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Abstract. We construct a bijection between the solutions of a linear system of

nonautonomous difference equations which is uniformly asymptotically stable
and its unbounded perturbation. The key idea used to made this bijection

is to consider the crossing times of the solutions with the unit sphere. This

approach prompt us to introduce the concept of almost topological conjugacy
in this nonautonomous framework. This task is carried out by simplifying

both systems through a spectral approach of the notion of almost reducibility

combined with suitable technical assumptions.

1. Introduction. The Hartman–Grobman Theorem shows the existence of a local
and not explicit homeomorphism between the solutions of an autonomous finite di-
mensional (continuous or discrete) dynamical system and its linearization around an
hyperbolic equilibrium. The generalization of this linearization result to a nonau-
tonomous framework is a delicated task since there not exists a univocal definition
of hyperbolicity as in the autonomous case. Nevertheless, some qualitative prop-
erties can be recovered by the properties of dichotomy, which induces a splitting
between the stable and unstable directions of the solutions of a linear system.

In 1969, C. Pugh [21] studied a family of linear autonomous dynamical systems
with bounded and Lipschitz nonlinear perturbations, thus allowing the construction
of an explicit and global homeomorphism, making a strong difference with the
Hartman–Grobman’s result. This sheds light to work in the nonautonomous case.
Indeed, K.J. Palmer [15] introduced the concept of topological equivalence for the
continuous case and later G. Papaschinopoulos [17] studied a discrete case. This
article will be focused in the discrete case and considers the nonautonomous linear
system

x(n+ 1) = A(n)x(n), (1)

and its pertubation

w(n+ 1) = A(n)w(n) + f(n,w(n)), (2)
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where x(n) and w(n) are column vectors of Rd, the matrix function n 7→ A(n) ∈
Rd×d is non singular and f : Z× Rd → Rd is continuous in Rd.

Definition 1.1 ([17]). The systems (1) and (2) will be called topologically equi-
valent if there exists a map H : Z× Rd → Rd with the properties

(i) For each fixed n ∈ Z, the map u 7→ H(n, u) is a bijection.
(ii) For any fixed n ∈ Z, the maps u 7→ H(n, u) and u 7→ H−1(n, u) = G(n, u) are

continuous.
(iii) If x(n) is a solution of (1), then H(n, x(n)) is a solution of (2). Similarly, if

w(n) is a solution of (2), then G(n,w(n)) is a solution of (1).

The properties of dichotomy play a fundamental role in the topological equiva-
lence literature, being the exponential dichotomy the most relevant one.

Definition 1.2 ([9],[18],[19],[20]). The system (1) has an exponential dichotomy
on Z if there exist numbers K ≥ 1, ρ ∈ (0, 1) and a projector P 2 = P such that ||X(n)PX−1(k)|| ≤ Kρn−k if n ≥ k

||X(n)(I − P )X−1(k)|| ≤ Kρk−n if n ≤ k,
(3)

where X(n) is a fundamental matrix of (1) and X(n, k) = X(n)X−1(k) is its corre-
sponding transition matrix. In addition, | · | is a vector norm with induced matrix
norm || · ||.

A classification of the topological equivalence results can be made by considering
three aspects, which are strongly related between them: a) the type of dichotomy
of the linear system (1), b) the properties of the nonlinear perturbation f , and c)
the character either explicit or non explicit of the resulting homeomorphism H.

In [17], Papaschinopoulos assumes that (1) has an exponential dichotomy on Z
while the perturbation is such that

|f(n, x)| ≤ µ and |f(n, x)− f(n, x̃)| ≤ γ|x− x̃| for any n ∈ Z and x, x̃ ∈ Rd,
and proves that if γ is small enough, for any fixed n ∈ Z there exists a bijection

H(n, ξ) = ξ −
∞∑

k=−∞

G(n, k + 1)f(k,w(k, n, ξ)),

mapping solutions of (1) in solutions of (2), where G(n, k) defined by

G(n, k) =

{
X(n)PX−1(k) if n ≥ k,

X(n)(I − P )X−1(k) if n ≤ k
is the Green’s function associated to (1) and k 7→ w(k, n, ξ) is the solution of (2)
passing through ξ at k = n.

This result has been generalized in several directions, for example, the perturba-
tion f can be considered as

|f(n, x)| ≤ µ(n) and |f(n, x)− f(n, x̃)| ≤ γ(n)|x− x̃| for any n ∈ Z and x, x̃ ∈ Rd,
where µ(n) and γ(n) are positive and possibly unbounded sequences. Nevertheless,
the map ξ 7→ H(n, ξ) still satisfies the properties of the topological equivalence
provided that

+∞∑
k=−∞

G(n, k + 1)µ(k) < +∞ and

+∞∑
k=−∞

G(n, k + 1)γ(k) < 1,
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which can be verified when (1) has dichotomies more general than the exponen-
tial one, for example nonuniform exponential dichotomy or generalized exponential
dichotomy (see e.g. [4, 7]).

The case when f is Lipschitz but unbounded cannot always be carried out by
using the Green’s function. This fact has been studied by K.J. Palmer [16] and F.
Lin [14] in the continuous context by using the crossing time (a formal definition
will be given later) of a solution with the unit sphere and its continuity properties.
This fact cannot be replicated in a direct way to the discrete case due to the lack
of continuity of the crossing time in this context. The first approach dealing with
discrete crossing times was made by Barreira et.al [3], which allow to construct an
homeomorphism between the solutions of two linear systems.

In order to study the topological equivalence between (1) and (2) a first step will
be to consider the simpler families

y(n+ 1) = C(n){I +B(n)}y(n), (4)

and

w(n+ 1) = C(n){I +B(n)}w(n) + g(n,w(n)), (5)

where C(n) is a diagonal matrix and B(n) is an upper triangular matrix satisfying
||B(n)|| < δ, where δ can be chosen arbitrarily small.

This fact is motivated by a recent result of almost reducibility [6], which states
that (1) can be transformed into (4) by a linear change of coordinates. The concept
of reducibility is well known in the continuous case and we refer the reader to [8, 9]
for details.

