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An analytic solution for the Heisenberg Hamiltonian with arbitrarily long-range, ferromagnetic and/or anti-
ferromagnetic, interactions on a Bethe lattice is obtained in the semiclassical approxintgtion) ( The
density of states of the excitations is evaluated in the one-spin-wave approximation. The stability of a general
helical ground state configuration, against variations in the magnitude and sign of the long-range interactions,
is investigated for several illustrative examples, generating a wealth of sharp and smooth parametric transi-
tions.[S0163-18207)04918-7

I. INTRODUCTION nomena peculiar to magnetic systems, like spin glasses and
modulated phases. They imply the impossibility of finding a
Exact solutions of simple models are a valuable asset imagnetic structure in which all the pairwise interactions are
theoretical physics. On the other hand, in the description andatisfied: the well-known phenomenon named frustration
understanding of magnetism, the Heisenberg Hamiltonianloes emerge, which is also related to Anderson’s “resonat-
has played a central role. It was independently put forwardng valence bond” statd which lately has attracted so much
by Heisenbertjand Diraé in 1926. However, and in spite of attention.
the permanent interest it has attra@dand the large Moreover, there are actual physical systems of interest in
amount of work devoted to this model ever since, only a fewwhich long range magnetic interactions play a decisive role.
analytic results have been obtained in almost seven decade3ertainly, the rare earths and their metallic alloys, which are
In fact, for the ferromagnetitFM) case(parallel spin align- well described by a Ruderman-Kittél(RKKY) long range
men) only in one dimension has the whole excitation spec-oscillatory interaction, fall into this category. The competi-
trum been obtaine¥.In two and three dimensions analytic tion between the ferromagnetiEM) and antiferromagnetic
results are limited to the ground state and to one- and twotAFM) (alternating sighof the interactions leads to complex
magnon excitation$ For the antiferromagnetitAFM) case  ordered configurations for these systems, as well as for the
analytic solutions have only been found in one dimensionspin glasses.
Very recently an interesting analytic result, for the infinite  On the other hand, already in 1959 Yoshimbsuggested
spin (i.e., classical limit of the two-dimensional Heisenberg a helical configuration as the ground state for a system with
model was reported by Cuye’ Certainly, abundant numeri- competitive first- and second-neighbor magnetic interactions.
cal and approximate results can be found in the literature. Almost simultaneously such ordering was observed experi-
In the semiclassical approximation, where nonintegementally in the MnAuy, compound by Herpin, Miel, and
quasicontinuous values for the spin projection are accepted/illain.’® In addition competitive long range interactions
the excitations are known as spin waves, and were introhave attracted much interest in the context of the anisotropic
duced by Bloch and Slatet (in other words, one expands NNN Ising mode*-?* known under the acronym of
about theS—c< limit). Over the years a large body of ANNNI. While this model is simpler than our Heisenberg
results® has disclosed the somewhat surprising fact that spimne, the configurations it yields and especially the resulting
wave theory is remarkably accurate, especially in two andhermodynamics are of considerable compleXity’
higher dimensions! even in the extreme quantum lint. At this point it is worth mentioning that several of the
However, it is important to point out that the well-known above-mentioned results were obtained for a Bethe lattice
analytic results, as well as most of the numeric ones, aréopology?>?%?’Most often the solution on a Bethe lattice is
limited to nearest-neighbor interactions. Two main causesnuch simpler than on a regular lattice, but still equivalent to
explain this state of affairs(i) in most physical systems Bethe—Peierls theo’? with which it is identical if the crys-
next-nearest-neighbdiNNN) interactions are rather small; tal lattice has the same coordination number. However, not
and (ii) the difficulties that have to be faced in the treatmentmuch work on frustrated systems has been carried out in the
of longer range interactions, are quite formidable. Actually, aBethe lattice context, quite likely because of the intricacy of
whole new area of interest is opened merely by incorporatinghe problem once long-range competitive interactions are in-
competitive NNN interactions, i.e., couplings of varying sign corporated. It is worth mentioning that a Bethe lattice with
depending on distance. The presence of competitive interacandom sign bonds is not frustrated, due to the absence of
tions lies at the focal point of a variety of interesting phe-closed loopg®°
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Consequently, in order to make progress towards analytic
solutions of the Heisenberg model, with long-range interac-
tions and going beyond dimension one, the Bethe lattice ge-
ometry constitutes an interesting option. This alternative was
explored by Trias and Ynduraitt,who investigated the sta-
bility of the magnetic ordering of an originally FM semiclas-
sical Heisenberg system. They were able to obtain an ana-
lytic solution to the problem, including the one-magnon
excitation spectrum. As an illustration they applied their so-
lution to a system with alternating FM and AFM interac-
tions, among odd and even neighbors, respectigfely with FIG. 1. On the left a square two-dimensional lattice. On the
first, third, fifth, etc., and AFM with second, fourth, sixth, 19ht the equivalentsame coordination=4) Bethe lattice.
etc., neighboring shells

