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Spin-wave-theory analytic solution of a Heisenberg model with long-range interactions
on a Bethe lattice
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An analytic solution for the Heisenberg Hamiltonian with arbitrarily long-range, ferromagnetic and/or anti-
ferromagnetic, interactions on a Bethe lattice is obtained in the semiclassical approximation (S→`). The
density of states of the excitations is evaluated in the one-spin-wave approximation. The stability of a general
helical ground state configuration, against variations in the magnitude and sign of the long-range interactions,
is investigated for several illustrative examples, generating a wealth of sharp and smooth parametric transi-
tions. @S0163-1829~97!04918-7#
t
an
ia
ar
f

ew
d

ec
ic
w

on
ite
g
-
e.
ge
te
tr
s
f
p
n

n
a
se
s
l;
n
,
tin
gn
ra
e

and
a

are
ion
at-
h

t in
le.
are

ti-

x
the

ith
ns.
eri-

s
pic
f
rg
ing

e
tice
is
to

not
the
of
in-
ith
e of
I. INTRODUCTION

Exact solutions of simple models are a valuable asse
theoretical physics. On the other hand, in the description
understanding of magnetism, the Heisenberg Hamilton
has played a central role. It was independently put forw
by Heisenberg1 and Dirac2 in 1926. However, and in spite o
the permanent interest it has attracted3–5 and the large
amount of work devoted to this model ever since, only a f
analytic results have been obtained in almost seven deca
In fact, for the ferromagnetic~FM! case~parallel spin align-
ment! only in one dimension has the whole excitation sp
trum been obtained.6 In two and three dimensions analyt
results are limited to the ground state and to one- and t
magnon excitations.6 For the antiferromagnetic~AFM! case
analytic solutions have only been found in one dimensi
Very recently an interesting analytic result, for the infin
spin ~i.e., classical limit! of the two-dimensional Heisenber
model was reported by Cure´ly.7 Certainly, abundant numeri
cal and approximate results can be found in the literatur

In the semiclassical approximation, where noninte
quasicontinuous values for the spin projection are accep
the excitations are known as spin waves, and were in
duced by Bloch8 and Slater9 ~in other words, one expand
about theS→` limit !. Over the years a large body o
results10 has disclosed the somewhat surprising fact that s
wave theory is remarkably accurate, especially in two a
higher dimensions,11 even in the extreme quantum limit.12

However, it is important to point out that the well-know
analytic results, as well as most of the numeric ones,
limited to nearest-neighbor interactions. Two main cau
explain this state of affairs:~i! in most physical system
next-nearest-neighbor~NNN! interactions are rather smal
and~ii ! the difficulties that have to be faced in the treatme
of longer range interactions, are quite formidable. Actually
whole new area of interest is opened merely by incorpora
competitive NNN interactions, i.e., couplings of varying si
depending on distance. The presence of competitive inte
tions lies at the focal point of a variety of interesting ph
550163-1829/97/55~21!/14397~11!/$10.00
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nomena peculiar to magnetic systems, like spin glasses
modulated phases. They imply the impossibility of finding
magnetic structure in which all the pairwise interactions
satisfied: the well-known phenomenon named frustrat
does emerge, which is also related to Anderson’s ‘‘reson
ing valence bond’’ state,3 which lately has attracted so muc
attention.

Moreover, there are actual physical systems of interes
which long range magnetic interactions play a decisive ro
Certainly, the rare earths and their metallic alloys, which
well described by a Ruderman-Kittel13 ~RKKY ! long range
oscillatory interaction, fall into this category. The compe
tion between the ferromagnetic~FM! and antiferromagnetic
~AFM! ~alternating sign! of the interactions leads to comple
ordered configurations for these systems, as well as for
spin glasses.

On the other hand, already in 1959 Yoshimori14 suggested
a helical configuration as the ground state for a system w
competitive first- and second-neighbor magnetic interactio
Almost simultaneously such ordering was observed exp
mentally in the MnAu2 compound by Herpin, Me´riel, and
Villain.15 In addition competitive long range interaction
have attracted much interest in the context of the anisotro
NNN Ising model,16–24 known under the acronym o
ANNNI. While this model is simpler than our Heisenbe
one, the configurations it yields and especially the result
thermodynamics are of considerable complexity.25–27

At this point it is worth mentioning that several of th
above-mentioned results were obtained for a Bethe lat
topology.23,26,27Most often the solution on a Bethe lattice
much simpler than on a regular lattice, but still equivalent
Bethe–Peierls theory,28 with which it is identical if the crys-
tal lattice has the same coordination number. However,
much work on frustrated systems has been carried out in
Bethe lattice context, quite likely because of the intricacy
the problem once long-range competitive interactions are
corporated. It is worth mentioning that a Bethe lattice w
random sign bonds is not frustrated, due to the absenc
closed loops.29,30
14 397 © 1997 The American Physical Society
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14 398 55JOSÉROGAN AND MIGUEL KIWI
Consequently, in order to make progress towards ana
solutions of the Heisenberg model, with long-range inter
tions and going beyond dimension one, the Bethe lattice
ometry constitutes an interesting option. This alternative w
explored by Trias and Yndurain,31 who investigated the sta
bility of the magnetic ordering of an originally FM semicla
sical Heisenberg system. They were able to obtain an a
lytic solution to the problem, including the one-magn
excitation spectrum. As an illustration they applied their s
lution to a system with alternating FM and AFM intera
tions, among odd and even neighbors, respectively~FM with
first, third, fifth, etc., and AFM with second, fourth, sixth
etc., neighboring shells!.