In this paper, we continue the study of the discrete crossing times initiated by
Barreira et al. and proved that if (4) is uniformly asymptotically stable and the
perturbation g satisfies some suitable properties, then the crossing times are locally
constant with a possible set of discontinuities having Lebesgue measure zero, which
prompt us to introduce the following definition.

Definition 1.3. The systems (1) and (2) will be called almost topologically equiv-
alent if there exists a map H : Z× Rd → Rd with the properties

(i) For each fixed n ∈ Z, the map u 7→ H(n, u) is a bijection.
(ii) For any fixed n ∈ Z, the maps u 7→ H(n, u) and u 7→ H−1(n, u) = G(n, u) are

continuous with the possible exception of a set with Lebesgue measure zero.
(iii) If x(n) is a solution of (1), then H(n, x(n)) is a solution of (2). Similarly, if

w(n) is a solution of (2), then G(n,w(n)) is a solution of (1).

To the best of our knowledge, the Definition 1.3 seems not be introduced before
in the literature. Now, when the above maps H and G are continuous in Rd for
any n ∈ Z, we recover the classical topological equivalence which has been studied
in several works as [3],[17],[22].

2. Preliminaries and main results. In this paper, we will assume that (1) and
(2) verify the following properties:

(P1) sup
n∈Z
||A(n)|| < +∞ and sup

n∈Z
||A−1(n)|| < +∞,

(P2) The system (1) is uniformly asymptotically stable, that is, there exist K ≥ 1
and 0 < ρ < 1 such that

||X(n)X−1(m)|| ≤ Kρn−m for any n ≥ m, (6)
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(P3) The perturbation f is an element of one of the two families:

F1 =

{
f : sup

n∈Z
|f(n, 0)| <∞ and ∃L s.t. |f(n, u)− f(n, v)| ≤ L|u− v| ∀n ∈ Z

}
,

F2 = {f : f ∈ F1 and f(n, 0) = 0 for all n ∈ Z} .
Similarly, we will assume that

(Q1) There exists K = θ−2 ∈ (0, 1) such that

|Y (n, n0, ξ)|2 ≤ Kn−m|Y (m,n0, ξ)|2 for any n ≥ m
and

|X(n, n0, ξ)|2 ≤ Kn−m|X(m,n0, ξ)|2 for any n ≥ m,
where Y (n, n0, ξ) is the solution of (5) passing through ξ at n0 and X(n, n0, ξ)
= ξθn0−n is an auxiliary comparison sequence.

A direct consequence of (Q1) is that |X(n, n0, ξ)|2 and |Y (n, n0, ξ)|2 are strictly
decreasing with respect to n, tends to the origin when n→ +∞ and tends to infinite
as n→ −∞. This prompt to introduce the formal definition of crossing times:

Definition 2.1. The crossing times for n 7→ X(n, n0, ξ) and n 7→ Y (n, n0, ξ) are
the maps M,N : Z× (Rd \ {0})→ Z such that, given (n0, ξ) ∈ Z× (Rd \ {0}) there
exists a couple of unique integer numbers M(n0, ξ) and N(n0, ξ) satisfying

|ξθn0−{M(n0,ξ)+1}|2 ≤ 1 < |ξθn0−M(n0,ξ)|2. (7)

|Y (N(n0, ξ) + 1, n0, ξ)|2 ≤ 1 < |Y (N(n0, ξ), n0, ξ)|2. (8)

Now, we state the additional property for (5)

(Q2) For any initial time n0 ∈ Z and initial condition ξ ∈ Rd \ {0}, we have that

1 < |ξθn0−M(n0,ξ)| ≤ 1√
K

and 1 < |Y (N(n0, ξ), n0, ξ)| ≤
1√
K
.

2.1. Mathematical preliminaries. In order to establish the relation between the
systems (1)–(2) and (4)–(5), we need to recall some definitions from the nonau-
tonomous dynamical systems theory.

Definition 2.2 ([11, 24]). Given a δ > 0, the linear system (1) is δ–kinematically
similar to

y(n+ 1) = V (n)y(n) (9)

if there exists a Lyapunov’s transformation F (δ, n), that is

sup
n∈Z
||F (δ, n)|| < +∞ and sup

n∈Z
||F−1(δ, n)|| < +∞,

such that the change of coordinates y(n) = F−1(δ, n)x(n) transforms the system
(1) into (9).

Remark 1. It is straightforward to verify that δ–kinematical similarity is a par-
ticular case of topological equivalence. Indeed, the properties of Definition 1.1 are
verified with H(n, ξ) = F−1(δ, n)ξ.

The concept of δ–kinematical similarity generalizes the well known notion of
kinematical similarity and was proposed in the continuous framework by B.F. Bylov
in order to introduce the concept of almost reducibility [5]. The following definition
is a discrete version.
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Definition 2.3 ([6]). The system (1) is almost reducible to

y(n+ 1) = V (n)y(n)

if for any δ > 0, the system (1) is δ–kinematically similar to

y(n+ 1) = V (n){I +B(n)}y(n), with ||B(n)|| ≤ δ for any n ∈ Z.

The almost reducibility to a diagonal system (i.e. V is a diagonal matrix) has
been studied in the continuous context. Indeed, in [5] B.F. Bylov proved that its
coefficients are real numbers and F. Lin improved this localization in [13] by using
the property of exponential dichotomy and its associated spectrum. In a discrete
context, there exists a version of this localization result (see [6]), which employs the
same tools combined with the diagonal significance property introduced recently by
C. Pötzsche [20].

Definition 2.4 ([1],[2],[12],[23]). The exponential dichotomy spectrum of (1) is the
set Σ(A) of λ > 0 such that the systems

x(n+ 1) = λ−1A(n)x(n) (10)

have not an exponential dichotomy on Z.