Here we report on a fully analytic treatment of the same _
problem, but removing the constraint of using a FM ground w:zl Jonc(c—1)" 1_21 Jon(c—1)"?
state as the initial configuration. Thus, in our treatment we _
start from a general helical ground state configuration and «|2 cogne) + c—2sin(n—1)¢] 2.2
investigate how it responds to various types of long-range c—1 sin(¢) ' '
order interactions. )
This paper is organized as follows: after this introduction@nd for the local density of states
the model and its solution are presented in Sec. Il. In Sec. llI .
various illustrative cases are discussed: they range from :E (c-Dcsim ¢(w)] d_¢
. e . . . Do(w) 2 , (23
simple applications to the inclusion of long-range interac- 7 ¢?—4(c—1)cos p(w)] dw

tions. In Sec. IV we close this paper with a brief summary. wherec is the coordination of the Bethe latticé=ka and

a is the lattice parameter. The derivative above is obtained
from Eq.(2.2).

Il. MODEL AND SOLUTION While this beautiful analytic solution constitutes, in our

A. The Hamiltonian opinion, a little exploited piece of work, it has the shortcom-

ing of requiring a ferromagnetic configuration as the launch-

Our system is made up of magnetic atoms placed at théd site for the calculation. This way, one is limited to either
nodes of a Bethe lattice. Each atom has a single degree &M long-range interactions, or weak competitive antiferro-
freedom, associated to its spin. The main peculiarities of th@agnetic ones. Only then it is feasible to obtain the excita-
work reported in this paper af® the original configuration, 1On Spectrum. However, when the competitive interactions
i.e., the one adopted as a starting point in the calculation, igf°%W large enough, the FM configuration becomes unstable,

not ferromagnetidFM) but a general helical state; afid) giving rise to a soft magnon which “freezes” in as the new

the range of the interaction between spins is unrestrictedground state O.f th_e system. This noyel magnetic ord_er |r_1vaI|-
i = . . ) dates the excitation spectrum obtained above, which is re-
That is, the spinS; (at site j) interacts, with a coupling

flected in the appearance of unphysical negative minima of
strengthJ;,, with spin S, at sitek, which is located a dis- . In what follows below we remove this restriction, thus
tanceL away.L is measured in units of lattice parametersallowing the use of general helical ground state configura-
along the Bethe lattice. The Hamiltonian which specifies theions. In fact, for the linear chaifcoordinationc=2) we do
system analytically is the Heisenberg Hamiltonian given byadopt as the starting configuration a general helical structure,
in which the angle between a pair of adjacent spins is a
constant denoted b§. Two special cases are worth mention-

1 S o ing as examples: whefA=0 we recover the FM order dis-
H=— Ej k JikSj- S (2.1) cussed by Trias and Yndurathout, if 6= it implies the
' adoption of the Nel state as the starting ground state con-
figuration.

