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Minisuperspace example of non-Lagrangian quantization
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We present the construction of a Hamiltonian description for a (non-Lagrangian) Bianchi type-V
cosmological model using the solutions of the equations of motion as a starting point. We study the
quantization of the model and compare our results to those found using a more standard approach.

PACS number(s): 04.20.Fy, 03.20.+ i, 03.65.Ca, 04.60.+n

I. INTRODUCTION

[Xa Xb} Jab Jab —gba (1.2)

The matrix J' must be allowed to have a more general
form than the usual symplectic structure matrix, whereJ' =0 except when one of the x' is a momentum vari-
able and x is its canonically conjugate coordinate. In
this formulation all that is required is that J' be an-
tisymmetric, and satisfy the Jacobi identity

One of us (S.H.} has recently been studying nonstand-
ard Hamiltonian dynamics in classical mechanics [1].
The study is based on work of Feynman reported by
Dyson [2] and its extension by Hojman and Shepley [3].
Feynman's original work showed that Poisson-bracket re-
lations place strong constraints on the types of forces al-
lowed in physical systems. Hojman and Shepley general-
ized Feynman's work and are able to make a consistent
Poisson-bracket Hamiltonian theory for any system
whose equations of motion come from a variational prin-
ciple. Finally, Hojman has extended the formalism to
any first-order equations of motion for a set of coordi-
nates x' of the form x'=f'(xb), whether or not they
come from a variational principle.

A review of the classical theory can be given very
quickly, since the equations x'=f'(x ) are supposed to
represent Hamilton's equations, where usually half of thex' are generalized momenta p'. All that is necessary in
principle for a Hamiltonian theory is a function H(x b)

which gives

x'= [x',H }=f' .

In order to define the Poisson brackets [ },it is neces-
sary to consider [x',x }.These brackets have the form

J ab g(x c)+ 1— N —2Cabp . p
1 1,p, i

(1.4)

~ '~ ~

where C„—=BC/Bx", e ' " ' is the N-index Levi-
Civita symbol, and A,(x') is a function of the coordinates
to be explained below. This J' satisfies the Jacobi identi-
ty. The C&, . . . , C& &

are time-independent constants of
the motion. The Hamiltonian is defined by H=CN
along with Cz=t+dz, where dz is time independent.
This can always be achieved by a change of coordinates.
It is easy to realize that A,(x') may always be chosen so
that I&'bBH/dxb= f'.

Since there is considerable freedom in this formalism in
selecting the Hamiltonian H, one can choose a series of
functions H that appear at first sight to be untenable as
Hamiltonians when seen from the point of view of famil-
iar canonical theory. One example is the two-
dimensional harmonic oscillator, where the equations of
motion can be written in the form

that gives the first-order form of the equations of motion.
The main question that remains is whether, for any sys-
tem of equations of the form x'=f', a I' exists that
casts them into the Hamiltonian form (1.1}. In any case
where there are N x' (a =1,... ,N), it can be shown that
there exists one way of constructing an antisymmetric J'
which obeys the Jacobi identity if one knows X constants
of the motion, C;, (N —1) of which do not depend explic-
itly on time, that is, knows them as explicit functions of
the coordinates (a fairly strong requirement, equivalent to
knowing the full classical solution). The preceding re-
quirement is sufhcient to be able to reduce the equations
of motion to Hamiltonian form. It is, of course, not
necessary for constructing the Hamiltonian theory.

This J' may be constructed by summing elements of
the basic form

Jab Jdc+ Jbc Jda+ Jca Jdb 0, d ,d ,d (1.3} x=u, y=v, u= —x, v= —y . (1.5)

that is necessary for the consistency of the equations of
motion. Often, the requirement of nonsingularity is add-
ed, but it is by no means necessary in order to construct a
Hamiltonian description.

Classically the formalism we have outlined above is
reasonable in the sense that it defines a "Hamiltonian"
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A possible Hamiltonian is the angular momentum
P&=xv —yu which would usually be associated with an
attempt to choose O=arctan(y/x ) as "time. " There ex-
ists a procedure based on a parametrized time that allows
one to do just this (even though the choice is quite un-
physical in most cases), but in the present case the non-
standard canonical approach allows us both to choose Pe
as our Hamiltonian and retain the Newtonian time t as
our temporal marker. In the Appendix we compare these
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two approaches to the problem of the two-dimensional
harmonic oscillator.