Here we report on a fully analytic treatment of the sa
problem, but removing the constraint of using a FM grou
state as the initial configuration. Thus, in our treatment
start from a general helical ground state configuration
investigate how it responds to various types of long-ran
order interactions.

This paper is organized as follows: after this introducti
the model and its solution are presented in Sec. II. In Sec
various illustrative cases are discussed: they range f
simple applications to the inclusion of long-range intera
tions. In Sec. IV we close this paper with a brief summa

II. MODEL AND SOLUTION

A. The Hamiltonian

Our system is made up of magnetic atoms placed at
nodes of a Bethe lattice. Each atom has a single degre
freedom, associated to its spin. The main peculiarities of
work reported in this paper are~i! the original configuration,
i.e., the one adopted as a starting point in the calculation
not ferromagnetic~FM! but a general helical state; and~ii !
the range of the interaction between spins is unrestric
That is, the spinSW j ~at site j ) interacts, with a coupling
strengthJjk , with spinSW k at sitek, which is located a dis-
tanceL away.L is measured in units of lattice paramete
along the Bethe lattice. The Hamiltonian which specifies
system analytically is the Heisenberg Hamiltonian given

H52
1

2(j ,k JjkSW j•SW k . ~2.1!

The summation above is over all (j ,k) pairs (jÞk), while
the factor12 compensates for the double counting.

To work out the dynamics of the system a Green’s fu
tion formalism of the Zubarev32 type is used. Trias and
Yndurain31 solved the problem formulated above for the sp
cial case where the ferromagnetic configuration is adopte
the initial ground state symmetry. They obtained the follo
ing expression for the dispersion relationv(k), for magnons
on a Bethe lattice of coordinationc and no restriction on the
range of the interactionJ0,n :
ic
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v5 (
n51

`

J0,nc~c21!n212 (
n51

`

J0,n~c21!n/2

3F2 cos~nf!1
c22

c21

sin@~n21!f#

sin~f! G , ~2.2!

and for the local density of states

D0~v!5
2

p

~c21!csin2@f~v!#

c224~c21!cos2@f~v!#

df

dv
, ~2.3!

wherec is the coordination of the Bethe lattice,f5ka and
a is the lattice parameter. The derivative above is obtain
from Eq. ~2.2!.

While this beautiful analytic solution constitutes, in o
opinion, a little exploited piece of work, it has the shortcom
ing of requiring a ferromagnetic configuration as the laun
ing site for the calculation. This way, one is limited to eith
FM long-range interactions, or weak competitive antiferr
magnetic ones. Only then it is feasible to obtain the exc
tion spectrum. However, when the competitive interactio
grow large enough, the FM configuration becomes unsta
giving rise to a soft magnon which ‘‘freezes’’ in as the ne
ground state of the system. This novel magnetic order inv
dates the excitation spectrum obtained above, which is
flected in the appearance of unphysical negative minima
v. In what follows below we remove this restriction, thu
allowing the use of general helical ground state configu
tions. In fact, for the linear chain~coordinationc52) we do
adopt as the starting configuration a general helical struct
in which the angle between a pair of adjacent spins i
constant denoted byu. Two special cases are worth mentio
ing as examples: whenu50 we recover the FM order dis
cussed by Trias and Yndurain;31 but, if u5p it implies the
adoption of the Ne´el state as the starting ground state co
figuration.

At this stage it is convenient to rewrite the Heisenbe
Hamiltonian, introducing the Bethe lattice topology, which
illustrated in Fig. 1, and a label for the successive she
This way our Hamiltonian takes the form

H52
1

2 (
n50

`

(
p51

L

JpD~n!SW n•FSW n2p1~c21!pSW n1p

1 ( 8
m51

p21

~c22!~c21!p2m21SW n1p22mG . ~2.4!

FIG. 1. On the left a square two-dimensional lattice. On t
right the equivalent~same coordinationc54) Bethe lattice.
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55 14 399SPIN-WAVE-THEORY ANALYTIC SOLUTION OF A . . .
Aboven is a shell index, whilep establishes the range o
the interaction. Thep summation incorporates three types
terms. The first one describes the interaction between a
on shelln and one on shell (n2p). We notice that there is
only one nearest neighbor in the backward direction, towa
the origin, located in shell (n21). The second term de
scribes the interaction between a spin on shelln and one in
shell (n1p). The factor (c21)p takes into consideration
that there are (c21) equivalent nearest neighbors in the fo
ward direction.

The third term corresponds to interactions that follow
path on the lattice which first moves a distancem towards
the origin, and thenp2m away from it,without retracing
itself. The factor (c22)(c21)p2m21 takes into account the
topology, while the symbol(8 denotes a summation i
which thep51 term is excluded. The factorD(n) in Eq.
~2.4! is the number of equivalent lattice sites on shelln and
is given by

D~n!5H 1, if n50,

c~c21!n, if nÞ0.
~2.5!