At this stage it is convenient to rewrite the Heisenberg
The summation above is over afj,k) pairs (j#k), while  Hamiltonian, introducing the Bethe lattice topology, which is
the factor; compensates for the double counting. illustrated in Fig. 1, and a label for the successive shells.
To work out the dynamics of the system a Green’s func-This way our Hamiltonian takes the form
tion formalism of the Zubare¥ type is used. Trias and
Yndurairt! solved the problem formulated above for the spe-

15 < L[ N
cial case where the ferromagnetic configuration is adopted as  H=—3 > 2 JpD(n)Sn[Sanr (c—1)PSy1p
the initial ground state symmetry. They obtained the follow- n=0p=1
ing expression for the dispersion relatiaifk), for magnons p-1 .
on a Bethe lattice of coordinatianand no restriction on the +mzl' (c—=2)(c— 1)"‘m‘18n+p_2m] (2.4

range of the interactiodg,, :
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Aboven is a shell index, whilg establishes the range of wherei=+/—1. This way the Hamiltonian of E¢2.4) can
the interaction. Thp summation incorporates three types of be written exclusively in terms of local spin operators, in
terms. The first one describes the interaction between a spighich S is essentially equal t8. _
on shelln and one on shelln(—p). We notice that there is  To make further progress we relat&by S and write the
only one nearest neighbor in the backward direction, towards* s- ands? operators of Eqg2.7) in terms of newa and
the origin, located in shelln—1). The second term de- 4% gperators, which obey Bose commutation relations. This

scribes the interaction between a spin on shedind one in js achieved by means of the following Holstein-Primakoff
shell (n+p). The factor €—1)P takes into consideration transformation:

that there ared— 1) equivalent nearest neighbors in the for-
ward direction.

The third term corresponds to interactions that follow a N aIaV 12
path on the lattice which first moves a distamoetowards S, =28 1- 25| @ (2.83
the origin, and therp—m away from it, without retracing
itself. The factor €—2)(c—1)P~ ™! takes into account the
topology, while the symbolX’ denotes a summation in - [ aka,|
which thep=1 term is excluded. The factdd(n) in Eq. S, =\2s4d]| 1~ 55| (2.8b
(2.4) is the number of equivalent lattice sites on shmelnd
is given by
1, if n=0, S;=s-ala,, (2.89
DIM=\cc—1n,  if no. @9

where the commutation relations obeyed by thesenda’

It is important to point out that this Hamiltonian describes
operators are

correctly the system beyond theh shell from the origin, as

if the Bethe lattice would have no privileged central site.
This is essential to derive the right boundary conditions for [a,,a,]=0, [a,,,a;]z Sup- (2.9
the Green’s functions, as we will do later on.

We now describe our system and fully specify it geo-
metrically. We assume that at each lattice site a local coor-
dinate system is specified, with theaxis parallel to the
links. Thus, two adjacerg-axis, corresponding to two suc-
cessive local systems, form an anglevith each other. Each
spin points essentially along the localaxes, which is the S, = \/Z—Sav, (2.10a9
axis of quantization. The summation in E@.4) is carried
out evaluating each term in its own coordinate system; that

is, for a site on shelh we write §n:p in the local coordinate S, = \/Z_Saf, (2.100
system of siten. To perform the scalar product in the local
coordinate system we use, in EG.4), the rotation matrices
associated with an angf®9, for a pair of spins separated by
a distancep. In component notation each term of EG.4)
reads

Within the one magnon approximation one obtains, for
the operators of Eq$2.9)

$=S-a'a,. (2.109

. o b b Since in Eq(2.6) we managed to write the Hamiltonian in
Sm* Sn=SpSht 2 (SnSy +S4 Sn)- (2.6 terms of the local spin operators, which satis{~S, we

= . can use the above approximation to obtain
The components db,,. ,, at one site of sheln, are related PP

to the local components of the vec@g+n at another site of

shellm+n, which is at a distanca from shellm, by the H=—E(6)+Hy+H;, (2.11)
transformation
= ng\ ~ ne .
SrT1+n:SrT1+nC032(? +S}+nsin2<?) with
—iS%,, ,sin(nd), 2.7 N
m+n r(g ) , ( a E(¢9)= 52 JpS2C(C_1)p—1CO$p0)' (212
_ ~ AL ~_ n p=1
Sm+n:SrJTr1+nsmz(7 +Sm+n00§(7)