Remark 2. The exponential dichotomy spectrum allows a deeper understanding
of assumptions (P1)–(P2). Indeed:

(P1) is equivalent (see Lemma 2.3 from [1]) to say that (1) has the property of
bounded growth, namely

||X(n)X−1(k)|| ≤ Cβ|n−k| for any n and k ∈ Z

for some C ≥ 1 and β > 1, which implies (see e.g. Theorem 2.1 from [1]) that Σ(A)
is a finite union of at most ` ≤ d compact intervals

Σ(A) =
⋃̀
j=1

[aj , bj ], with a1 ≤ b1 < a2 ≤ b2 < · · · < a` ≤ b`. (11)

(P1) also implies that (1) is δ–kinematically similar to (4). Furthermore, in [6] we
proved that the diagonal terms of C(n) are contained in Σ(A).

(P2) implies that Σ(A) ⊂ (0, 1).

Remark 3. In Theorem 1 from [6], it was proved that if (P1) is satisfied, the
system (1) is δ−kinematically similar via F−1(δ, n) to

y(n+ 1) = C(n){I +B(n)}y(n), (12)

where C(n) = Diag(C1(n), . . . , Cd(n)) with Ci(n) ∈ Σ(A) and || B(n) ||≤ δ.
In addition, under the same transformation, the system (2) is transformed in

y(n+ 1) = C(n){I +B(n)}y(n) + F−1(n+ 1, δ)f(n, F (n, δ)y(n)). (13)

Remark 4. Some comments about (Q1)–(Q2):

The assumption (Q1) is always verified when the Lipschitz constant Lg of g in
the system (5) satisfies some smallness conditions which can be described in terms
of b` ∈ Σ(A) = Σ(C[I +B]).

The assumption (Q2) is a technical condition which allows to construct a bijec-
tion between the solutions of (5) and a linear diagonal autonomous system by using
the crossing times described previously.
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2.2. Main results. The principal results of this article are:

Theorem 2.5. If g ∈ F2 and the properties (Q1)–(Q2) are verified, then (5) and

zn+1 = θ−1Izn with θ =
1√
K

(14)

are almost topologically equivalent.

The statement of the following results involve the δ–kinematical similarities be-

tween (1)–(12) and (2)–(13) via the transformation F (n, δ) with δ <
1− b`
b`

.

Theorem 2.6. If the properties (P1)–(P3) are verified with f ∈ F2 having L = Lf
such that

Lf ≤
1− b`(1 + δ)

||F || ||F−1||
, (15)

then the systems (12)–(13) verify (Q1). In addition if (12)–(13) also verify (Q2),
then (1) and (2) are almost topologically equivalent.

In order to state our last result, we will introduce the system

y(n+ 1) = C(n){I +B(n)}y(n) + F−1(n+ 1, δ)f0(n, F (n, δ)y), (16)

where C(n) = Diag(C1(n), . . . , Cd(n)) with Ci(n) ∈ Σ(A), ||B(n)|| ≤ δ and f0 is
defined by

f0(n, y) = f(n, y)− f(n, 0) for any n ∈ Z. (17)

Theorem 2.7. If the properties (P1)–(P3) are verified with f ∈ F1 having L =
Lf = Lf0 such that

Lf ≤ min

{
1− b`(1 + δ)

||F || ||F−1||
,

1− ρ
K

}
, (18)

then the systems (12) and (16) verify (Q1). In addition if (12) and (16) also verify
(Q2), then (1) and (2) are almost topologically equivalent.

3. Some basic results. The following proposition is a classical result of local
continuity with respect to the initial conditions for difference equations.

Proposition 1. Let us consider the difference equation

x(n+ 1) = F (n, x(n)), (19)

where F ∈ F2 with L = LF , then for the solution x(n, n0, u) of (19) with x(n0, n0, u)
= u we have that

||u− v||e(−2LF |n−n0|) ≤ ||x(n+ 1, n0, u)− x(n+ 1, n0, v)|| ≤ ||u− v||e(2LF |n−n0|).

Proof. By considering that n > n0, it is easy to verify that

x(n+ 1, n0, u) = u+

n+1∑
j=n0+1

{
F (j, x(j, n0, u))− F (j − 1, x(j − 1, n0, u))

}
,

which implies that

| x(n+1, n0, u)−x(n+1, n0, v) |≤ 2
(
| u−v | +

n+1∑
j=n0+1

LF | x(j, n0, u)−x(j, n0, v) |
)
.

By using the discrete Gronwall’s inequality (see e.g., [10, Lemma 4.32]) we have
that

| x(n+ 1, n0, u)− x(n+ 1, n0, v) |≤| u− v | exp (2LF | n− n0 |),
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and the right inequality follows.
Finally, we replace u and v respectively by x(n0, n + 1, u) and x(n0, n + 1, v),

obtaining the left inequality.

The next result is an extension to the discrete framework of [14, Proposition 5].

Proposition 2. Assume that the system (1) has an exponential dichotomy on Z
with K ≥ 1, 0 < ρ < 1 and P = I. Let us consider the nonlinear perturbation

x(n+ 1) = A(n)x(n) + F (n, x(n), κ), (20)

where F : Z × Rd × B → Rd and B is a non–empty set. Moreover, F satisfies the
following conditions:

(i) F (n, x, κ) is bounded with respect to n, for all x ∈ Rd and κ ∈ B fixed,
(ii) there exists LF > 0 such that

|| F (n, x1, κ)− F (n, x2, κ) ||≤ LF || x1 − x2 || for any n ∈ Z and κ ∈ B.
(iii) C0 = sup

n∈Z,κ∈B
|| F (n, 0, κ) ||< +∞.

If LFK < 1 − ρ then for any fixed κ ∈ B, the system (20) has a unique bounded
solution Z(n, κ) described by

Z(n, κ) =

n−1∑
m=−∞

X(n)X−1(m+ 1)F (m,Z(m,κ), κ), (21)

such that sup
n∈Z,κ∈B

|| Z(n, κ) ||< +∞.

