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1. INTRODUCTION 

IN THIS paper we are concerned with the existence and multiplicity of T-periodic solutions for 
the nonlinear ordinary differential equation 

(&(U’))’ + At9 u) = 0, (1.1) 

where +P: lR + IR is given by &(s) = IslP-%, p > 1, and f: R x IR + R is continuous and 
T-periodic in t, T > 0. (‘) denotes d/dt. 

By a solution of (1 .l) in an interval Z c R we mean a function U: Z + R such that u and 
&,((u’) are continuously differentiable on Z and satisfy (1.1). 

We note that when p = 2, the nonlinear operator &,(u’)’ reduces to the linear operator u”. 
In Section 2 we will define the Fucik spectrum for the operator &(u’)’ under T-periodic 

conditions and briefly study some of its properties. We denote this spectrum by S. We will see 
that S = Uz= o C,, where 

C,=((01,/?)~R~\(~=Oorfi=O) 

and for k E N, C, is the curve in the first quadrant given by 

(1.2) 

(1.3) 

(I .4) 
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The results of Sections 4 and 5 will be formulated in terms of the interaction of the 
nonlinearity f with S. 

In Section 4 we will prove that if for s > 0 sufficiently large and for all t E R, the pair 

.I-@, -4 “et, 4 ( ~- 
+p C--s) ’ &I (4 > 

(1.5) 

lies either in a closed rectangle included in the open region bounded by C, and C,,, , for some 
k E (01 U M , or in the open third quadrant, then (1.1) possesses at least one T-periodic solution. 

This result is related with that of [2], for p = 2, and extends to the periodic case that of [I] 
obtained for the Dirichlet boundary value problem. 

In Section 5 we let f(t, 0) = 0, for all t E R, and look for nontrivial T-periodic solutions of 
(1.1). To describe our result let U, , V, denote the two open components of R’\C, , k E N, and 
let i, j E N be such that i I j. Under certain additional conditions on f which imply that for 
small positive s and all t E R the pair (1.5) stays in a closed rectangle contained in Ui , (5) and 
that for large positive s and all t E R the pair (1.5) stays in a closed rectangle contained in 
I$, (Ui), we will prove that (1 .l) has at least 2(j - i + 1) nontrivial T-periodic solutions. 

The above result roughly says that if the pair (1.5) crosses n curves C,, k E N, as s increases 
from 0 to 00, then there will be at least 2n nontrivial T-periodic solutions of (1.1). 

The proof of the results of Section 4 will make use of degree theory and those of Section 5 
of the Poincare-Birkhoff theorem as stated, for instance, in [5]. We remark that the results of 
both sections depend heavily on a Sturmian comparison result which will be proved in 
Section 3. 

2. REVIEW OF THE FUCIK SPECTRUM FOR &,(u’)’ 

We define the Fucik spectrum for r#+,(u’)’ under T-periodic conditions to be the set S 
consisting of all the pairs (o, p) E lR2 such that the equation 

(&@‘))’ + &(u+) - &JJ(u-) = 0 (2.1) 

possesses nontrivial T-periodic solutions. 
Integrating (2.1) from 0 to T we obtain immediately that a necessary condition on (a, p) 

for (2.1) to have a nontrivial T-periodic solution is that (Y and /3 be nonnegative. It is also 
elementary to observe that C,, is the unique subset of S associated with nonnull constant 
solutions of (2.1). Thus, we can assume cy and p positive in the rest of this section, 

Let us consider the initial value problem 

(6p(rJ))’ + tip(u) = 0 (2.2) 

u(0) = 0, u’(0) = 1. (2.3) 

As in [5], we denote by sin, t the unique solution, defined in the whole real line, to the above 
initial value problem. We have that sin, t is a 2rrp-periodic solution which vanishes at t = knp, 
k E Z. 

