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1. INTRODUCTION 

Consider the systems 

and 

Y’ = A(~)Y + W,Y), t 1 0, y E R” (1.1) 

x’ = A(T)x. (1.2) 

The problem of asymptotic equivalence between two systems of ordinary differential 
equations has been studied by many authors [l-5]. It was first used by Levinson in his theorem 
on asymptotic integration [6, 71. In [l , 51, this problem is studied when system (1.2) is stable, 
A(t) is constant and G(t,y) = B(t) is integrable. In [3, theorems 5, 111, it is assumed that the 
linear system (1.2) has an ordinary dichotomy and the nonlinear term G(t, y) is Lipschitz con- 
tinuous. In [2], the previous results are extended to nonlinear perturbations G(t,y) which are 
not Lipschitz continuous, such that ]G(t, y)l I r(t, y), where r(t, y) is monotone in y. We 
emphasize that in all these works only the asymptotic equivalence between bounded solutions 
is established. Nothing is said about a possible correspondence between unbounded solutions of 
(1.1) and (1.2). 

In this paper we suppose that the nonlinear term G(t, y) satisfies some integrability conditions 
that we summarize in hypothesis (H2). These conditions permit one to consider systems with 
large nonlinearities, for example, equations where G(t, y) is an oscillatory function of the varia- 
ble y. No Lipschitz conditions or monotonicity properties are required of G(t, y). However, we 
will use dichotomic properties of system (1.2). 

Definition 1. Let h, k: [0, 00) 4 (0, 00) be two continuous functions. We will say that system 
(1.2) has an (h, k)-dichotomy if there exist a fundamental matrix Q(t) of (1.2), a positive con- 
stant K and two projection matrices P+ and P_ such that P+ + P_ = Z (the identity matrix) and 

Iqt)P+m-‘(s)l I Kh(t)h(.s-1, for t 2 s 1 0 (1.3) 

I@(t)P_@(s)l I Kk(t)-‘k(s), for s 1 t 1 0. (1.4) 
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(The notation h(t)-’ will stand for the reciprocal function of h(t).) 
This concept was introduced in [S]. It includes simultaneously many interesting cases 

including systems with exponential or ordinary dichotomies, and diagonal systems which satisfy 
Levinson’s dichotomic conditions. This is to say that the concept of (h, @-dichotomy has a 
great generality 191. 

Pinto [S] has established a correspondence between both the bounded and the unbounded 
solutions of (1.1) and (1.2) under a global Lipschitz condition for G(t, x) 

IG(t,x) - G&y)1 5 A(t)lx - ~1 with A E L’ 

when the linear system (1.2) has an (h, k)-dichotomy. We will continue this line of investigation 
for more general nonlinear functions G(t, y). 

In this work we obtain the representation of solutions of (1.1) in terms of the solutions of 
equation (1.2). In theorem 1, we establish the asymptotic equivalence between “/z-bounded” 
solutions y, of (1.1) and x, of (1.2) and also between “k-r-bounded” solutions y- of (1.1) and 
x_ of (1.2). These are of the form 

Y,(l) = x, + Ut)o(l) 

h+(t) = h(l), h-(t) = k(t)-‘. 

We then present many applications of theorem 1. As a final example, we study the 

asymptotic integration of the second order system 

U’ = -t-‘u + 1,Q)v + &(t)UU, tll 

U’ = t-‘v + p,(t)24 + pu,(t)uu. 

2. SPACES, NORMS, OPERATORS, AND HYPOTHESES 

Referring to (1.3) and (1.4), we define 

for 0 5 s 5 t 

r(t, s) i 

cD(t)P+w’(.s) 

:= -aqt)ew’(s) for 0 5 t 5 s. 
(2.1) 

We will use the following notation 

h+(t) := h(t), h-(t) := k(t)-‘, 

llfll := (yp(t)19 t, 1 0, 

IIA := IPG’YII and 

G,(t,) := lv E C([&J, a), R”): Ilh;‘yll < al. 