Proof. Let us consider a fixed κ ∈ B and construct the sequence {ϕj}j recursively
defined by

ϕj(n+ 1, κ) = A(n)ϕj−1(n, κ) + F (n, ϕj−1(n, κ), κ),

where ϕ0(n, κ) ∈ `∞(Z,Rd) = `∞, which is the Banach space of bounded sequences
with norm ||ϕ||∞ = sup

n∈Z
|ϕ(n)|.

We will prove by induction that ϕj ∈ `∞ for any j ∈ N. Indeed, if ϕj ∈ `∞, it
follows that F (n, ϕj(n), κ) is bounded and (P2) implies that

ϕj+1(n, κ) =

n−1∑
k=−∞

X(n)X−1(k + 1)F (k, ϕj(k, κ), κ)

is the unique sequence in `∞ satisfying the recursivity stated above (we refer the
reader to Lemma 2 from [7] for details).

On the other hand, by using KLF < 1−ρ, it is easy to see that {ϕj} is a Cauchy
sequence, convergent to the fixed point Z(n, κ) defined by (21).

As we are considering a fixed κ ∈ B we have that sup
n∈Z
| Z(n, κ) |< C(κ). That

is, Z(·, κ) ∈ `∞ but its bound C(κ) could be dependent of κ ∈ B. Nevertheless, we
will prove that C(κ) has an upper bound independently of κ. Indeed, by combining
properties (ii), (iii) with the exponential dichotomy of (1), we can deduce that

| Z(n, κ) | ≤ C0

n−1∑
m=−∞

Kρn−(m+1) +KLF

n−1∑
m=−∞

Kρn−(m+1) | Z(m,κ) |

≤ C0K

1− ρ
+
KLFC(κ)

1− ρ
.
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Taking supremum over n, we have that

C(κ) ≤ C0K

1− ρ

(
1− KLF

1− ρ

)−1

.

4. Proof of Theorem 2.5. In order to construct the bijection relating (5) and
the linear autonomous system (14), we will introduce some notation and definitions.
The solution of (14) passing through ξ at n = n0 will be denoted by Z(n, n0, ξ) =
ξθn0−n. In addition, we can verify that

|Z(n, n0, ξ)| = θm−n|Z(m,n0, ξ)| with n ≥ m and θ =
1√
K
> 1. (22)

Remark 5. The maps N and M stated in Definition 2.1 verify the identities:

N(n0, ξ) = N(n, Y (n, n0, ξ)) for any n ∈ Z (23)

and
M(n, ξθn0−n) = M(n0, ξ). (24)

Remark 6. The crossing times N and M are inspired in an idea carried out by
Barreira et al. in [3], which use them in order to construct a bijection between two
linear systems.

Now, we will verify that the systems (5) and (14) are almost topologically equiv-
alent through the maps H : Z× Rd → Rd and G : Z× Rd → Rd defined by

H(k, ξ) =

{
Y (N(k, ξ), k, ξ)θN(k,ξ)−k if ξ 6= 0

0 if ξ = 0,

and

G(k, ξ) =

{
Y (k,M(k, ξ), ξθk−M(k,ξ)) if ξ 6= 0

0 if ξ = 0,

and the proof will be decomposed in several lemmas and remarks.

Lemma 4.1. For any (k, ξ) ∈ Z×(Rd\{0}), the maps H and G satisfy the identities

H(N(k, ξ), Y (N(k, ξ), k, ξ)) = Y (N(k, ξ), k, ξ) (25)

and
G(M(k, ξ), ξθk−M(k,ξ)) = ξθk−M(k,ξ). (26)

Proof. The proof follows by using the identities (23) and (24) from Remark 5.

The above result shows the maps H and G have a fixed points in the solutions
of (5) and (14) at their respective crossing times.

Lemma 4.2. If n 7→ Y (n, k, ξ) is solution of (5), then n 7→ H(n, Y (n, k, ξ)) is
solution of (14). Similarly, if n 7→ ξθk−n is solution of (14) then n 7→ G(n, ξθk−n)
is solution of (5).

Proof. The identity (23) implies

H(n, Y (n, k, ξ)) = Y (N(k, ξ), k, ξ)θN(k,ξ)−n

and the reader can easily verify that is solution of (14). Analogously, by using (24),
it follows that

G(n, ξθk−n) = Y (n,M(n, ξθk−n), ξθk−M(n,ξθk−n))

= Y (n,M(k, ξ), ξθk−M(k,ξ)),
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which is clearly a solution of (5).

Lemma 4.3. For any (k, ξ) ∈ Z×(Rd \{0}), the following crossing times identities
are verified

M(k,H(k, ξ)) = N(k, ξ), (27)

and
N(k,G(k, ξ)) = M(k, ξ). (28)

Proof. By the previous result, we know that the solution of (5) passing through ξ
at n = k is mapped into a solution of (14) passing through H(k, ξ) at n = k. This
fact combined with (25) and (Q2) imply that

1 < |Z(N(k, ξ), k,H(k, ξ))|2 = |Y (N(k, ξ), k, ξ)|2 ≤ θ
and the identity (27) is a consequence of the uniqueness of crossing times.

In order to prove (28), we know by Definition 2.1 that N(k,G(k, ξ)) is the unique
integer satisfying the inequalities

|Y (N(k,G(k, ξ)) + 1, k,G(k, ξ))|2 ≤ 1 < |Y (N(k,G(k, ξ)), k,G(k, ξ))|2,
which are equivalent to

|Y (N(k,G(k, ξ)) + 1,M(k, ξ), ξθk−M(k,ξ))|2 ≤ 1,

and
1 < |Y (N(k,G(k, ξ)),M(k, ξ), ξθk−M(k,ξ))|2.

On the other hand, M(k, ξ) is the unique integer verifying

|ξθk−{M(k,ξ)+1}|2 ≤ 1 < |ξθk−M(k,ξ)|2 = |Y (M(k, ξ),M(k, ξ), ξθk−M(k,ξ))|2,
which implies that N(k,G(k, ξ)) ≥M(k, ξ).