Let us define wO: [0, ;~cp(cy~i’~ + P-““)I -+ R by 

w,(t) = 

p-l/P sin, j31’pt if t E [0, 7cpj?-1’p) 

- a”-“P sin, a”P(t - sp-“P) if t l [npP-“P, np(a-l’p + p-l’p)]. 
(2.4) 
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Clearly, w,, can be extended to a C’ z,,(K”~ + P-l’P)-periodic function w: R -+ R, which 
solves (2.1)-(2.3) on the whole real line. From proposition A2 in the Appendix we have that w 
is in fact the unique solution to this initial value problem. Furthermore w will be T-periodic if 
and only if, for some k E N, 

Q&Y-“~ + p-“P) = T, (2.5) 

i.e. if and only if (a, fi) E C,, k E LJ. 
We thus have the following proposition. 

PROPOSITION 2.1. Equation (2.1) possesses a 
(a, p) E C, for some k E {O) U N. 

nontrivial T-periodic solution if and only if 

Proof. We only have to show that if for (Y > 0, fi > 0 there is a nontrivial T-periodic solution 
u of (2.1), then (a, /3) E C, for some k E R\l. So let U: R -+ IR be such a T-periodic solution. 
Integrating (2.1) from 0 to T, we obtain that there must be a t, E [0, T] such that u(t,) = 0. 
Since (2.1) is an autonomous equation, uniqueness of the initial value problem for (2.1) yields 
that u(t) = dw(t - to) for some constant d # 0. Thus w(t - to) is T-periodic and hence 
(CY, p) E C, , for some k E N. This finishes the proof of the proposition. n 

Note. In the particular case (Y = /3 = 1, equation (2.1) reduces to 

(~p(O + MQJW = 0. (2.6) 

From proposition 2.1, (2.6) possesses a nontrivial solution if and only if A = A,, , where 

1, = n=0,1,2,3 ,.... (2.7) 

In this case we say that A,, is an eigenvalue of (2.6). 

3. A STURMIAN COMPARISON RESULT 

Let us consider the equation 

(&(n’)) + 404#‘) - a(t)@p(n-) = 0 

where t E [0, T] and a, b E L-(0, T). 

(3.1) 

By a solution of this equation we mean a function u E C’[O, T] such that &(u’) is absolutely 
continuous in [0, T] and satisfies (3.1) a.e. in (0, T). 

The argument in proposition A2 of the Appendix implies uniqueness for the initial value 
problem associated to (3.1). In particular the zeros of any nontrivial solution of (3.1) must be 
simple, so that the following definition makes sense. 

Definition 3.1. Let u be a nontrivial solution of (3.1) and let k denote the number of zeros of 
u in (0, T) (k may be zero). We define the rotation of u in [0, T] as 

q(u) = kn - ,‘i_y+ arctan G (T - E) - arctan : (E) . 
> 

(3.2) 

Geometrically, q(u) can be interpreted as the total angle the vector (u(t), u’(t)) describes in the 
(u, u’) plane as t goes from 0 to T. Positive rotations are defined to be clockwise. 
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Note. Sometimes we will write q(u(cy, j?)) to explicitly show the dependency of the rotation on 
the initial conditions (a, /3) of U. 

Next we will prove a Sturm-type comparison theorem for equations of the form (3.1). 

THEOREM 3.2. Let a, si, _b, 6 E L-(0, 7’) be such that 

_a<b and 2i < I;, a.e. in (0, 7). 

Let u and u be respectively nontrivial solutions of 

(&(u’)) + a(t)6p((U+) - _a(+#$(~-) = 0 

(&(u’))’ + 6(06j#‘) - _b(t)&(u-) = 0. 

If u(0) = u(0) and u’(0) = u’(O), then 

rl(u) < q(u). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Proof. We do the proof for the case u has zeros in (0, T). Thus let t, < t2 c e-a c tk denote 
the zeros of u and si < s2 < ... < sI the zeros of u in the interval (0, T). 

We show first that si < t, . We do this by contradiction, i.e. we assume si r t, . Without loss 
of generality we can take u(t) > 0, u(t) > 0, t E (0, tl). 