We will consider C+(to) as a topological vector space with respect to the family of seminorms 
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For a functionfdefined on [0, 00) we writef E C,(t,) if the restriction off to [to, 00) belongs 

to C&). We denote by C,(t,, p) the set of functions f of C,(t,) with llfll+ 5 p. 
Taking x, E C+(t,) or x_ E C_(t,), we construct the two operators T, given by 

s 

m 

T+(Y)(~) := x,(t) + I@, s)G(s, Y(S)) d.s, t2 to. (2.2) 
Gl 

We emphasize that the operators T, depend on Ti on t,. In our paper the main results will 
depend on the following hypotheses: 

(Hl) system (1.2) has an (h, @-dichotomy given by (1.3) and (1.4). 
(H2) There exists a p > 0 such that G satisfies the inequality 

lG(t,y)I 5 r(t,y)lyl, (&Y) E 10, 00) x R”, 

for a real function r(t, y) defined for t 1 to and y E R", where we define 

such that 

m*(t) := ,pp’f9 uox)l 

s 

m 

o*(tLl* P) = m,(s) CL9 < 43. 
to 

(2.3) 

Note. In cases (see the example given in the last section) where we have the commutation 

and 

G(~,Y) = R(~,Y)Y, (2.4) 

for a matrix function R(t,y), in place of (2.3) it is better to define 

m*(t) := sup(!J’JW, W)x)~; 1x1 5 ~1. (2.5) 

We emphasize the dependence of m, on p. 
(H3) h(t)k(t)h(s)-‘k(s)-’ I C, for t 2 s 1 0, C 2 1, where C is a constant. 

(H4) lim,,, h,(t)-‘laq)P+ I = 0. 

3. CORRESPONDENCE OF BOUNDED AND UNBOUNDED MANIFOLDS 

In this section we will prove the existence of fixed points for the operators T+. 

LEMMA 1. Let (0, to) satisfy 

(3.1) 

Under hypotheses (Hl)-(H3) for x, E C+(t,,, a), it follows that 
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Proof. From (2.2) and (3.1) we have 

‘m 

I o + pCK 
\ 

m+(s) ds 5 P. 
< *o 

LEMMA 2. Under the conditions of lemma 1, the operators T+: C+(t,, , p) + C,(t,, p) are con- 
tinuous in the following sense: if (y,)z= , is a sequence converging to y, in C+(to, p), then for 
any interval [to, T] the sequence (h;‘Ty,)T= 1 converges uniformly on [to, T]. 

Proof. Let y, + y in C+(t,,, p) and let 1 E [to, T]. Then because of the continuity of the 
function h, on [to, T], for any T > 0 we have 

lim sup ly,(t) - yO(t)l = 0. (3.2) 
n-m 1*o,u 

Given a fixed E > 0 there exists a number T, such that for T, 2 T L t 2 t,: y E C,(t,, p) 

implies 

K h+(t)-‘k(t)-‘k(s)lG(s, y(s))1 ds I E. (3.3) 

Then for t E [0, T] and y E C,(t,, p) we obtain 

h+(t)-‘1 T,(_)+,)(t) - T+(y,)(t)l 

c t I K/z,(t)-’ h(t )Ms)- ’ 1 G(s, Y,(S)) - G(s, Y, 6)) 1 ds 
.I to 

‘cc 

+ K/z,(t)-’ 
/ 

k(t)-‘4s)IG(s, Y,(S)) - G(s, Y,W ds 
I * 

I K&(t)-’ 
1 

T IG(s, Y&)) - G(s, Y,(s))~ ds 
< *a 

1 

To 
+ Kh,(t)-’ k(t)-‘MdG(s, y,(4) - G(s, Y,(s))~ ds 

I *o 
‘m 

+ Kh,(t)-’ 
/ 

W~‘W)IG(~, Y,(S)) - G(s, Y,W b. 
c To 

The first two integrals tend to zero as n + 00 by (3.2). The third integral is less than 2~ 

because of (3.3). 
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LEMMA 3. Under the conditions of lemma 1, each of the operators T,: C,(t,, p) -+ C,(t,, p) 
has a fixed point. 