It is important to point out that this Hamiltonian describ
correctly the system beyond theLth shell from the origin, as
if the Bethe lattice would have no privileged central si
This is essential to derive the right boundary conditions
the Green’s functions, as we will do later on.

We now describe our system and fully specify it ge
metrically. We assume that at each lattice site a local co
dinate system is specified, with thex-axis parallel to the
links. Thus, two adjacentz-axis, corresponding to two suc
cessive local systems, form an angleu with each other. Each
spin points essentially along the localz axes, which is the
axis of quantization. The summation in Eq.~2.4! is carried
out evaluating each term in its own coordinate system;
is, for a site on shelln we writeSW n6p in the local coordinate
system of siten. To perform the scalar product in the loc
coordinate system we use, in Eq.~2.4!, the rotation matrices
associated with an anglepu, for a pair of spins separated b
a distancep. In component notation each term of Eq.~2.4!
reads

SWm•SW n5Sm
z Sn

z1 1
2 ~Sm

1Sn
21Sn

1Sm
2!. ~2.6!

The components ofSWm1n , at one site of shellm, are related
to the local components of the vectorS̃m1n at another site of
shellm1n, which is at a distancen from shellm, by the
transformation

Sm1n
1 5S̃m1n

1 cos2S nu

2 D1S̃m1n
2 sin2S nu

2 D
2 iS̃m1n

z sin~nu!, ~2.7a!

Sm1n
2 5S̃m1n

1 sin2S nu

2 D1S̃m1n
2 cos2S nu

2 D
1 iS̃m1n

z sin~nu!, ~2.7b!

Sm1n
z 52

i

2
S̃m1n

1 sin~nu!1
i

2
S̃m1n

2 sin~nu!

1S̃m1n
z cos~nu!, ~2.7c!
in

s

.
r

-
r-

at

where i5A21. This way the Hamiltonian of Eq.~2.4! can
be written exclusively in terms of local spin operators,
which Sz is essentially equal toS.

To make further progress we relabelS̃ by S and write the
S1,S2, andSz operators of Eqs.~2.7! in terms of newa and
a† operators, which obey Bose commutation relations. T
is achieved by means of the following Holstein-Primako
transformation:

Sn
15A2SS 12

an
†an

2S D 1/2an , ~2.8a!

Sn
25A2San

†S 12
an
†an

2S D 1/2, ~2.8b!

Sn
z5S2an

†an , ~2.8c!

where the commutation relations obeyed by thesea anda†

operators are

@an ,am#50, @an ,am
† #5dnm . ~2.9!

Within the one magnon approximation one obtains,
the operators of Eqs.~2.8!

Sn
15A2San , ~2.10a!

Sn
25A2San

† , ~2.10b!

Sn
z5S2an

†an . ~2.10c!

Since in Eq.~2.6! we managed to write the Hamiltonian i
terms of the local spin operators, which satisfySz'S, we
can use the above approximation to obtain

H52E~u!1H01H1 , ~2.11!

with

E~u!5
N
2 (
p51

L

JpS
2c~c21!p21cos~pu!, ~2.12!

whereN corresponds to the total number of lattice sites, a
E(u) is a nonoperator quantity, which depends exclusiv
on the initial ground state angle between spins. Thus, it o
shifts the energy origin and can be ignored in the calcu
tions of the excitation spectra. TheH0 term of the Hamil-
tonian is given by
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H052
1

2(n50

`

(
p51

L

JpD~n!H iSAS

2
sin~pu!Fan2p

† 2an2p1an2an
†1~c21!p~an1p

† 2an1p1an2an
†!1 ( 8

m51

p21

~c22!

3~c21!p2m21~an1p22m
† 2an1p22m1an2an

†!G2S cos~pu!Fan2p
† an2p1an

†an1~c21!p~an1p
† an1p1an

†an!

1 ( 8
m51

p21

~c22!~c21!p2m21~an1p22m
† an1p22m1an

†an!G1S sin2S pu

2 D Fanan2p1an2p
† an

†1~c21!p

3~anan1p1an1p
† an

†!1 ( 8
m51

p21

~c22!~c21!p2m21~anan1p22m1an1p22m
† an

†!G1S cos2S pu

2 D Fanan2p
† 1an2pan

†

1~c21!p~anan1p
† 1an1pan

†!1 ( 8
m51

p21

~c22!~c21!p2m21~anan1p22m
† 1an1p22man

†!G J , ~2.13!

where we have eliminated the tildes in order to simplify the notation. Finally, in the spin-wave approximation the termH1 can
be ignored, since it only contains products of more than two operators, which correspond to magnon-magnon intera

Thus, in what follows we compute the excitation spectrum ofH0 and add the contribution ofE(u) at the end of the
calculation.

B. Green’s functions and excitation spectrum

In order to obtain the excitation spectrum we use the Zubarev32 Green’s function formalism. To treatH0 it is convenient to
define the following pair of functions:

Gj ,k~ t2t8!5^^aj~ t !,ak
†~ t8!&&, ~2.14a!