Setting w,(t) = &,((u’(t))/(u(t))), wb(t) = &((u’(t))/(u(t))) t E (0, tl), from (3.4) and (3.5) 
it fOllOWS that w, and wb reSpeCtiVely Satisfy 

w,: + (p - l)lw,l@ + n(t) = 0 (3.7) 

w;, + (p - l)lw,lp’ + 6(t) = 0, (3.8) 

t E (0, tl). From here, letting z(t) = (Wb(t) - W,(t)) and h(t) = pj~f#$@W,(t) + (1 - S)wb(t)) d.Y, 
we have that z satisfies 

z’ + h(t)z = (a(t) - 6(t)) < 0 a.e. in (0, tl). (3.9) 

Equation (3.9) implies that there must exist a t* E (0, tl) such that z(t*) # 0. Suppose first that 
z(t*) > 0. From (3.9) it follows that z(t) > 0 for all t E (0, t*). The definition of h(t) then yields 
h(t) > p#+,(w,(t)) = p@‘(t))/@(t)) for all t E (0, t*). Substituting this inequality in (3.9) and 
multiplying the resultant expression by Up(t) we obtain that 

(24Wz(t))’ < 0. (3.10) 

Integrating this expression from 0 to t* and using the fact that limt,,+ UP(t)z(t) = 0 we find 
that @(t*)z(t*) < 0, which is impossible. Thus, let us suppose that z(t*) < 0. Again from (3.9) 
we obtain that z(t) < 0 for all t E (t*, tl). Reasoning as above and using the fact that 
lim,, [, d’(t)z(t) = 0 we find that -UP(t*)z(t*) > 0, which is again impossible. Thus we have 
that the assumption si 1 t, leads to a contradiction and therefore we must have s1 < t,. 

Next, from a Sturm comparison theorem for equations of the form 

(4pW))’ + 4fMp(X) = 0, 

see [3], it follows that u must vanish in each of the intervals (ti, ti+l), i = 1, . . . , k - 1. This 
showsthatkIIandthatsir tifori= l,...,k. 
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Now we continue with the proof of the theorem. We set for convenience s0 = to = 0. From 
the distribution property of the zeros of u and v we have just proved, we obtain that 

q(u) - q(u) = (I - k)n + lim 
&-+Of ( 

arctan z (T - E) - arctan z (T - E) 
> 

. (3.11) 

If 1 > k, (3.6) follows from (3.11) and the fact that the second term on the right-hand side of 
(3.11) must be greater than --71. Thus we suppose that k = I. In this case u and u have the same 
sign, say the positive sign, in the interval (t,, T]. Defining z(i) as above and reasoning as before, 
it is easy to see that 

lim zP(t)z(t) = 0 
1-t: 

(3.12) 

and hence that z(t) I 0 for all t E (tr, T). From the definition of z,(t) we then obtain 

V(U) - V(U) 2 0. 

Now, q(u) = q(u) implies that lim,,, Liz = 0 and this in turn that z(t) 2 0, for all 
t E (tr, T]. As before, we obtain a contradiction and thus (3.6) follows. n 

Note. If ((Y, /3) E C, and u is a nontrivial T-periodic solution of (2.1) then 

q(u) = 2nk. 

4. AT LEAST ONE T-PERIODIC SOLUTION OF (1.1) 

In this section we will prove the following theorem. 

THEOREM 4.1. Suppose there are real numbers CY+, (Y-, /P, /3- and s0 > 0 such that for all s > so 
and for all t E R we have 

(4.1) 

and that at least one of the following alternatives holds true: 

(i) CG > 0 p’ > 0 

and for some k E iN 

(4.2) 

T 

(k + l)n, < (o ) 
+ -l/P + (p+)yP 5 (a-)-‘/P + (p-)-‘/P < $; 

P 

(4.3) 

(ii) QJf > 0, p’ > 0 and $ < (cr+)-“p + (p-)-l/p; (4.4) 

(iii) 01+ < 0 and p+ < 0. (4.5) 

Then (1.1) possesses at least one T-periodic solution. 
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Geometrically, the hypotheses of theorem 4.1 imply that the closed rectangle [a-, (~‘1 x 
[p-,/I’] does not intercept the Fucik spectrum and is included in either the first or the third 
quadrant. We observe that if this rectangle is included in either the second or the fourth 
quadrant, then a T-periodic solution of (1.1) may not exist, as the examples 

($p((u’))’ - Iz.#-i - 1 = 0 
and 

(&((u’))’ + Iz#-l + 1 = 0 

respectively show. (Just integrate along a period.) 
In order to prove this theorem we need some lemmas. 

