ladar sensors is presented. These approaches
are based on the adaptive threshold obtained by using CFAR (Constant False Alarm Rate)
processors, which are used to segment the markers from the rest of the data. Comparisons are
made with state-of-the-art detection and segmentation methods such as constant threshold,
Canny Edge detection and RANSAC shape detection.

Initially, standard Cell Averaging (CA) and Ordered Statistics (OS) CFAR processors are
applied to 3D laser surveying data projected into 2D from the point of view of the sensor,
analogously as a map projection of the terrestrial globe. The contributions of this chapter
then include:

1. The formulation of an adaptive parametric version of the CFAR processors, capable of
combining power and range information available in the 2D projected data.

2. A modification of the CFAR algorithms applied directly to 3D point cloud data.

Three standard methods will be used as benchmarks: 1) constant threshold segmentation
(for 3D and 2D projected data), 2) Canny edge detection (for 2D projected data only) and 3)
RANSAC shape detection (for both 2D and 3D representations). All the methods are followed
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by a standard connected component analysis (CCA) to identify and label the detected areas
(2D data) or volumes (3D data).

In summary, the use of modified CFAR processors to detect reflective markers will be
shown to exhibit a high performance in the tested environments. They present themselves as
a good alternative over standard segmentation and detection methods, such as thresholding,
edge detection, connectivity analysis or clustering, in the application of 3D ladar surveying.

4.2 Laser surveying in 3D

In order to reconstruct a 3D environment using laser surveying, several scans are obtained,
usually from different positions. Thus, registration is required to locate all of the data into
the same reference coordinate system.

The registration process flow in state-of-the-art 3D laser surveying consists of:

1. Acquiring a series of 3D laser scans.

2. Finding initial (before any iteration of the algorithm) feature or point correspondences
for every scan pair.

3. Computing the relative orientation and translation between scans.

The detection methods presented in this work can also be used to obtain an accurate
initial point correspondence, which is essential to reduce the overall error in the registration
process.

The two main families of registration methods are feature based or point based. Both
types are described in the following sections.

4.2.1 Point based registration

Point-based algorithms do not require the detection of features. Instead, they match point
clouds by selecting point correspondences. Iterative closest point (ICP) matching is a well
known algorithm for point-based registration (Besl and McKay [BM92b]). The concept
behind this method is to automatically calculate point correspondences on the basis of the
smallest distance between point clouds and minimizing the resulting Euclidean error. This
iterative algorithm is designed to converge to a local minimum. Good start estimates are
essential to achieve low error matching, thus ensuring the convergence to a correct minimum.
The method proposed in this paper can be used to provide start estimates for an ICP based
registration method.
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4.2.2 Feature based registration

Feature based registration methods use features as correspondences in each scan pair to
compute a transformation matrix. Most state-of-the-art registration methods, such as the
Iterative closest point (ICP) method [BM92a], rely on the accuracy of the initial pose esti-
mates, based on Global Position System (GPS) measurements [BSSC95] or local positioning
using artificial landmarks as references [WTGBS08].

Feature based registration can use both natural or artificial features as described in section
2.3.

An issue with natural features based methods is that they do not take into consideration
detection statistics. In many situations, the number of falsely declared detections (false
alarms) is not constrained or even measured. The performance of any matching algorithm
used for registration will be detrimented by the appearance of false alarms, which can be
significant in environments with poor atmospheric conditions, such as in the presence of
dust, snow, rain, etc.. The CFAR based methods proposed in this work make use of a
consistent statistical analysis based on detection theory. This approach allows the user to
preset an acceptable, desired false alarm rate, which can reduce the error in registration.
Furthermore, each declared detection has an associated probability of detection which can
be used as a measure of how reliable each detected target is.

Moreover, some environments lack the number or quality of natural features needed to
achieve a required level of accuracy. Also, the environment might by highly dynamic, thus
altering the potential natural features from scan to scan. Typically these environments
include industrial settings, indoor spaces crowded with multiple moving agents, underground
mines, robotic surgery rooms, and such. In these situations the use of artificial landmarks is
preferable.

Most of the artificial landmarks approaches described in section 2.3 use markers specif-
ically designed for a particular task. The methods presented in this paper use a generic,
off-the-shelf marker such as the one already used in laser 3D surveying. Unlike, the detection
methods usually applied in standard 3D surveying which require a special hardware and a
preliminary phase to locate the markers before scanning the environment, the method in this
work can detect the markers directly from the scanned data. Also, they are not limited to
using laser retro reflective markers, but to any kind of marker which can yield high intensity
reflections within the sensed data.
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4.2.3 The 3D point cloud data and the sparsity problem

As a 3D ladar scans the environment, the space is discretised by the sensor in all 3 di-
mensions. Consider the laser sensor at the origin of the coordinate system. Because of the
scanning movement, spherical coordinates (range r, bearing angle φ and elevation angle θ),
are preferred to assign 3D coordinates to each measured data point. Besides the spatial co-
ordinates, the data points can also record the reflected intensity value. Each point detected
by the ladar corresponds to a particular voxel (volume element) of the environment. A typ-
ical ladar scanner does not record returned intensity for all voxels along a particular laser
beam at (φ, θ), but only those voxels where an object reflects enough laser energy as to be
detected by the sensor. The set of detected points is commonly referred to as Point Cloud
Data (PCD). Thus if the spherical space (within the ladar’s field of view) is considered as
a 3D matrix containing cells which provide reflective intensity values, then not all matrix’s
cells have a value, since most of them are effectively empty, because only cells corresponding
to voxels with objects detected by the ladar will hold an intensity value. Such a data matrix
is considered to be sparse, in contrast to a dense matrix, when all cells have a well defined
value. This is an advantage seen from the point of view of data size, because ladar sensors
can achieve a very high resolution, producing millions of points in a point cloud. On the other
hand, because of this difference, 3D point cloud data cannot be processed in the same way
as 1D signals, 2D images, video and some 3D data which is represented by dense matrices.
As will be discussed in section 4.4, data processing methods need to be adapted for direct
use on PCD. Alternatively, a projected 2D image obtained from the PCD can also be used,
but the sparsity is also transferred to the 2D representation, which then causes problems
with 2D image processing algorithms. Also, it should be noted that as range increases, the
voxel volume representing a particular point increases together with the distance between
"adjacent" points (i.e. adjacent voxels).

Therefore, some of the difficulties arising from the nature of the 3D PCD are:

• When the 3D data is projected to a 2D image, targets at different ranges from the
sensor appear to have different sizes. Also, if the sensor is not oriented along the line
of sight of the target’s surface normal, its shape will be distorted. This means that,
for example, template matching techniques would need to test templates of different
sizes and shapes, making the method even more computationally expensive than it
already is. Also, any shape or size detector which might be applied after segmentation
thresholding would also be affected by this issue.

• In either 3D or 2D projected data, some non-target objects might present a similar
reflected intensity as the targets themselves, which can confuse threshold detectors.
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This is equivalent to the noise/clutter distribution not being well separated from the
target distribution (see Section 4.3.1). In this case, usually a second detector is used
to discard false-positives, such as a shape or size detector, as mentioned above. The
sparsity of the data, however, can affect the results of these methods. For instance,
discontinuities in the pixels’ (in 2D projected data) or points’ (in 3D data) intensity
values will make size or shape detectors fail. Also, edge detectors are affected by this
phenomenon as false edges arise at these discontinuities, which can be misinterpreted
as the real targets.

The proposed detection methods, highlighted in Section 4.3, have been modified to cope
with some of the aforementioned limitations. Deeper discussion and analysis on these issues
will be carried out in the following sections.

4.3 CFAR-based detector for ladar

In order to address the object detection problem required to extract features or to obtain
start estimates in the scan registration methods described in Section 4.2, stochastic methods
providing adaptive thresholds can be used. Constant False Alarm Rate (CFAR) processors
comprise a family of such methods well known in the radar community. They are capable
of performing in situations of low signal-to-noise ratio (SNR), achieving high probabilities
of detection while bounding the false alarm rate. These methods have also been used for
other types of data. One of these applications consists in an image processing technique
to detect electrical lines in laser images based on CFAR processors [SF96]. The method is
used for the detection of small co-linear obstacles in images from a laser sensor to be used
in the avoidance of electrical lines and other small objects in helicopter airborne operations.
The main problems associated with the detection of electrical lines are sensing them with
a reasonable resolution from a fast moving platform and detecting the cables in cluttered
range-intensity images. CFAR methods have also been used to detect and track dim points
with low SNR in infrared image (IR) sequences as reported in [ZLS05]. The method uses
a CFAR approach as a means to detect low SNR, small, targets in the IR images without
prior knowledge of noise and clutter distributions. It was shown that the method exhibits a
high performance in situations of target velocity mismatch and target manoeuvring, which
are the main factors which cause miss detections in other comparable methods. The method
pre-processes the image sequence by tracking the target before detection. Unlike the new
approaches presented here, the method reported in [ZLS05] is used in moving target situations
and therefore is not directly applicable to 3D laser surveying. The method uses a target model
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specific to infrared moving targets defined by a 2D infrared optical blur function. On the
other hand, an image pre-processing stage to remove atmospheric infrared noise is applied
to the data. Then, complex background noise in a sequence of images is reduced using the
top-hat transform from mathematical morphology. After the pre-processing stage, a track
before detect (TBD) algorithm which analyses possible movement in four directions for each
pixel is used before a CFAR processor is applied to declare a detection on a moving target.

The methods of automatically detecting reflectors presented in this work use the intensity
level of laser energy reflected back by markers in a ladar image. Range information is also
incorporated to calculate an adaptive threshold, motivated by the results obtained in [SF96].
The original CFAR methods are to be adapted to disambiguate the reflective markers from
the rest of the objects in the ladar images. These stochastic methods are designed to keep
the false alarm rate constant at a predetermined (preferably low) level, and they exhibit
a relatively low computational complexity with respect to other detection methods, in an
analogous way to the work presented in [ZLS05].

The proposed methods can also estimate the probability of detection for each point,
particularly, those identified as a detection, thus, serving as a measure of how likely that
particular point corresponds to an actual marker. This can be used by automatic registration
systems to give a higher weight to the markers with a higher detection rate than to those
with lower values. Otherwise, it can be used in an interactive or semi-automatic registration
process to tell the user which markers are less reliable and should be carefully checked.

4.3.1 Ladar target noise distributions

Before applying the CFAR methods to the ladar data, it is necessary to check whether the
assumptions for the validity of the CFAR algorithms hold, the most important of which are
the noise and target distributions.

Ladar data captured in two different environments, an indoor laboratory and an under-
ground mine, is used to determine the corresponding clutter and target distributions. The
received power intensity values of points where there are no markers are used to obtain the
clutter distribution (see Figures 4.5 and 4.6), while points corresponding to markers are used
for the target distribution (Figure 4.7 shows a sample target distribution). Note that the
reflectance values recorded by sensor used for the experiments (Riegl VZ-400) correspond to
a reflected intensity relative to the intensity of a white diffuse target at the same distance,
thus the reflected intensity values are unit-less. Also, the sensor stores these values in dB.
The linear reflectance is converted from the logarithmic values.

For all the experiments the same type of markers was used, which correspond to Riegl’s
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standard markers as depicted in Figures 4.3 and 4.4.
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Figure 4.5: Ladar clutter histogram in an indoor environment.
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Figure 4.6: Ladar clutter histogram in an underground mine environment.

As seen in Figure 4.5, the clutter distribution resembles an exponential distribution. This
distribution, together with the distribution for targets observed in Figure 4.7, resemble those
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Figure 4.7: Target histogram for indoor environment.

reported in the radar literature [AJ12], thus the use of CFAR methods seems a sensible
choice.

4.4 Adaptation of CFAR algorithms to 3D scenes

The 3D ladar sensor used in this work outputs, in spherical coordinates, a value for the
reflected laser intensity received by the sensor, as well as estimates of each range r, bearing
angle θ and elevation angle φ.

In order to use the CFAR methods with 3D ladar data, two approaches are proposed.
The first one is to project the 3D ladar data onto a 2D image and then apply 2D CFAR
methods. This is a common approach to visualize 3D data (e.g. cartographic maps, ladar
scenes, etc). Although there are many mature, robust and fast algorithms to process 2D
data, all projection techniques distort the spatial relations of objects in the original image,
leading to different errors or performance detriments. Thus, a second alternative is to apply
the CFAR techniques directly onto the undistorted 3D ladar data. In general, 3D algorithms
are less developed than their 2D counterparts and are usually slower because of the higher
amount of data.

Standard CA-CFAR, OS-CFAR, or other CFAR methods suitable for 2D data, can be
directly applied to the ladar intensity image, in the same way they are used with radar data.
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The standard CFAR methods will be used as benchmarks to compare the performance of
the two CFAR extensions proposed in this work, both of which aim at incorporating range
and reflectance information simultaneously into the CFAR analysis. The performance of
the CFAR methods is expected to improve when using range information. The first one
corresponds to an adaptive CFAR method which uses range information to adapt the size
of the reference and guard cell windows. The second proposed variation corresponds to
the direct CFAR implementation in 3D space mentioned above. These two approaches are
analyzed in the following sections.

4.4.1 Projecting 3D range and intensity information into 2D spaces

In this approach the 3D ladar intensity values are projected onto a 2D image using bearing
and elevation angle values. Similarly, range information can also be projected using a similar
transformation. This approach has the drawback that any projection transform introduces
distortions which might affect the shape of the markers and consequently detriment their de-
tection. Also, areas of the image with no reflected data should be filled in with a "maximum
range/minimum intensity" value or another specific value, to avoid false detections, which
were observed in preliminary experiments. A thorough analysis of projections and effects
in feature-based detectors in 3D ladar applications can be found in [HEBN13]. Two of the
projections presented in the cited work will be used here. The first one is the Equirectan-
gular projection, because it is the simplest and the most widely used projection in image
processing. The other one is the Mercator projection, which is mainly used in cartography
and geoinformatics, and was shown in [HEBN13] to outperform other projections for 3D laser
surveying, by achieving high registration rates in different kinds of environments (indoor and
outdoor) as well as for different combinations of descriptors (SIFT, SURF, ORB) and feature
detectors (like SIFT, SURF, ORB, STAR and FAST), this projection also has the capability
of processing a full 360° panoramic view.

In general, projecting 3D data onto a 2D image requires mapping the points (in this case
spherical coordinates θ, φ, r) to a 2D x, y coordinate image. The equirectangular projection
is the simplest projection and it is used in many applications to map a portion of a surface
of a sphere to a flat image. In this projection, the bearing and elevation angles are directly
mapped to horizontal and vertical coordinates of a grid without any transformation or scaling.
As a result, vertical straight lines in the 3D space remain vertical straight lines in the 2D
map, but horizontal straight lines become curves, except for the horizon. Also, poles are
stretched to the entire width of the image at the top and bottom edges.

The Mercator projection is related to the equirectangular and to another projection called
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cylindrical. It presents less distortion than its two parent projections. It also has less vertical
stretching and a greater vertical field of view. Table 4.1 summarizes these two projections as
described in [HEBN13]

Table 4.1: Summary of projections used.

Projection fx fy hor. FoV vert. FoV

Equirectangular θ φ 360° 180°
Mercator θ ln

(
tanφ+ 1

cosφ

)
360° 150°

Once intensity and range data has been projected on the respective 2D images, the stan-
dard CFAR processors are applied to obtain the adaptive threshold.

4.4.2 Adaptive Window CFAR

Intensity and range data can also be combined to improve the output of the 2D CFAR
processor. This work proposes the use of range information to adjust the size of the CFAR
window to match the expected size of the markers, which results in a CFAR processor with
adaptive (window size, guard cells, τ) parameters. Therefore, for each cell under test (CUT),
the range information is used to calculate the appropriate window and size of the guard cells
in the projected bearing-elevation space. By matching the expected size of the markers into
the guard cells window, the reference cells window will contain only noise or clutter values.
Thus, the CFAR assumptions would be enforced and the performance of the detector should
be improved. A description of this proposed method now follows.

Let θCUT, φCUT, rCUT be the CUT’s coordinates in the original space, Rgc the radius of
the target retro-reflector disk, which is used as the size of the guard cells region, and Rrc the
radius of the desired reference cells region. Both radii are defined in Cartesian space. If θ+

gc

and θ−gc represents the border angles of the guard cells region in the original space, and θ+
rc

and θ−rc the border angles of the reference cell region in the original space, then

θ+
gc = θCUT +Rgc/rCUT θ−gc = θCUT −Rgc/rCUT (4.1)

φ+
gc = φCUT +Rgc/rCUT φ−gc = φCUT −Rgc/rCUT (4.2)

θ+
rc = θCUT +Rrc/rCUT θ−rc = θCUT −Rrc/rCUT (4.3)

φ+
rc = φCUT +Rrc/rCUT φ−rc = φCUT −Rrc/rCUT. (4.4)

Also, if fx(θ, φ) and fy(θ, φ) are the transform functions from the original to the projected
space, as defined in table 4.1, then the reference and guard cell window sizes in the projected
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space, represented by (x±rc, y±rc) and (x±gc, y±gc), respectively, are given by

x+
gc = max

θgc,φgc∈Wgc
(fx(θgc, φgc)) (4.5)

x−gc = min
θgc,φgc∈Wgc

(fx(θgc, φgc)) (4.6)

y+
gc = max

θgc,φgc∈Wgc
(fy(θgc, φgc)) (4.7)

y−gc = min
θgc,φgc∈Wgc

(fy(θgc, φgc)) (4.8)

x+
rc = max

θrc,φrc∈Wrc
(fx(θrc, φrc)) (4.9)

x−rc = min
θrc,φrc∈Wrc

(fx(θrc, φrc)) (4.10)

y+
rc = max

θrc,φrc∈Wrc
(fy(θrc, φrc)) (4.11)

y−rc = min
θrc,φrc∈Wrc

(fy(θrc, φrc)) (4.12)

where

Wgc = {θgc, φgc|θ2
gc + φ2

gc ≤ Rgc} and (4.13)

Wrc = {θrc, φrc|Rgc < θ2
rc + φ2

rc ≤ Rrc} (4.14)

are the sets of angles corresponding to the guard and reference cell regions, respectively,
defined in formal set builder notation [Ros07]. See Figure 4.8 for a graphical representation
of all these parameters.

Figure 4.8: Transformation of the adaptive window and its parameters.
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The threshold constant τ and the test statistic TCUT are then calculated using these local
window and guard cells size and assigned to each CUT. The adaptive CFAR threshold is
then calculated in the usual way, but using these locally calculated τ and TCUT parameters.