Even if we may regard the classical systems represent-
ed by the nonstandard Hamiltonian approach as unobjec-
tionable, the goal of this paper is the quantization of a
system using this method. Here a number of serious
questions arise: (1) Does a particular choice of Hamil-
tonian lead to physically reasonable quantum behavior?
(2) Are the solutions to the different Hamiltonians in any
sense unitarily equivalent? (3) Since the Poisson-bracket
relation implied by (1.2) is not the usual one, how may we
realize the operators associated with the variables in a
reasonable way? We will not attempt to answer these
questions in general here. For the system we have
chosen, we will take H to be as much like a standard
Hamiltonian as possible, and in our case our solution is as
physically reasonable as any other for Bianchi models.
That is, there are serious questions about all quantum
cosmology solutions, as we will discuss further when we
have defined our system.

One of us (S.H. ) has been studying a variety of non-
standard Lagrangian and Harniltonian formulations for a
number of years. One of the original goals of this study
was to apply these methods to the quantization of the
gravitational field. As a first attempt at this we would
like to study a minisuperspace model for simplicity.
Since the new Hamiltonian formalism is applicable to
equations of motion that are not derivable from a varia-
tional principle, we felt that an excellent example to be-
gin with is one in which it is possible to write the equa-
tions of motion in such a way that they are not the result
of varying any action. Probably the simplest minisuper-
space that has this property is a Bianchi type-V metric
with g0, =0 and the logarithm of the radius of the
Universe taken as an internal time.

A general Bianchi type-V metric has the form

ds = g00(t)dt —+ga, (t)o'dr+g; (t)o'o', (1.6)

where the one-forms 0' are 0' =e 'dx, 0. =e 'dy,
cr =dz If we p.

arametrize g; (t) as

g (r) =e 2p. .(t)
(1.7)

G =3e ' {e + —p'+p++p (1.10)

with

p; (t)=diag{p++&3p &3p,p+ —&3p, —2p+ I, (1.8)

we can now make a change of coordinates where t'=a(t)
and put g0; =0. The metric becomes

a 2p (a) ids = —g00(a)da +e e ' o'o' . (1.9)

We now parametrize g00 by g00 =—e /p, define

p+ ——p dp+/da, so that the Einstein equations in the
coordinate basis (a, x,y, z) become

—,'(G" +G~ —2G;)=2p e p+,
G" —G~ =2&3p e P

(1.13)

(1.14)

where an overdot denotes d /d a.

These equations reduce to the set
4((z+p+ )C=e + —p +p+ +p =0,

p+ =0
4(a+ p+ )

e + —2p~ +3(p —p+ —p )=0,
p+ =o

p =0,
p+

+
pa

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

These equations do not come directly from a variational
principle. They have the form of the equations expected
from the Arnowitt-Deser-Misner (ADM) Hamiltonian
formulation where the metric (1.9) is simply inserted into
the ADM action (with the momenta p, p+ suitably
defined), but Eq. (1.18) is given incorrectly by this
straightforward procedure. In any case, we only plan to
take (1.15)—(1.20) as a set of minisuperspace Einstein
equations for the six variables (a,p+,p,p+) that does not
come from a variational principle and construct (and
solve) the quantum equations for a quantum cosmology
using the nonstandard Hamiltonian techniques discussed
above.

In order to avoid the most vexing problems associated
with this method, we will choose a Hamiltonian that is as
close as possible to the ADM Hamiltonian, that is, the
Hamiltonian achieved by taking some combination of the
metric variables as an internal time. In any case, we are
quantizing in minisuper space, the space of the
"configuration variables" a, p+, not spacetime. There is
enough ambiguity about the interpretation of quantum
gravity so that the "wave function of the Universe"
found by these nonstandard techniques is as worthy as
any other of being considered a serious candidate for a
state function for Bianchi type-V models.

II. THE HAMILTONIAN FORMULATION
OF THE BIANCHI TYPE-V EQUATIONS OF MOTION

Given the set of equations (1.15)—(1.20), we can use the
formalism discussed in the Introduction to construct the
Hamiltonian formulation. Equations (1.15) and (1.16) are
constraints, while the other five are dynamical equations.
Notice that C =3C, so one is only allowed to assume that
C =0 on shell. We can, however, set p+ =0 without loss
of generality.