We will verify that N(k,G(k, ξ)) = M(k, ξ). Indeed, if N(k,G(k, ξ)) > M(k, ξ),
we have that KN(k,G(k,ξ))−M(k,ξ) ≤ K. Moreover, (Q1) combined with the above in-
equalities, the identities θ−2 = K and Y (M(k, ξ),M(k, ξ), ξθk−M(k,ξ)) = ξθk−M(k,ξ)

imply that

1 < |Y (N(k,G(k, ξ)),M(k, ξ), ξθk−M(k,ξ))|2 ≤ K|ξθk−M(k,ξ)|2

= |ξθk−{M(k,ξ)+1}|2 ≤ 1,

obtaining a contradiction and the identity (28) follows.

Remark 7. The assumption (Q2) was essential to prove (27) but it was not nec-
essary to deduce (28). This follows from the fact that any solution of (14) with
non–null initial condition passes for all the annuli {z ∈ Rd : θj < |z| ≤ θj+1}j∈Z in
forward and backward time while this is not always true for the solutions of (5).

Lemma 4.4. For any fixed k ∈ Z, the map H is bijective being G its inverse.

Proof. By using (28), we have that

H(k,G(k, ξ)) = Y (N(k,G(k, ξ)), k,G(k, ξ))θN(k,G(k,ξ))−k

= Y (M(k, ξ), k,G(k, ξ))θM(k,ξ))−k

= Y (M(k, ξ), k, Y (k,M(k, ξ), ξθk−M(k,ξ)))θM(k,ξ)−k

= ξ,
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and the identity G(k,H(k, ξ)) = ξ can proved in a similar way by using (27).

Lemma 4.5. The sets

{ξ ∈ Rd : |ξ| < 1}, {ξ ∈ Rd : |ξ| = 1} and {ξ ∈ Rd : |ξ| > 1}
are invariant under the maps H and G for any k ∈ Z.

Proof. If |ξ| > 1, we have N(k, ξ) ≥ k, as θ > 1 and |Y (N(k, ξ), k, ξ)| > 1, the
inequality |H(k, ξ)| > 1 follows from our definition of H. Similarly, if |ξ| > 1,
it follows that M(k, ξ) ≥ k. As the crossing time definition implies that 1 <
|ξθk−M(k,ξ)|, the inequality |G(k, ξ)| > 1 can be deduced from our definition of G.

If |ξ| = 1, it follows that N(k, ξ) = k − 1 and by (Q1), we know that

|ξ|2 = |Y (k, k, ξ)|2 ≤ K|Y (k − 1, k, ξ)|2 = |Y (k − 1, k, ξ)θ−1|2,
that is 1 = |ξ|2 ≤ |H(k, ξ)|2. Nevertheless, the case |H(k, ξ)| > 1 is not possible due
to the bijectivity of H combined with the invariance of {ξ ∈ Rd : |ξ| > 1} under G.

If |ξ| < 1, we can deduce that |G(k, ξ)| < 1. Indeed, otherwise if |G(k, ξ)| ≥ 1, the
invariance of the set {ξ ∈ Rd : |ξ| ≥ 1} under H will implies that |ξ| ≥ 1, obtaining
a contradiction.

Now, if |ξ| < 1 we have that N(k, ξ) ≤ k − 1 and θN(k,ξ)−k ≤ θ−1. On the other
hand, by (Q2) it follows that

1 ≤ |Y (N(k, ξ), k, ξ)| < θ.

We couple the above inequalities and obtain

θN(k,ξ)−k ≤ |Y (N(k, ξ), k, ξ)|θN(k,ξ)−k = |H(k, ξ)| < θ θN(k,ξ)−1 ≤ 1,

then |H(k, ξ)| < 1 and the invariance of {ξ ∈ Rd : |ξ| < 1} under H and G follows.
Finally, if |ξ| = 1, it follows that M(k, ξ) = k − 1 and by (Q1), we know that

|G(k, ξ)|2 = |Y (k, k − 1, ξθ)|2 ≤ K|Y (k − 1, k − 1, ξθ)|2 = |ξ|2 = 1,

that is 1 = |ξ|2 ≥ |G(k, ξ)|2. Nevertheless, the case |G(k, ξ)| < 1 is not possible due
to bijectivity of G combined with the invariance of {ξ ∈ Rd : |ξ| < 1} under H.

The next results are devoted to study the continuity properties of the maps G
and H.

Lemma 4.6. For any fixed k ∈ Z, the map ξ 7→ G(k, ξ) is continuous with the
possible exception of a set of initial conditions with Lebesgue measure zero.

Proof. We will focus our attention in the map M(k, ξ). We consider the sets

Γk =
{
ξ ∈ Rd \ {0} : |ξ|θk−(M(k,ξ)+1) = 1

}
.

It is easy to see that ξ ∈ Γk if only if M(k, ξ) is written as follows

M(k, ξ) = k − 1− ln(1/|ξ|)
ln(θ)

.

The above identity prompt us to construct the step map

ξ →
[
k − 1− ln(1/|ξ|)

ln(θ)

]
(29)

for any fixed k, where [·] denotes the ceiling function, whose discontinuities are in
the level sets

Dj =
{
ξ ∈ Rd \ {0} : |ξ| = θj

}
for any j ∈ Z,
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and we know that for any ξ ∈ Dj it follows that M(k, ξ) = k − 1 + j. Moreover, it
is easy to see that M(k, ξ) is constant in the annuli Λj :

Λj =
{
ξ ∈ Rd \ {0} : θj−1 < |ξ| ≤ θj

}
.

An important consequence of the above property is that for any fixed k ∈ Z the
map G is Lipschitz on the annuli Λj . In fact, by using Proposition 1 and recalling
that the Lipschitz constant of the system (5) is L = ||C||(1 + ||B||) + δ, for any

couple ξ, ξ̃ in the annulus Int Λj we have that

|G(k, ξ)−G(k, ξ̃)| = |Y (k,M(k, ξ), ξθk−M(k,ξ))− Y (k,M(k, ξ), ξ̃θk−M(k,ξ))|

≤ θk−M(k,ξ)e2L|k−M(k,ξ)||ξ − ξ̃|,

and we conclude that for any fixed k, the map ξ 7→ G(k, ξ) is continuous with the
possible exception of the sets Dj , which have Lebesgue measure zero.