4.4.3 Direct application of CFAR in 3D space

The second approach is to directly apply a 3D CA-CFAR processor to the intensity informa-
tion in the 3D point cloud data. The 3D range, bearing and elevation coordinates are first
converted to x, y, z coordinates in Cartesian space. This has the advantage of not having the
distortions introduced by the projections and no "maximum range" value needs to be used.
On the other hand, special considerations need to be taken to apply the CFAR algorithm
on the sparse 3D data, this will be described later in this section. In order to illustrate this
proposed approach, Figure 4.9 shows a 3D representation of the CFAR windows operating
on a particular set of points of the 3D point cloud. The sensor discretises the space into 3D
voxels for each range, bearing and elevation bin. The blue point represents the point in the
point cloud corresponding to the current Cell Under Test (CUT). The gray voxels represent
the discretised space around the CUT point. Points in the point cloud which are closer to
the CUT point than the guard cell radius are considered guard points and are coloured red.
The red translucent sphere, with radius equal to the guard cell radius corresponds to the
guard window. All points inside this sphere are guard points (red coloured). On the other
hand, the green translucent sphere represents the reference window. All points inside this
sphere and not in the guard window (i.e. outside the red transparent sphere) are considered
reference points (green coloured), and are used in the CFAR calculations. The black points
in the Figure correspond to points in the point cloud which are not taken into consideration
for the current CUT point calculations, because these points are out of the guard and ref-
erence windows, i.e. too far away from the CUT point. The 3D CFAR algorithm iterates
over all 3D data points in the point cloud. Each point becomes the CUT once. Then all
surrounding data points which fall into the guard window are ignored, while the data points
in the reference window are used to estimate the adaptive threshold. In the particular case
of CA-CFAR, the reference average intensity, T 3D

CUT, used to estimate the threshold can be
obtained by

T 3D
CUT =

1

VR

∑

xi∈R
Ixi

(4.15)

where Ixi
is the intensity value corresponding to the data point xi, R represents the reference

window, and VR the number of reference points in R. Analogously, the OS-CFAR’s T 3D
CUT can
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Figure 4.9: CFAR windows in 3D space. The point corresponding to the
current Cell Under Test (CUT) is represented by a blue point in the center.
The sensor discretises the space in 3D cells represented by the gray voxels
(only a few voxels close to the CUT point are drawn). The red translucent
sphere represents the guard window. All (red) points which fall into voxels,
whose centre coordinates are inside this window are guard points. The
green translucent sphere represents the reference window. All (green) points
which fall into voxels, whose centre coordinates are inside this sphere but
outside the guard window are reference points. Points outside the reference
window (black coloured) are not included in the CFAR calculation for the
current CUT point.

be calculated as described in Section 2.2.2. For other CFAR methods, a similar approach can
be used. The CFARmethods applied directly to the 3D space avoid the distortions introduced
by the 2D projections. Furthermore, the exact location of each measurement is used, while
in the 2D projections, usually interpolation is used to assign the value to each pixel in the 2D
image grid from the 3D data. It is expected that the targets’ shape and size preservation will
increase the CFAR detector’s performance, because its window size parameters are related
to the the size and distribution of the targets. In particular, it is expected that none, or a
relatively small amount, of the reference cells should be part of the object being detected,
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therefore the guard cells volume should be large enough to hold as much as possible of the
object’s cells detected by the sensor. Likewise the reference window should be sufficiently
large to contain enough reference cells corresponding to noise and clutter, in order to obtain a
valid estimate of the noise power. Nevertheless, the reference window should not be too large
so as to include target cells from a neighbouring object1. Thus, by preserving the target’s
shape and size, there is a higher probability that the selected parameters will match the data
as expected. Also, the higher complexity of analyzing a 3D point cloud can be partially
compensated by avoiding the processing of data in the projection stage.

Unlike 1D radar data or 2D images where contiguous cells usually have contiguous indexes,
3D point clouds are often large, unstructured, lists of 3D coordinates. Therefore, an efficient
method to organise and search points in a multi-dimensional space is a k-d tree [Ben75]. The
nearest neighbours algorithm, which takes advantage of data structured in a k-d tree, is used
to find the guard and reference cells. The implementation used in this work is based on the
method described in [MM99].

Because of sparsity, there might be few or no points in the reference cells window. When
the number of reference cells is small, the calculated cell average will give a less reliable
estimate of the noise. Moreover, when there are no points in the reference cells window, the
noise estimate is undefined. Therefore, points for which the number of reference cells is zero
are discarded.

4.5 Benchmark algorithms and a comparison metric

All the CA-CFAR algorithms previously presented are compared against three state-of-the-
art marker segmentation methods:

Segmentation thresholding is a fast and simple, yet widely used, segmentation method
based on a global threshold, calculated based on the maximum and minimum intensity
values in the data set. According to the sensor manufacturer, a constant threshold
of 6 dB should be used to segment retro-reflective objects. Nevertheless, depending
on the environmental conditions, the markers’ measured reflectivity varies greatly, and
the suggested threshold yields many missed detections. The particular implementation
used here sets the threshold (β) at 45% of the full reflected intensity range in dB. In
general, the obtained threshold is lower than 6 dB. This threshold has been found in

1As a rule of thumb, the reference cells window should be smaller than the expected minimum distance
between targets, and it should contain enough noise samples. In the experiments presented in this work,
reference cells window diameters 1.5 to 2.0 times larger than the corresponding guard cells window diameters
showed good results.
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previous experiments to yield good results with the ladar sensor used in this work. The
threshold is therefore calculated as follows

β = I log
min + 0.45 · (I log

max − I log
min), (4.16)

where I log
min and I log

max represent the minimum and maximum reflected intensity power in
dB.

Canny edge detection remains one of the preferred edge detection methods due to its
robustness in noisy data. An edge detector based on the Scikit-image’s implementa-
tion [vdWSN+14] of the Canny [Can86] edge detector with automatic threshold selec-
tion is also used to compare the performance of the CFAR based methods.

The automatic threshold selection is performed as follows:

1. Compute the median (ṽ) of the image’s intensity values

2. Calculate the lower threshold tl and upper threshold tu as

tl = max(vmin, ṽ · (1− σ)) (4.17)

tu = min(vmax, ṽ · (1 + σ)), (4.18)

where σ is a parameter describing how "tight" the thresholds should be (as a fraction
between 0 and 1), and vmin, vmax are the minimum and maximum possible intensity
values.

After edges have been detected, a second algorithm is required to detect the expected
features. In this implementation, connected component analysis (or labelling) is used
to find pixel regions enclosed by edges. Regions which are smaller or larger than the
expected marker size are discarded.

RANSAC shape detection The random sample consensus is an iterative algorithm to fit
observed data to mathematical models. Since the introduction of the original method
by Fischler and Bolles [FB81] RANSAC became a fundamental image processing tool.
It is widely used to detect image structures which can be represented by a mathematical
model, such as lines, circles, ellipses, and coordinate transformations. The algorithm
randomly selects a small number of points in the data and estimates the model param-
eters fitting those points. Then, the model is tested against all the points in the data
set. If a previously defined minimum number of points required to validate the model
is achieved, then the model with its parameters is accepted, otherwise, a new sample of
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points is used to estimate new parameters. This process is repeated until the required
number of valid points is met or until a maximum number of iterations is reached.

The implementation from Scikit-image [vdWSN+14] is used with 2D projected data
to find ellipses in the data, while the 3D point cloud data extension by Schnabel et
al. [SWK07] is used to detect cylinders and sphere like objects in the 3D data.

Figure 4.10 shows sample outputs of the Canny, constant threshold and RANSAC algo-
rithms for a given 2D projected ladar image, also shown in the Figure (top). Black points
correspond to pixels identified as targets by each method. Sample outputs of the constant
threshold and RANSAC 3D algorithm are presented in Figure 4.11, along with the input 3D
point cloud. Red points represent the targets detected by the methods.

Input 2D projected image

Canny

Constant threshold

RANSAC 2D

Figure 4.10: Sample output of the 2D benchmarking algorithm for the
2D projected input ladar image shown on top.

4.5.1 Methods’ performance assessment, feature extraction and

comparison metric

The performance of the methods is analysed based on multiple quantitative and qualitative
indicators. Detection statistics is one of the tools used to quantify and compare the method’s
performance. A detection method’s performance can be measured in terms of its detection
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Input 3D point cloud

Constant threshold RANSAC 3D

Figure 4.11: Sample output of the 3D benchmarking algorithm for the
3D point cloud input ladar data shown on top. Red points correspond to
detections.

probability (or true positive rate, TPR) and its probability of false alarm (or false positive
rate, FPR). There is usually a trade-off between TPR and FPR, which can be expressed
in simple terms as follow. For any given method the probability of detection and false
alarm probability are governed by some of the method’s parameters. If these parameters are
adjusted to increase the TPR, the FPR will also increase. Conversely, if the parameters are
modified to achieve a low FPR, the probability of detection will tend to decrease.

The following definitions and equations describe the main variables and calculations in-

69



volved in detection statistics:

P : number of positive samples

N : number of negative samples

Pt : number of true positives

Pf : number of false positives

Nt : number of true negatives

Nf : number of false negative

TPR : True positive rate (probability of detection)

FPR : False positive rate (probability of false alarm)

TPR =
Pt
P

=
Pt

Pt +Nf

(4.19)

FPR =
Pf
N

=
Pf

Pf +Nt

(4.20)

The trade-off between TPR and FPR can be studied using a receiver operating character-
istic curve, also referred to as ROC curve. This curve is a plot of the TPR against the FPR
as the discrimination threshold is varied. In a simple method, like the constant threshold
algorithm, this can be achieved by changing the threshold level from the minimum value in
the data (TPR and FPR are both 1) to the maximum value (TPR and FPR are both 0).

Nevertheless, most of the algorithms, both proposed and those used as benchmark, present
a discrimination threshold which is controlled by multiple parameters. Some of these param-
eters are dependent on the context, for instance, the CFAR reference and guard cells window
size is related to the distance between targets and the target size, respectively. Using the
ROC curves, the sensitivity of the methods to the parameters which cannot be estimated
as mentioned before can be evaluated. In this work, for the CFAR methods, the required
probability of false alarm is the parameter chosen to obtain the ROC curves. The Canny
automatic threshold depends on the σ parameter described above, which is used to gen-
erate the ROC curves of this method. The RANSAC algorithm has a parameter, usually
referred to as residual threshold, which correspond to the maximum distance between a data
point and the model to be classified as an inlier. This parameter has been used to produce
the RANSAC’s ROC curves. Finally, the single threshold level parameter is used for the
segmentation thresholding method.

Although some of the methods’ parameters can be estimated from context information
about the data, these estimated values have only been used as starting points, and the
parameter space has been explored in the vicinity to find more optimal parameters.
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The CFAR algorithms, which are derived from detection theory, allow further analysis
with respect to detection statistics. Particularly, one of the parameters correspond to the
desired probability of false alarm. Therefore, it is possible to plot the actual probability of
false alarm against the required FPR, which is the same parameter which was used to obtain
the ROC curve. Additionally, the probability of detection can also be plotted against the
same variable.

Due to the high resolution of the 3D laser scanner, each target is represented by several
points in the data set. In order to obtain one feature per target, the connected component
labelling [SS02] algorithm is used to group points. This algorithm is a simple and efficient
method to classify regions based on adjacent pixel similarities. Its output can then be used
to extract geometric characteristics of these regions. Subsequently, the center of mass is
obtained for each group of points and used as the position of the target. This is carried
out first for the ground truth, selecting the points corresponding to targets in the 3D point
cloud data manually, and then running the connected component analysis on them. Secondly,
the output of the detection algorithms are processed with the connected component analysis
(CCA). Finally, an appropriate metric is applied to the extracted features to compare the
different algorithms. The OSPA metric described in Section 2.4 has been used for this
purpose. For all experiments the power p parameter was set to 2, while the cutoff parameter
v was chosen according to the specific characteristics of each data set, as detailed in the
following sections.

4.6 Simulated data

The methods were first tested with simulated environments. This allows tests under con-
trolled conditions, particularly, the ground truth position of the markers is completely known.
Also, it is possible to analyse the effects of changing specific parameters or environmental
conditions. If the methods were tested directly on real data several conditions occurring
simultaneously could interfere with each other, making it difficult to assess the response of
the methods with regard to each of them.

Two simulated environments were used to test the methods. One consists of eight targets
at the same distance from the sensor, surrounded by a noisy data background. Two versions
of this data set have been used. In the first one, all the targets have different signal-to-noise
ratios (SNRs), which are described in table 4.2. The second one is a “low SNR” version, with
all the targets’ SNRs set at 2.
Figure 4.12 depicts the scene. The dark points represent noise or clutter data surrounding the
targets. The reflected intensity values of the noise background’s data points were generated
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Table 4.2: SNR values used in the simulated environment with equidistant
targets

Target number 1 2 3 4 5 6 7 8

SNR 2 10 100 1000 10000 100000 1000000 10000000

using an exponential distribution. The circled points represent the eight targets equidistant
from the sensor. Their reflected intensity values were generated from a Rayleigh distribution,
as justified in Section 4.3.1.

Markers

Sensor

Figure 4.12: Simulated environment with equidistant targets to the sen-
sor with different SNRs.

The goal of this environment is to assess the performance with respect to different SNRs,
at constant range, for both target and clutter points.

The second environment consists of 4 sets of 5 targets, with all 5 targets of each set
presenting the same SNR, but different SNRs for each set. The SNR for each set is listed
in Table 4.3. The 5 targets of each set are at different distances, such that with respect

Table 4.3: SNR values used in the simulated environment with targets at
different distances.

Target set A B C D

SNR 2 10 100 10000
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to the sensor, each target has an apparent size2 which doubles that of the previous closer
target. Figure 4.13 shows this environment. Dark and light points represent the same as in
the previously described scene. This simulated environment evaluates the performance of the
detector with respect to the apparent size, at the same SNR in each target set. The standard
2D CFAR methods in particular are sensitive to the target size since it is used to define the
guard cells window size parameter. This data set is therefore useful to assess the utility of
the proposed 2D adaptive window size version of the CFAR methods.

Markers

Sensor
Set A

Set B

Set C

Set D

Figure 4.13: Simulated environment with targets at different distances
from the sensor and different SNRs.

4.6.1 Equidistant target simulation results

In all the results presented in this Chapter the methods are labelled canny, cth, RANSAC,
cacfar and oscfar for the Canny edge detector, segmentation thresholding, RANSAC, CA-
CFAR and OS-CFAR, respectively. Additionally, the label includes the tag 2D or 3D to
differentiate the respective version. CFAR 2D methods are suffixed by std to indicate the

2The apparent size is the size as seen from the sensor. Two objects of the same size will have a different
apparent size if they are located at different distances from the sensor, the closer one will appear larger.
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standard (fixed window size) version or adp to note the adaptive (adaptive window size)
version.

Figure 4.14 presents the ROC curves for the 3D methods applied to the data set. The
constant method 3D and the CA-CFAR 3D methods exhibit a similar performance, while the
OS-CFAR 3D presents a slightly lower detection probability at low values of false positive
rate (FPR) but converge with the other two for higher FPR values.
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Figure 4.14: ROC curves of the methods applied to 3D PCD in the
equidistant targets data set.

On the other hand, Figure 4.15 shows the results for the low SNR version of the data set.
In this case, the constant segmentation thresholding and the CFAR methods are all detri-
mented due to the low signal-to-noise ratio (SNR). Nevertheless, segmentation thresholding
exhibits a slightly lower performance than the other two, particularly for low FPR values.
In general, in situations with high SNR, the segmentation thresholding method presents a
good performance because the noise and target power distributions are well separated, thus
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it is possible to find an appropriate threshold level to discriminate targets from noise. On
the contrary, under low SNR conditions, CFAR methods are expected to be more robust as
they use the underlying stochastic knowledge about noise and target power distributions to
calculate an adaptive threshold.

However, under more realistic situations, even with high SNR levels, it is difficult to select
an optimal segmentation threshold when the SNR is unknown a priori. CFAR methods,
however, are still able to yield good results, even though there is not knowledge of the
relation between target and noise power.
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Figure 4.15: ROC curves of the methods applied to 3D PCD in the
equidistant targets data set with low SNR.

The ROC curves of the methods applied to the high SNR version is presented in Fig-
ures 4.16 and 4.17, for equirectangular and Mercator 2D projections, respectively. It can be
observed that most methods in the equirectangular projection exhibit very similar perfor-
mances, while in the Mercator projection the ROC curves are more separated and towards a

75



lower performance level. RANSAC 2D and Canny methods both show a poor performance
compared to the other methods. It is important to note that the RANSAC 2D method for
ellipse detection has a very high computational complexity. For this reason the RANSAC 2D
algorithm implementation was given extra information that was not available to the other
methods. In particular, the RANSAC 2D method was applied to small areas in the vicinity
of the ground truth targets. Nevertheless, the algorithm is unable to detect the targets due
to the small number of inliers. On the other hand, the Canny edge detector is highly affected
by the noise.
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Figure 4.16: ROC curves of the methods applied to equirectangular 2D
projected data with original SNR levels.

The 2D ROC curves for the low SNR version of the data set are shown in Figures 4.18
and 4.19, for equirectangular and Mercator 2D projections, respectively. As in the higher
SNR data set, the equirectangular projection shows higher performance for all the methods
than the Mercator one.
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Figure 4.17: ROC curves of the methods applied to Mercator 2D pro-
jected data with original SNR levels.

For values of FPR < 0.2 table 4.4 ranks the methods based on the performance in terms
of the ROC curves for the 2D projected data set. The curves closer to the top left corner of
the plot present better performance, while those closer to the no-discrimination line are said
to have a lower performance in the ROC plot.

In all cases segmentation thresholding appears in fourth or fifth rank. For both equirect-
angular sets (original and low SNR) only OS-CFAR 2D standard presents a lower performance
than segmentation thresholding. Also, in both cases, one of the proposed adaptive versions is
ranked first, either CA-CFAR 2D adaptive in the original SNR set or OS-CFAR 2D adaptive
in the low SNR set. It is important to remember that the actual difference is not large, never-
theless, as it was mentioned before, it is very difficult to set the optimal threshold parameter
for segmentation without knowing in advance the relation between noise and target power.

Figures 4.20, 4.21, 4.22 and 4.23 show plots of the probability of detection and actual
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Figure 4.18: ROC curves of the methods applied to equirectangular 2D
projected data with low SNR levels.

false alarm rate as function of the required false alarm rate, which is the main parameter
that the user can set for the CFAR methods3.