LEMMA 4.2. For each h E Lq(O, T), q > 1, the boundary value problem 

-(&(u’)) + &?((u) = h (4.6) 

U(0) = u(T) U’(0) = u’(T), (4.7) 

p > 1, has a unique solution R,(h) E C’[O, T]. Furthermore the operator Rp transforms weak 
convergency in Lq into strong convergency in C’[O, T]. 

The proof of this lemma is similar to one given in Section 2 of [5] and hence it will not be 
given here. 

As an immediate consequence of this lemma we obtain that the operator R, seen as an 
operator from C[O, T] into C’[O, T] is completely continuous. Thus the problem of searching 
for T-periodic solutions for (1 .l) is equivalent to finding solutions in C’[O, T] of the equation 

u = R,(&,((u) + F(u)) (4.8) 

where F: C’[O, T] --t C[O, T] is defined by F(u)(t) = f(t, u(t)). 
We note that the right-hand side of (4.8) defines a completely continuous operator from 

C’[O, T] into itself. 

LEMMA 4.3. Suppose that (CY, p) E lR’\S and CX/? > 0. Define the operator Ta,@: C’[O, T] -+ 

C’IO, Tl by 
T&u) = R,C#Q,,N + b#@+) - &,b-1). (4.9) 

Then, for each r > 0 the Leray Schauder degree d(Z - T,,,, B(0, r), 0) is well defined and 
different from zero. 

Proof. From the definition of Ta,p and proposition 2.1, it follows that the unique solution of 
the equation 

u - T,,,(u) = 0 (4.10) 

is the trivial one. Hence the above degree is well defined and independent of r. 
Next, since CY/~ > 0 there is a pair (1, A) E lR’\S and a continuous curve (o(7), /3(r)), 7 E [0, l] 

whose image is in lR’\S and is such that (a(O), p(0)) = ((11, p), (or(l), /3(l)) = (2, A). 
From the invariance property of the degree under compact homotopies it follows that the 

degree d(Z - &),8(r), B(0, r), 0) is constant for 7 E [0, 11. Also from (4.9) it follows that the 
operator T,,, is odd and thus from Borsuk’s theorem that d(Z - Tx,x, B(0, r), 0) # 0. Clearly 
this fact implies the lemma. n 

We can now prove theorem 4.1. 
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Proof of theorem 4.1. Let us set & = (Q- + p-)/2, j3 = (a’ + p+)/2 and consider the 
homotopy 

Q(7, u) = R,(&@) + (1 - 7)F(u) + 7@&,@+) - &,(u-))), (4.11) 

where u E C’[O, T] and 7 E [0, 11. We claim that there is an r > 0 such that for all r E [0, l] the 
equation 

u = Q(7, u) (4.12) 

does not have a solution u E C’[O, T] such that [lull 1 L r. Here and henceforth I( ])r denotes the 
usual norm in C’[O, T]. Assume this is not true. Then there exist sequences (u,)~= 1 in C’[O, T] 
and (T,)~=~ in [0, T] with IIu,IIr -+ 00, 7, -+ ;5 such that 

u, = Q(r, 9 u,). (4.13) 

Dividing both sides of (4.13) by ]Iu, )I 1 , noting that tRp(u) = Rp(tPmlu) for t > 0 and setting 
fi, = un/llu,(Il we obtain 

fi,, = R, r##,) + (1 - 7J* + 7, 
Il~,ll~-* 

(4.14) 

Now from the hypotheses on f it follows that the sequence h, = F(u,)/IJu,,II~-~ is bounded in 
CIO, T] and hence the argument of Rp in (4.14) is bounded in CIO, T]. Since Rp is a completely 
continuous operator we can assume, passing to a subsequence if necessary, that ti, --t ti in 
C’[O, T]. Moreover reasoning as in [2] or [4], we can also assume that h, - h in Lq where h is 
given by h(t) = a(t)&,((ti+) - b(t)$p((ti-) with 

(Y- I a(t) I cY+ p- I b(t) I p+ a.e. in [0, T]. (4.15) 