Proof. We will verify the validity of the hypotheses of the Schauder-Tijonov fixed point 
theorem as given in [3]. Lemma 2 says that each of the operators T, is continuous. It remains 

to prove that the sequence (h;'T,(y,): y,, E C+(t,, , p))T=, is equicontinuous at each point 
t E [to, w), that is, for E > 0 and s fixed, there exists a(&, s) > 0 such that It - s[ < 6 implies 

I~&)-‘T,(Y,)W - ~&)-‘T,(Y,)W~ < E for all n. 

For s < t c 6 we have 

~,W’T,(Y,)W - UC’T,(Y,)(~ 5 1, 

1, := h@-‘l UY#) - T,(Y,)(@\ 1 

4 := IW-’ - U%‘Ikd~,)(d. 

From the continuity of h, at t we have 

z* I pll - h*(s)h*(t)-‘1 < E 

for small 6. In order to estimate Z, , we have 

T,(Y&) - T,(Y&) 

r rs r- 

+ 12, 

= (a(t) - aqs))P+W1(u) - 
J 

(a(t) - aqs))P_W1(u) 
fo s 

f f 
+ 
s 
aq)P+W'(u) + 

i 
@(t)P_W'(u) G(u,y,(u))du 

s s 1 
= [S s (aq)a+(.s) - Z)aqs)P+W1(u) - 

s 

00 
p(t)w'(s) - Z)cp(s)P_W'(u) 

+i' 1 
s 

t 

WP-‘(~) G@, Y,(U)) du. 
s 

If 6 is small then [~(t)@-‘(s) - II I E. Then we obtain 

s lz,l 5 &KZz*(t)-’ 
[i f0 

WW-’ + 1: *(s)lW] . m,Wb,04I du 

+ 

is 

t IWW’WI h,(u)m,(u)lh,(u)-‘v,(u)l du 
s 1 

5 wC~~*(t)-‘[h+(4 + u~)lIl~*llL~ + Ph*W’ 
s 

’ l~(t)~-‘(u)lh,(u)m.(u) du, 
s 

from which lemma 3 follows. 
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According to (2.1), the fixed points y, found in lemma 3 can be expressed in the form 

u,(t) = x*(t) + Q(t)P+u,(t) + @(t)eu,(t), 

u,(t) := 
I 

&I 

~+@-1(dg(~9 Y,(d) b, 
c 10 

u,(t) := p-w ‘(ha Y,(S)) ds. 

LEMMA 4. If (Hl)-(H3) are fulfilled then 

Q(t)eU* = h,(t)o(l), o(1) = o(~~mM.s) 

and if, in addition, (H4) holds then 

Y+ = x, + h,. o(1) ast+co. 

Proof. First, we prove that 

lim h,(t)-‘@(t)P_v,(t) = 0. 
*+co 

From the estimate 

we have 

~@(t)P-~&)~ 5 K 
i 

- h_(t)-‘h_(s)-‘h,(s)m,(s)lh,(s)-‘y,(s)l h 
f 

‘co 
/h,(t)-‘@(t>P-u,(t)1 I pCK 

! 
m,(s) ds + 0 ast+co. 