The OS-CFAR 2D (equirectangular projection), both adaptive and standard, present the
higher detection probability in the original SNR set (Figure 4.20), closely followed by the
OS-CFAR 2D (Mercator projection) standard. The next method in terms of probability of
detection is the OS-CFAR 2D (Merc.) adaptive. Then, CA-CFAR 2D (Equi.) standard,
CA-CFAR 2D (Merc.) standard and CA-CFAR 2D (Equi.) adaptive, present a comparable
performance, while the CA-CFAR 2D (Merc.) adaptive shows a slightly lower detection prob-
ability. Finally, CA-CFAR 3D and OS-CFAR 3D exhibit the lowest detection probabilities
of the methods. Nevertheless, all the algorithms achieve detection probabilities above 80%

3The other parameters are the reference and guard cells window size, which are defined based on the
targets’ size.
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Figure 4.19: ROC curves of the methods applied to Mercator 2D pro-
jected data with low SNR levels.

for required false alarm rates greater than 1× 10−4.
On the other hand, considering the actual false alarm rate (Figure 4.21), the 3D PCD

methods, both CA-CFAR and OS-CFAR, are the only ones capable of achieving a value close
to the one specified as the method’s parameter. A group consisting of CA-CFAR 2D (Merc.)
adaptive, CA-CFAR 2D (Merc.) standard, CA-CFAR 2D (Equi.) adaptive and CA-CFAR
2D (Equi.) standard are next. Then, OS-CFAR 2D (Merc.) adaptive and OS-CFAR 2D
(Merc.) standard follow, while OS-CFAR 2D (Equi.) adaptive and OS-CFAR 2D (Equi.)
standard are last, in terms of the actual probability of false alarm achieved by each method.
Note that the order of the methods is, with a couple of exceptions, the opposite of the one
based on the probability of detection from Figure 4.20. The higher values of false alarm
probability are due to the higher noise introduced by the data sparsity mentioned in section
4.2.3.
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Table 4.4: Ranking of 2D methods based on ROC curves for FPR < 0.2

Rank Original SNR (Equi) Original SNR (Merc) Low SNR (Equi) Low SNR (Merc)

1 cacfar2Dadp oscfar2Dstd oscfar2Dadp oscfar2Dstd
2 cacfar2Dstd cacfar2Dstd cacfar2Dadp cacfar2Dstd
3 oscfar2Dadp cacfar2Dadp cacfar2Dstd oscfar2Dadp
4 cth2D cth2D cth2D cacfar2Dadp
5 oscfar2Dstd oscfar2Dadp oscfar2Dstd cth2D
6 ransac2D ransac2D ransac2D ransac2D
7 canny (log) canny (log) canny (log) canny (log)

The results based on the low SNR data set (Figure 4.22) show a similar grouping of the
methods in terms of performance. However, the probabilities of detection are much lower for
most of the methods. Only OS-CFAR 2D (Equi.) adaptive and standard versions show a
detection probability close to the original SNR data set.

Figure 4.23 presents the actual false alarm rate for the low SNR data set. As expected,
the CFAR methods are capable of maintaining the false alarm rate in spite of changes in
the SNR level. With small differences, the methods’ performances are comparable to their
performances in the original SNR data set.

The CFAR parameters used in this data set are shown in table 4.5.

Table 4.5: CFAR parameters used in the simulated environment with
equidistant targets. Pixel units are labelled px, while millimetre units are
labelled mm.

Method (data type) Wrc Wgc

cacfar2Dstd Equirectangular 35 px 10 px
oscfar2Dstd Equirectangular 35 px 10 px
cacfar2Dadp Equirectangular 370 mm 100 mm
oscfar2Dadp Equirectangular 370 mm 100 mm

cacfar2Dstd Mercator 35 px 10 px
oscfar2Dstd Mercator 35 px 10 px
cacfar2Dadp Mercator 370 mm 100 mm
oscfar2Dadp Mercator 370 mm 100 mm

cacfar3D 3D PCD 350 mm 100 mm
oscfar3D 3D PCD 350 mm 100 mm

Figures 4.24 and 4.25 show a plot of OSPA distances for the algorithms applied to 2D
projected data, while Figure 4.26 presents OSPA distances for the methods applied to 3D
PCD. Figures 4.27, 4.28 and 4.29, on the other hand, present the respective plots for the low
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Figure 4.20: Probability of detection vs. required false alarm rate for
original SNR data.

SNR dataset.
The OSPA cutoff parameter used with 2D projected data is different that the one used in
3D data, while the power parameter is fixed at 2 for all analyses. In the first case, the OSPA
metric considers pixel distances, while in 3D it takes into account point distances in mm. In
the case of the 2D projected data a cutoff parameter of 50 pixels was chosen, based on the
size of the targets in the projected space and the expected separation between them. A value
of 500 mm was used in the case of the 3D point cloud data, for all datasets.

In direct relation with the detection statistic results presented above, the segmentation
threshold method in 2D projected data presents a lower OSPA error in the high SNR dataset.
Nevertheless, for TPR values above 0.8, all methods (except Canny and RANSAC 2D) present
a similar OSPA distance. Furthermore, in the Mercator projected data CA-CFAR adaptive
and standard exhibit a slightly lower OSPA error.
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Figure 4.21: Probability of false alarm vs. required false alarm rate for
original SNR data.

On the other hand, CFAR and constant threshold algorithms showed the same perfor-
mance in the 3D point cloud data.

It should be noted that in this scenario, there were several targets with a high SNR,
which should have favoured the Segmentation Thresholding method. Nevertheless, the CFAR
methods outperformed the Segmentation Thresholding method and the Canny edge detector.

Also, the RANSAC algorithm, which is considered a more robust, non-deterministic
method, as opposed to the other benchmarking methods, was not able yield good results.
On the 2D projected data and 3D PCD, the RANSAC method follows an edge detection
stage used to generate the candidate points for the ellipse model. However, the noise has
two notorious effects on the RANSAC method. First, a high number of point candidates are
produced. This means that more iterations are required to find a better fit. Second, the
required number of valid points, can easily be reached due to the presence of false alarms.
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Figure 4.22: Probability of detection vs. required false alarm rate for low
SNR data.

In the case of the low SNR data, all methods present similar performances in terms of
the OSPA distance, due to the high number of false positives.

It is interesting to note that for both datasets in 3D PCD, there is a section of the OSPA
distance with very low error values. This is due to the relativelly high resolution used to
represent the simulated targets. Although there are is not a significative number of points
detected, they are enough for the connected component analysis (CCA) method to discard
the noise and keep the points of the real targets, thus yielding a low OSPA value. However,
for higher TPR values, the FPR is too high and the CCA method cannot discard the noise,
which increases the OSPA error.
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Figure 4.23: Probability of false alarm vs. required false alarm rate for
low SNR data.
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Figure 4.24: The OSPA metric for 2D algorithms (Equirectangular pro-
jection) in a simulated environment with equidistant targets.
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Figure 4.25: The OSPA metric for 2D algorithms (Mercator projection)
in a simulated environment with equidistant targets.
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Figure 4.26: The OSPA metric for 3D algorithms in a simulated environ-
ment with equidistant targets.
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Figure 4.27: The OSPA metric for 2D algorithms (Equirectangular pro-
jection) in a simulated environment with equidistant targets and low SNR.
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Figure 4.28: The OSPA metric for 2D algorithms (Mercator projection)
in a simulated environment with equidistant targets and low SNR.
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Figure 4.29: The OSPA metric for 3D algorithms in a simulated environ-
ment with equidistant targets and low SNR.
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4.6.2 Non-equidistant target simulation results

The main goal of this data set is to evaluate the performance of the proposed adaptive window
version of the CFAR methods. Thus, the 2D projected ROC curves include two versions of
both OS- and CA-CFAR standard versions. In one of them the guard cells window size is
chosen to tightly match the smallest apparent size of the targets, while the other one is set
to match the largest apparent size of the targets. In both cases the reference cells window
size is set as factor of the guard cells window size. The CFAR methods with the smallest
window size are labelled SW and the ones with the largest window size are labelled LW in
the ROC curves plots.
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Figure 4.30: ROC curves of the methods applied to 3D PCD in data set
with targets at different distances.

Figure 4.30 shows the ROC curves of the 3D version of the methods. In this data set, CA-
CFAR 3D and OS-CFAR 3D exhibit comparable performances, while segmentation thresh-
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olding presents a slightly lower performance along most of the ROC curve.
ROC curves for equirectangular and Mercator 2D projected data is presented in Fig-

ures 4.31 and 4.32, respectively.
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Figure 4.31: ROC curves of the methods applied to equirectangular 2D
projected data set with targets at different distances.

In this data set both 2D projections show comparable results. Table 4.6 lists the methods
ranked based on the ROC curves performances for values of FPR < 0.15.

The standard CFAR methods with a window sizes set to match the largest apparent size
of targets show good results. This expected, due to the window size covering both small and
large apparent size targets. On the other hand, the standard methods with small window
sizes present low performances, as the large apparent size targets do not fit in the small guard
cells windows. However, as in the case of the segmentation thresholding parameter, it is not
possible to have a good estimate of the apparent size without knowing the relative position
of the (closest) targets to the sensor.
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Figure 4.32: ROC curves of the methods applied to Mercator 2D pro-
jected data set with targets at different distances.

Figure 4.33 plots CFAR methods’ detection probability versus required probability of false
alarm. Likewise, Figure 4.34 plots CFAR methods’ actual false alarm rate versus required
probability of false alarm.

Table 4.7 ranks the methods with respect to the probability of detection and actual
probability of false alarm.

It can be observed that in this data set both 3D versions of the CFAR methods present the
top performance with respect to both probability of detection and actual false alarm rate.
Also, the CA-CFAR 2D adaptive version (in both projections) presents a relatively good
performance in terms of the actual false alarm rate, while the OS-CFAR adaptive version
exhibits a low performance level. In general, the standard methods with small window
sizes present low performance level, while the large window methods show mixed results.
Overall, methods applied to equirectangular projected data presented better probabilities of
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Table 4.6: Ranking of 2D methods based on ROC curves for FPR < 0.15

Rank Equirectangular Mercator

1 cacfar2Dadp cacfar2Dadp
2 cacfar2Dstd-(LW) cacfar2Dstd-(LW)
3 oscfar2Dstd-(LW) oscfar2Dstd-(LW)
4 oscfar2Dadp oscfar2Dadp
5 cth2D cth2D
6 oscfar2Dstd-(SW) oscfar2Dstd-(SW)
7 cacfar2Dstd-(SW) cacfar2Dstd-(SW)
8 cannyLog cannyLog
9 RANSAC 2D RANSAC 2D

Table 4.7: Ranking of CFAR methods based on probability of detection
and actual false alarm rate.

Rank Detection rate Actual false alarm rate

1 cacfar3D (Pcd) oscfar3D (Pcd)
2 oscfar3D (Pcd) cacfar3D (Pcd)
3 oscfar2Dadp (Equi) cacfar2Dadp (Merc)
4 oscfar2Dstd-(LW) (Equi) cacfar2Dstd-(LW) (Merc)
5 cacfar2Dstd-(LW) (Equi) cacfar2Dadp (Equi)
6 cacfar2Dadp (Equi) cacfar2Dstd-(LW) (Equi)
7 oscfar2Dstd-(LW) (Merc) oscfar2Dstd-(LW) (Merc)
8 cacfar2Dstd-(LW) (Merc) cacfar2Dstd-(SW) (Merc)
9 oscfar2Dadp (Merc) cacfar2Dstd-(SW) (Equi)
10 cacfar2Dadp (Merc) oscfar2Dstd-(LW) (Equi)
11 oscfar2Dstd-(SW) (Merc) oscfar2Dstd-(SW) (Merc)
12 oscfar2Dstd-(SW) (Equi) oscfar2Dadp (Merc)
13 cacfar2Dstd-(SW) (Merc) oscfar2Dadp (Equi)
14 cacfar2Dstd-(SW) (Equi) oscfar2Dstd-(SW) (Equi)

detection that those applied to Mercator projected data. On the other hand, it is not possible
to conclude if the type of projection has some effect on the actual false alarm rate. Note
that 25% of the targets in this data set present a low SNR level, which affects the detection
probabilities.

In this data set the CFAR parameters used are the same as with equidistant targets.
Figures 4.35, 4.36 and 4.37, present the OSPA distances for the methods applied to 2D

data and 3D PCD, respectively.
The OSPA metric results coincide with the detection statistic results. For 2D projected

data, CFAR standard methods with small window (both CA- and OS-) and OS-CFAR adap-
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Figure 4.33: Probability of detection vs. required false alarm rate in data
set with targets at different distances.

tive methods present higher OSPA errors because of their higher false alarm rates.
On the other hand, CA-CFAR adaptive version and CA-CFAR standard with large win-

dow show the lowest OSPA errors around a TPR value of 0.5 in equirectangular projected
data. OS-CFAR standard with large window and segmentation threshold yield a slightly
higher OSPA error. Nevertheless, in Mercator projected data, for TPR > 0.5, these methods
present similar OSPA errors. Also, CFAR and segmentation threshold exhibit comparable
OSPA performances in 3D PCD.

As mentioned earlier in this section, the goal of this simulated environment is to test
the advantages of the adaptive 2D CFAR methods and the 3D version over the 2D standard
versions. The 2D adaptive and the 3D versions take into account the real expected target
size, while the standard version only considers one target size represented as a pixel area. In
scenarios where the targets are at different distances from the the sensor, the apparent size
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Figure 4.34: Probability of false alarm vs. required false alarm rate in
data set with targets at different distances.

and thus the pixel area occupied by the targets vary.
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Figure 4.35: The OSPA metric for 2D algorithms in a simulated environ-
ment with non-equidistant targets (Equirectangular projection).
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Figure 4.36: The OSPA metric for 2D algorithms in a simulated environ-
ment with non-equidistant targets (Mercator projection).
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Figure 4.37: The OSPA metric for 3D algorithms in a simulated environ-
ment with non-equidistant targets.
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4.7 Indoor laboratory environment test

The previously described methods were tested with 3D ladar data gathered in an indoor
laboratory environment. Reflective markers (seven) were located in different places inside
a laboratory. Figure 4.38 presents the 3D Point Cloud corresponding to the scene. Darker
points represent a higher reflected intensity on a logarithmic scale.

Markers

1

2
3 4

5

6
7

Figure 4.38: Indoor laboratory environment. Darker points show a higher
reflected logarithmic intensity.

The reflective markers were identified manually in the 3D Point Cloud and in the 2D
projected images (see Figures 4.39 and 4.40) and corresponding points and pixels were labelled
to be used as ground truth. The CFAR parameters in this experiment were the same as in
the two simulation experiments because the targets were of similar size in the 3D and 2D
projected data.

1 2
3 45 6

7

Figure 4.39: Mercator projected image of indoor laboratory environment.

All experimental data sets (indoor laboratory and both section of an underground mine)
present well separated distributions of target and noise power. One problem when using
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Figure 4.40: Equirectangular projected image of indoor laboratory envi-
ronment.

retro-reflective target in ladar data capture is the presence of clutter in the scene with high
reflectivity which could be identified as markers. The experimental data sets do not include
enough clutter to evaluate its effect on the target detection methods. Therefore, for each
data set, a second copy has been created. In these secondary data sets a small rectangular
area of non-target data points have been modified to artificially represent a patch of high
reflectivity. This artificial clutter area has reflectivity values in the same range as the actual
targets.

4.7.1 Indoor laboratory environment results

The ROC curves of the methods applied to 3D PCD for the original data set and the alternate
data set are presented in Figures 4.41 and 4.42, respectively.

Due to the low SNR and the separation between noise and target power, all 3D methods
show a very high performance. Both segmentation thresholding and OS-CFAR 3D achieve
100% detection rate with very small values of FPR. The CA-CFAR method, requires a slightly
higher FPR to achieve 100% detection rate.

When the small patch of artificial clutter is included the segmentation thresholding is
affected, increasing its false alarm rate, as expected. On the other hand, OS-CFAR 3D
presents the same performance, while CA-CFAR 3D improves with a small reduction in its
false alarm rate, due to some points, where the patch was introduced, being correctly detected
as clutter in this scenario.

Figures 4.43 and 4.44 present ROC curves obtained from 2D data, equirectangular and
Mercator projections, respectively for the original data set. The ROC curves for the alternate
data set with artificial clutter are shown in Figures 4.45 and 4.46 for the equirectangular and
Mercator projections respectively.

In all cases, the 2D versions of the algorithm present lower performances than 3D ver-
sions with probabilities of detection ranging between 50% and 70% for small values of FPR.
Furthermore, in both versions of the data set, the equirectangular projection exhibits slightly
better results than the Mercator projection.

Table 4.8 ranks the methods according to their performance in the ROC curves for values
of FPR < 0.1.
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Figure 4.41: ROC curves of the methods applied to 3D PCD in the indoor
laboratory experimental data set.

In all cases the OS-CFAR adaptive version presented the highest performance. Also, in
all situations, the adaptive CFAR version performed better than the standard counterpart.
Both, adaptive and standard, OS-CFAR versions showed a better performance than the
segmentation thresholding method. As in the results for 3D PCD, the CA-CFAR methods
presented a lower performance than the OS-CFAR methods and in most cases than the
segmentation thresholding method.

Detection probability and actual false alarm rate versus required probability of false alarm
for both, original and alternate with clutter, versions of the data set are presented in Fig-
ures 4.47, 4.48, 4.49 and 4.50, respectively.

Table 4.9 show the methods ranked in terms of their detection probability and false alarm
rate for each version of the data set.

These results are consistent with the results of the ROC curves, showing that the 3D
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Figure 4.42: ROC curves of the methods applied to 3D PCD in the indoor
laboratory experimental data set with artificial clutter.

versions of the methods obtain a much higher TPR. In terms of the actual false alarm rate,
all methods present a low performance for required false alarm rate values under 1× 10−3.
However, CA-CFAR 3D presents the best actual false alarm rate in both versions of the data
set.

The detection probability achieved by the methods applied to 2D projected data are in
the range between 52% and 62% for required values of FPR < 0.1, in the original data set.
In the alternate data set, the detection probabilities are lower in the range between 50% an
60% for values of FPR < 0.1 The same behaviour is observed with respect to the actual false
alarm rate obtained by the 2D version of the methods.

The OSPA metric results are presented in Figures 4.51, 4.52 and 4.53 for 2D projected
data and 3D PCD. Respectively, Figures 4.54, 4.55 and 4.56 for 2D projected data and 3D
PCD show OSPA metric results for the high clutter version of the dataset. The conditions
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Figure 4.43: ROC curves of the methods applied to equirectangular 2D
projected data in the indoor laboratory experimental data set.

are the same as the one described in previous results sections of the simulated data sets.
For TPR values higher than 0.6 in 2D projected data (both normal and high clutter

versions), all methods present comparable OSPA error curves, dominated by the high FPR
values. Segmentation threshold, on the other hand present lower OSPA errors for TPR <
0.6, followed by CA-CFAR adaptive version in the high clutter dataset, and by CA-CFAR
standard in the original dataset.

Consistent with the detection statistics results, OS-CFAR 3D presents a lower OSPA error
in the high clutter 3D PCD environment. CA-CFAR 3D yielded the lowest OSPA errors for
TPR values between 0.95 and 0.99 in both, normal and high clutter versions of the data.
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Figure 4.44: ROC curves of the methods applied to Mercator 2D pro-
jected data in the indoor laboratory experimental data set.

Table 4.8: Ranking of 2D methods based on ROC curves for FPR < 0.1,
"Original" refers to the original data set without additional clutter, while
the "Alternate" corresponds to a copy of the data set with patch of added
clutter points.