Lemma 4.7. For any fixed k ∈ Z, the map ξ 7→ H(k, ξ) is continuous with the
possible exception of a set of initial conditions with Lebesgue measure zero.

Proof. It will be useful to consider the sets of initial conditions

Ik =
{
ξ ∈ Rd \ {0} : |Y (N(k, ξ) + 1, k, ξ)2| = 1

}
and the sets

G(k,E) =
{
G(k, ξ) ∈ Rd \ {0} : ξ ∈ E

}
,

where E is any subset of Rd. The proof will be decomposed in several steps.

Step 1. for any fixed k ∈ Z, we prove the following identity

Ik =
⋃
r∈Z

G(k,Dr) where G(k,Dj) and G(k,Di) pairwise disjoint. (30)

If ξ ∈
⋃
r∈Z

G(k,Dr), there exists a unique η ∈ Dj such that ξ = G(k, η).

As η ∈ Dj it follows that i 7→ ηθk−i is a solution of (14) passing through

η θk−(M(k,η)+1) = η0 ∈ S1 at i = M(k, η) + 1. Now, by Lemma 4.5 combined
with (24) we can deduce that

G(M(k, η) + 1, η0) = Y (M(k, η) + 1,M(k, η), η0θ) ∈ S1.

On the other hand, Lemmas 4.2 and 4.3 imply that i 7→ Y (i, k,G(k, η)) is a
solution of (5) passing through G(k, η) at i = k satisfying

G(M(k, η) + 1, η0) = Y (M(k, η) + 1, k,G(k, η)) ∈ S1

= Y (N(k,G(k, η)) + 1, k,G(k, η)) ∈ S1

and we conclude that G(k, η) = ξ ∈ Ik, then G(k,Dj) ⊂ Ik.
Analogously, if i 7→ Y (i, k, ξ) is a solution of (5) with ξ ∈ Ik. We can also see

that the Lemma 4.2 combined with (23) and the fact that S1 is invariant by H
imply that i 7→ H(k, ξ)θk−i is a solution of (14) with

|H(k, ξ)θk−(M(k,H(k,ξ))+1)| = |H(k, ξ)θk−(N(k,ξ)+1)| = 1.



2298 ÁLVARO CASTAÑEDA AND GONZALO ROBLEDO

In consequence, it follows that if ξ ∈ Ik, then H(k, ξ) ∈ Dj for some j ∈ Z or
equivalently ξ ∈ G(k,Dj).
Step 2. We will prove that N(k, η) is constant for any η ∈ G(k,Λj).

Indeed η ∈ G(k,Λj) if and only if η = G(k, ξ) with ξ ∈ Λj . This fact combined
with Lemma 4.3 imply that

M(k, ξ) = N(k,G(k, ξ)) = N(k, η),

and as M(k, ξ) is locally constant in Λj , the property follows.

Step 3. We will prove that ξ 7→ H(k, ξ) is continuous with the possible exception
of the set Ik.

In fact, by using again Proposition 1 with η, η̃ ∈ G(k, Int Λj), we can deduce that

|H(k, η)−H(k, η̃)| = |Y (N(k, η), k, η)− Y (N(k, η), k, η̃)|θN(k,η)−k

≤ |η − η̃|(θe2L)|N(k,η)−k|,

thus the map η 7→ H(k, η) is Lipschitz on G(k, Int Λj).
As G(k,Λj) = G(k, Int Λj) ∪ G(k,Dj), we can deduce that the η 7→ H(k, η) is

continuous with the possible exception of the set Ik.
Step 4. We will show that Ik has Lebesgue measure zero.

By using (30), we only need to verify that G(k,Dj) has Lebesgue measure zero
for any j ∈ Z.

Notice that Dj can be seen as the limit of the sequence of sets Dnj defined by

Dnj =
{
ξ ∈ Rd \ {0} : |ξ| = θjrn, where 0 < rn < rn+1 < 1 and rn → 1

}
.

As ξ 7→ G(k, ξ) is Lipschitz in the interior of Λj and m(Dnj ) = 0 then the measure
of G(k,Dnj ) is zero. (See Theorem 3.33 from [25] and its details).

Now, note that G(k,Dj) can be seen that as the limit of the sequence of sets
En+1 ⊂ En defined by

En =

∞⋃
i=n

G(k,Dij)

and m(En) = 0 follows from the fact that the sets G(k,Dij) are pairwise disjoints.

Remark 8. A careful inspection of the map G shows that it can be seen as the
composition of a continuous function with a piecewise constant map. This fact
prompted us to consider the almost topological equivalence.

By considering g(n, y(n)) = 0 and following the lines of the above proof, we can
deduce the following result.

Corollary 1. The linear systems (4) and (14) are almost topologically equivalent.

5. Proof of Theorem 2.6. In order to verify that the systems (12) and (13) verify
assumption (Q1), we have the following Lemma

Lemma 5.1. Let us consider the system

y(n+ 1) = C(n){I +B(n)}y(n) + g(n, y(n)) (31)
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where C(n), B(n) are the same of the system (12) with δ <
b` − 1

b`
. If (P1)–(P3)

are satisfied with g ∈ F2 having Lipschitz constant Lg such that

0 < Lg < 1− b`(1 + δ), (32)

then there exist 0 < K(Lg) < 1 such that the solutions Y (n, n0, ξ) of (31) verifies

| Y (n, n0, ξ) |2≤ K(Lg)
n−m | Y (m,n0, ξ) |2 for anyn > m. (33)

Proof. Let w(n) =| Y (n, n0, ξ) |2, and recall (see Remark 3) that

|| C(n) ||< b` and || I +B(n) ||< 1 + δ.

Now, by using the Cauchy–Schwarz inequality combined of properties of g it is
easy to deduce that

w(n+ 1) ≤ K(Lg)w(n) with K(Lg) = b2`(1 + δ)2 + 2b`(1 + δ)Lg + L2
g.