Letting n + 03 in (4.14) yields 

ti = R,(&((li) + ag5,(ti+) - &,((ti-)), (4.16) 

where a(t) = T& + (1 - T@(t) and b(t) = ~jl + (1 - t)b(t). 
From (4.15) we obtain that 

cy- 5 n(t) 5 a+ p- 5 E(t) I p+ a.e. in [0, T] (4.17) 

and from (4.16) that ti satisfies 

(&((a’))’ + n(t)r#$#+) - 5(t)c$p(K) = 0 a.e. t E [0, T] (4.18) 

G(O) = G(T) a’(0) = z.?‘(T). (4.19) 

Next, let us assume that condition (i) is satisfied. Then there exist pairs (c+, fi,J E C,, 
((~k+~, Pk+l) E G,, such that 

ak<cr-5a+<cYk+, Pk < P- 5 P’ < Pk+1. (4.20) 

Let vk, uk+ 1 be respectively T-periodic solutions of 

(@p(vj))’ + Pj4p,(uT> - aj4p,Cuj> = O j=k,k+ 1, (4.21) 
such that 

vk to) = uk+ 1 (O) = a(O) u;(o) = u;+l (0) = ii’(O). (4.22) 
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From theorem 3.2 we obtain that 

V(h) < W) < vl(hc+,) (4.23) 

and then from the note at the end of the last section that 

27rk < q(G) < 2(k + 1)n. (4.24) 

Since li satisfies T-periodic boundary conditions its corresponding rotation a(G) must be of the 
form 27rl where 1 is a nonnegative integer. Thus (4.24) is a contradiction and the claim is true if 
condition (i) is satisfied. 

Now suppose that condition (ii) or (iii) holds. Then there exists a pair (c~i, pi) E C, such that 

cY+ < CYi P’ < P,. 

From (4.25) and theorem 3.2 of last section we obtain 

(4.25) 

which is again a contradiction. 
q(G) < 27c (4.26) 

Thus there must exist r > 0 such that for all r E [0, l] equation (4.12) does not have a 
solution with ]]ul] 1 = r. 

From the invariance of the degree under compact homotopies and lemma 4.3 it follows that 

41- Q(O, *I, BP, r), 0) f 0. (4.27) 

This implies the existence of a solution of equation (4.12) in the ball B(0, r) and therefore the 
existence of a T-periodic solution of (1.1). n 

We now have the following corollary. 

COROLLARY 4.4. Let Ak, k E N, be an eigenvalue of (2.6). Suppose there exist real numbers (Y 
and /I such that 

(4.28) 

for all t E F? and all (xl sufficiently large. Then (2.1) has at least a T-periodic solution. 

5. NONTRIVIAL T-PERIODIC SOLUTIONS OF (1.1) 

In this section we will assume that fin equation (1.1) satisfies the conditions of Section 1 and 
thatf(t, 0) = 0, for all t E R. Furthermore we will suppose thatfsatisfies the growth restriction 
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THEOREM 5.1. Suppose there are pairs of real numbers (q , pi) E Ci , (aj, pi) E Cj, for i E tN, 
j E tN, i I j, and positive real numbers E, m, A4, such that the pair (a; - E, pi - E) belongs to 
v, the pair (oj + E, pj + E) E Cj, belongs to Uj+r and such that for all t E R one of the 
following hypotheses (i) or (ii) holds true: 

(9 
At, -4 ___ I oli - E, 
4*(-s) 

and 

(ii) “fct, -4 ~ 2 aj + E, 
+p C-4 

and 

f@, -4 
~ I oli - E, 
+p C--s) 

f (t, 4 
4p (4 

I pi - E, ifs>M (5.2) 

f@, 4 

&A9 

~ pj + E, ifsI m; (5.3) 

f(t, 4 

4,(s) 

~ pj + E, ifsrkl (5.4) 

f tt, 4 

4p 6) 
( pi - E, ifsI m. (5.5) 

Then in both cases where (i) holds or (ii) holds, we have that (1.1) possesses at least 2(j - i + 1) 
nontrivial T-periodic solutions. 

Note. From (5.1), (5.4) and (5.5) we have that C 2 max{a; + a,flj + E]. Then it is easy to see 
that for s > 0 and small the pair (1.5) must be in a closed rectangle contained in Ui( 5) and for 
s > 0 and large the pair (1.5) must be in a closed rectangle contained in I. 

To prove theorem 5.1 we need the following lemma. 