+ ig,ﬁw sin(ng), (2.7H where corresponds to the total number of lattice sites, and
E(#) is a nonoperator quantity, which depends exclusively
on the initial ground state angle between spins. Thus, it only
shifts the energy origin and can be ignored in the calcula-
- tions of the excitation spectra. Thé, term of the Hamil-
+ShnC0<N0), (279 tonian is given by

i~ i~
Sta=— 58;+n5|n(n0)+ 5 Snnsin(no)
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o0 L
%2 Z D(n{ \[;sin(pa) a

p—1
t t t '
o~ an-ptan—ait(c—DP@l, j—anpt an—an)erE:1 (c—2)

X(C_1)p_m_1(ag+p—2m_an+p—2m+an_arﬁ) SCOS(pQ) an p"'a an+(C 1) (an+pan+p+a an)
p-1 pa
+E=l' (c=2)(c—1)P ™Y@}, p omlnp-2mt ahan) +Ssin2<7) anan_p+aj_al+(c—1)P

p—1
T T 1
X (@n@n+ptaspan) + 2 (€=2)(6= 1P ™ H@ndns p-amt e p-2mdn)

+S cosz( 6)

t t
ana5_p+an-pay

1 t
+(c—1)P(and}, o+ ans pah) + 2 (c=2)(c—DP"™ Xanal, p om+ansp-omah)

] (2.13

where we have eliminated the tildes in order to simplify the notation. Finally, in the spin-wave approximation thé; team

be ignored, since it only contains products of more than two operators, which correspond to magnon-magnon interactions.
Thus, in what follows we compute the excitation spectrumHgfand add the contribution dE(6) at the end of the

calculation.

B. Green’s functions and excitation spectrum

In order to obtain the excitation spectrum we use the ZuBa@keen’s function formalism. To tre&t, it is convenient to
define the following pair of functions:

G k(t—t")=((a;(t),al(t"))), (2.143
Kim(t—t")=((af(t),al(t")), (2.14b

once a time Fourier transform is performed they are found to obey the equations of motion

0 pfll
co§( %) [Gip,k(“’)“L(C_1)pGj+p,k(w)+nZl (c=2)(c=1)P ™ 1G;, y_omu(®)

L
[0=€(0)18j()= 5= 3, Vs,

L[ PO
+ sir? 3

p—1
)[Kj_p,k(w)ﬂc—1)ij+p,k(w)+mE_1' (c=2)(c=1)P ™ K, p_om(®) ] (2.153

0 =
sz(p?) [GIp,n(w)+(c_1)pGI+p,n(w)+m§=:l (C_Z)(C_l)pimilGprZm,n(w)

[w+e|<0)]K|,n<w>=—F§1 Vo

p—1

+C052<%9) Kl—p,n(w)+(c_1)pKI+p,n(w)+mz:1, (C_Z)(C_1)p_m_1KI+p—2m,n(w)H , (2.15b

where the following definitions have been introduced:

V,;=S3D(j), (2.163
L

e,—(a):El V,,jc(c—1)PLcog pé). (2.16b
=

We notice that, as a consequence of the spin wave approximation;2Ef$.do not mix in higher order Green’s functions.
Thus, the system of algebraic equations can be solved analytically. To do so we introduce two auxiliary fuhciwhs
A, defined as

[ (0)=Gj (o) +K; (o), (2.173

Aj (@) =Gj (o) =Kj (o), (2.17b

which satisfy the equations of motion
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L
ol (@)= 8+ ej(a)A,,k(w)—le V,.jcospé)

Aj_p'k(w)-i-(C— 1)ij+p,k(w)

p—1

+mE=1’ (c=2)(c=1)P ™ A |1 poomu(®@) |, (2.183

L p—1
wAj,k<w>=5j,k+ej<e>r,-,k<w>—gl vp,{rj_p,k(ww(c—l)pr,-+p,k<w>+ > (c—2><c—1>p-m-1r,-+p_2m,k<w)}.

m=1
(2.18b
Forj=M=L, andk=0, we obtain the following set of algebraic equations:
L p—1
ol u(©)=€(0)Am(w) =~ 2, Voeodpo)| Au-p(w)+ (e~ 1)PAup(0) + 2 <c—2)<c—1>p-m-1AM+p2m<w)},
(2.19a