Rank Original (Equi) Original (Merc) Alternate (Equi) Alternate (Merc)

1 oscfar2Dadp oscfar2Dadp oscfar2Dadp oscfar2Dadp
2 oscfar2Dstd cacfar2Dadp oscfar2Dstd oscfar2Dstd
3 cth2D oscfar2Dstd cth2D cth2D
4 cacfar2Dadp cth2D cacfar2Dadp cacfar2Dadp
5 cacfar2Dstd cacfar2Dstd cacfar2Dstd cacfar2Dstd
6 RANSAC 2D RANSAC 2D RANSAC 2D RANSAC 2D
7 cannyLog cannyLog cannyLog cannyLog
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Figure 4.45: ROC curves of the methods applied to equirectangular 2D
projected data in the indoor laboratory experimental data set (artificial
clutter).
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Figure 4.46: ROC curves of the methods applied to Mercator 2D pro-
jected data in the indoor laboratory experimental data set (artificial clut-
ter).
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Figure 4.47: Probability of detection vs. required false alarm rate for
indoor laboratory data.

Table 4.9: Ranking of CFAR methods based on probability of detection
(TPR) and actual false alarm rate (FPR).

Rank Original TPR Original actual FPR Alternate TPR Alternate actual FPR

1 oscfar3D PCD cacfar3D PCD oscfar3D PCD cacfar3D PCD
2 cacfar3D PCD cacfar2Dstd (Merc) cacfar3D PCD cacfar2Dadp (Merc)
3 oscfar2Dadp (Equi) cacfar2Dstd (Equi) oscfar2Dstd (Merc) cacfar2Dadp (Equi)
4 oscfar2Dstd (Equi) cacfar2Dadp (Merc) oscfar2Dadp (Equi) oscfar3D PCD
5 cacfar2Dstd (Equi) cacfar2Dadp (Equi) oscfar2Dstd (Equi) cacfar2Dstd (Equi)
6 oscfar2Dadp (Merc) oscfar3D PCD oscfar2Dadp (Merc) cacfar2Dstd (Merc)
7 cacfar2Dstd (Merc) oscfar2Dstd (Merc) cacfar2Dstd (Equi) oscfar2Dadp (Merc)
8 cacfar2Dadp (Equi) oscfar2Dadp (Merc) cacfar2Dstd (Merc) oscfar2Dadp (Equi)
9 oscfar2Dstd (Merc) oscfar2Dstd (Equi) cacfar2Dadp (Equi) oscfar2Dstd (Equi)
10 cacfar2Dadp (Merc) oscfar2Dadp (Equi) cacfar2Dadp (Merc) oscfar2Dstd (Merc)
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Figure 4.48: Probability of false alarm vs. required false alarm rate for
indoor laboratory data.
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Figure 4.49: Probability of detection vs. required false alarm rate for
indoor laboratory data (artificial clutter).
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Figure 4.50: Probability of false alarm vs. required false alarm rate for
indoor laboratory data (artificial clutter).
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Figure 4.51: OSPA metric results for indoor lab experiment (Equirect-
angular projection).
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Figure 4.52: OSPA metric results for indoor lab experiment (Mercator
projection).
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Figure 4.53: OSPA metric results for indoor lab experiment (3D PCD).
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Figure 4.54: OSPA metric results for indoor lab experiment with high
clutter (Equirectangular projection).
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Figure 4.55: OSPA metric results for indoor lab experiment with high
clutter (Mercator projection).
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Figure 4.56: OSPA metric results for indoor lab experiment with high
clutter (3D PCD).
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4.8 Mine environment test

A data-set obtained in an underground mine has also been used to test the algorithms. The
data-set contains a large number of points, therefore it was partitioned into two sections of
the mine’s tunnel. The first one (see Figures 4.57, 4.58 and 4.59) near the end of the tunnel
with 7 markers, 5 in the tunnel (coloured red in the figure) and 2 (coloured green in the
Figure) on the end wall.
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1
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7

Figure 4.57: End section of an underground mine tunnel. Red and green
circles show the visible targets’ locations.

This section has homogeneous (reflected intensity with a low variance) tunnel background
and the targets present a high SNR.
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Figure 4.58: Mercator projection of end section of mine tunnel.

The second partition correspond to the mid section of the tunnel, where two sets of 5 markers
are located across the tunnel at two positions each on one end of the section (Figures 4.60,
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4.61 and 4.62, with blue markers are on one end, magenta markers on the other end).
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Figure 4.59: Equirectangular projection of end section of mine tunnel.
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Figure 4.60: Mid section of an underground mine tunnel. Blue and
magenta circles show the visible targets’ locations, green squares enclose
visible clutter objects.

As in the indoor laboratory data set, for each section of the mine, an alternate data set
consisting of a copy of the original data with a small patch incorporating artificial clutter is
used to analyse the effect of higher clutter level on the different methods.
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Figure 4.61: Mercator projection of mid section of mine tunnel.

Also, the tunnel background is non-homogeneous in some sections increasing the noise.
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Figure 4.62: Equirectangular projection of mid section of mine tunnel.

4.8.1 First section results

Figures 4.63 and 4.64 present the ROC curves of the methods applied to 3D PCD for the
original an the alternate data sets, respectively.
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Figure 4.63: ROC curves of the methods applied to 3D PCD in the end
section of underground mine tunnel data set.

The same behaviour described in the previous section for the indoor laboratory data set
is observed in the plots. The CFAR 3D methods are not affected by the higher level of
clutter in the alternate data set, while the segmentation thresholding method increases its
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Figure 4.64: ROC curves of the methods applied to 3D PCD in the end
section of underground mine tunnel data set with artificial clutter.

false alarm rate. The CA-CFAR 3D method improves slightly, however in this data set,
CA-CFAR presents a much lower probability of detection than the other methods (near 70%
for most values of FPR). OS-CFAR 3D presents a very high detection rate, nevertheless it is
slightly below the segmentation threshold method in terms of the ROC curve.

ROC curves for 2D projected data of the original data set are presented in Figures 4.65
and 4.66 (equirectangular and Mercator projections, respectively), while the ROC curves of
the alternate data set are shown in Figures 4.67 and 4.68 (equirectangular and Mercator
projections, respectively).

As in the previous data sets, equirectangular projection yields, in general, relatively higher
performances than the Mercator projection. However, unlike previous results, the alternate
data set with an artificial clutter patch presents slightly better performances than the original
one. Nevertheless, most methods exhibit similar levels of performance.
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Figure 4.65: ROC curves of the methods applied to equirectangular 2D
projected data in the end section of underground mine tunnel data set.

The 2D versions of the methods are ranked in table 4.10 based on the ROC curves results.
In original data set, segmentation threshold is ranked first. The segmentation threshold

method shows a slightly higher FPR in the alternate data set, which allows a CA-CFAR
method to rank first, for very small values of FPR. In all cases, CA-CFAR methods presented
better performances than the OS-CFAR methods. In all but the equirectangular projection of
the alternate data set, the CFAR adaptive versions where ranked higher than their standard
counterpart.

Figures 4.69 and 4.70 show probability of detection and actual probability of false alarm,
respectively, for the original data set. The same plots for the alternate data set are presented
in Figures 4.71 and 4.72.

The alternate data set presents moderately higher performances than the original data
set in terms of detection probability, while all the methods, except CA-CFAR 2D standard,
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Figure 4.66: ROC curves of the methods applied to Mercator 2D pro-
jected data in the end section of underground mine tunnel data set.

show comparable performances with respect to actual false alarm rate in both versions of the
data set.

The methods are ranked in table 4.11 based on the detection probability and actual false
alarm rate results for each version of the data set.

Overall, OS-CFAR 3D is the only method showing a high detection probability (greater
than 70% in the whole range of required false alarm probability), which simultaneously
presents an actual false alarm rate similar or below the required value.

The 2D adaptive versions of the CFAR methods presented a good performance in terms
of detection probability. CA-CFAR 2D version also show, better probabilities of detection
than OS-CFAR 2D, in general. The 2D adaptive CA-CFAR methods are ranked at the top,
among the 2D CFAR versions, with respect to the actual false alarm rate.

The OSPA metric results are shown in Figures 4.73, 4.74 and 4.75 (original clutter ver-
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Figure 4.67: ROC curves of the methods applied to equirectangular 2D
projected data in the end section of underground mine tunnel data set
(artificial clutter).

sion), as well as, in Figures 4.76, 4.77 and 4.78 (high clutter version).
As expected, due to the high SNR, the segmentation threshold method achieves lower

OSPA errors. However, in the artificial clutter version of the data, all methods present high
OSPA errors. Also, CA-CFAR adaptive version in equirectangular 2D projected data shows
an OSPA error comparable to the segmentation threshold for TPR values around 0.9, while
CA-CFAR 3D and OS-CFAR 3D present lower OSPA errors for TPR values in the range
between 0.5 and 0.7, consistent with the ROC curves presented above.
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Figure 4.68: ROC curves of the methods applied to Mercator 2D pro-
jected data in the end section of underground mine tunnel data set (artificial
clutter).

Table 4.10: Ranking of 2D methods based on ROC curves for FPR < 0.1,
"Original" refers to the original data set without additional clutter, while
the "Alternate" corresponds to a copy of the data set with patch of added
clutter points.

Rank Original (Equi) Original (Merc) Alternate (Equi) Alternate (Merc)

1 cth2D cth2D cacfar2Dstd cacfar2Dadp
2 cacfar2Dadp cacfar2Dadp cth2D cth2D
3 cacfar2Dstd cacfar2Dstd cacfar2Dadp cacfar2Dstd
4 oscfar2Dadp oscfar2Dadp oscfar2Dadp oscfar2Dadp
5 oscfar2Dstd oscfar2Dstd oscfar2Dstd oscfar2Dstd
6 RANSAC 2D RANSAC 2D RANSAC 2D RANSAC 2D
7 cannyLog cannyLog cannyLog cannyLog
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Figure 4.69: Probability of detection vs. required false alarm rate for end
section of underground mine tunnel data.

Table 4.11: Ranking of CFAR methods based on probability of detection
(TPR) and actual false alarm rate (FPR).

Rank Original TPR Original actual FPR Alternate TPR Alternate actual FPR

1 oscfar2Dadp (Equi) cacfar3D (Pcd) oscfar2Dadp (Merc) cacfar3D (Pcd)
2 cacfar2Dadp (Equi) oscfar3D (Pcd) oscfar2Dadp (Equi) oscfar3D (Pcd)
3 cacfar2Dadp (Merc) cacfar2Dadp(Merc) cacfar2Dadp (Equi) cacfar2Dadp (Merc)
4 cacfar2Dstd (Equi) cacfar2Dadp (Equi) cacfar2Dadp (Merc) cacfar2Dadp (Equi)
5 cacfar2Dstd (Merc) cacfar2Dstd (Merc) cacfar2Dstd (Equi) oscfar2Dstd (Merc)
6 oscfar2Dadp (Merc) cacfar2Dstd (Equi) cacfar2Dstd (Merc) oscfar2Dadp (Merc)
7 oscfar2Dstd (Equi) oscfar2Dstd (Merc) oscfar2Dstd (Equi) oscfar2Dstd (Equi)
8 oscfar2Dstd (Merc) oscfar2Dadp (Merc) oscfar2Dstd (Merc) oscfar2Dadp (Equi)
9 oscfar3D (Pcd) oscfar2Dstd (Equi) oscfar3D (Pcd) cacfar2Dstd (Merc)
10 cacfar3D (Pcd) oscfar2Dadp (Equi) cacfar3D (Pcd) cacfar2Dstd (Equi)
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Figure 4.70: Probability of false alarm vs. required false alarm rate for
end section of underground mine tunnel data.
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Figure 4.71: Probability of detection vs. required false alarm rate for end
section of underground mine tunnel data (artificial clutter).
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Figure 4.72: Probability of false alarm vs. required false alarm rate for
end section of underground mine tunnel data (artificial clutter).
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Figure 4.73: OSPA metric results for the end section of undergroun mine
tunnel (Equirectangular projection).
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Figure 4.74: OSPA metric results for the end section of undergroun mine
tunnel (Mercator projection).
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Figure 4.75: OSPA metric results for the end section of undergroun mine
tunnel (3D PCD).
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Figure 4.76: OSPA metric results for the end section of undergroun mine
tunnel with high clutter (Equirectangular projection).

124



 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 0  0.2  0.4  0.6  0.8  1

O
S

PA
 d

is
ta

n
ce

 /
p

x

TPR

End section (high clutter): OSPA distance vs TPR (Merc. proj.)

cacfar2Dadp
cacfar2Dstd

canny

cth2D
oscfar2Dadp
oscfar2Dstd

ransac2D

Figure 4.77: OSPA metric results for the end section of undergroun mine
tunnel with high clutter (Mercator projection).
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Figure 4.78: OSPA metric results for the end section of undergroun mine
tunnel with high clutter (3D PCD).
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4.8.2 Second section results

ROC curves of the algorithms applied to 3D PCD in both, original and alternate data sets
are presented in Figures 4.79 and 4.80, respectively.
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Figure 4.79: ROC curves of the methods applied to 3D PCD in the mid
section of underground mine tunnel data set.

Segmentation threshold, as expected, presents a high level of performance, closely followed
by OS-CFAR 3D. As in the previous section’s results, segmentation threshold is affected by
the artificially incorporated clutter in the alternate data set. CA-CFAR methods, on the
other hand, are not affected by the clutter in the alternate data set.

ROC curves corresponding to 2D projected data for the original and alternate data set
are shown in Figures 4.81, 4.82, 4.83 and 4.84.

It is not possible to observe a significant difference between the ROC curves applied to
equirectangular projected data and to Mercator projected data. Also, the the results in the
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Figure 4.80: ROC curves of the methods applied to 3D PCD in the mid
section of underground mine tunnel data set with artificial clutter.

original and alternate data set are comparable.
The methods applied to 2D projected data are ranked in table 4.12 according to their

performance in the ROC curves.
In this data set, the standard versions of the CFAR methods exhibit the best results,

followed by segmentation thresholding. Adaptive versions of the CFAR methods are ranked
after segmentation thresholding. In all cases, the OS-CFAR versions present a better perfor-
mance than the CA-CFAR counterpart.

Detection probability and actual false alarm probability against required false alarm rate
are presented in Figures 4.85, 4.86, 4.87 and 4.88 for both, original and alternate data sets,
respectively, in the same fashion as in the previous section.

OS-CFAR 3D presents highest detection rates in both, the original and the alternate data
set. CA-CFAR 3D also show higher detection rates than all the 2D CFAR methods. In the
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Figure 4.81: ROC curves of the methods applied to equirectangular 2D
projected data in the mid section of underground mine tunnel data set.

original data set all the CFAR methods applied to 2D projected data present comparable
detection rates, while in the alternate data set OS-CFAR adaptive methods show higher
detection rates than the other 2D CFAR algorithms.

On the other hand, CA-CFAR standard versions exhibit the best performance with respect
to the actual false alarm rate in the original data set. However, all methods present a lower
performance in terms of actual false alarm rate in the alternate data set.

Table 4.13 ranks all the CFAR methods according to their results in in Figures 4.85, 4.86,
4.87 and 4.88.

In the alternate data set, CA-CFAR 3D presents good performance in therms of both,
detection rate and actual false alarm rate. Also, in the original data set, CA-CFAR 3D
exhibits a similar performance for required false alarm rate values greater than 1× 10−3. In
terms of the actual false alarm rate, CA-CFAR methods are ranked higher than the OS-CFAR
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Figure 4.82: ROC curves of the methods applied to Mercator 2D pro-
jected data in the mid section of underground mine tunnel data set.

algorithms.
The OSPA metric results are shown in Figures 4.89, 4.90 and 4.91 (original clutter ver-

sion), as well as, in Figures 4.92, 4.93 and 4.94 (high clutter version).
OSPA errors in 2D projected data for TPR values higher than 0.5 are dominated by the

high number of false alarm, for all methods. For TPR valuse lower than 0.5, segmentation
threshold yields lower OSPA errors, due to the high SNR, as discussed in the results of the
other section of the mine. In the dataset version with original clutter, CA-CFAR adaptive and
standard versions present OSPA distances comparable to the segmentation threshold OSPA
performance. On the other hand, all methods are affected by the artificially introduced
clutter, presenting higher OSPA distances.

In the case of 3D PCD data, CA-CFAR 3D presents lower OSPA errors with TPR values
ranging between 0.6 and 0.75, in both, original and artificial clutter dataset versions. Con-
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Figure 4.83: ROC curves of the methods applied to equirectangular 2D
projected data in the mid section of underground mine tunnel data set
(artificial clutter).

sistent with the ROC results above, OS-CFAR 3D achieves an OSPA distance lower than
segmentation threshold with a TPR value around 0.85, in the high clutter dataset version.

It was observed in all datasets that the OSPA metric was heavily affected by the output of
the CCA method, particularly in the experimental datasets. Direct application of the OSPA
metric to the points detected by the methods (without using the CCA algorithm) was not
possible because of the high number of detections and the high computational complexity
and high computer memory requirements of the OSPA algorithm.

130



	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	0.2 	0.4 	0.6 	0.8 	1

Tr
ue
	P
os
iti
ve
	R
at
e

False	Positive	Rate

Mid	secton	ROC	curves	(Merc)

cacfar2Dadp
cacfar2Dstd
ransac2D
cannyLog

oscfar2Dadp
oscfar2Dstd

cth2D
no-discrimination

0.4

0.45

0.5

0.55

0.6

0 0.05 0.1
0.4

0.45

0.5

0.55

0.6

0 0.05 0.1

Figure 4.84: ROC curves of the methods applied to Mercator 2D pro-
jected data in the mid section of underground mine tunnel data set (artifi-
cial clutter).

Table 4.12: Ranking of 2D methods based on ROC curves for FPR < 0.1,
"Original" refers to the original data set without additional clutter, while
the "Alternate" corresponds to a copy of the data set with patch of added
clutter points.

Rank Original (Equi) Original (Merc) Alternate (Equi) Alternate (Merc)

1 oscfar2Dstd oscfar2Dstd oscfar2Dstd oscfar2Dstd
2 cacfar2Dstd cacfar2Dstd cacfar2Dstd cacfar2Dstd
3 cth2D cth2D cth2D cth2D
4 oscfar2Dadp oscfar2Dadp oscfar2Dadp oscfar2Dadp
5 cacfar2Dadp cacfar2Dadp cacfar2Dadp cacfar2Dadp
6 RANSAC 2D RANSAC 2D RANSAC 2D RANSAC 2D
7 cannyLog cannyLog cannyLog cannyLog
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Figure 4.85: Probability of detection vs. required false alarm rate for
mid section of underground mine tunnel data.

Table 4.13: Ranking of CFAR methods based on probability of detection
(TPR) and actual false alarm rate (FPR).