LEMMA 5.2. Under the conditions of theorem 5.1 there exist two positive numbers 6 and A such 
that 

(a) if (i) is satisfied then 

0 < w I 6 * u(u(a, p)) > 2jrt, (5.6) 
and 

(5.7) 

(b) if (ii) is satisfied then 

0 < m I 6 * q(u(a, /?)) < 2in (5.8) 
and 

q 2 A * v(u(cY,~)) > 2jrc. (5.9) 

Proof. We only prove (a) since the proof of (b) is similar. Let u(t) = u(t, CY, p) denote the 
solution of (1.1) with initial conditions (Q, /3). From the fact that u = 0 is a solution of (1.1) and 
from continuity under initial conditions it follows that there is a 6 > 0 such that 

0 < Gq < 6 * sup lu(t, c&/3)/ < m. 
tEIo,u 

(5.10) 
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We then choose (Y and B such that 0 < w c 6. We have that u satisfies 

t E [0, T], where 

if u(f) > 0 
(5.12) 

if u(t) (: 0 

i 

J-Q3 u(t)) 
h(t) = 4$Mf)) 

if u(t) < 0 
(5.13) 

O!j + E if u(t) 2 0. 

From (5.1), (5.2), (5.11) and (5.12) it follows that 6 and _b E L-(0, T) and that 6 1 /3j + E, 
_b 1 oti + E. 

Now let us consider the differential equation 

(+p(v’))’ + PjGpbp("+) - aj4pP(u-) = O 

for t E [0, T]. From the note of Section 3 we have that 

(5.14) 

for any pair (cu, /?) E Cj. 
rl(u(a,B)) = 2jn, (5.15) 

Thus, applying theorem 3.2 to (5.10) and (5.14) and calling on (5.14) we obtain that (5.6) 
follows. 

Next we show the existence of a A such that (5.7) is satisfied. 
Suppose such a A does not exist. Then there exists a sequence of pairs of real numbers 

(a,, p,), n E N such that q -+ +oo as n + m and I L 2in. Here u,,(t) = u(t, a,, , p,), 
n E tN. Let us set i& = u,/(]u,]Ir. From (5.1) we obtain that f(t, u,)/~(u,~~$‘-~ is uniformly 
bounded on [0, T]. Thus, the fact that u, is a solution of (1.1) for the initial conditions CY = a,, , 
p = 8, and the Ascoli-Arzela theorem imply that (ti,)~= I possesses a convergent subsequence 
in C’[O, T] which we again denote by (fi,)~= l . Thus lim,,, ti,, = ti with lIti\], = 1. Again, 
reasoning as in [2] or [4] and passing to a subsequence if necessary, which we again denote by 
[&J~=, , we obtain that h, = f(t, u,)/(Ju,JII;-~, II E N , converges weakly in P(0, T), as n + 00, 
to h of the form 

h(t) = @t)&((u+) - a(tMJ0, (5.16) 

where d, a E L”, and are such that 

a(t) I p; - & a(t) I a; - & a.e. on [0, T]. (5.17) 

From (1. l), we have that 

&K(t)) = @,(fi;(O)) - 
s 

‘h,(s)~, (5.18) 
0 

n E N. Thus, letting n -+ co in (5.18) it follows that 

f 

@,W(O) = &Jw(w - h(s) ds. 
0 

(5.19) 
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Thus ti satisfies 
(C#Q((ii’))’ + n(t)&((a+) - a(t)4(K) = 0. (5.20) 

Since I = ~(a,) 1 2irc, for all n E R\i it follows that ~(2) I 2ir. On the other hand if we 
consider (5.20) and the comparison equation 

(r#$(u’))’ + piluJ%I+ - (Yi~r$%- = 0, (5.21) 

we conclude from theorem 3.2 that 
v(C) < 2ilr. (5.22) 

This is a contradiction and hence (5.7) follows. Thus (a) is proved. n 

Next let us write (1.1) as the equivalent first order system 

u’ = -f(f, u) U’ = $Ju). (5.23) 

Let P: lR2 -+ IR2 denote the Poincare map obtained by following the solutions of (5.23) for 
time T. We have that P is a well-defined area preserving homeomorphism which satisfies 
P(O,O) = (0,O). 