Kl ,m~ t2t8!5^^al
†~ t !,am

† ~ t8!&&, ~2.14b!

once a time Fourier transform is performed they are found to obey the equations of motion

@v2e j~u!#Gj ,k~v!5d j ,k2 (
p51

L

Vp, j H cos2S pu

2 D FGj2p,k~v!1~c21!pGj1p,k~v!1 ( 8
m51

p21

~c22!~c21!p2m21Gj1p22m,k~v!G
1sin2S pu

2 D FKj2p,k~v!1~c21!pK j1p,k~v!1 ( 8
m51

p21

~c22!~c21!p2m21Kj1p22m,k~v!G J , ~2.15a!

@v1e l~u!#Kl ,n~v!52 (
p51

L

Vp,l H sin2S pu

2 D FGl2p,n~v!1~c21!pGl1p,n~v!1 ( 8
m51

p21

~c22!~c21!p2m21Gl1p22m,n~v!G
1cos2S su2 D FKl2p,n~v!1~c21!pKl1p,n~v!1 ( 8

m51

p21

~c22!~c21!p2m21Kl1p22m,n~v!G J , ~2.15b!

where the following definitions have been introduced:

Vp, j5SJpD~ j !, ~2.16a!

e j~u!5 (
p51

L

Vp, j c~c21!p21cos~pu!. ~2.16b!

We notice that, as a consequence of the spin wave approximation, Eqs.~2.15! do not mix in higher order Green’s functions
Thus, the system of algebraic equations can be solved analytically. To do so we introduce two auxiliary functionsG and
L, defined as

G j ,k~v!5Gj ,k~v!1Kj ,k~v!, ~2.17a!

L j ,k~v!5Gj ,k~v!2Kj ,k~v!, ~2.17b!

which satisfy the equations of motion
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vG j ,k~v!5d j ,k1e j~u!L j ,k~v!2 (
p51

L

Vp, jcos~pu!FL j2p,k~v!1~c21!pL j1p,k~v!

1 ( 8
m51

p21

~c22!~c21!p2m21L j1p22m,k~v!G , ~2.18a!

vL j ,k~v!5d j ,k1e j~u!G j ,k~v!2 (
p51

L

Vp, jFG j2p,k~v!1~c21!pG j1p,k~v!1 ( 8
m51

p21

~c22!~c21!p2m21G j1p22m,k~v!G .
~2.18b!

For j5M>L, andk50, we obtain the following set of algebraic equations:

vGM~v!5e~u!LM~v!2 (
p51

L

Vpcos~pu!FLM2p~v!1~c21!pLM1p~v!1 ( 8
m51

p21

~c22!~c21!p2m21LM1p22m~v!G ,
~2.19a!

vLM~v!5e~u!GM~v!2 (
p51

L

VpFGM2p~v!1~c21!pGM1p~v!1 ( 8
m51

p21

~c22!~c21!p2m21GM1p22m~v!G . ~2.19b!
w

-
he

or

.
-
s a

nt
.
y

The equations corresponding toM,L will be used later on
to impose appropriate boundary conditions. Also, the follo
ing notation was introduced:

Gn~v![Gn,0~v!, ~2.20a!

Ln~v![Ln,0~v!. ~2.20b!

Since we are only interested inG00 we have that

Vp[Vp,05SJp , ~2.21a!

e~u![e0~u!5 (
p51

L

c~c21!p21Vp cos~pu!.

~2.21b!

Since Eqs.~2.15! constitute a set of coupled ordinary lin
ear finite difference equations, and following the spirit of t
work of Trias and Yndurain,31 we use the ansatz

GM~v!5AxM~v!, ~2.22a!

LM~v!5ByM~v!. ~2.22b!

This implies that a constants, defined by

s5
AxM

ByM
, ~2.23!

exists and is independent ofM , x, andy.
We now define

p[x~c21!1/2, q[y~c21!1/2, ~2.24a!

Yn[Vn~c21!n/2, Zn~u![Vn cos~nu!~c21!n/2,
~2.24b!

ṽ1[v2e~u!/s, ṽ2[v2e~u!s. ~2.24c!
-
These definitions, in combination with Eqs.~2.22! and Eq.
~2.23!, allow us to rewrite Eqs.~2.19! in a form closely
analogous to Eq.~2.2!, which read

ṽ152
1

s (
n51

L

Zn~u!Fq2n1qn1
c22

c21 S q2~n21!1q~n21!

q211q D G
[W̃1~q!, ~2.25a!

ṽ252s (
n51

L

YnFp2n1pn1
c22

c21 S p2~n21!1p~n21!

p211p D G
[W̃2~p!, ~2.25b!

whereQ(q)5qL@W̃1(q)2ṽ1# and P(p)5pL@W̃2(p)2ṽ2#
are polynomials of degree 2L in the q and p variables, re-
spectively. We denote the roots of these polynomials byqk
and pk @i.e., W̃1(qk)5ṽ1 and W̃2(pk)5ṽ2#; they are solu-
tions for the Green’s functions of Eqs.~2.22!, in combination
with the definitions provided in Eq.~2.24a!.