L
wAM(w)=e(e>rM<w>—p§1 A

p—1
Ty—p(@)+(c— 1)prM+p(w)+mE:1' (c—2)(c— 1)p‘m‘1FM+p_2m(w)} (2.199

The equations corresponding kb<<L will be used later on These definitions, in combination with Eq®.22 and Eq.
to impose appropriate boundary conditions. Also, the follow-(2.23), allow us to rewrite Eqs(2.19 in a form closely

ing notation was introduced: analogous to Eqg2.2), which read
I'n(@)=Tho(o), 2208 _  1g L c—2[q gy
wl__;rglzn(a) q t¢ +C—1 q +q
Ap(w)=A, o( ). (2.20bh _
_ , =W, (a), (2.253
Since we are only interested By, we have that
L —(n— —
_ 3 C_Z p (n 1)+p(n 1)
Vp=Vp0=Sdk, (2.213 wzz_gnzl Yn[p "+p"+ C—l( o Ttp
L ~
€(0)=e€o(0)= Zl c(c—1)P~ 1V, cogpé). =Wa(P), 3 5 (2259
- (2.21p  WhereQ(a)=a'TW,(q)~@,] and P(p)=p"[W(p) -]

are polynomials of degreel2in the g and p variables, re-
Since Eqgs(2.15 constitute a set of coupled ordinary lin- SPECtively. We denote the roots of these polynomialsipy
ear finite difference equations, and following the spirit of the@nd Px [i-e., Wi(qw) =@, and W,(py) =@,]; they are solu-

work of Trias and Ynduraif! we use the ansatz tions for the Green’s functions of EqR.22), in combination
with the definitions provided in Eq2.243.
Cu(@)=Ax"(w), (2.223 The structure of Eq42.25 implies the following symme-
try: if p, is a root 1p, is also a root, and the same holds for
Ay(®)=ByM(w). 2229 G- However, onlyL of these 2 solutions are physically
meaningful and they satisfyx,=p/(c—1)*3<1 and
This implies that a constant, defined by lyk=ax/(c—1)¥3 <1, so that the Green’s functions of Eq.
(2.22 remain finite forM>1. Consequently, the most gen-
AxM eral expression for the Green'’s functions can be built as a
o= By’ (223 |inear combination of all the valid solutiorx,} and{y},

respectively, as follows:
exists and is independent M, x, andy. . .
We now define 1 1+o
Gu(w)==> (AXM+By)="—=5—2 AxM.
24 i iYj 2 & 0%

p=x(c—1)¥2 q=y(c—1)¥?, (2.243 (2.26

Y, =V,(c—1)"? Z,(0)=V, cogné)(c—1)"?, The weight factorsA; and B; are determined from the
(2.245  boundary conditions, which simply specify the requirement

that the origin(labeled as Pbe equivalent to any lattice site.

wi1=w—€(0)lo, w,=w—€(f)o. (2.240 An expression for is derived in the Appendix and given by
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Eqg. (A4). Once these constants are determined the residue The only remaining item in the development of the for-
theorem is used, and the following integral expression for thenalism is to determine the pitch of the helix, or equivalently,

Green’s functions are obtained: the angled just mentioned. It is obtained minimizing, respect
) to 6, the energy per lattice sité(6,k) of the spin wave
Fo(w)= ZC(C—l)f’T SiN(¢) labeled byk, for a fixed value ok (sayk=0). & is finally
0 ™ 0 C2—4(c—1)cos(¢) given by
1 S - w4(K)
X . &0,k)=—= 2, Voec(c—1)" tcogn)+ ,
5w (2.273 (6.K)==5 2 Vac(c—1)" tcodn6) + —
(2.32
Ag(w)= 20(c—1)fw si’(¢) where the first term on the right hand side is equal to
0 7 Jo c®—4(c—1)cos(¢) —E(6) of Eq. (2.12 divided by the number of lattice sites
N, and thus independent of. However, since this number
1 of lattice sites\is very large, the second term above, which
Xaz_\’,'vz((ﬁ)dd" (2.279 is « A1, vanishes. Replacing the value 8f which mini-

mizes€ in Eq. (2.31), fully determines the dispersion relation

These can be combined, using E¢®.18), to obtain the ~and consequently the physics of the problem at hand.
Green'’s functionGy(w) in which we are interested in. The