Let A be the open region bounded by the circles a, and a, defined by 

and 
a* = ((x,JJ) E IR21x2 + y2 = S2) 

a, = ((x, y) E lR2 1 x2 + y2 = 61, 

and let fi be the restriction of P to A. 
The proof of theorem 5.1 will consist of showing that P has at least 2(j - i + 1) nontrivial 

different fixed points, To do this we will use the Poincare-Birkhoff theorem. 
We apply polar coordinate transformation u(t) = R(t) cos o(t), u(t) = R(t) sin O(t) to (5.23) 

to obtain 
R’ = -f(t, R cos 0) + Rp’-’ 4Jsin 0) cos 0 

@, = _f(c R ~0s 0) 
R 

cos 0 - Rp’-2 1 (sin 0) Ip’, 
(5.24) 

We have that (5.23) and (5.24) are equivalent problems and thus (5.24) possesses a unique 
solution (R(t, r, e), O(t, r, e)) for each pair of initial conditions (r, 0) E I?‘, r > 0. 

Let H = ((r, e) ) r > 0, e E [R] and let T be the mapping from H into itself defined by 

T(r, e) = (R(27r, r, l9), 0(2rc, r, e)). (5.25) 
We have that T satisfies 

~(r, e + 2rc) = ~(r, e) + (0, 2n). (5.26) 

Let (u, u) be a solution of (5.23) and let (R, 0) be the corresponding solution of (5.24). The 
following relationship between O(0) - O(T) and the rotation q(u) of u is easily seen 

O(0) - O(T) = 2nn(<2nn)(>2nn) if and only if q(u) = 2nrr(<2nrr)(>2nn). 
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Then, from lemma 5.2 (a) we obtain 

0(0,6, 0) - O(T, 6,B) > 2jz (5.27) 
for any 13 E It?, and 

O(0, A, 0) - O(T, A, 0) c 2in (5.28) 

for any 8 E IT?. Next let q E i2 and define q: H + H by 

T,(r, 8 + 271) = T(r, e) + (0,2q77). (5.29) 

Each mapping TO is a homeomorphism of I-I preserving the area rdrdf3 and satisfying the 
periodicity condition 

T,(r, e + 271) = T,(r, e) + (0,277). 

Clearly every fixed point of T4 leads to a T-periodic solution of 

Proof of theorem 5.1. Let us set 

q (r, 0) = (&(r, e), @,(r, 0, 

(5.30) 

(5.24) and hence of (5.23). 

(5.31) 

q E Z. From (5.25) and (5.29) we obtain that R,(r, 8) = R(r, 0) and that 

O,(r, e) = O(r, e) + 2qn, 

q E Z. From (5.27) and (5.32) we have that 

(5.32) 

@,(a, e) - e < 2n(q - j) 
and from (5.28) and (5.32) 

@,(A, e) - 8 > 2n(q - i), 

forqEZ.Thusforq=i,...,jwehavethat 

(5.33) 

(5.34) 

0,(6, e) - 8 < 0 (5.35) 

and 
@,(A, 8) - e > 0. (5.36) 

Let II&,, = ((r, t9) ( 6 < r < A, 8 E R). Then from the PoincarC-Birkhoff theorem, in the 
version proved in [5], it follows that for each q = i, . . . . j the mapping T, from H8,* onto its 
image possesses two fixed points, different modulo (0,27r), leading to two T-periodic solutions 
of (1.1) with rotation 2qn. This shows the existence of at least 2(j - i + 1) nontrivial 
T-periodic solutions of (1.1) and hence the theorem. 

1. 

2. 

3. 

4. 

5. 
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APPENDIX 

In this appendix we will briefly study the existence, extendibility and uniqueness of the solutions to the I.V.P. 

(&(u’))’ + SU, u) = 0 

UU,) = aY, u’(t,) = 8, 

where f: IR x R + R is continuous and f(t, 0) = 0 for all I E R. 

(Al) 

PROPOSITION Al. Suppose there is a C > 0 such that 

If(f, x)1 < ClxlP-’ 

for all I E x, for all x E R, then (Al) has a solution defined in R. 