.I 

We have only to prove that Q(t)P+u,(t) = h,(t)o(l) if (H4) holds. Let (t,)T= 1 be any 
sequence of real numbers such that lim,,, t, = 00. We define the sequence of functions 

f,(s) := h,(t,)-‘~(t,)P+~-‘(s)G(s,y,(s)), if t, 5 s 5 t,, 

and f,(s) := 0, if s > t,. We have that If,(s)/ I pCKm,(.s), and by virtue of (H4) 
lim n_m f,,(s) = 0 for any fixed s. By the dominated convergence theorem we have that 

n_m -f,(s) b = 0. lim 
s Gl 

Since 

s 

m 
f,(.s)d.s= f” 

5 
h+(t,)-‘~(t,)P+~-‘(s)G(s, y,(s)) h, 

kl fo 
then 

lim h,(t)-‘@(t)P+ W’(s)G(s, y*(s)) ds = 0. 
*+m 

We establish now our main result. 
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THEOREM 1. Let (cr, to) satisfy (3.1). If system (1.1) satisfies (Hl)-(H3) then for any solution 
x, E C&,, a) of (1.2), there exists a solution Y, E C,(t,, p) of (1.1) such that 

IIY, - X,ll& 5 P - 0. (3.4) 
If, in addition, (H4) holds, then 

Y,(f) = x,(t) + h*U)o(l), t I to I 0. (3.5) 

Conversely, for any solution Y& E C,(t,, p) of (1. l), if (to, p) satisfies (3.1) then there exist 
solutions x, E C,(t,,p), of (1.2) satisfying (3.4). Moreover, if (H4) is satisfied, then (3.5) 
holds. 

Proof. Let to = t,(p) be the number obtained in lemma 1. By lemma 3, for x, E C+(t,, , p), 
we know that the operator T,: C&, p) -+ C,(t,, p) has a fixed point Y,(t) satisfying the 
integral equation 

u*(t) = x,(t) + 
s 

m Vt, s)G(s, Y,(s)) b, II: to. 
to 

It is easy to see that these functions are solutions of equation (1 .I). As in lemma 1, we 
estimate h,(t)-‘(y,(t) - x,(t)) = h,(t)-’ jz r(t, s)G(s, y(s)) ds and, taking into account the 
definition (3.1) of t,, we obtain l/r,(t)-‘(y,(t) - x,(t))/ 5 p. Formula (3.5) follows from 
lemma 4. 

The converse part of the theorem is immediate since for any solution Y& E C&t,, , p), the 
function x, defined by 

x,(t) = Y*(l) - 
s 

a. 
r(t, s)G(s, Y,(s)) ds 

to 

is a solution of (1.2) and satisfies (3.4) and (3.5). 
We remark that theorem 1 can be adapted in an obvious way for a local function 

G: [0, 00) x Q -+ R”, where Q is an open subset of R”. 

4. DICHOTOMIC CHARACTER OF SOLUTIONS yk 

For a system of differential equations 

U’ = f@, u), t 2 0, u E R” (4.1) 

we say that the set C = {(t, u); t 2 0, u E R”) is an integral manifold of (4.1) if 
(to, uO) E Z implies that the solution u(t) of (4.1), with initial condition u(t,) = 3u, satisfies 
(t, u(t)) E E for all t 2 0. System (1.2) with the properties (1.3) and (1.4) has the integral 
manifold Z+ = ((t, @(t)P,@-‘(t)u); t 2 0, u E R”]. For a function x(r): [0, 00) -+ R” we define 
the distance from x(t) to Z+ as 

&(x(t)) = inffh,(t)-‘)x(t) - ul; (t, U) E X,1. 

With these definitions we have the following theorems. 

THEOREM 2. If hypotheses (Hl)-(H4) hold then the solutions y,(t) of system (1.1) given by 
theorem 1 satisfy 

d*(Y&)) = o(1). 
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The proof follows immediately from the definition of &(x(t)) and from the asymptotic 
formulae (3.5). 

This last theorem says that the conditions that we have imposed on system (1.1) imply that 
the integral manifolds C, are asymptotic integral manifolds for system (1.1). The following 
question arises: can we infer the existence of integral manifolds for the nonlinear equation 
(l.l)? Investigation into this question is the subject of the author’s current research (see [lo]). 