We can see that 0 < K(Lg) < 1 when δ verifies (32) and we can prove by an
inductive approach that

w(n) ≤ K(Lg)
n−mw(m) for any n > m,

and the results follows.

Remark 9. An interesting feature of the above result is that the uniform asymp-
totic stability of (12) is preserved for any F2–perturbation whose Lipschitz constant
has an upper bound which is dependent of Σ(C[I +B]) = Σ(A).

It is easy to see that the systems (12)–(13) satisfy assumption (Q1) with the
constant K = b2`(1 + δ)2 + 2b`(1 + δ)Lf ||F || ||F−1|| + (Lf ||F || ||F−1||)2 and (15)
implies that 0 < K < 1.

The end of proof is now clear, indeed is a trivial consequence of Theorem 2.5
combined with the fact that (almost) topological equivalence is an equivalence re-
lation:

(i) As the systems (12) and (13) satisfies (Q1)–(Q2), Theorem 2.5 says that
are almost topologically equivalent.

(ii) By Theorem 1 from [6], the systems (1) and (12) are δ–kinematically similar
by a Lypaunov transformation F .

(iii) By using the same transformation F , the system (2) and (13) are topologically
equivalent.

(iv) By (ii) and (iii) we can deduce that the couples (1)–(12) and (2)-(13) are
topologically equivalent since the map ξ 7→ F−1(n, δ)ξ fulfils the properties
of topological equivalence.

Corollary 2. If the properties (P1)–(P2) and there exists a d × d matrix A0(n)
such that

||A0|| ≤
1− b`(1 + δ)

||F || ||F−1||
with δ <

1− b`
b`

, (34)

then the systems (12) and

y(n+ 1) = C(n)[I +B(n)]y(n) + F−1(n+ 1, δ)A0(n)F (n, δ)y(n) (35)

verify (Q1). In addition if (12) and (35) also verify (Q2), then (1) and

y(n+ 1) = A(n)y(n) +A0(n)y(n)

are almost topologically equivalent.
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6. Proof of Theorem 2.7. Firstly, by (17) we have that f ∈ F1 implies f0 ∈ F2.
As f and f0 have the same Lipschitz constant, the inequality (18) combined with
Theorem 2.6 imply that (12) and (16) verify (Q1).

As (Q2) is satisfied by Hypothesis, Theorem 2.6 says us that (1) and

u(n+ 1) = A(n)u(n) + f0(n, u(n)) (36)

are almost topologically equivalent. In consequence, the Theorem follows if we prove
that (36) is topologically equivalent to (2).

Let U(n, n0, ξ) be the unique solution of (36) passing through ξ at n = n0 (resp.
z(n, n0, ξ) be the unique solution of (2) passing through ξ at n = n0). Now, let
B = Z× Rd and define the functions P,Q : Z× Rd × B → Rd as

P (n, z, (n0, ξ)) = f(n, z + U(n, n0, ξ))− f0(n,U(n, n0, ξ))

= f(n, z + U(n, n0, ξ))− f(n,U(n, n0, ξ)) + f(n, 0).
(37)

and

Q(n, v, (n0, ξ)) = f0(n, v + z(n, n0, ξ))− f(n, z(n, n0, ξ))

= f(n, v + z(n, n0, ξ))− f(n, 0)− f(n, z(n, n0, ξ)).
(38)

It is easy to verify that

|P (n, z, (n0, ξ))| ≤ Lf |z|+D,

|Q(n, v, (n0, ξ))| ≤ Lf |v|+D,

|P (n, z, (n0, ξ))− P (n, z̃, (n0, ξ))| ≤ Lf |z − z̃|

|Q(n, z, (n0, ξ))−Q(n, z̃, (n0, ξ))| ≤ Lf |z − z̃|,

(39)

where D = sup {n ∈ Z : |f(n, 0)|}.
Notice that P and Q verifies the assumptions of Proposition 2, which implies

that the system

r(n+ 1) = A(n)r(n) + P (n, r(n), (n0, ξ)) (40)

has a unique bounded solution Z defined by

Z(n, (n0, ξ)) =

n−1∑
k=−∞

X(n,m+ 1){f(k, Z(k, (n0, ξ)) + U(k, n0, ξ))− f0(k, U(k, n0, ξ))}.

Similarly the system

r(n+ 1) = A(n)r(n) +Q(n, r(n), (n0, ξ)) (41)

has a unique bounded solution Z̃ defined by

Z̃(n, (n0, ξ)) =

n−1∑
k=−∞

X(n,m+1){f0(k, Z̃(k, (n0, ξ))+z(k, n0, ξ))−f(k, z(k, n0, ξ))}.

Now, let us construct the maps H,G : Z× Rd → Rd as:

H(n, ξ) = ξ + Z(n, (n, ξ)) and G(n, ξ) = ξ + Z̃(n, (n, ξ)). (42)

Lemma 6.1. For any (j, n) ∈ Z× Z and (n0, ξ) ∈ Z× Rd it follows that

Z(j, (n,U(n, n0, ξ))) = Z(j, (n0, ξ)). (43)
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Proof. Firstly, notice that

Z(j, (n,U(n, n0, ξ))) =

=

j−1∑
k=−∞

X(j,m+ 1)f(k, Z(k, (n,U(n, n0, ξ))) + U(k, n, U(n, n0, ξ)))

−
j−1∑

k=−∞

X(j,m+ 1)f0(k, U(k, n0, ξ))

=

j−1∑
k=−∞

X(j,m+ 1)f(k, Z(k, (n,U(n, n0, ξ)) + U(k, n0, ξ))

−
j−1∑

k=−∞

X(j,m+ 1)f0(k, U(k, n0, ξ))

and

Z(j, (n0, ξ)) =

j−1∑
k=−∞

X(j,m+1){f(k, Z(k, (n0, ξ))+U(k, n0, ξ))−f0(k, U(k, n0, ξ)).