The full set of equations of motion are

6,= —6e p~ =0,
G" =—'(G „+G~ +G;)

p+
p+ =0, p =0, P+=

pa pa

=e ' {e ' —2p~ +3(p' —p+ p )I=——

(1.12)
pa

2p~
(2.&)
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For our purposes it will be more convenient to work in
the variable set

[p+~p ~y~p —~pal ~

(0) (2.2)

e4y+3(p2 p 2)
p~= (2.3)

while

C —e4r p2 +p 2 —0 (2.4)

In order to develop the Hamiltonian form of these equa-
tions mentioned in the Introduction, we need a set of five
constants of the motion corresponding to the five dynam-
ical variables [p+,p y, p' ),p j. It is obvious that p+,
y0, and p' ' are constants, where y0 is minus the value of
y at a =0, that is, yo=a —y. A fifth constant is

Co=e C . (2.5)

As we will show belo~, the choice of Co as our Hamil-
tonian allows us to find a quantum minisuperspace solu-
tion that is as close as possible to similar solutions for
other Bianchi types. This sidesteps the difhculty of possi-
ble nonequivalence of the quantum systems achieved by
choosing other constants of the motion as our Hamiltoni-
an. In the next section we will briefly discuss the prob-
lems associated with the choice of other Hamiltonians.
For the Hamiltonian we have chosen, the construction ofJ' is straightforward.

Since in this new variable set p+ has zero Poisson
brackets with all other variables, it is a Casimir function
(or operator in the quantum version) for the system. This
means that, in constructing J', derivatives ofp+ will ap-
pear in every term, and we need only take variable pairs
of the other four constants to make up J' . That is, J'
has the form

J.,=A(x')e"d'p+, [p ~p "',+y«C„] . (2.6)

If we set A, =e 3)'/2p, and use H =Cp =e 3)'(e 4)'

—p +p ), J' becomes

0 0 00
0

0
00 0

0 0 0

0 1 0

3r
0 0

2p~ pa

3r

2p~

pa

(2.7)

where y —=a+P+ and P' ' is the constant of motion corre-
sponding to the value of P at a =0. Since P does not
appear explicitly in the equations of motion, this change
of variables can be made without major revisions of the
form of the equations of motion. These equations now
Icad

P+ =o P =o -y=l P'

where the sequence of rows and columns is p+, p, y,
p' ', p . It is easy to show that J' (3H/(3x =f', for the
f' given by (2.3). A straightforward calculation shows
that J' given by (2.7), satisfies the Jacobi identity.

III. CLASSICAL AND QUANTUM SOLUTIONS

A. Classical solutions

The classical solution to the equations of motion is well
known, but presenting it in the context of our variable set
will be useful in helping to understand the quantum prob-
lem. The equations p+ =0 and p+ =0 are consistent, and

p =0 implies that p =p' '=const. The constraint

p+ =0 gives us p+ =p+' ', and the constraint C =0 can
be solved for p to give

pp) 1/2
(p(0) )2+e4ae + (3.1)

Finally, the equation for p, p =p( )/p can be solved

by quadratures to give

p —fiy+(0) I pp) 1/2

(
(0) )2+e4ae +

(3.2)

4I)(p)

[ [(p (0) )2+e + ]1/2+ (0)
] (3.3)

In terms of our new configuration variable set y0(a),
P' '(a) the solution is

y0= p'+'

4p(p)
p(0) p + + ) 1 [ [(p(0) )2+e4ae + ])/2+p(0) ]

4p(p)
lnI [(p(0) )2+e + ]1/2+p(0)

I

(3.4)

(3.5)

An exact solution of this type is not very helpful in seeing
exactly what behavior is indicated by (3.3). If we were
able to take p = —H, H the Hamiltonian of the system,
and take the positive sign for the square root in (3.1), one
can think of (3.1) as the "relativistic" version of a particle
moving in a time-dependent (a-dependent) "potential"