(A2) 

Proof. For simplicity we set r, = 0. We first show local existence, i.e. existence for (Al) in an interval I-6, 61. Let 
us denote by C, the Banach space of all continuous functions x: [-a, 6) + R, with corresponding sup-norm llxlla. 
Problem (Al) is equivalent to the fixed-point problem 

where G: C, --t C, is given by 
u = G(u) (A3) 

G(u)(t) = o1 + [j~,[&@) - [>s+)dj dr. (A4) 

From (A4) we have that G is a completely continuous operator and that 

/G(u)& 5 lat + St&,(P) + C+t\$-L\p’-‘. (AY 

Hence, taking r z max(+p((8), ((~(/(l - 2p’-‘S)), 6 small, (A5) yields that 

G(&, (0, r)) c Bcs (0, 0. (A6) 

The existence of a solution of (A3) follows then from Schauder’s fixed point theorem and thus (Al) has a solution u 
defined in [-6, S]. 

Next let us prove that u can be extended to [0, +03) and hence to R. 
Suppose that u is defined in [0, a) and define w(f) = jk (lu’(s)jP + lu(s)lp) d.s for 1 E [0, a). Integrating the first of 

(Al) from 0 to t E [0, a), using that 

,u(t)lP 5 2+J’ + ap-’ 1: ,u~(r),pds), (A7) 

and Holder’s inequality we obtain that 
W(t) 5 Ae”, f E 10, a), (A8) 

where A and B are constants. Equation (A8) and a standard argument imply that the local solution of (Al) can be 
extended to [O, +m). n 

PROPOSITION A2. If f is like in proposition Al and furthermore f(t, @Jx)) is locally Lipschitz in x and for p > 2, 
f(t, x) # 0 for all I E R and x # 0, then the solution u of (Al) is unique. 

Proof. Clearly we only have to prove local uniqueness. We break the proof into four different cases. 
(1) (Y = 0, /3 = 0. Suppose llulla # 0. From (Al) and (A2) we obtain 

IJu’jJ,$ 5 (c~)~‘@-~)IJUIl*. 

Thus, u(f) = 1; u’(s) ds, (AlO) and S small yield that 

Ilull*(l - C I&-l)@‘) 5 0 

which is a contradiction. Hence 1/u)j6 = 0. 

(A9) 

(AlO) 
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(2) a # 0, p = 0. Suppose ui: [-6,6] + R, u,(O) = OL, u,!(O) = 0, are two solutions of (Al). It is easily seen from 
(Al) that for t E [0,6] 

I ‘7 

114 - uIiIB 5 
I’I (I 

@Jo. f(s. % W) d.s - $Jp, (Al 1) 
0 0 

(&,,~.,W,+~ d7. 

If p’ > 2 (equivalently 1 < p < 2), $Pa is differentiable at zero. Thus, the fact thatf(t, $I#)) is locally Lipschitz in 
x and (Al) yield 

/I$ - %I16 5 Wlu, - kII& (A12) 

where D is a constant. For 6 small, (A12) implies that u2 = u, Hence there is uniqueness forp’ > 2. 
Next assume 1 < p’ I 2, and let u, and uZ be different solutions of (Al). Note that 01 # 0 implies 

lim sif(s’ W)) dS = If(t, a)[ f 0 

r-0 r 

i = 1,2. Hence for 6 small we have that there is an r > 0 such that for T f [-a, 61 

r ~ U(s9 Ui(9d.s 
r 

(A13) 

(A14) 

i = 1, 2, and that sign i&t@, u,(s)) ds/s = sign jLf(s. u,(s)) b/r. 
Since $P, is C’ in any interval not containing zero, there is a constant C > 0 such that 

(Iu, - U& c: C 
4 1 

’ rp’-2 ’ If(s, uz(s)) - f(s, u,(s))1 dr. (A15) 
II 0 

Calling on the Lipschitzian property off and using that for p > 2, bP is differentiable, we obtain from (A15) 

l/u, - u,l(,(l - &‘) s 0, (A16) 

where C is a constant. From (A16) and 6 small it follows that uz = u, . Hence there is uniqueness for p’ 5 2. 
The rest of the cases, i.e. 01 = 0, /I # 0 and 01 # 0, p # 0 are proved similarly to (2) and thus we omit their proofs. 

Thus the proposition follows. n 