Rank Original TPR Original actual FPR Alternate TPR Alternate actual FPR

1 oscfar3D (Pcd) cacfar2Dstd (Merc) oscfar3D (Pcd) cacfar3D (Pcd)
2 cacfar3D (Pcd) cacfar2Dstd (Equi) cacfar3D (Pcd) cacfar2Dadp (Merc)
3 cacfar2Dstd (Equi) cacfar2Dadp (Merc) oscfar2Dstd (Equi) cacfar2Dadp (Equi)
4 oscfar2Dstd (Equi) cacfar2Dadp (Equi) oscfar2Dstd (Merc) cacfar2Dstd (Equi)
5 oscfar2Dadp (Equi) cacfar3D (Pcd) cacfar2Dstd (Equi) cacfar2Dstd (Merc)
6 oscfar2Dadp (Merc) oscfar2Dstd (Merc) oscfar2Dadp (Equi) oscfar3D (Pcd)
7 oscfar2Dstd (Merc) oscfar3D (Pcd) cacfar2Dadp (Equi) oscfar2Dadp (Merc)
8 cacfar2Dstd (Merc) oscfar2Dstd (Equi) oscfar2Dadp (Merc) oscfar2Dadp (Equi)
9 cacfar2Dadp (Merc) oscfar2Dadp (Merc) cacfar2Dstd (Merc) oscfar2Dstd (Merc)
10 cacfar2Dadp (Equi) oscfar2Dadp (Equi) cacfar2Dadp (Merc) oscfar2Dstd (Equi)
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Figure 4.86: Probability of false alarm vs. required false alarm rate for
mid section of underground mine tunnel data.
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Figure 4.87: Probability of detection vs. required false alarm rate for
mid section of underground mine tunnel data (artificial clutter).
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Figure 4.88: Probability of false alarm vs. required false alarm rate for
mid section of underground mine tunnel data (artificial clutter).
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Figure 4.89: OSPA metric results for the mid section of undergroun mine
tunnel (Equirectangular projection).
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Figure 4.90: OSPA metric results for the mid section of undergroun mine
tunnel (Mercator projection).
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Figure 4.91: OSPA metric results for the mid section of undergroun mine
tunnel (3D PCD).
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Figure 4.92: OSPA metric results for the mid section of undergroun mine
tunnel with high clutter (Equirectangular projection).
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Figure 4.93: OSPA metric results for the mid section of undergroun mine
tunnel with high clutter (Mercator projection).
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Figure 4.94: OSPA metric results for the mid section of undergroun mine
tunnel with high clutter (3D PCD).
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4.9 Overall discussion on the CFAR methods’ perfor-

mance

In situations of high SNR which are optimal for Segmentation Thresholding, the CFAR
methods yielded comparable performance. In all situations with a certain level of clutter, the
CFAR methods achieved a higher performance than Segmentation Thresholding. The Canny
Edge Detector is very sensitive to noise, which was observed in most situations with simulated
or real data. The RANSAC method was also sensitive to noise in its 2D version, while the
spatial data structure in 3D also affected its performance (several different structures in the
3D PCD were consistent with the cylinder model, and therefore detected as false alarms).
Nevertheless, this algorithm can be used after the detection phase to check whether the
detected objects match a particular shape and size.

In most cases the 3D CFAR version exhibits a better performance than the 2D CFAR
versions. The main disadvantage of 3D CFAR methods arises with Point Clouds with a
large number of points, due to the computationally expensive process of building the KD-
Tree and iterating over all points calculating the local statistics. The KD-Tree is needed to
efficiently obtain the points close to the cell under test which correspond to reference and
guard cells. This effect can be minimised if the Point Cloud is partitioned to only include
volumes where targets are known to be present. If that is not possible, and faster calculations
are required, then projecting the data into 2D, using a simple transformation such as the
Equirectangular projection, may be advisable. When working with 2D data and it is known
that the targets have very different apparent sizes, the CFAR adaptive window size versions
should be used. Otherwise, when the targets’ apparent size does not vary significantly, it
is better to use the standard versions, as the adaptive version requires more time. As a
general remark, the adaptive OS-CFAR is much slower than the adaptive CA-CFAR, due
to the non-linear solver that needs to be executed every time the reference cell window size
changes. The OS-CFAR processor should be used when it is expected that part of the points
representing the target will spread into the reference cell window (i.e. when detecting large
objects) or when it is known that the noise distribution does not match the one expected by
the CA-CFAR detector. OS-CFAR methods presented, in general, a better performance than
the CA-CFAR methods, particularly in the experimental data sets. Nevertheless, in many
situations the difference in performance is not large, and the fastest CA-CFAR approach can
be considered. In summary, the results confirm that the adaptive window size version of
the 2D CFAR processor yields a better performance when the targets are located a different
distances from the sensor. This is due to the adaptive CFAR window which grows or shrinks
based on the real size of the object (in mm) and not a fixed size in pixels (or bins) which is
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the standard case. The 3D version of CFAR processor also showed advantages over the 2D
version of the methods because there is no distortion in the objects size or shape.
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Chapter 5

Conclusions

5.1 Final analysis and remarks

In Chapter 3 a noise reduction method based on the Binary integrator detector and spectral
noise subtraction has been introduced. Its performance has been compared with two other
general, widely used, noise reduction methods, Wiener filtering and wavelet denoising.

The BINR method exhibits good noise reduction capabilities, which result in a higher
signal-to-noise power ratio than the other two techniques. Importantly, BINR has the ability
to preserve most of the signal’s spatial details. Also, the BINR algorithm’s computational
time is lower than the other two methods. The reduced time complexity shown by the BINR
method and its denoising capabilities make it an appealing noise reduction alternative to be
used as a pre-processing step for radar data.

The BINR method requires multiple radar data observations of the scene. This is due
to the Binary Integration detector on which the method is based. Integration is a widely
used technique in different scientific fields and technological applications to reduce noise by
increasing the signal to noise ratio. It is explained by the Central Limit Theorem from
probability theory. By taking more samples of the phenomenon under study, the sampling
distribution of the mean of samples approaches a normal distribution and its standard devia-
tion decreases with the squared root of the number of samples. Therefore, the sensor should
remain in a static location for a certain amount of time, before moving to a new location, in a
"stop-scan-move" strategy. This strategy is commonly used in robot exploration missions or
when high accuracy is required. Alternatively, if a registration algorithm is applied to align
multiple observations from different scanning positions into a common reference frame then,
the overlapping regions can also be processed with the BINR algorithm. On the other hand,
the BINR method has been designed to be used as an on-line technique, i.e. it can process
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data as it is captured by the sensor.
Three approaches to detect reflective markers in 3D ladar surveying data, based on CA-

CFAR processors have been introduced in Chapter 4. Their performances have been com-
pared with a standard, constant threshold, segmentation method from image processing.
The first method consists in the direct application of a standard 2D CA-CFAR processor on
the 2D projection of the data. The second technique introduces a new adaptive window 2D
CA-CFAR processor also applied to the data projected in 2D. This method combines inten-
sity and range information. The latter is used to adapt the window size parameter on each
cell under test. The third approach corresponds to a 3D implementation of the CA-CFAR
algorithm to be used directly on the 3D ladar data.

Two simulated environments and two experimental data sets were used to test these
methods, an indoor laboratory data set and an underground mine tunnel. In conditions of
high noise and clutter, the CFAR methods present higher detection and/or lower false alarm
rates than other state-of-the-art methods used for comparison.

5.2 Future work

The encouraging results obtained with the BINR method open the door for several im-
provements for radar data noise reduction. One track for improvement lies in enhanc-
ing the standard Wiener or Wavelet methods by making them adaptable to different
noise distributions. This approach has been taken for some wavelet denoising applications
in which different threshold functions are derived for some non-Gaussian noise distribu-
tions [CH05, ZC00, ALP02]. This can then be the basis for the integration of 2 or more of
the methods. This has been carried out for Wiener and Wavelet filtering in the work of Jin et
al. [JFWJ03]. This work exploited the advantages of both methods simultaneously, but even
though the theoretical improvement in peak-to-peak SNR was expected to be 3dB, only 0.5dB
was achieved. Also the time complexity of Jin et al’s method corresponds to the combination
of both the Wiener and wavelet methods. In particular, it would be interesting to evaluate
optimized combinations of the Wiener filter and BINR, Wavelet denoising and BINR, and
the Wiener-Wavelet and the BINR method, in terms of their computational complexities.
These combinations would be expected to yield the advantages of the individual methods,
for instance, the smooth background noise presented by the Wiener filter, the reduction in
the mean noise power value provided by the BINR method, and the faithful representation
of the original signal achieved when applying wavelet denoising.

One route for improvements for the methods developed in Chapter 4 consists in extending
other CFAR methods, which would allow their application to a broader range of use cases,
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other than the 3D lidar surveying case studied in this work. Also, the 2D versions could
be extended to more 2D projections, which might be better suited in other applications.
Both, the 3D and the 2D adaptive window CFAR methods could benefit from memory usage
and time complexity optimisations, particularly for large data sets. Following the 2D to 3D
extension of the CFAR processors, it might be possible to generalise the algorithms to N -
dimensional data sets. Another, important, line of future work consists in testing the results
from the detectors presented in this work as starting estimates in a full registration scheme,
such as the Iterative Closest Points (ICP), described in Section 4.2.1.
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Radar Noise Reduction Based on Binary Integration
Daniel Lühr, Member, IEEE, and Martin Adams, Senior Member, IEEE

Abstract— Short range radars can provide robust informa-
tion about their surroundings under atmospheric disturbances,
such as dust, rain, and snow, conditions under which most
other sensing technologies fail. However, this information is
corrupted by received power noise, resulting in false alarms,
missed detections, and range/bearing uncertainty. The reduction
of radar image noise, for human interpretation, as well as
the optimal, automatic detection of objects, has been a focus
of radar processing algorithms for many years. This paper
combines the qualities of the well established binary integration
detection method, which manipulates multiple images to improve
detection within a static scene, and the noise reduction method
of power spectral subtraction. The binary integration method is
able to process multiple radar images to provide probability of
detection estimates, which accompany each power value received
by the radar. The spectral subtraction method then utilizes these
probabilities of detection to form an adaptive estimate of the
received noise power. This noise power is subtracted from the
received power signals, to yield reduced noise radar images.
These are compared with state-of-the-art noise reduction methods
based on the Wiener filter and wavelet denoising techniques. The
presented method exhibits a lower computational complexity than
the benchmark approaches and achieves a higher reduction in
the noise level. All of the methods are applied to real radar data
obtained from a 94-GHz millimetre wave FMCW 2D scanning
radar and to synthetic aperture radar data obtained from a
publicly available data set.

Index Terms— Binary integration, CFAR, data integration,
image denoising, millimeter wave radar, noise reduction, noise
subtraction, radar detection, radar imaging, wavelet denoising,
Wiener filter, SAR.

I. INTRODUCTION

LANDMARK identification concerns the detection of
signals from noisy measurement data. When time is

available to obtain multiple images from a static scene at
the same location, it is possible to exploit the correlation in
the sequence of images to reduce noise, and consequently
improve detection. A noise reduction method applied to radar
data using these concepts is presented in this work.

Several methods have been developed in the field of
image processing to reduce noise in both stationary and
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dynamic image sequences in applications as diverse as object
tracking surveillance, autonomous navigation, motion analy-
sis, and astronomical and medical imaging [1]. A sequence
of 2D images is represented by a 3D volume where the
third dimension corresponds to the temporal dimension or
the sequence index. Many of the methods to process such
3D signals have been developed by generalising well known
2D filtering techniques by extending the support of a filter in
the temporal domain. The classical Wiener filter [2], extended
to a 3D form, is an example of such an approach. The
Wiener filter is a linear time-invariant estimator which adopts
a Minimum mean square error (MSE) statistical approach.
Adaptive noise cancelling, developed as a variation of the
original Wiener optimal filtering theory, was presented in [3].
The adaptive noise cancelling application uses a reference
signal correlated with the noise to obtain a noise estimate.
This estimate is then subtracted from the noisy signal.
An application of Wiener filtering to 3D medical imaging
data [4] extends the classical Wiener implementation by esti-
mating the filter parameters using a sequence of observations
based on the calculation of local statistics (calculated in a small
window around the point of interest). In radar applications, a
2D Wiener filter, also using local statistics, has been used to
reduce noise in weather radar data [5].

Work by Donoho and Johnstone [6]–[8] introduced the
denoising capabilities of the Wavelet transform. The basic
method is Denoising by Thresholding [9]. It is analogous to
frequency domain filtering based on the Fourier transform.
The wavelet time-frequency approach however, attempts to
reduce noise by preserving a number of coefficients associated
with components with high information energy, and discarding
the rest. It is assumed that noise (often considered to be
additive Gaussian) is spread homogeneously among all signal
frequency components. Thus by discarding the coefficients
of the components not highly correlated with the signal, a
significant amount of noise is eliminated. Coefficients with
a magnitude higher than the threshold are considered to
hold mostly signal information, and those lower than the
threshold are considered to carry mainly noise energy. In radar
applications several articles have demonstrated the use of
wavelets to reduce noise. Chen [10] proposed a recursive
thresholding method for radar image denoising, while Aly
demonstrated the use of wavelet packet transforms and higher
order statistics to detect and localise RF radar pulses in noisy
environments [11]. In general, most noise reduction algorithms
(both ‘classical’ and wavelet-based) assume the noise to be
additive Gaussian [1], [9], which is useful for a broad range
of applications. However, in radar imaging, the Gaussian
noise assumption is often unrealistic. Another critical aspect

1530-437X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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of wavelet denoising is the appropriate threshold selection.
An adaptive threshold method was introduced by Chen [12],
which adapts the threshold to the coefficients’ statistics, relax-
ing the Gaussian assumption of most wavelet based methods.
Another adaptive method, presented by Jin [13] uses abrupt
changes in the signal to adapt weights to calculate local means
and variances. This approach is reported to reduce the ripple-
like artifacts usually found around edges when using wavelet
denoising techniques.

In this work a different approach for radar image denoising
is introduced and compared to the classical Wiener filter and
to the more recent wavelet based denoising approaches. The
proposed method’s implementation presents a lower compu-
tational complexity than both the 3D Wiener filter and the
3D wavelet approaches. The method further reduces the mean
noise value when compared with the other two methods. It uses
statistical information provided by the Binary integration
detector to identify parts of the received signal corresponding
to noise. It uses those parts to obtain an estimate of the noise
power spectrum by recursive averaging. This noise estimate
is then used for power spectral subtraction [14] (or noise
subtraction) to reduce noise. In particular, Binary Integration
(BI) combines the output of several single-observation detec-
tors to improve the detection probability, while maintaining
the desired, acceptable false alarm rate. The single-observation
detector used is a member of the Constant False Alarm
Rate (CFAR) family of stochastic detectors, widely used in
radar [15].

The following section summarises classical radar detection
and demonstrates its application to scanning radar images.
Section III presents the three different noise reduction tech-
niques, which will be applied to scanned radar data for
comparison purposes. Section IV then explains the implemen-
tation details of the methods and analyses the implementation
complexity for the three different approaches. Finally, results
using millimetre wave (MMW) radar data in an outdoor
environment and an open Synthetic Aperture Radar SAR data
set are also presented in Section V.

II. RADAR DETECTION

Targets of interest in radar data are usually embedded in
noise and clutter. Thus, landmark detection is necessary to
identify landmark signals from the noisy power measurement
data. In this work, statistical information provided by detection
methods is used to obtain a noise estimate from a sequence of
radar measurements of the same scene. The noise estimate is
then used in a noise subtraction method to obtain a reduced
noise version of the radar power measurement data.

This section briefly describes the detection methods used,
their main equations and parameters and their most important
aspects.

Adaptive, stochastic, landmark detection techniques offer
principled methods of detection based on a predefined accept-
able probability of false alarm and quantifiable probabilities
of detection. The Constant False Alarm Rate (CFAR) concept
refers to a family of adaptive algorithms widely used in radar
to detect target returns against a background of noise, clutter
and interference.

In most radar signal processing literature to date, a Cell
Averaging (CA) CFAR detector is the preferred method of
target detection [16]–[18]. A CA-CFAR processor is used on
the experimental data presented in Section V-B.

[19] shows that the detection probability P CA-CFAR
D (q) of

a Rayleigh fluctuating target, embedded in exponential noise
or clutter, can be determined from the CA-CFAR parameters

P CA-CFAR
D (q) =

[
1 + τCA-CFAR

W f

(
1

1 + η̂ SNP(q)

)]−W f

(1)

where W f is the size of the CFAR window and τCA-CFAR is
defined as

τCA-CFAR = W f

((
P CA-CFAR

f a

) −1
W f − 1

)
(2)

and η̂ SNP(q) is the estimated received SNP calculated as

η̂ SNP(q) = S radar
lin (q)

T (S radar
lin (q))

(3)

where S radar
lin (q) is the linearised received power from the

radar in the qth (bearing-range) bin, and T (S radar
lin (q)) is

the CFAR test statistic, which in the case of CA-CFAR,
corresponds to the sample mean of the neighbouring cell’s
power values in the CFAR window. The adaptive threshold is
then defined as

S CA-CFAR
lin (q) = τCA-CFAR · T (S radar

lin (q)). (4)

Several other CFAR methods have been developed and
current research focuses in CFAR methods with adaptive
parameters [20]. In particular, the Ordered Statistic (OS)
CFAR has been reported to perform well for large targets (with
respect to the spatial resolution) and in SAR images, due to
their noise and clutter being usually modelled by Weibull or
K distributions, and the higher effect of multiplicative speckle
noise present in such images. The OS-CFAR method is used
on the SAR data set presented in Section V-C.

In the OS-CFAR method the test statistic T (S radar
lin (q)) is

obtained by choosing the kth value from the ordered set of
power values in the CFAR window

S(1)
lin ≤ S(2)

lin ≤ . . . ≤ S(k)
lin ≤ . . . ≤ S

(W f −1)
lin ≤ S

(W f )
lin (5)

a value of k = 3W f
4 has been suggested in [21] to represent

a good estimate for typical radar applications. The parameter
τOS-CFAR needs to be calculated numerically from

P OS-CFAR
f a =

k−1∏

i=0

W f − i

W f − i + τOS-CFAR (6)

where P OS-CFAR
f a is the chosen acceptable OS-CFAR probabil-

ity of false alarm. The probability of detection, P OS-CFAR
D (q),

is obtained from

P OS-CFAR
D (q) =

k−1∏

i=0

W f − i

W f − i + τOS-CFAR

1+η̂ SNP(q)

(7)

Unfortunately, the noise and target distribution assumptions
in CFAR are often violated, yielding higher false alarm
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and missed detection rates than those theoretically derived.
To reduce this problem, and if time is available to acquire
multiple scans of a fixed environment, it makes sense to exploit
the high target correlation between scans to further reduce
the uncertainty in the existence of objects and reduce the
noise. Techniques which implement this concept are generally
referred to as integration methods. A simple but effective
method widely used in the radar community is the Binary
Integration (BI) Method [19].

When integrating L scans, the probability of detection
yielded by this method is

P BI
D =

L∑

j=M BI

L!
j !(L − j)!