5. APPLICATIONS 

5.1. Equations with convergent solutions 

Let us consider the ordinary differential equation 

Y’ = G(t,y)> trO,yER”, IYI <PO. (S.1) 

We study the following question: under what conditions can we ensure the existence of a 
neighborhood B(0, v) of y = 0, such that for any initial condition y, in this neighborhood the 
solution y(t, I,, yo) is defined and 

lim N, to, yo) = r (5.2) 
l+m 

exists? Conversely, given r E B(0, v) does there exist a solution y of (5.1) satisfying (5.2)? 
Theorem 1 gives conditions under which this result is valid when v = p < pO. Consider the 

system (5.1) as a perturbation of the system 

x’ = 0. (5.3) 

We can suppose that the system (5.3) satisfies (1.3)-(1.4) for P+ = 0, h(t) = 1, k(t) = 1, 
K = 1. We assume that the function G(t, y) can be majorized by a scalar function r(t, y)] yj 

IG(t, y)l 5 r(t, y)lyl, 

and that 

mp(t) = ,;&r(‘. u)l E L’]O? =J). 

According to theorem 1, if 

i 

m 

o+p m,(s) d.s 5 P, Ora<p<p, (5.4) 
10 

then for any x0, Ix,\ _ -G o, a solution y = y(t) of (5.1) can be defined on [to, m), such that 

(y(t) - x0( s p - IS and 

Y(t) =x0 + o(~~,wds). (5.5) 

The converse is also true: if y(t) is a solution of (5.1) with ly(t)( 5 p and if (to, a) satisfies 
(5.4), then there exists x0, Ix,] _ -= cr, such that (y(t) - x0( 5 p - (7, and y(t) satisfies (5.5). 

The inequality (5.4) establishes a dependence between to, CT and p. In general it will satisfy for 

large values of t,. This inequality is necessary for our result; in the concrete example 

y’ = y2/t2, 
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we observe that j(t) = t is a solution of this equation whose initial condition y(to) = t,, I p 
does not satisfy inequality (5.4) for any pair of positive numbers to and CJ. 

5.2. Asymptotic equivalence 

We want to compare our results with those of [2, 31. Although a more general nonlinear term 
could be considered, we shall work with the system 

Y’ = A(t)y + ~(M_v)r, t > 0, y E R” (5.6) 

where A(t) is a matrix with L’ coefficients and the functionf(y) is a bounded function on R”. 

With this condition hypothesis (H2) is fulfilled with 

m&) = IU)l SuplIf(x)/; x E R”1. 

We will apply theorem 1 to three homogeneous systems. 
(I) Let us consider system (1.2) with the matrix 

A(t) = -:, ; 
( > 

and let 

P= 
1 0 

( > 0 0’ 
h(t) = e--Or’, O<cY<l, k(t) = e-‘. 

The homogeneous system (1.2) has the h-bounded solution 

x(t) = e-’ 
1 0 0 ’ 

and the k-i-bounded solution 

x(t) = er 
0 0 1 . 

It is easy to verify that the hypotheses of theorem 1 are satisfied. Therefore, system (5.6) has 
solutions of the form 

y+(t) = < i e-’ + e-“‘o(l), 
0 

O<cr<l 

y-(t) = r ; 
0 

e* + e’o(1). 

This is a much more precise result than the one given by theorem 5.11 in [3], because the latter 
does not treat unbounded solutions. Neither can this result be obtained from [2]. We further 
note that we have not imposed a monotonicity condition on f(y). 