The structure of Eqs.~2.25! implies the following symme-
try: if pk is a root 1/pk is also a root, and the same holds f
qk . However, onlyL of these 2L solutions are physically
meaningful and they satisfyuxk5pk /(c21)1/2u,1 and
uyk5qk /(c21)1/2u,1, so that the Green’s functions of Eq
~2.22! remain finite forM@1. Consequently, the most gen
eral expression for the Green’s functions can be built a
linear combination of all the valid solutions$xk% and $yk%,
respectively, as follows:

GM~v!5
1

2(j51

L

~Ajxj
M1Bjyj

M !5
11s

2 (
j51

L

Ajxj
M .

~2.26!

The weight factorsAj and Bj are determined from the
boundary conditions, which simply specify the requireme
that the origin~labeled as 0! be equivalent to any lattice site
An expression fors is derived in the Appendix and given b
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14 402 55JOSÉROGAN AND MIGUEL KIWI
Eq. ~A4!. Once these constants are determined the res
theorem is used, and the following integral expression for
Green’s functions are obtained:

G0~v!5
2c~c21!

p E
0

p sin2~f!

c224~c21!cos2~f!

3
1

ṽ12W̃1~f!
df, ~2.27a!

L0~v!5
2c~c21!

p E
0

p sin2~f!

c224~c21!cos2~f!

3
1

ṽ22W̃2~f!
df. ~2.27b!

These can be combined, using Eqs.~2.18!, to obtain the
Green’s functionG0(v) in which we are interested in. Th
procedure to do so is outlined in the Appendix. The resul

G0~v!52c~c21!E
0

p sin2~f!

c224~c21!cos2~f!

3
1

v2AW1~f,u!W2~f,u!

df

p
, ~2.28!

where, for an arbitrarily long range interaction,W1(f,u) y
W2(f,u) are given by

W1~f,u!5 (
n51

`

Vncos~nu!Fc~c21!n212~c21!n/2

3S 2 cos~nf!1
c22

c21

sin@~n21!f#

sin~f! D G ,
~2.29a!

W2~f,u!5 (
n51

`

VnFcos~nu!c~c21!n212~c21!n/2

3S 2 cos~nf!1
c22

c21

sin@~n21!f#

sin~f! D G .
~2.29b!

The local density of statesD0(v), at the central site is
obtained, using Eq.~2.28!, in the usual way

D0~v!5
2c~c21!

p

sin2@f~v!#

c224~c21!cos2@f~v!#

df

dv
,

~2.30!

wheref is implicitly given by

vu~f!5AW1~f,u!W2~f,u!, with f5ka.
~2.31!

Equation~2.31! is the dispersion relationvu(k) for mag-
nons on a Bethe lattice of coordinationc, for an arbitrarily
long range interaction, when the ground state is helical w
an angleu between consecutive spins.
ue
e

s

h

The only remaining item in the development of the fo
malism is to determine the pitch of the helix, or equivalent
the angleu just mentioned. It is obtained minimizing, respe
to u, the energy per lattice siteE(u,k) of the spin wave
labeled byk, for a fixed value ofk ~sayk50). E is finally
given by

E~u,k!52
S

2 (
n51

`

Vnc~c21!n21cos~nu!1
vu~k!

N ,

~2.32!

where the first term on the right hand side is equal
2E(u) of Eq. ~2.12! divided by the number of lattice site
N, and thus independent ofN. However, since this numbe
of lattice sitesN is very large, the second term above, whi
is }N21, vanishes. Replacing the value ofu, which mini-
mizesE in Eq. ~2.31!, fully determines the dispersion relatio
and consequently the physics of the problem at hand.

III. APPLICATIONS

A. Simple examples

Having developed the formalism in the preceding sect
we now turn to several quite straightforward application
Their purpose is to illustrate the power and versatility of t
method, but for the time being we do not pretend to exha
all possible options, restricting ourselves to rather simple
amples.

The first obvious choice is to imposeu50 and recover, as
expected, the solution of Trias and Yndurain,31 provided as
Eqs.~2.2! and ~2.3!. But, one can easily go one step furth
and consider a linear chain~i.e., a Bethe lattice of coordina
tion c52) with only nearest-neighbor~NN! interactions, but
of arbitrary sign and magnitude, like

E~u,k50!52 1
2 VS cos~u!. ~3.1!

Minimization yields two possible solutions

umin5H 0, if V.0,

p, if V,0,
~3.2!

and consequently the following well-known dispersion re
tions:

v~k!5H 2V@12cos~ka!# if V.0 ~FM case!,

2uVuusin~ka!u if V,0 ~AFM case!.
~3.3!

This result is quite remarkable, sinceboth the FM and the
AFM solutions are obtained within the same formalism,
the basis of a continuous variation of the angleu which
minimizes the energy, in spite of the fact that one is qu
dratic ~FM! and the other linear~AFM! in k.

B. Next-nearest-neighbor interactions

In a pioneer work Majumdar and Ghosh33,34 ~hereafter
denoted as MG! introduced and studied the stability of th
magnetic structure, of an exactly solvable finite on
dimensional chain model with nearest- and next-near
neighbor~NNN! interactions. They exactly diagonalized th
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Hamiltonian for chains of 3<N<8 and N510 particles
~Refs. 33 and 34, respectively! and suggested that, in th
presence of frustration and in theN→` limit, the ground
state belongs to the lowest total spin configuration. Mo
over, they were able to find bounds for the ground st
energy both for the linear chain and the two-dimensio
square lattice, with NN and NNN interactions.