4a +4p

This "potential" represents roughly a very steep wall at
some point where a+p+ =const. Near the cosmological
singularity a —+ —oo this "wall" is located near
p+=+ ap. As we move away from the singularity the
wall moves to the left, and as a becomes very large, the
wall position approaches P+ = —ap. Because of the con-
straint, the particle represented by the "Hamiltonian"
(3.1) does not interact in the usual way with the wall; that
is, it does not "reAect" from the wall in any way because
it is constrained to move on a p+ =const line at p+ =p'+'.
This means that the wall begins far to the right of the p'+'
line, and as a grows, approaches and passes the particle
trajectory line and eventually ends far to the left of it. If

where 5 =const. The integration can be done, and
defining P' '=P (a=0) we find

p p(0)+a+ 1 lnI [(+(0))2+e4ae + ]I/2++(0)
)

4p(p)
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"p I)—
+p (0)e —2ae +

da pa
(3.6)

(0) —2a ~) +
we see that p -8 + T)p

' 'e e +, 8=const, so that

as a~+ 00, p approaches a constant whose value de-

pends on p' ', p' ', and p'+'. In our variable set, the solu-

tion only differs by having yo in Place of P'+', and we

solve for p'+' as a function ofp, a, p( ', and yo.

B. Quantum solutions

In order to pass to the quantum theory we must con-
vert the variables p+, p, y, p' ', and p into the opera-

tors p+, p, y, ', and p and the Poisson-bracket rela-

tions x', x =J' into commutators. The operators y
and p ' will be taken to be multiplication operators on

the state function %(y,p;a), where since a is our time

variable it has a privileged status in the state function. In

principle we must realize all of the rest of the operator set

as operators (such as derivative or matrix operators) on

the family of state functions 4 that obey the relevant

commutation relations.
In this case, however, our interest is in the functional

form of 4 and we can use a series of relations valid for

our Hamiltonian that allow us to find 4 without realizing

all of the operators explicitly.
Since a is time, our Hamiltonian H= Co will imply the

Schrodinger equation 8+=i BV/Ba. However, the con-

straint Co=0 gives 8%=0, so that ql has no explicit

dependence on a. It is not totally independent of a as we

will see below. From the form of J' and the equation

y = 1 =
[ y, H ], we can see that in the quantum version

[y,8]=i, or that we can realize 8 as —iB/By. From

the constraint Co =0 we get the equation

(3.7)

we were to try to interpret this in the usual way, the par-
ticle would begin in a conventional way above the poten-

tial, but as time progressed would end up "underneath"
the potential which would lead to imaginary solutions for
p( '. However, from (3.1) we can see that there is no

problem, since all the quantities under the radical are

positive definite. What does happen is that near the

singularity (a~ —00 } the potential term is very small and

pa =-+p' '. This means that the particle moves with ve-

locity, p =+1. As a becomes large and positive the po-
x 't)'+'

tential term dominates and p =-+e e +. From

z 4t)(0)
ql q/(P pa+ ) I n[(p(0) +e4ae })/2+@(0) ]

0)

+ —,
' in[(p' ' +e + )' +p' ']) . (3.9)

where 4 is again arbitrary.
(kt)(0)

If we consider the plane-wave solution +=e
can see that, for a large and negative,

ik(P + a)4-e

, we

(3.10)

and, for a large and positive,

ikP4-e (3.11)

that is, the plane wave moves initially as a relativistic

plane wave with velocity p =+1, and at large positive a
it becomes independent of time so that the dynamics

freezes, giving us the analogue of the classical behavior.

Up to this point we have been treating the system of
equations (1.15)—(1.20) as if they were completely di-

vorced from a variational principle, which, in general,

they are. However, if the constraint p+ =0 is used to
reduce p+ to a constant, p'+', and the result is introduced

into the equation set, Bianchi type-V models are one of
the only class-B Bianchi models that allow a straightfor-

ward, variational principle. The resulting equation set
comes from

B q(

Ba
+ 4=0

BP ' (3.13}

ikP
This is separable, and for 'Il = A (a }e

2 4 0)

+(k + e )A=O
da

which has the solution

A =Z;(kn)( , e e ), —Zi)

(3.14)

(3.15)

where Z;(k&2) is a Besse1 function. While this is not exact-

ly equal to our previous solution, note that for a~ —Oo

we find

(3.12)