(
P CA-CFAR

D

) j(
1 − P CA-CFAR

D

)L− j

(8)

where P CA-CFAR
D is the probability of detection in a single

scan, and M BI < L is the optimal BI parameter for a given L.
Likewise, if P CA-CFAR

f a is the probability of false alarm in a
single scan, then the probability of false alarm for the binary
integration method is

P BI
f a =

L∑

j=M BI

L!
j !(L − j)!

(
P CA-CFAR

f a

) j (1 − P CA-CFAR
f a

)L− j

(9)

BI offers a robust technique to identify which parts of signal
are noise. The detection probability obtained by means of
the BI method will be used as a target existence probability
estimate in the radar noise reduction method presented in
section III-C.

III. NOISE REDUCTION METHODS

In this section three different noise reduction approaches
are described. The first state of the art method is based on
a version of the linear Wiener filter which uses estimates of
the local means and variances in order to estimate the noise
characteristics. The second, more recent, non-linear method, is
a wavelet denoising approach. The final method, proposed in
this article, is based on spectral noise subtraction. This method,
is capable of preserving non-linear features.1

A. Wiener Filter

This method of noise reduction corresponds to the applica-
tion of a discrete-time minimum-mean-square-error filter. Such
a filter is known as a Wiener-Kolmogorov filter or Wiener filter
for short [22], [23].

Wiener filters assume additive noise and that the signals are
stationary, linear stochastic processes. Because radar images,
as well as natural images, consist of smooth areas, tex-
tures and edges, they are not globally stationary, but can be
treated as locally stationary. This led to the derivation of the
Lee filter [24], which has been extensively used in video
denoising, where it has proved to be successful in terms of

1non-linear features refer, in general, to sharp edges or discontinuities within
a signal. E.g., in radar data, the sudden change in received power caused by
the presence of a target.

noise removal and preserving some important image features
(e.g. edges) [13]. The Lee filter assumes that all samples within
a local window are from the same structure (local stationarity).
This assumption is invalid when sharp edges are encountered
within the window, therefore the mean is blurred and the
variance increases near the edges, which results in a degraded
image near those regions.

B. Wavelet Denoising

Some of the limitations of the Wiener filter, particularly
its inability of preserving non-linear features in the data, can
be overcome by using non-linear filters. However, in general,
finding the parameters for a non-linear filter is a complex
task. Since the introduction of the wavelet denoising methods
by Donoho and Johnstone [6]–[8] a powerful, yet simple to
implement non-linear filter for noise reduction has become
available and is widely used in practical implementations.

The particular thresholding function used in this work
is the universal threshold proposed by Donoho and
Johnstone [25], [26] with the soft-thresholding method pro-
posed in [6].

This method generates an estimated signal with a smaller
amplitude than the original one, but it retains the regularity2

of the signal.

C. Spectral Noise Subtraction

Noise subtraction methods were originally devised for noise
reduction in noisy speech signals [27]. In the case of radar
data, the binary integrator’s probability of detection can be
used to identify sections which have low probability of having
any target information and therefore they can be used to
estimate the noise magnitude.

The noise power estimate �̂n(l), when the lth observation
has been received, can be calculated as in Equation (10),
which corresponds to a recursive smoother using a fixed
parameter αd , and the binary integration probability of
detection from Equation (8).

�̂n(l) =
(
αd�̂n(l − 1) + (1 − αd )S radar

lin (l)
)(

1 − P BI
D (l)

)

+�̂n(l − 1) × P BI
D (l) (10)

where l corresponds to the observation number. The first
term on the right of Equation (10) represents the smoothed
(averaged) noise power, weighted by

(
1 − P BI

D (l)
)

during
target absence sections of the signal, while the second term
shows that the previous estimate is preserved and not updated
if there is a high probability of target presence

(
P BI

D (l) → 1
)
.

Introducing

α̃d (l) = αd + (1 − αd )P BI
D (l) (11)

Equation (10) can be rewritten as

�̂n(l) = α̃d(l)�̂n(l − 1) + [
1 − α̃d (l)

]
S radar

lin (l) (12)

In Equation (11), α̃d (l) is a time varying smoothing para-
meter. Hence the noise spectrum can be estimated using past

2regularity corresponds to areas in which the signal is continuous, while
discontinuities correspond to irregular points.



LÜHR AND ADAMS: RADAR NOISE REDUCTION BASED ON BINARY INTEGRATION 769

Fig. 1. Block diagram summarizing the time varying parameter α̃d .

Fig. 2. Binary integration noise reduction block diagram.

spectral received power values, together with a smoothing
parameter which itself varies according to the BI probability of
detection P BI

D (l). The adaptive noise estimator is summarised
in the block diagrams of Figures 1 and 2.

The noise power estimate �̂n(l) can be used to obtain a
Binary Integration Noise Reduction (BINR) power estimate
Ŝ BINR

lin (l) using the method of power spectral subtraction [14].
In the basic spectral subtraction algorithm, the average noise
power, �̂n(l) is subtracted from the noisy range spectrum.
In [28], a method which further reduces background noise
for SNPs between −5 and 20 dB was devised based on
subtracting an over-estimate of the noise power and preventing
the resultant spectral components from reaching below a preset
minimum level, termed the “spectral floor”. This method leads
to a reduced noise power estimate Ŝ BINR

lin (l) given by

Ŝ BINR
lin (l) =

{
S radar

lin (l) − c�̂n(l) if S radar
lin (l) > c�̂n(l)

d × �̂n(l) otherwise

(13)

where c is an over-subtraction factor (c ≥ 1) and d is the
spectral floor parameter (0 < d < 1). A value of c which
is larger than 1 represents the fact that it is necessary to
subtract more than the expected value of the noise (which is a
smoothed estimate) to make sure that most of the noise peaks
are removed. The spectral floor parameter d , when greater
than zero, ensures that the remnants of the noise peaks are
masked by neighbouring spectral components of comparable
magnitude. This results in a reduction of broadband noise,
when compared with the original power spectral subtraction
method. [28] further demonstrated the advantages of an adap-
tive over-subtraction factor c, which varies between frames of
recorded spectra, as a function of the estimated signal.

IV. IMPLEMENTATION AND COMPUTATIONAL

COMPLEXITY

This section discusses the implementation and computa-
tional complexity, as a function of the data size, of all three
noise reduction methods. All the algorithms were implemented

using the SciPy signal processing toolbox [29]. The same
received radar power signal S is used as the input for all the
methods. The signal includes additive noise. It is a 3D array
formed by stacking L radar scans. Each radar scan S(l)
corresponds to a B-scope of size Np = Nr × Nb cells (pixels),
where Nr represents the number of range bins (rows) while
Nb the number of bearing bins (columns). The first dimension
in the 3D array represents range (r ), the second represents
bearing (b) and the third represents the scan number (l). The
sequence of L power values for a particular range and bearing
is denoted as Sr,b while an individual voxel is referred to
as Sr,b,l . The total number of voxels in S is Nv = Nb ×Nr ×L.
The complexity analysis will be carried out in terms of Np and
L (Nv = Np × L), to separate the effects of the radar image
size from those related to the number of observations.

A. Wiener Filter

The Wiener filter noise reduction technique used in this
work requires a support volume, in order to calculate the local
means and variances. For a given voxel, the cells contained in
the support volume around it will be used to calculate the local
statistics. Let (2Kr +1), (2Kb+1), (2Kl+1) be the dimensions
of this volume in the range (rows), bearing (columns) and
observation (depth) dimensions. Kr and Kb are related to the
expected range and bearing size of targets. If these parameters
are set too high the local mean and variance of a target voxel
will incorporate not only target values but also undesired noise
values. On the other hand, if they are to small, the local mean
and variance estimates would be degraded. 2Kl + 1 = L has
been chosen for the window to incorporate information from
all observations at each value in the temporal (l) dimension.
This algorithm exhibits a complexity of the order O(Np ×L2).

B. Wavelet Denoising

The 3D wavelet denoising method has been separated into
two sequential wavelet denoising problems. The first carries
out scan by scan 2D spatial wavelet denoising, while the
second executes 1D time domain wavelet denoising for each
range-bearing cell sequence. General wavelet methods have
a complexity of order O(N log N), where N corresponds to
the data size (total number of pixels for 2D, or signal length
for the 1D case). Therefore, the first part is of the order
O(L×Np log Np) while the second part presents a complexity
of the order O(Np × L log L). Hence the total complexity of
the wavelet method is of the order O(L × Np log Np + Np ×
L log L) which reduces to O

(
(Np × L) log(Np × L)

)
.

C. Binary Integration Noise Reduction

The optimum parameters required for Binary Integration,
M BI

opt and P CA-CFAR
f a , can be calculated off-line and they are

not included in the algorithm, but given as inputs. Also, the
BI probability of detection, which is dependent on M BI

opt and L,
can also be defined offline, and the corresponding polynomial
in P CA-CFAR

Dr,b,l
is therefore, pre-calculated. The combination of

the CA-CFAR, BI and noise subtraction parts of the algorithm
yields a complexity of the order O(Np × L).
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Fig. 3. Elapsed computational time measurement.

In summary, with respect to observations L, the Wiener filter
algorithm has the highest complexity (quadratic), followed by
the linearithmic3 complexity of the Wavelet approach, while
the binary integration noise reduction’s linear complexity
makes it the least complex. On the other hand, the Wiener
filter and the binary integration noise reduction are the least
complex (linear time) with respect to the data size Nv .

V. RESULTS

All of the noise reduction methods have been tested with
real data obtained in a local park environment and with an
open SAR image data set. The results show reduced noise
radar power in PPI representation, as well as, the average noise
level versus observation number. In order to demonstrate the
usefulness of each reduced noise data set, the CFAR detection
method is finally applied to each set. CA-CFAR is used in the
park data set due to its compliance to the detector requirements
as described in Section II, while OS-CFAR is used in the
SAR data set, which has been proven to be more effective
with this kind of data [34]. The reduced noise CFAR output
is then compared to the CFAR detector’s result on the original
noisy data. The computational times of the algorithms are also
compared.

A. Computational Time

The computational time used by the different algorithms,
plotted against observation number L, is shown in Figure 3.
The results are consistent with the analysis presented in
section IV. The Wiener filter’s complexity grows approxi-
mately quadratically with L, while the wavelet exhibits lin-
earithmic complexity. A linear time complexity is achieved
by the BINR method.

B. Experimental Data

An experimental radar data set, captured4 in a public park
in Santiago, is used to test the noise reduction schemes.

3A linearithmic function is of the form n log n. An algorithm with a time
complexity of the order O(n log n) is said to run in linearithmic time.

4using an Acumine 94 GHz, scanning radar [31].

Fig. 4. Park environment where radar data was captured (obtained from
Google Earth).

TABLE I

OPTIMAL MBI PARAMETER FOR DIFFERENT

NUMBER OF OBSERVATIONS L

1) Noise Reduction: Noise values in real radar data do
not conform to perfect Gaussian or exponential distributions,
as assumed by the noise reduction methods, which impairs
their performance. An analysis of the noise reduction methods
considering the park environment now follows. Although the
methods were applied to the B-Scope radar data (range vs.
bearing), the results are shown in plan position indicator (PPI)
form for clearer visualisation. The test environment is shown
in Figure 4. The area corresponds to a main paved track
approximately 65 m wide. On the sides of the track there are
lamp posts and some trees. There are also fences and concrete
walls. The radar was located on the track.

The CA-CFAR window size was 9 bins in the bearing
direction and 7 bins in the range direction. The guard cells
window size was 5 in the bearing dimension and 3 bins in
the range direction. These parameters were found suitable, in
preliminary experiments, for detecting the lamp posts and trees
surrounding the radar, by considering the power spread these
features produce in the acquired data.

The BI false alarm rate used was 1 × 10−6. The optimal
MBI has been previously obtained for different L values.
Some of the values are listed in Table I. The results presented
correspond to L = 20 observations. For the noise subtraction
algorithm, the chosen parameters were αd = 0.9, c = 50.0
and d = 0.1. A high αd ensures that the previous value of
the noise estimate has more weight than the new observation
which is desirable given the high noise levels present in radar
data. Parameter c, controlling over-subtraction, was selected
by testing different values between 10 and 100. Similarly,
the spectral floor parameter d was tested for different values
between 0.05 to 0.5, with the chosen value yielding good
results in the reduction of the broadband noise.
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Fig. 5. Raw power and reduced noise power PPI plots of the park area. (a) PPI showing noisy input data from the park environment. (b) PPI showing
Wiener filtered data from the park environment. (c) PPI showing Wavelet denoised data from the park environment. (d) PPI showing BINR data from the
park environment.

The Wiener support region was 3 bins in the range and
bearing direction, which is the expected power spread of the
targets of interest.

In the case of the spatial (2D) wavelet denoising, the
Daubechies 3 wavelet function was used, while the Haar
wavelet was selected for the 1D (temporal) dimension.

The noisy raw radar input data from the park is presented in
Figure 5a. The ground truth location of lamp posts and trees
are marked with green circles and a cross in their centre.

Wiener filtering (Figure 5b) exhibits a smoother noise back-
ground but the main objects identified in the scene are blurred
by the filter, thus losing localisation detail. Wavelet denoising
(Figure 5c), is able to preserve the location and edges of tar-
gets. It does, however, produce several negative values in noise
only sections, which are truncated to a small value to allow
visualisation. Nevertheless, the average noise level is reduced.
Finally, the BINR method in Figure 5d shows its ability to
retain details as well as to reduce the noise level. It can, how-
ever, be observed that some of the maximum power peaks have
been reduced in magnitude (e.g. tree at (−49.1 m, 48.6 m);
with a raw power value of 86.02 dB and a BINR power value
of 82.73 dB). This is due to the fact that at some observation
l those particular targets were not detected, therefore their
power values were considered noise and thus subtracted from
them. Note that wavelet denoising (Figure 5c) reduces some

Fig. 6. Noise mean values and variances from a noise only area.

noise-only areas to very low values. However, the noise
background is not homogeneous, therefore, the sharp edges
between noise areas near the average noise level and those
greatly reduced by the wavelet method can yield several false
detections as will be shown, after applying the CA-CFAR
detector.

Figure 6 shows mean noise power values from each method,
in an area which is known to contain no targets. The BINR
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Fig. 7. CA-CFAR detector applied to raw and reduced noise power in the park area. (a) CA-CFAR PPI showing noisy input data from park environment.
(b) CA-CFAR PPI showing Wiener filtered data from park environment. (c) CA-CFAR PPI showing Wavelet denoised data from park environment.
(d) CA-CFAR PPI showing BINR data from the park environment.

method exhibits the the lowest mean noise power for all
L values. Its variance, on the other hand, is higher than that
of the Wiener for small L values, but as more observations
are included, BINR achieves also the lowest noise variance.
The Wiener filter mean noise power stays above that of the
raw data, but keeps the variance at a low value. The Wavelet
denoising method is able to reduce the mean noise power
lower than the raw data but is not able to reach the value of
the BINR method. The Wavelet’s variance remains high and
oscillates due to the ripple effect mentioned before. The noise
assumptions which form the basis of all three noise reduction
techniques are violated in practice. In particular, the Wiener
filter is not optimal for non-Gaussian noise distributions. In the
case of the wavelet method, the universal threshold is not
able to correctly estimate a noise threshold to separate the
noise and information based wavelet coefficients. Furthermore,
noise information is no longer spread homogeneously across
all wavelet coefficients. Likewise, the CFAR method used in
the BINR yields a higher false alarm rate than expected, since
exponential noise is assumed, as will be shown in the next
section.

2) Target Detection: The CA-CFAR detector is applied to
the reduced noise data, in order to demonstrate the usefulness
of each noise reduction method. In this case a more relaxed

CA-CFAR probability of false alarm is applied (Pf a =
1 × 10−3), which reduces τCA-CFAR and increments the
P CA-CFAR

D (see Equations (1) and (2)). This is possible since
the reduced noise data is expected to yield a lower false alarm
rate, and it helps to overcome the lower target power values
obtained in all three methods due to smoothing, thresholding
or noise subtraction.

Figure 7a shows the result of the detector applied to the
raw noisy input data. The detector itself is able to reduce
false alarms to some extent in the raw data. Again, the green
circles in the figure denote the ground truth location of some
relevant targets (trees and lamp posts at the side of the track)
obtained using multiple scans from a laser scanner. CA-CFAR
detections are marked with black dots, when these dots are in
the vicinity of a ground truth marker, they are considered cor-
rect detections. Red square markers are used to show missed
detections, while magenta coloured diamonds are used to
mark false alarms. The Wiener filter (Figure 7b), interestingly,
shows a remarkable reduction of background noise, but its
blurring effects present some problems. In particular, small
and medium size targets with low SNP are blurred in such a
way that their size is reduced and even completely removed
from the CA-CFAR detector output. On the other hand, high
SNP targets become increased in size (more pixels surrounding
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TABLE II

A POSTERIORI DETECTION AND FALSE ALARM RATES

the landmark are marked as detections), for instance, the tree
at coordinates (−27.0 m, 48.4 m). In general, edge details are
lost. Figure 7c presents the results of applying the detector
to the wavelet denoised data. The method, is able to keep
feature details but it shows more false alarms than expected,
especially in broad “noise-only” areas. This is due to the
noise background not being homogeneous, which leads to the
ripple effect of the chosen wavelet function, and the universal
threshold not being able to correctly discriminate between
information and noise wavelet coefficients. The BINR method
(Figure 7d), is able to preserve localisation details, e.g. targets
at (−25.1 m, −26.6 m), (68.4 m, −37.6 m) and (100.7 m,
−33.4 m), as well as reduce the number of false alarms when
compared to the detector applied to raw data and the other
noise reduction methods.

A posteriori detection and false alarm rates can be derived
from the results. Detection rate, RD , is obtained by divid-
ing the number of correctly detected ground truth targets, TD ,
and the total number of ground truth targets, TG ,
i.e. RD = Td/TG . The False alarm rate, R f a , on the
other hand, is calculated by dividing the number of pixels
corresponding to false alarms, T f a , and the sum of pixels
correctly identified as noise, TN , plus the false alarm pix-
els, i.e. R f a = T f a/(T f a + TN ). Table II summarises the
detection and false alarm rates calculation. Note that the area,
where the experiment was carried out, exhibits a lower false
alarm rate than expected (0.281 × 10−3), with a detection
rate of 89%. The Wiener filter yields a lower false alarm
rate (0.171 × 10−3) but in the same order of magnitude. The
detection rate is also lower (78%) than in the raw image.
Wavelet denoising’s detection rate is higher (94%), but its false
alarm rate is higher by an order of magnitude (1.076 × 10−3).
BINR is able to reduce the false alarm rate by an order of
magnitude (0.024 × 10−3), with a detection rate (83%) higher
than the Wiener filter, but lower than the raw data. From this
result, it can be seen that using BINR it is safe to increase the
P CA-CFAR

f a value in order to get a higher detection rate while
still achieving a low false alarm rate.