(II) Let us consider now system (1.2) with the matrix 

A(t) = (5.7) 
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We define h(t) = e-et, 0 < CY < 1, k(t) = e-’ and 

(5.8) 

In this case, we have the following asymptotic correspondence between systems (1.2) and (5.6) 

and 

(5.9) 

(5.10) 

In this case we are not able to relate the solutions 

0 

x(t) = r 0 e2’ 

0 1 

(5.11) 

with solutions of system (5.6), because x(t) is not km’-bounded. Nevertheless, we can consider 
the system (1.2) with the same matrix (5.7) where instead of the projection matrix (5.8) we use 

I (5.12) 

with h(t) = ePr, /I > 1, and k(t) = ee21. In this case, the following correspondences are 
obtained 

1 

y+(t) = < 0 e-’ + e”‘o(1) 

0 0 

(5.13) 

0 

y+(t) = ( 1 e’ + e”‘o(1) 0 0 

(5.14) 

and 

(5.15) 

Correspondences (5.13) and (5.14) are not of great interest because (5.9) and (5.10) are more 
precise asymptotic correspondences. But correspondence (5.15) says that the unbounded 
solutions (5.11) correspond to unbounded solution of system (5.6). Grouping (5.13)-(5.15), we 
obtain a complete asymptotic correspondence between solutions of (1.2) and (5.6). 
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(III) Let us now consider system (1.2) with the matrix 

A(t) = :, ; . ( > 
The importance of this example is that no solution of this equation is bounded. Let 

P= 
1 0 ( > 0 0 

and /z(t) = eat, a! > 1, k(t) = em**. In this case the following correspondences are obtained 

v+(t) = et :, 0 e’ + e”‘o(l) CY<l 

Y-0) = r ; 
0 

ezt + e”o(l). 

6. AN EXAMPLE 

We consider the nonautonomous system 

U’ = -t-k + A,(t)u + l,(t)uu, tr1 

u’ = t-‘v + ,ffl(l)U + &(l)UU, 

with measurable coefficients lj, pi, i = 1,2, as a perturbation of the linear equation 

u’ = -_t-‘u 

u’ = t-‘r) 

whose fundamental matrix is given by 

Q(1) = ‘0’ y , ( > t2 1. 

We consider 

1 0 
p+= 0 o’ ( > P_ =I-P,. 

Thus, we have (1.3) and (1.4) with K = 1 and h(t) = tdu, a < 1, k(t) = t-‘. 
In this example the perturbation term in (6.1) can be written in the form 

G(t, u, u) = W, u, v) R(t,u,v) = c’; p:u). 

(6.1) 

Since P,@(t) = @(t)P,, hypothesis (H2) can be expressed in the form (2.4) and (2.5) 

m+(t) := st$J’+R(‘, h(t)x)l = k(t)1 + It-*&(t)lp 

m-(t) := ,;;1JbiJ’-R(t, k(t)t-‘x)1 = k#)l + ltpz(t)lp 
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for some p > 0. That m+(t) E L’ follows from 1,) (t), t-*&(t) E L’ and that m_(t) E L’ 
follows from ,ul, tp(, E L’. If hypothesis (H2) is used in the form (2.3) then m+(t) E L’ if L1, p, , 

tMaA2, teap2 EL’ and m_(t) EL’ if A,, pI, tA,, t& EL’. For this last set of conditions we 
observe that there is an additional restriction that r& E L’. This example shows that hypothesis 
(H2) in the form (2.5) is less restrictive on the coefficients than condition (2.3). 

Hypothesis (H3) is satisfied with C = 1. 
According to theorem 1 we can conclude: given 1,) ,u, , t-“A,, tpz E L’[O, co), then for p > 0 

and t, satisfying 

a+pmax 
[.r 

m(ln,(s)l + ls-“W)lP)~9 m(l&(4 + lWz(4lP)~ 5 P 
4J !; *0 1 

and any I<( 5 CJ, r E R, system (6.1) has the solutions y+(t) and y_(t) such that It”y+(t)[ 5 p, 

It- I r_(t)\ _( p for t 1 to and 

1. 
2. 

3. 
4. 

5. 
6. 

I. 
8. 
9. 

10. 

y_(t) = t-‘(te, + t’-“o(l)), e, = A , 0 ItI c: 0, t> t,, 

Y-(t) = t(&2 + o(l)), e2 = (f , 0 kl 5 0, t 1 to. 
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