In spite of the fact that the results of MG are obtained
spin 1

2, while our formalism is rigorously valid in theS→`
limit, it is possible to establish a qualitative comparison
some of the relevant conclusions reached through both
proaches. To do so we recall that a Bethe lattice of coo
nationc52 is a genuine one-dimensional infinite chain; if
addition we limit the arbitrary range of the interactions
NNN, our problem becomes analogous with MG’s, with t
caveat stated at the beginning of this paragraph. In this c
text our formalism, as well as MG’s, yields a nonmagne
ground state, except when all interactions are FM, and
an instability of the FM order against spin waves f
a,21/4. However, the most striking feature of our resu
is that they lend support to the conjecture of MG thata50 is
a critical value for the stability of the FM state, against
transition to a total spinS50 state in theN→` limit. The
evidence for the preceding statement is apparent from
fact thatE is practically stationary in the neighborhood
u50, for small negative values ofa, which implies that a
large pitch helical and the FM configuration have nearly
same energy. In other words, the FM state of a linear cha
unstable against a total spinS50 state, for anya,0, in the
Stot→` limit and quite likely also in theS5 1

2 case.

C. Helical systems

The study of simple models of helical structures is
interest because they allow to describe polymers and m
ecules with this symmetry, like e.g., DNA.35 Previous work
on these systems35–37 is limited to Ising-type interactions
Below we present an application of the formalism develop
in Sec. II, to helical structures described by a Heisenb
Hamiltonian. The systems we study are structures gener
by one-dimensional chains of atoms wrapped on the sur
of a cylinder of radiusr . The positions of the atoms on th
cylinder ~in cylindrical coordinates! are specified byr , the
polar anglefn , and the coordinatezq along thez axis. The

FIG. 2. umin /p as a function ofXN5JN /uJ1u, for N54,5,9, and
10. The first-neighbor interactionJ1 is ~a! ferromagnetic (J1.0),
and ~b! antiferromagnetic (J1,0).
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anglefn52pn/N, whereN is the number of sites per turn
zq5pq1pfn/2p, with integern andq, and wherep is the
pitch of the helix.

Each spin is allowed to interact only with its NN, i.e
with its first neighbors along the chain and with those in t
next and preceding turn of the helix. They are specified

Vn5H J1 , if n51,

JN , if n5N,

0 otherwise.

~3.4!

Obviously, we are most interested in competitive intera
tions and will concentrate on them later on, but as of now
leave all sign options open. Minimization of the per site e
ergy yields

E~u,k50!52
1

2
uJ1uS@sgn~J1!cos~u!

1XNcos~Nu!], ~3.5!

where the function sign(j) denotes the sign ofj, which cor-
responds to1 ~2! for FM ~AFM! interactions.uJ1u is the
absolute value of the NN interaction, which is just an ene
scaling factor.XN is the interaction strength ratio defined b

XN5
JN
uJ1u

. ~3.6!

Figure 2 illustrates the behavior ofumin as a function of
XN , for various values ofN. It is noticed that critical values
of XN do exist for which both the FM and the AFM orde
becomes unstable, giving rise to ground state helical st
tures of the system. It can be rigorously shown that the c
cal values ofXN are given by

XN
crit5H 2

1

N2 if sgn~J1!511,

~21!N11
1

N2 if sgn~J1!521,

~3.7!

FIG. 3. Magnon dispersion relation of a five-spin per turn hel
For ~a! sgn(J1)511 and X550.05,0.25,0.5 and 0.9; they corre
spond to long-dashed, dashed, dotted, and full lines, respectiv
For ~b! sgn(J1)521 andX5520.05,20.25,20.5 and20.9; they
correspond to long dash, dashed, dotted and full lines, respecti
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which implies that the ground state of the system ado
helical order foruXNu.uXN

critu.
In Fig. 3 we display the magnon dispersion relation fo

helix ofN55 spins per turn, for both signs ofJ1 and several
values ofXN . They are stable over the whole interval~i.e.,
no negative frequency values are found!. However, a new
feature emerges:v has a minimum valuev50 for
ka5umin which, within the present formalism, can be rigo
ously shown to be a general result for systems of coord
tion c52. On the other hand, these zeroes do not impl
ground state degeneracy, since they correspond to a sup
sition of an excitation which is commensurate with t
ground state. Moreover, the other local minima that are
served in the figure correspond to higher order harmon
with ka5numin .

The bounds onumin imply a tendency towards stability o
helical order commensurate with the helix periodicity. Sin
this feature is found in the absence of anisotropy, wh
would further enhance it, we conclude that a helix is t
most stable configuration once FM or AFM order brea
down.