3) Quantifying Detection Performance: While there are
several metrics to quantify the error between detected and
true targets, a metric is now applied (which jointly considers
errors in target location, and number estimates), based on a
pth order Wasserstein construction [30]. This metric has been
recently introduced and has been shown to produce more
consistent results than others (Hausdorff, OMAT) in multi-
object systems. It is formulated in terms of the ground truth
set of targets M̂ and the detected set M. If |M| > |M̂|, it is

TABLE III

OSPA METRIC APPLIED TO EACH METHOD

given by,

d̄(v)(M̂,M) =
(

1

|M|
(

min
π∈�k

|M̂|∑

i=1

d(v)
(
m̂i , mπ(i))p

+ v p(|M| − |M̂|)
))1/p

(14)

where π corresponds to the permutation in �k (the set of
permutations on {1, 2, . . . , k}) which minimises the sum of
the distances between the elements from M̂ and M, while

d(v)(m̂i , mπ(i)) = min(v, ||m̂i − mπ(i)||) (15)

is the minimum of the cut-off parameter, v, and the Euclidean
distance between the ground truth target location, m̂i and the
detected target location mπ(i). If |M| < |M̂| the metric is
obtained through d̄(v)(M,M̂). To find the optimal π ∈ �k a
special case of integer linear programming is required, which
can be solved efficiently using the Hungarian method for
optimal point assignment.

This metric was applied to the CA-CFAR output of
the reduced noise images to quantify the performance of
each method. The results for different L values are shown
in Table III. Because of the range and angular resolution
of the radar used in this experiment, for each ground truth
landmark, more than one point is marked as a detection.
This increases the error measured by the metric because extra
points are considered as false alarms. Thus, the metric output
starts to converge to the cut-off parameter, as the second
term to the right of Equation (14) dominates. A method
to reduce this effect is to combine multiple detections in
close proximity using a clustering method, e.g. connected
component labelling [32]. A different approach, consisting of
duplicating the elements of the ground truth set, was used
in this implementation, which effectively reduces the effect
described above, without altering the results. For all L values,
the BINR methods yields a smaller value of the metric
meaning that the produced map is closer to the ground truth
than that generated by the raw data and the other methods.
The Wiener filter is also capable of producing a map with a
lower error than the raw data. On the other hand, the Wavelet
denoising shows a poor performance due to the false alarms
in the background noise caused by the ripple effect within the
Wavelet transform.
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Fig. 8. Yahoo Satellite view (left) and Raw SAR image of the area (right).

C. UAVSAR Data Set

Detection and noise reduction methods in radar are not
only used in classical A-Scopes, B-Scopes and PPIs, they
can also be used in other forms of radar data such as SAR
images [20], [33].

SAR images, being constructed in a fundamentally different
way than the classical radar images, are also affected by noise
in a different way. In SAR images, noise and clutter are
usually modelled by a Weibull or K distribution. Also, the
effect of multiplicative speckle noise in SAR images is higher
than in other forms of radar data. Under these conditions, the
Ordered Statistics (OS) CFAR detection method has proven to
be effective when applied to SAR images [34].

In this section the results of using the BINR method on a set
of SAR images obtained from the NASA Jet Propulsion Lab
(JPL)’s Uninhabited Aerial Vehicle SAR (UAVSAR) mission5

are presented.
The images correspond to a location near Sacramento, CA,

which covers an area of crop fields with isolated buildings in
the north-most part (top) of the image and a suburban area
with high density housing in the south-most part (bottom).
Figure 8 (left) shows a Yahoo Satellite image of the area,
with its corresponding SAR image (right). The area is 1.6 km
in the horizontal (east-west) direction and 2.88 km in the
vertical (north-south) direction. These SAR images represent
backscatterred radar power, polarised in the HH, HV and VV
components. The magnitude of each component is encoded in
the image’s red, green and blue channels, respectively.

BINR based on the OS-CFAR detector has been used to
first reduce the noise in a series of multiple (L = 6, MBI = 3)
observations of the same area. Then the OS-CFAR detector
is applied to the reduced noise data to detect buildings.
The OS-CFAR window size was 7 bins in the x and y
coordinates, while the guard cells window size was 3 bins

5UAVSAR data courtesy NASA/JPL-Caltech. http://uavsar.jpl.nasa.gov/

TABLE IV

MEAN NOISE POWER AND VARIANCE IN NOISE ONLY AREA IN dB

in both directions. The threshold’s constant parameter chosen
was τOS-CFAR = 4.16707, this value is obtained by solving
Eq. (6) using the OS-CFAR window size and the desired value
for POS-CFAR

f a . Finally, the noise subtraction parameters used
were αd = 0.9, c = 50.0 and d = 0.1.

The parameters for Wavelet denoising and Wiener filtering
were the same as those used in the experimental data set
presented in Section V-B.

All three polarisation components have been processed.
Buildings, in general, reflect radar waves similarly in all
polarisations while vegetation and other terrain considered
to be clutter in this case, usually exhibit different back-
scatter intensity at the different polarisations. The raw power
(left) and the output of the OS-CFAR detector are shown
in Figure 9a. In the OS-CFAR image, the red, green and
blue pixels corresponds to detections in the HH, HV and VV
polarisations, respectively. Cyan, magenta and yellow pixels
represent detections in the respective combinations of two
polarisations, while white pixels represent detections in all
three polarisations. Buildings appear in the OS-CFAR image
with white pixels (detections in all polarisations), while parks
and crop fields present detections in single polarisations or no
detection at all.

The Wiener filtering results are presented in Figure 9b. The
reduced noise image appears blurred, as expected from the
Wiener filter, and the OS-CFAR detector is unable to detect
buildings from the crop fields.

The wavelet denoising output is shown in Figure 9c. The
power image shows darker colours meaning that the average
noise power has been reduced, but several areas present a high
variance, particularly in the crop fields. The OS-CFAR output
confirms this, and the detector is unable to detect building
structures.

Figure 9d corresponds to BINR output. It can be observed
that the areas corresponding to crop fields appear smoothed
when compared to the raw image. It can also be observed
that the number of detections in single polarisations, mostly
located in areas corresponding to crop fields, is reduced in the
BINR image. On the other hand, most pixels corresponding
to building like structures are preserved.

In this data set it is not possible to apply the OSPA metric
as the real ground truth is unavailable. An analysis on the
noise statistics in an area with no targets, as was carried out
in the park data set, quantifies the performance of the noise
reduction methods. Table IV shows the mean noise power and
variance per polarisation channel. It can be observed that the
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Fig. 9. Raw and reduced noise power SAR images and OS-CFAR applied to them. (a) Raw power SAR image (left) and OS-CFAR applied to it (right).
(b) Wiener reduced noise SAR image (left) and OS-CFAR applied to it (right). (c) Wavelet reduced noise SAR image (left) and OS-CFAR applied to it (right).
(d) BINR SAR image and OS-CFAR applied to it.

Wavelet presents the lowest mean noise power, but at the same
time it yields a very high variance. The Wiener and BINR
methods keep a variance similar to that of the original data,
but BINR is able to reduce the mean noise level considerably,
while the Wiener filter noise level stays at a similar or higher
value than the raw data.

VI. CONCLUSION

In this work, a noise reduction method based on the binary
integrator detector and spectral noise subtraction has been
introduced. Its performance has been compared with two
other general, widely used, noise reduction methods, Wiener
filtering and wavelet denoising.

As detailed in Section V, the BINR method exhibits
good noise reduction capabilities, which result in a higher
signal-to-noise power ratio than the other two techniques.
Importantly, BINR has the ability to preserve most of
the signal’s spatial details. Also, the BINR algorithm’s
computational time is lower than the other two methods. The
reduced time complexity shown by the BINR method and its
denoising capabilities make it an appealing noise reduction
alternative to be used as a pre-processing step for radar data.

The encouraging results obtained open the door for sev-
eral improvements for radar data noise reduction. One track
for improvement lies in enhancing the standard Wiener or
Wavelet methods by making them adaptable to different
noise distributions. This approach has been adopted for some
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wavelet denoising applications in which different thresh-
old functions are derived for some non-Gaussian noise
distributions [12], [35], [36]. This can then be the basis for
the integration of 2 or more of the methods. This has been
carried out for Wiener and Wavelet filtering in the work
of Jin et al. [13]. This work exploited the advantages of
both methods simultaneously, but even though the theoretical
improvement in peak-to-peak SNR was expected to be 3dB,
only 0.5dB was achieved. Also the time complexity of
Jin et al’s method corresponds to the combination of both
the Wiener and wavelet methods. In particular, it would
be interesting to evaluate optimised combinations of the
Wiener filter and BINR, Wavelet denoising and BINR, and
the Wiener-Wavelet and the BINR method, in terms of their
computational complexities. These combinations would be
expected to yield the advantages of the individual methods,
for instance, the smooth background noise presented by the
Wiener filter, the reduction in the mean noise power value
provided by the BINR method, and the faithful representa-
tion of the original signal achieved when applying wavelet
denoising.
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Abstract
This article presents a robotic dataset collected from the largest underground copper mine in the world. The sensor mea-
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1. Introduction

Located within the slopes of a volcano approximately 100
km south of Santiago, Chile, is the largest underground cop-
per mine in the world. It consists of seven sectors of inter-
connected mines and we were granted a special permission
to enter an active section of the mine, to collect a robotic
dataset through a 2 km traverse. Due to the unique oppor-
tunity to access an active section of the underground mine
with a robotic sensor suite, which has realistic variations
in lighting, changes in terrain, elevation, and the presence
of water, the dataset could be of interest to researchers in
providing robust solutions to robotic navigation and simul-
taneous localization and mapping (SLAM) in challenging
environmental conditions. Many other existing published
datasets (Furgale et al., 2012; Peynot et al., 2010; Pomer-
leau et al.,2012; Tong et al., 2013), and openly accessible
data (ASL, 2015; Bonarini et al., 2006; Magnusson et al.,
2007; Nüchter and Lingemann, 2015) already provide an
abundance of visual and lidar data. However, the particu-
lar location where the dataset was collected, along with the
availability of the radar data makes this a unique dataset.
The purpose of this paper is to describe the method in
which the dataset was generated, as well as how it can be
interpreted and accessed.

From a robotic mining perspective, this dataset is use-
ful for the preliminary development and evaluation of
autonomous vehicles for inspections of mines and caves,
abandoned mine exploration, as well as smart mining and
material exploitation, where the automated construction of

maps is necessary. From a more general robotic navigation
and mapping perspective, this dataset is useful for the val-
idation and the benchmarking of sensor fusion and SLAM
systems in a realistic environment with variable illumina-
tion and surface properties, mainly due to the presence of
water, uneven paths, and jagged walls. This dataset could
also be used for studying continuous time estimation meth-
ods as some of the sensors operated at low-frequency cycles
while the robot moved. Streams of information from indi-
vidual sensors can be used independently to evaluate differ-
ent types of algorithms such as visual odometry and point
cloud registration.

The Clearpath Robotics Husky A200 platform was used
to carry the various on-board sensors, which include a
stereo camera, a survey-grade 3D lidar, and a millimeter-
wave radar. Figure 1 shows the sensor platform as it
traversed a section of the tunnels that was relatively well
illuminated. Some parts of the tunnels were dark and had
a considerable amount of standing water, as well as water
dripping from the ceilings, which makes this dataset chal-
lenging to process. For instance, visual-only navigation is
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Fig. 1. The Husky A200 robot platform carrying a stereo camera,
3D lidar, and a radar, as it traverses through a tunnel in the copper
mine for dataset collection.

likely to fail in the parts of the tunnels without lighting,
while standing water can reflect lidar beams.

The dataset was collected over a four-hour access win-
dow in the tunnels. It is available in both human-readable
(text files and png images), as well as in a binary Robot
Operating System (ROS) bag format containing standard
ROS messages. For organizational purposes, the dataset
has been sub-divided into 87 parts. Of the 87 parts, 44
of them were recorded while the robot was stationary at
various locations inside the mine. Between the station-
ary measurement poses, the robot made 43 traverses dur-
ing which data from various sensors was also recorded.
Each of these traverses constitute one part of the dataset.
These 43 parts, along with the 44 parts for performing
the stationary measurements, make up the entirety of the
dataset.

The remainder of this article is structured as follows. Sec-
tion 2 describes in greater detail the robotic platform and
the sensors used in collecting the dataset. Section 3 details
the calibration and data collection process. Finally, Section
4 describes the format of the data and ways in which it can
be accessed.

2. Equipment and sensors

2.1. Robot platform

The Clearpath Robotics Husky A200 in Figure 1 was the
vehicle used for collecting the dataset. It carried the stereo
camera, 3D lidar, and radar on its upper sensor deck, while
hosting extra batteries for powering the sensors and two on-
board computers on its lower deck. The Husky is a skid-
steer vehicle, and both left and right wheel encoder readings
were recorded. The wheel-base distance between each pair
of front and rear wheels is 50 cm.

Fig. 2. A pair of images from the stereo camera taken at the start
of the dataset collection. In relation to Figure 6, the pose of the
robot is located at point A, and directed at point B with its for-
ward direction. A gate can be seen in the upper-left corner of both
images. The bright orange spots in the upper-center of the images
is a pool of water reflecting a set of ceiling-mounted warning
lights. The darker spots on the ground are damp surfaces.

2.2. Stereo camera

A Point Grey XB3 multi-baseline stereo camera was
mounted near the front of the Husky A200, with a forward-
facing orientation that is also downward-pitched at about 20
degrees to the horizontal plane of motion of the vehicle (see
Section 3 for its precise pose). The wider 24 cm baseline
configuration for the stereo camera was used. Synchronized
left and right (global-shutter) camera images were captured
at 16 Hz, both at a resolution of 1280 × 960 pixels per
image. A pair of images from the stereo camera taken from
the start of the dataset is shown in Figure 2. Note that in
many images, light from headlamps can be observed. Due
to safety regulations, they could not be turned off during
dataset collection.

2.3. 3D lidar

A Riegl VZ-400 survey-grade 3D lidar was mounted behind
the stereo camera. This sensor has a quoted range limit of
350 m, with a range accuracy of 5 mm, and beam diver-
gence of 0.3 mrad. It is capable of making 125, 000 mea-
surements per second. The generated point cloud contains
both positional and intensity information. The intensity
information is the relative reflectance in dB, which corre-
sponds to the ratio of the amplitude of the return signal to
the amplitude of a white flat (diffuse) target at the same dis-
tance and which is aligned orthogonal to the laser beam.
Thus, a white target has a 0 dB as intensity (Riegl Laser
Measurement Systems, 2009). A relative reflectance higher
than 0 dB results from targets reflecting with a directiv-
ity different from that of a Lambertian reflector, such as a
reflective marker being placed in the environment for sur-
veying. Non-reflections are not reported in this dataset, but
the direction (azimuth and elevation) of non-returns could
potentially be estimated by first converting a scan into polar
coordinates and then searching for the set of azimuth and
elevations with the missing data. Scans were obtained at
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Fig. 3. High resolution point clouds which were logged from the
Riegl lidar with high (whiter) pixel values corresponding to high
reflectance. Pixel intensities are also attenuated exponentially with
respect to the distance to the lidar. In relation to Figure 6, the top
scan was collected at Point B, where some reflective markers can
be seen (in bright white). These were used for evaluating the accu-
racy of the pose estimate provided in this dataset. The bottom scan
was recorded at point E.

two different resolutions. When the Husky A200 was sta-
tionary, high resolution point clouds were recorded at ver-
tical and horizontal resolutions of 0.04 degrees, and at a
scan rate of one full scan per 152.5 s1. When the robot
was moving between stationary scan positions, the lidar was
commanded to rotate and scan continuously at a higher fre-
quency of one (360 degree) rotation of the sensor every six
seconds. This produced scans at lower vertical and hori-
zontal resolutions of 1 degree. Two sample high resolution
lidar point clouds which were taken while the robot was
stationary are shown in Figure 3.

2.4. 2D radar

An AcuMine frequency-modulated continuous-wave high-
speed millimetric (94 GHz) 2D radar (Brooker et al., 2005)
was mounted near the rear of the Husky A200. The sen-
sor was operated in a continuous scanning mode where the
swashplate rotated at 1 Hz, with a radar sample rate of 435
Hz. Power return values were recorded every 0.5 m up to
an operational range of 200 m, and at angular resolutions of
0.68 degrees. The antenna beam width is 1.5 degrees, and
the beam is capable of penetrating small dust particles due
to its relatively longer wavelength when compared to the
lidar. An example of a (cropped) radar scan at a tunnel junc-
tion is shown in Figure 4. The origin of the sensor is located

Fig. 4. A 2D radar scan from point B of Figure 6. The sen-
sor is located towards the left side of the figure. The scale for
power return values in dB is on the right. Higher power returns
(from tunnel walls) are colored in red. A faint yellow halo cen-
tered about the sensor is caused by interference from the radar’s
power supply.

towards the left side of the figure. The faint yellow halo cen-
tered about the sensor is an artifact caused by interference
from the power supply of the radar. An in-depth explanation
of this phenomenon can be found in Adams et al. (2012).
At several scan locations, radar data is not available due to
hardware problems with the sensor. These locations have
been noted in Table 1. Fortunately, due to the range of the
sensor, sufficient overlaps exist between the collected radar
data to cover the traversed tunnels.

3. Data collection

3.1. Calibration

Prior to the dataset collection, calibration parameters for the
stereo camera, as well as the relative pose between each sen-
sor reference frame was determined. These frames are illus-
trated in Figure 5, with the precise relative transformations
reported in Table 2.

The base frame is centered between the four wheels of
the Husky A200, with the x-axis aligned with the forward
direction. The pose of the lidar frame is fixed by mechanical
design. The translation between the lidar and radar frame
is also determined by mechanical design, while the rela-
tive rotation was calculated by aligning the scans between
the two sensors. For the lidar and the stereo camera, dis-
tinct tie points were manually selected from multiple sets
of scans and images to calculate their relative transforma-
tion through least squares optimization. The intrinsic and
extrinsic calibration parameters for the stereo camera were
obtained by the standard checkerboard calibration process
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Table 1. Data description.

Data sequence Location (see Figure 6) Notes

00S Location A This is the start of the dataset, with the robot facing towards point B. Radar
information is not available.

01M, 01S From A to B Radar information is not available for 01M.

02M, 02S, . . . , 08S From B to C

09M, 09S, . . . , 11S From C to D The tunnel between 09S and 10S is dark, but light can be seen from the
tunnel ahead.

12M, 12S, . . . , 14S From D to E The tunnel between 11S and 14S is dark and turns gradually. Light seen in
the stereo camera images are from the safety headlamps of the operators.
A large amount of standing and dripping water is present.

15M, 15S Location E Ahead of the robot at 15S is a shaft for depositing material that will fall
into lower levels of the mine. Radar data is not available.

16M, 16S, . . . , 19S From E to D The tunnel is dark. Light seen in the stereo camera images are from
the safety headlamps of the operators. A large amount of standing and
dripping water is present. Radar data is not available for 16S and 17S.