Secondly, we have that

|Z(j, (n,U(n, n0, ξ)))− Z(j, (n0, ξ)) ≤

≤
j−1∑

k=−∞

Kρj−(m+1)Lf |Z(k, (n,U(n, n0, ξ)))− Z(k, (n0, ξ))|

≤ KLf
1− ρ

sup
k∈Z
|Z(k, (n,U(n, n0, ξ)))− Z(k, (n0, ξ))|

and the Lemma follows.

Lemma 6.2. If n 7→ U(n, n0, ξ) is solution of (36) passing throguh ξ at n = n0,
then n 7→ H(n,U(n, n0, ξ)) is solution of (2).

Proof. By using (42) combined with (43), we have that

H(n,U(n, n0, ξ)) = U(n, n0, ξ) + Z(n, (n0, ξ))

and the rest of the proof follows by a direct computation.

Lemma 6.3. The map ξ 7→ H(n, ξ) is continuous for any fixed n ∈ Z.

Proof. By (42), we only need to prove that the map ξ 7→ Z(n, (n, ξ)) is continuous
for any fixed n.

We will follow the lines of the proof of Theorem 1 from [7]. Indeed, let us recall
n 7→ Z(n, (n0, ξ)) is the unique bounded solution of (40), which was constructed by
successive approximations in Proposition 2. That is

lim
j→+∞

Zj(n, (n0, ξ)) = Z(n, (n0, ξ)),
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where

Zj+1(n, (n0, ξ)) =

n−1∑
k=−∞

X(n)X−1(k + 1)F (k, Zj(k, (n0, ξ)), (n0, ξ)).

In addition, it is important to emphasize that for any ε > 0, there exists a positive
integer κ ≥ ln(ρε)/ ln(ρ) with

ρε =
ε(1− ρ)ρ

12K(LfM0) +D
< 1 and M0 = sup{n ∈ Z , (k, ξ) ∈ Z×Rd : |Z(k, (n, ξ))|},

where M0 is well defined by Proposition 2. Now, we have

|Zj+1(n, (n, ξ))| ≤
n−κ∑
k=−∞

|X(n)X−1(k + 1)F (k, Zj(k, (n, ξ)), (n, ξ))|

≤
n−κ∑
k=−∞

Kn−(k+1)|LFM0 +D| < ε

12
.

In addition, we know that for any ε > 0, there exists J(ε) > 0 such that for any
j > J , it follows that

|Z(n, (n, ξ))− Z(n, (n, ξ′))| ≤ |Z(n, (n, ξ))− Zj(n, (n, ξ))|

+|Zj(n, (n, ξ))− Zj(n, (n, ξ′))|

+|Zj(n, (n, ξ′))− Z(n, (n, ξ))|

<
2

3
ε+ |Zj(n, (n, ξ))− Zj(n, (n, ξ′))|

We will prove by induction that for any j ∈ N, there exists δj > 0 such that

|Zj(n, (n, ξ))− Zj(n, (n, ξ′))| ≤
ε

3
if |ξ − ξ′| < δj . (44)

Indeed, let us consider an initial term

Z0(n, (n, ξ)) = Z0(n, (n, ξ)) = φ0 ∈ `∞

and suppose that (44) is verified for some j as inductive hipothesis. Now, we have
that

|Zj+1(n, (n, ξ))− Zj+1(n, (n, ξ))| ≤ ∆1 + ∆2

where

∆1 =

n−κ∑
k=−∞

X(n, k + 1) {F (k, Zj(k, (n, ξ)), (n, ξ))− F (k, Zj(k, (n, ξ)), (n, ξ
′))}

and

∆2 =
n−1∑

k=n−κ+1

X(n, k + 1)f(k, Zj(k, (n, ξ)) + U(k, n, ξ))

−
n−1∑

k=n−κ+1

X(n, k + 1)f(k, Zj(k, (n, ξ
′)) + U(k, n, ξ′))

+
n−1∑

k=n−κ+1

X(n, k + 1) {f0(k, U(k, n, ξ))− f0(k, U(k, n, ξ′))} .
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The inequality ρε < 1 implies that |∆1| < ε/6. On the other hand, by using
Gronwall’s discrete Lemma combined with inductive hypothesis we can deduce that

|∆2| ≤
n−1∑

k=n−κ+1

Kρn−(k+1)Lf |Zj(k, (n, ξ))− Zj(k, (n, ξ′)|

+
n−1∑

k=n−κ+1

Kρn−(k+1)(Lf + Lf0)|U(k, n, ξ))− U(k, n, ξ′))|

≤ ε

3

n−1∑
k=n−κ+1

Kρn−(k+1)Lf

+
n−1∑

k=n−κ+1

Kρn−(k+1)(Lf + Lf0)|ξ − ξ′| exp

(
n−1∑
i=k

(||A(i)− I||+ Lf0)

)

≤ ε

3
KLf

1− ρκ

1− ρ
+ |ξ − ξ′|Γ(n, κ),

where

Γ(n, κ) = max

{
[n− κ+ 1, n− 1] ∩ Z : exp

(
n−1∑
i=k

(||A(i)− I||+ Lf0)

)}
,

and (44) is verified for j + 1 when choosing δj+1 = min
{
δj ,
(

1
2 −

KLF

1−ρ

)
ε

6Γ(n,κ)

}
and the continuity of ξ 7→ Z(n, (n, ξ)) follows. Finally, H is continuous for any fixed
n.

The proof of the following results is similar to the previous ones,

Lemma 6.4. For any (j, n) ∈ Z× Z and (n0, ξ) ∈ Z× Rd it follows that

Z̃(j, (n, z(n, n0, ξ))) = Z̃(j, (n0, ξ)).

Lemma 6.5. If n 7→ z(n, n0, ξ) is solution of (2) passing throguh ξ at n = n0, then
n 7→ G(n, z(n, n0, ξ)) is solution of (36).

Lemma 6.6. The map ξ 7→ G(n, ξ) is continuous for any fixed n ∈ Z.

By summarizing all this Lemmas, we easily conclude that the systems (2) and (36)
are topologically equivalents. As (1) and (36) are almost topologically equivalent
by Theorem 2.6, the result follows.
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