We can now compare the solution to the Wheeler-DeWitt
equation for this reduced action with the solution (3.9).
There is a problem of factor ordering due to the factor
e in the constraint obtained by varying N. For our

purposes it is sufhcient to divide by e classically and

write the equation as

so 4 also has no explicit dependence on y. In our vari-

able set, then,
ik(P +a) (3.16)

0'=0'(P' '}, )I( arbitrary . (3.&) which coincides with our former result, while, for

a —++ oo,

Remembering that the partial derivatives mean deriva-

tives holding chosen quantities constant, we can see that
)I( can depend on a and p through the definition of p' '

in terms of these variables, and we can finally write

ikP4-e e (3.17)

There are a number of reasons why this large —a form

for ql differs from our previous solution: (1) we have tak-
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en only the simplest possible %'(P' '), and other functions
may more closely approximate this behavior; (2) the
%heeler-De%itt equation is second order, and square-
root techniques that would give a true Schrodinger equa-
tion in u drastically change the form of 4; and (3) the
probability density associated with our solution will be
+'4, consistent with the Schrodinger-equation form our
true Hamiltonian has provided, while the probability
density to be associated with the 4 given above is still de-
batable. In any case, our nonstandard solution more
closely approximates the classical behavior [at least
directly; it is possible to construct a Fourier transforma-
tion on the eigensolutions represented by (3.15) that may
have different behavior] in that the plane wave has the
asymptotic behavior for u~+~ that we might expect,
while (3.17) implies that 4~0 for large a. In any case,
our %', as we mentioned in the Introduction, has as much
claim to be the true "wave function of the Universe" as
any other, given the present state of knowledge in quan-
tum gravity.
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r =vq

pe
r 2

2
PeV„=
r

(A4)

(A5)

(A6)

There are a number of objections to this quantity as the
Hamiltonian for so simple a system as the two-
dimensional oscillator (although in gravitation a similar
formalism may be correct) .They are (1) the unconven-
tional square-root Hamiltonian, closer to relativistic form
than the usual Newtonian Hamiltonian, (2) the variable 8
ranges over (0, 2m) with identification of 0 and 2~, which
implies closed lines in time. Despite these physical objec-
tions, the mathematical procedure is straightforward, so
there is no objection to taking ps (or —ps) as our Hamil-
tonian.

In the nonconventional scheme outlined in Sec. I, the
equations of motion for the two-dimensional oscillator in
polar coordinates have the form

Pe=0 . (A7)One of us (S.H.} would like to thank the Fondo Na-
cional de Ciencia y Tecnologia (Chile) Grant No. 91-0857
for partial support.

We may take pe=H if we write (for x'=r, x =8,
x =p„, x =ps)

AppKNDIx

For the case of the two-dimensional harmonic oscilla-
tor of Sec. II, we have two possible ways of making
Pe =xv —yu, where x, y, u, v are defined in that section, a
Hamiltonian for the system. The standard way would be
to write the action for the system in terms of a
parametrized time v",

2I=f p„r +pe8+p', t' N p„rp„+—— 2 p, +r —dr,
~ . 1 Pe

(A 1)

for

~ a Jab 8
b

Jab
5'e

r 2

Pe
r 2

2
Pe —r
r 3

(A8)

(A9}

I—pe=H=+ —p„rp„—p, +rr (A3)

where we have inserted 1 in the form r(1/r ) into the p„
term in the constraint generated by varying N in order to
achieve the correct quantum equations in polar coordi-
nates. In this action, ~ is completely arbitrary. It is pos-
sible in this formalism to choose —pe as a Hamiltonian
by choosing 8(r) as the time r. In that case

I=f (p, r'+p, t' H)dr, — (A2)

where H= —pe, and H is obtained by solving the Mt
constraint as

' 1/2

Pe
v

2

2
Pe +r
r

This matrix J'b satisfies the Jacobi identity.
%e have shown first that taking pe as our Hamiltonian

is by no means strange in that the well-known
parametrized time formalism allows it, but the non-
conventional formalism allows us to make this choice
with a number of advantages: (1) We no longer need wor-
ry about the square-root Hamiltonian; and, most impor-
tantly, (2) we are allowed to retain the well-behaved
Newtonian time t. All this is at the cost of the unconven-
tional commutation relations among the variables x'.
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