The above results are examples of many open options
fact, while the sgn(J1) andN characterize the helical system
the parameterXN , which can be varied externally by stretc
ing or reducing the pitch of the helix, induces interesti
transitions. In fact, for values ofuXNu.uXN

critu conventional
ordering ~both FM and AFM! breaks down. Finally, it is
worth mentioning that the analytic values we obtain, for t
N dependence ofXN

crit , are in good agreement with those
the literature.38–40

D. Longer-range interactions

Usually the study of the Heisenberg model faces rat
formidable difficulties, both in analytic and numer
treatments.41,42This is especially true when long-range inte
actions are added, which explains why so few references
be found on the subject. Actually, the notable early excep
being the pioneer work of Majumdar and Ghosh33,34 men-
tioned in Sec. III B. Instead, our formalism constitutes
rather simple approach, within the limitations of the Bet
lattice approximation. At this point, and in order to keep t
dimensionality of the parameter space manageable, we
the interactions to first-, second-, and third-neare
neighbors. In addition, this allows us to compare with t
numeric results of Mesı´as and Vogel43 obtained for the linear

FIG. 4. umin /p as a function of the nondimensional second- a
third-nearest-neighbor interaction strengthsa andb, respectively,
for a linear chain with FM first neighbor interactionJ1.0.
ts
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chain (c52) case. Analytically, the interactionsVn of Eqs.
~2.4! and ~2.16! are specified by

Vn55
J1 if n51,

J2 if n52,

J3 if n53,

0 if n>4.

~3.8!

We readily obtain the angle between consecutive sp
which substituted in expression~2.32! for the energy yields

E~u,k50!52 1
2 uJ1uSc@sgn~J1!cos~u!1a~c21!cos~2u!

1b~c21!2cos~3u!], ~3.9!

whereuJ1u again is only an energy scaling factor, which w
use to reduce the number of free parameters by means

a5
J2

uJ1u
, b5

J3
uJ1u

. ~3.10!

This way, the sgn(J1), a andb, are the relevant variables
which in combination withumin , span the parameter spac
that determines the physics of the problem. In Fig. 4 we p
umin as a function ofa andb, for c52 and FM interaction
J1. FM, AFM and helical order are readily noticed, with bo
sharp and smooth transitions between them. Similar feat
are observed in Fig. 5, which corresponds to coordinat
c56.

These figures imply an interesting result: for up to th
NN interactions~nonzeroa andb) the ground state is nei
ther FM nor AFM below a universal valuea,20.5. The
resulting helical order is independent of sgn(J1) and depends
only weakly onb andc. Furthermore, the pitch of the heli
reaches well defined limiting values for largeb, given by

umin→H p

3
for b!21,

2p

3
for b@11.

~3.11!

These values ofumin turn out to be independent ofc and
sgn(J1) and can be understood as follows: asb@1
(b!21) the dominant interaction is a third neighbor F

FIG. 5. umin /p as a function of the nondimensional second- a
third-nearest-neighbor interaction strengthsa andb, respectively,
for a coordinationc56 Bethe lattice with a FM first-neighbor in
teraction (J1.0).
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~AFM! coupling. Thus, third neighbors align parallel~anti-
parallel! to each other and 3umin52p (3umin5p).

In order to test the power of our formalism in a rath
extreme case we compare our results with the ones obta
by Mesı́as and Vogel,43 who computed the ground state of
spin S5 1

2 linear chain with AFM-NN @sgn(J1)521#, and
arbitrary second and third NN, interactions. They procee
via a direct diagonalization of the Heisenberg Hamiltonian
a 10-spin linear chain. Consequently, there are two impor
differences between their study and the present one:~i! the
spinS5 1

2 they adopt contrasts with our spin-wave appro
mation (S→`); and ~ii ! their treatment applies to a linea
chain subject to periodic boundary conditions, which are
trapolated to obtain results valid for an infinite chain, wh
we treat an infinite system from the outset. In spite of th
caveats our results, which are displayed in Fig. 6, sho
quite remarkable agreement with Ref. 43.

E. RKKY interaction

In addition to the successful use of our procedure in
above examples many other possible applications can be
plored. As a particularly interesting case, which can easily
tackled in this way, we mention the RKKY interaction.13

Basically it is of infinite range, and few results have be
reported in this context. Consequently, even the o
dimensional case (c52) is of interest. We have compute
for the RKKY interaction

Vn52Jq4
sin~pqn!2pqn cos~pqn!

~pqn!4
, ~3.12!

FIG. 6. Magnetic phase diagrams for a linear chain. The
lines are our results and the dashed lines are after Ref. 43.
labels FM, AFM and H correspond to ferro-, antiferro- and helic
magnetic order, respectively. In~a! sgn(J1).0; in ~b! sgn(J1),0.

FIG. 7. Stationary values of the pitch of a one-dimensio
chain of spins coupled by a RKKY interaction, as a function of t
parameterq52kFa/p.
ed
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the equilibrium configuration as a function of the parame
q that characterizes the commensurability of the oscillat
RKKY interaction in relation to the lattice periodicity. It is
defined as

q5
2kFa

p
, ~3.13!

wherea is the lattice parameter andkF the Fermi wave num-
ber. The stationary values of pitch of the helixumin , as a
function of q, are displayed in Fig. 7. Wide phase locke
regions ~both FM and AFM! and sharp transitions, with
rather narrow regions separating them, are observed in
illustration. They constitute a clear, and rather surprisi
indication that the RKKY interaction favors simple FM an
AFM magnetic ordering, even in the semiclassicalS→`
limit. A simplified version of the RKKY coupling, in which
the periodicity of the interaction was assumed commensu
with a FM lattice, was already investigated by Trias a
Yndurain.31

IV. SUMMARY

In this paper we have provided an analytic treatment o
Heisenberg Hamiltonian, with arbitrarily long-range intera
tions on a Bethe lattice, assuming an initial general heli
ground state configuration of the system. This could
achieved by restricting ourselves to the semiclassicalS→`
limit. The Green’s function solution derived above is al
valid for other elementary excitations, like electrons a
phonons.