20M, 20S, 21M, 21S From D to C The section traversed in 21M is initially dark. This is the same dark section
between 09S and 10S but traversed in the reverse direction.

22M, 22S, . . ., 25S From C to F This section is an uphill ascent. The tunnel section between 22S and 24S
is dark.

26M, 26S, . . ., 30S From F to G Radar data is not available from 28M to 30M.

31M, 31S, . . ., 33S From G to B This section is a downhill descent. At the end of 33M, the robot makes a
u-turn and climbs slightly uphill towards point G before stopping.

34M, 34S, . . ., 35M From B to G This section is an up-hill ascent. Traverse 35M passes through point G
without stopping.

35M, 35S, . . ., 37S From G to F

38M, 38S, . . ., 40S From F to C This section is a downhill descent. Traverse 38M is mostly a dark section
of the tunnel that corresponds to the dark section experienced between
22S and 24S. At the end of traverse 40M, the robot turns at junction C to
face the direction of junction B.

41M, 41S, . . ., 43S From C to B The dataset ends with the robot at point B

(Zhang, 2000). Specifically, the calibration pipeline imple-
mentation in OpenCV (Bradski et al., 2000) was used to
obtain the camera parameters in Table 3, which assumes the
Brown–Conrady distortion model (Brown, 1966).

3.2. Data recording

Two computers were installed on-board the Husky A200 for
dataset collection. The first computer, dedicated to data log-
ging, was connected to the Husky’s communication port for
controlling the motion of the vehicle and receiving wheel

encoder measurements. This computer was also connected
to the stereo camera and the lidar. The second computer was
a dedicated radar server, and all radar measurements were
relayed to the first computer for logging.

Throughout the four-hour traverse, the Husky stopped at
44 locations (including the starting position) to record high
resolution 3D lidar point clouds, each of about 25 million
points, while the robot remained stationary. In straight tun-
nel sections, the distances between the stopped locations
was between approximately 30 m and 40 m to obtain suf-
ficient overlap between the consecutively obtained point
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Table 3. Stereo camera calibration parameters, assuming the Brown–Conrady distortion model (Brown, 1966).

Parameter Left camera Right camera

Tangential
distortion p p1 = 0.000571 p2 = 0.000539 p1 = 0.000959 p2 = 0.000514

Radial

distortion k
k1 = −0.177067 k2 = −0.165155 k3 = −0.142561
k4 = 0.192250 k5 = −0.316417 k6 = −0.196546

k1 = 0.746517 k2 = −0.321874 k3 = −0.788330
k4 = 1.099655 k5 = −0.043691 k6 = −1.203787

Rectification

matrix R

⎡
⎣

0.999997 −0.002331 −0.001186
0.002327 0.999992 −0.003369
0.001194 0.003366 0.999994

⎤
⎦

⎡
⎣

0.999993 −0.003561 0.001203
0.003557 0.999988 0.003370

−0.001215 −0.003365 0.999994

⎤
⎦

Projection

matrix P

⎡
⎣

997.177459 0.000000 667.571815 0.000000
0.000000 997.177459 496.314240 0.000000
0.000000 0.000000 1.000000 0.000000

⎤
⎦

⎡
⎣

997.177459 0.000000 667.571815 −239.608595
0.000000 997.177459 496.314240 0.000000
0.000000 0.000000 1.000000 0.000000

⎤
⎦

Table 2. The relative transformations between sensor reference
frames. The rotation brings a point in frame (b) into frame (a), and
the translation is defined from frame (b) to frame (a) with respect
to the coordinates defined in frame (a).

Frames Rotation (quaternion) qa,b = [
qx qy qz qw

]
(a) (b) Translation (m) pb,a

a = [
px py pz

]

base lidar qa,b = [
0 0 1 0

]
pb,a

a = [
0.120 −0.003 0.840

]

lidar radar qa,b = [
0 0 0.707 0.707

]
pb,a

a = [
0.292 −0.003 0.401

]

lidar stereo left qa,b = [
0.584 0.573 −0.407 −0.407

]
pb,a

a = [−0.164 −0.106 −0.152
]

stereo stereo
left right qa,b = [

0 0 0 1
]

pb,a
a = [

0.240 0 0
]

clouds. These distances were increased when the robot was
in a section that it has previously traversed. Radar measure-
ments were also logged when the robot was stationary, but
the stereo camera images and the wheel encoder readings
were not.

Between the stationary scan poses, 43 traverses were
conducted by manually controlling the robot. During each
traverse, measurements from the wheel encoders, lidar,
radar, and stereo camera were logged. The lidar was config-
ured to scan at a lower resolution to increase the scanning
frequency while the robot was moving.

3.3. Time synchronization

A Network Time Protocol (NTP) daemon was used to syn-
chronize the clocks between the two on-board computers.
The first computer, dedicated to data logging, was setup as
the NTP server, while the radar server computer was the
NTP client. Sufficient time was allowed after booting up
both of the computers so that the client clock could adjust.
The average time difference is on the order of 10−3 s. Mea-
surements from the wheel encoders, lidar, and stereo cam-
era were time-stamped using the data logging computer’s
clock, while radar measurements were time-stamped using
the radar server’s clock.

3.4. Scan pose estimates by supervised
pointcloud alignment

The tunnel environment made obtaining the ground-truth
robot poses a challenging task due to both occlusions and
the aspect ratio of the long and narrow tunnels. Reflective
markers were placed at tunnel junctions, but it was infea-
sible to cover all the traversed tunnels with markers. Since
the Riegl is a survey-grade lidar, and the most accurate sen-
sor available on the robot, the pose estimates of the robot
at the 44 static scan positions were determined by using
the high-resolution 3D point clouds from the lidar. Man-
ual alignment was performed on the consecutive 3D point
clouds from the 44 static scanning positions. The batch
optimization method in Borrmann et al. (2008) for pose-
graph relaxation is then used to refine the alignment2, and
was used to generate Figure 6. The positional errors of the
reflective markers, of 50 mm diameter which were observed
from various poses, were used to evaluate the quality of
the solution, which is a common practice in surveying.
The average marker position error between scan pairs is
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Fig. 5. Sensor reference frames used in the dataset. The base
frame in which odometric data is expressed is centered between
the four wheels of the Husky. The x, y, and z axes are colored
in red, green, and blue, respectively. The precise transformations
between the sensor frames are listed in Table 2.

10.41 mm, with the standard deviation being 8.25 mm, and
the maximum error being 32.34 mm. The top-view map
shown in Figure 6 was constructed based upon all the point
clouds being plotted with the 44 pose estimates. Figure 7
shows the alignment between two overlapping point clouds.

3.5. The traverse

With reference to Figure 6, the approximately two-
kilometer traverse started at point A, and then proceeded
to the tunnel junction at point B. Next, the Husky traversed
to the tunnel junction at point C, and continued on to point
E through point D. In the vicinity of point D, there was no
lighting in the tunnel, and there was a significant amount
of standing water, as well as water dripping from the ceil-
ing. Point E is a material drop point, from here the robot
turned around and returned to the junction at point C. A
right turn was then made to point F, where again there was
a lack of lighting. The robot continued to the junction at

Fig. 6. A view of the map generated from the 3D point clouds
at each of the estimated scan poses. Various points of interests
are labeled. The data collection traverse initiated at point A and
continued to points B, C, D, E, D, C, F, G, B, G, F, C, and finally
returned to point B at the end of the dataset. Stationary scan points
are marked as crosses.

Fig. 7. Two overlapping point clouds shown in different colors,
showing the quality of the scan pose estimation method.

point B through point G, and then turned around to retrace
its path to point C through points G and F. At the junction
at point C, the robot turned right, and then returned to the
junction at point B.

4. Data format and usage

The dataset is divided into 87 parts. The data is provided in
human-readable text files and png images. The same data
is also available as ROS bag files for convenience. For the
human-readable files, the following is a description of their
file naming convention and their content. Note that each
data file also contains a one-line header that describes the
columns of the data.

4.1. File naming convention

All of the files with logged sensor data have names that start
with a double digit scan index. The letter following the scan
index is either an “S” or “M”, and denotes whether the data
was gathered when the robot was stationary, or while the
robot was moving between stationary scan points, respec-
tively. The data gathered while the robot was stationary are
indexed separately from the data gathered while the robot
was moving. The data files from the first stationary logging
position are indexed with “00”, while the data from the first
traverse are indexed with “01”. Hence, the dataset was col-
lected in the sequence 00S, 01M, 01S, 02M, ... , 43M, 43S.



22 The International Journal of Robotics Research 36(1)

The approximate topological position of the robot in rela-
tion to Figure 6, along with notes of interest, are provided
in Table 1 for each sub-part. Following this alpha-numeric
index is a string identifying the type of data that the file
contains. This string can be “_encoder”, “_stereo”,
“_lidar”, “_radar” or “_timing”. The names of all
text files end with “.dat”, while for stereo image files, the
data type string “_stereo” is followed by “_”, a six digit
integer for the image sequence, “L” or “R” for the left or
right camera, and a “.png” file extension. The contents of
the text files will be described next.

4.2. Wheel encoder file

Each line of an encoder file contains

[time] [encleft] [encright]

where the time-stamp is in seconds, and encleft and encright

are the left and right encoder data, respectively, expressed
as distance traveled in meters.

Dead-reckoning estimates from the encoders can be inac-
curate due to the skid-steer mechanics of the Husky, as well
as the wet, slippery ground surface within the mine tunnels.

4.3. Stereo images

Text files ##X_stereo.dat contain the time-stamp
information for each indexed image pair. Each line in these
files is in the following format

[time] [index]

where the time-stamp is in seconds and the index is a six-
digit integer that corresponds to the index used in the file
names of the stereo image .png files.

4.4. Lidar point cloud file

Each line in a lidar data file represents one point and is
recorded in the format

[time] [x] [y] [z] [i]

where the time-stamp is in seconds, followed by the x, y, z
3D coordinate of a point in the lidar reference frame, and
its intensity, i, in dB. The center of the lidar is positioned at
( 0, 0, 0).

4.5. Radar file

A line in a radar data file corresponds to a scan sector (a
particular angle of the radar swashplate, and range bin), and
has the following format

[time] [x] [y] [p]

where the time-stamp is in seconds, followed by x, y, the 2D
coordinate representing the center of a received-signal bin
(from the discretized measurement space). The last field, p,
is the received power in dB.

4.6. Timing file

The timing information from all sensor messages are sum-
marized in the ##X_timing.dat files. This is to facil-
itate the reading of sensor messages from their respective
data files in the proper order. Each line in a timing file is in
the following format

[time] [S]

where the time-stamp is in seconds, and S is a letter rep-
resenting the sensor message. This can be W for the wheel
encoder, C for stereo camera, L for lidar, or R for radar.

4.7. Sensor pose file

The relative transformation between the sensor frames of
Table 2 are written in the frames.dat file. A transfor-
mation that brings a point to frame a from frame b using
a rotation quaternion qa,b = [

qx qy qz qw

]
and translation

vector pb,a
a = [

px py pz

]
in units of m is written in two lines

in the following format

[frame a] [frame b]
[qx] [qy] [qz] [qw] [px] [py] [pz]

4.8. Camera calibration file

The file camera.dat contains eight lines, with the first
four lines containing rectification information for the left
stereo camera, and the last four for the right stereo camera.
Each set of four lines lists, in order, the tangential distortion
parameters, radial distortion parameters, the rectification
matrix, and the projection matrix (both in row-major order).
The following are the lines corresponding to the left camera

p_l [p1] [p2]
k_l [r1] [r2] . . . [r6]
R_l [R1,1] [R1,2] . . . [R3,3]
P_l [P1,1] [P1,2] . . . [P4,4]

4.9. Estimated pose file

Estimates for the 44 stationary scan poses are recorded in
the file scanPoseEstimates.dat. Each line begins
with the data sequence identification (e.g. 00S for the first
stationary data collection pose), followed by its position and
orientation (expressed as a rotation quaternion) relative to
the first stationary data collection pose

[sequence] [qx] [qy] [qz] [qw] [px] [py] [pz]

4.10. Access

Instructions for downloading the dataset are available at the
website http://dataset.amtc.cl.
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Notes

1. See 2009 Riegl Laser Measurement Systems “Riegl vz-400”
data sheet

2. The source code for this method is part of the 3D
Toolkit, and is available for download at http://slam6d.
sourceforge.net.
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Appendix C

Sensors specifications

C.1 Acumine High Speed Scanning Radar

Parameter Value

Operational frequency: 94GHz
Transmitted power: 10mW

Antenna beam-width: 1.5°
Angle accuracy: <0.1°

Operational range: 1 to 200m @ 1rps
Range resolution: 50cm

Rotation rate: 5rps
Measurement output: Ethernet (Client – Server via TCP)

Supply voltage: 24V DC @ 3A MAX

Table C.1: Radar Operational Specifications
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C.2 UAVSAR

Parameter Value

Operational frequency and band: 1217.5 GHz to 1297.5 GHz(L-band)
Polarization: Quad-pol

Polarization channels: HH (red), HV (green), VV (blue)
Nominal bandwidth: 80 MHz

Peak transmitted power: 3.1 kW
Maximum duty cycle: 8 %

Look angle range: 25° to 65°
Nominal range swath: 22 km

Operating altitude range: 2000 m to 18 000 m

Table C.2: Radar Operational Specifications
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C.3 Riegl VZ-400 ladar
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Technical Data RIEGL VZ®-400
Laser Product Classification	 Class 1 Laser Product according to IEC60825-1:2007
	
	 The following clause applies for instruments delivered into the United States: 
	 Complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant 
	 to Laser Notice No. 50, dated June 24, 2007.

Range Performance 1)

Minimum Range	 1.5 m
Laser Wavelength	 near infrared
Laser Beam Divergence 8)	 0.35 mrad

Scanner Performance	
	 Vertical (Line) Scan	 Horizontal (Frame) Scan
Scan Angle Range	 total 100° (+60° / -40°)	 max. 360°
Scanning Mechanism	 rotating multi-facet mirror	 rotating head
Scan Speed	 3 lines/sec to 120 lines/sec	 0°/sec to 60°/sec 10)	
Angular Step Width   (vertical),   (horizontal)	 0.0024° ≤   ≤ 0.288° 9)	 0.0024° ≤   ≤ 0.5° 9)
	 between consecutive laser shots 	 between consecutive scan lines

Angle Measurement Resolution	 better 0.0005° (1.8 arcsec)	 better 0.0005° (1.8 arcsec)

Inclination Sensors	 integrated, for vertical scanner setup position, details see page 2
GPS Receiver	 integrated, L1, with antenna
Compass	 optional, for vertical scanner setup position, details see page 2
Internal Sync Timer	 integrated, for real-time synchronized time stamping of scan data
Scan Sync (optional)	 scanner rotation synchronization

General Technical Data

Power Supply Input Voltage 	 11 - 32 V DC
Power Consumption	 typ. 65 W (max. 80 W)
External Power Supply	 up to three independent external power sources can be connected 
	 for uninterrupted operation
Main Dimensions	 Ø 180 x 308 mm (diameter x length) 
Weight	 approx. 9.6 kg
Humidity	 max. 80 % non condensing @ +31°C
Protection Class	 IP64, dust- and splash-proof
Temperature Range	
       Storage	 -10°C up to +50°C
       Operation	    0°C up to +40°C: standard operation
       Low Temperature Operation 11)	 -20°C: continuous scanning operation if instrument is powered on 
	 	           while internal temperature is at or above 0°C and still air
	 -40°C: scanning operation for about 20 minutes if instrument is powered on 
	 	           while internal temperature is at or above 15°C and still air

1)	 With online waveform processing.
2)	 Rounded values.
3)	 Typical values for average conditions. Maximum range is 
specified for flat targets with size in excess of the laser beam 
diameter, perpendicular angle of incidence, and for atmos-
pheric visibility of 23 km. In bright sunlight, the max. range is 
shorter than under overcast sky.

9)	 Selectable. 10) 	Frame scan can be disabled, providing 2D scanner operation.

	 	 Long Range Mode	  	 High Speed Mode 

Laser Pulse Repetition Rate PRR (peak) 2) 	 100 kHz 	 	 300 kHz 

Effective Measurement Rate (meas./sec) 2)	 42 000	 	 122 000 

Max. Measurement Range  3)
	 natural targets  ≥ 90 % 	 600 m		  350 m 	  
	 natural targets  ≥ 20 % 	 280 m	 	 160 m  

Max. Number of Targets per Pulse		  practically unlimited 4)

Accuracy 5) 7)	 	 5 mm
Precision 6) 7)		  3 mm

4)	 Details on request.
5)	 Accuracy is the degree of conformity of a measured quantity to its actual (true) value.
6)	 Precision, also called reproducibility or repeatability, is the degree to which further measurements show 

the same result.
7)	 One sigma @ 100 m range under RIEGL test conditions.
8)	 Measured at the 1/e2 points. 0.35 mrad corresponds to an increase of 35 mm of beam diameter  

per 100 m distance.

11)	 Insulating the scanner with appropriate material will enable operation at even lower temperatures.



Appendix D

Normalized OSPA metric

In some situations, it might be desirable to compare OSPA results with different cutoff
parameters. A dimension-less distance based on OSPA can be used for such cases. The
following proof shows that a normalized OSPA d̄

(v)
n measurement calculated as the OSPA

distance d̄(v) divided by the OSPA cutoff parameter v is still also a valid metric.

d̄(v)
n =

d̄(v)

v
(D.1)

The normalized OSPA satisfies all metric space conditions:

1. Separation axiom:

d̄(v)
n ≥ 0 (D.2)

d̄(v)
n =

d̄(v)

v
≥ 0 (D.3)

The OSPA metric satisfies the separation axiom, therefore by dividing it by the cutoff
parameter, which is always positive, the normalized OSPA is also non-negative.

2. Identity of indiscernibles:

d̄(v)
n (A,B) = 0⇔ A = B (D.4)

d̄(v)
n (A,B) =

d̄(v)(A,B)

v
(D.5)

if A = B ⇔ d̄(v)(A,B) = 0, thus d̄(v)
n (A,B) = 0.
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3. Symmetry:

d̄(v)
n (A,B) = d̄(v)

n (B,A) (D.6)

d̄(v)(A,B)

v
=
d̄(v)(B,A)

v
(D.7)

The OSPA metric is symmetric, then the last equation is true.

4. Triangle inequality:

d̄(v)
n (A, C) ≤ d̄(v)

n (A,B) + d̄(v)
n (B, C) (D.8)

d̄(v)(A, C)
v

≤ d̄(v)(A,B)

v
+
d̄(v)(B, C)

v
v ≥ 0, multiplying by v at both sides (D.9)

d̄(v)(A, C) ≤ d̄(v)(A,B) + d̄(v)(B, C) (D.10)

Equation (D.10) holds, because the OSPA metric itself satisfies the triangle inequality.

Therefore, the normalized OSPA is also a metric. For other metric normalization examples
see [Yia02].
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