In Sec. III several examples were developed, mostly
volving frustrated magnetic configurations. First, well know
results, like those of Trias and Yndurain,31 were recovered in
Sec. III A; as an extra bonus, the dispersion relations for b
FM and AFM 1D chains with NN interactions were derive
within a single formalism. After doing so, we contrasted o
results with those obtained, in a pioneer work, by Majumd
and Ghosh,33,34 who included NN and NNN interactions
Good qualitative and quantitative agreement was found
spite of the fact that they treated the extreme quantum li
(S51/2). Next, in Sec. III C we studied helical systems, w
interactions between nearest and far apart neighbors, as
as systems with longer-range interactions. Again we fou
our results to be in accord with previously published work43

carried out in the extreme quantum limit and including up
third NN interactions. Finally, in Sec. III E, we applied ou
formalism to a linear chain with magnetic moments coup
by the very long-range RKKY interaction, to obtain interes
ing new insights.

While we solved the problem for anyc value thec52
coordination ~linear chain! Bethe lattice was used as th
prevalent illustration in the preceding examples, both
cause of its simplicity and because it could be compared w
results available in the existing literature. In all of the cas
explored above we found that the formalism is convenien
apply and that it leads to robust and reliable results.
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APPENDIX: DETERMINATION OF G0„v…

Our aim is to eliminate thes dependence ofG0(v). To
do so we combine the solutions found for the auxiliary fun
tions G0(v) and L0(v), given by Eqs.~2.27!, with Eqs.
~2.17!, to obtain

G0~v!5c~c21!E
0

p sin2~f!

c224~c21!cos2~f!

3S 1

ṽ12W̃1

1
1

ṽ22W̃2
D df

p
. ~A1!

However, thes dependence ofG0(v) by way ofṽ1,2 and
W̃1,2 also has to be removed. To achieve this we use
definitions~2.24a! to rewrite Eqs.~2.25! as follows:

ṽ15v2
e~u!

s
5W̃1~f,u![2

1

s
V1~f,u!, ~A2a!

ṽ25v2e~u!s5W̃2~f,u![2sV2~f,u!, ~A2b!

where

V1~f,u!5 (
n51

L

Vn~c21!n/2cos~nu!

3F2 cos~nf!1
c22

c21

sin@~n21!f#

sin~f! G ,
~A3a!
-

e

V2~f,u!5 (
n51

L

Vn~c21!n/2

3F2 cos~nf!1
c22

c21

sin@~n21!f#

sin~f! G .
~A3b!

This way s is finally determined from Eqs.~2.6! and
reads

s5Ae~u!2V1~f,u!

e~u!2V2~f,u!
. ~A4!

Now, all what we need to evaluateG0(v) is the bracket
in the integral of Eq.~A1!; thus, we have to calculate

J[
1

ṽ12W̃1

1
1

ṽ22W̃2

5
ṽ12ṽ22W̃12W̃2

ṽ1ṽ22ṽ1W̃22ṽ2W̃11W̃1W̃2

. ~A5!

Using relations~A2! we obtain
J5
2v2$@~e~u!2V1#s

211@e~u!2V2#s%

@v2e~u!s21#@v2e~u!s#1@vs2e~u!#V21@vs212e~u!#V11V1V2
, ~A6!

which can be rearranged as follows:

J5
2v2„$e~u!2V1%s

211@e~u!2V2#s…

v22v@$e~u!2V1%s
211$e~u!2V2%s#1@e~u!2V1#@e~u!2V2#

. ~A7!

Using Eqs.~A3! we obtain

@$e~u!2V1%s
211$e~u!2V2%s#52A$e~u!2V1%$e~u!2V2%, ~A8!

which replaced in Eqs.~A7! yields

J5
2v22A~e~u!2V1!~e~u!2V2!

@v2A~e~u!2V1!~e~u!2V2!#
2

5
2

v2AW1~f,u!W2~f,u!
, ~A9!

where

Wi~f,u!5e~u!2V i~f,u!. ~A10!

Substitution ofJ in Eq. ~A1! yields the Green’s function we seek:
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G0~v!52c~c21!E
0

p sin2~f!

c224~c21!cos2~f!

1

v2AW1~f,u!W2~f,u!

df

p
, ~A11!

with W1(f,u) andW2(f,u) given by

W1~f,u!5 (
n51

L

Vncos~nu!H c~c21!n212~c21!n/2F2 cos~nf!1
c22

c21

sin@~n21!f#

sin~f! G J , ~A12a!

W2~f,u!5 (
n51

L

VnH cos~nu!c~c21!n212~c21!n/2F2 cos~nf!1
c22

c21

sin@~n21!f#

sin~f! G J . ~A12b!
tt
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