procedure to do so is outlined in the Appendix. The result is Ill. APPLICATIONS
- Sir?( &) A. Simple examples
GO(“’)ZZC(C_l)JO c?—4(c—1)co(¢) Having developed the formalism in the preceding section
we now turn to several quite straightforward applications.
1 d¢ Their purpose is to illustrate the power and versatility of the
7 o (2.28 method, but for the time being we do not pretend to exhaust
0= VWi(¢,0)Wa(¢,0) all possible options, restricting ourselves to rather simple ex-
where, for an arbitrarily long range interaction,(¢$,6) y ~ amples. _ o
W,(¢,6) are given by The first obvious choice is to impoge=0 and recover, as

expected, the solution of Trias and Yndurdtrprovided as
Egs.(2.2) and(2.3). But, one can easily go one step further

o0

Wy (¢, 0)= >, Vycognh)|c(c—1)""t—(c—1)"2 and consider a linear chaie., a Bethe lattice of coordina-
n=1 tion c=2) with only nearest-neighbdNN) interactions, but
c—2 si(n—1)¢] of arbitrary sign and magnitude, like
X| 2 cogng)+ ) - ”
¢ sin(¢) £(6,k=0)=— VS cog 6). 3.1)
(2.293 o . .
Minimization yields two possible solutions
Wo(,0)= > V,|cognd)c(c—1)"1—(c—1)"2 0. — 0, it V>0, 3.2
=t mn i V<O, '
«[ 2 cogne) + c-2 sir{(n—1)¢>]) and consequently the following well-known dispersion rela-
c—1 sin( ¢) tions:
(2.290 2V[1-cogka)]  if V>0 (FM case,
The local density of stateBy(w), at the central site is @ 2|V||sin(ka)| if V<O (AFM case.
obtained, using Eq.2.28), in the usual way 3.3
2c(c—1) sin[ ¢(w)] d¢ This result is quite remarkable, sinbeththe FM and the
Do(w)= 7 P—A(c—1)cod d(w)] do’ AFM solutions are obtained within the same formalism, on

(2.30 the basis of a continuous variation of the ang@ewhich
minimizes the energy, in spite of the fact that one is qua-
where ¢ is implicitly given by dratic (FM) and the other lineafAFM) in k.

wy($)=VWi($,0)Wa(,0), with p=ka. B. Next-nearest-neighbor interactions

(2.3)
In a pioneer work Majumdar and Ghdsfi* (hereafter
Equation(2.3)) is the dispersion relatiom 4(k) for mag- denoted as Mgintroduced and studied the stability of the
nons on a Bethe lattice of coordinatien for an arbitrarily = magnetic structure, of an exactly solvable finite one-
long range interaction, when the ground state is helical witldimensional chain model with nearest- and next-nearest-
an angled between consecutive spins. neighbor(NNN) interactions. They exactly diagonalized the
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X,=J, /) Xy=Jy/ ) ka/m ka/m
FIG. 2. 6,/ as a function oXy=Jy/|J4|, for N=4,5,9, and FIG. 3. Magnon dispersion relation of a five-spin per turn helix.

For (a) sgng;)=+1 and X5=0.05,0.25,0.5 and 0.9; they corre-
spond to long-dashed, dashed, dotted, and full lines, respectively.
For (b) sgn@;)=-1 andX;=—0.05,-0.25,—0.5 and—0.9; they
correspond to long dash, dashed, dotted and full lines, respectively.

10. The first-neighbor interactiody is (a) ferromagnetic J;>0),
and (b) antiferromagnetic J;<0).

Hamiltonian for chains of 3N<8 and N=10 patrticles
(Refs. 33 and 34, respectiveéland suggested that, in the B . .
presence of frustration and in tié—oo limit, the ground a”g'e‘f’;—z’jg“\" vytr;]e_retl: Ies the ndumberdof f\'tes p_ert:]urn.
state belongs to the lowest total spin configuration. More—zqt;hpgf tﬁg?]elm with integérn andq, and wherep 1S the
over, they were able to find bounds for the ground staté” IX.

energy both for the linear chain and the two—dimensionalwitE?fhﬁfa'rr‘] |is r?lI)IO\r/vedI tr? Tkt}eraﬁt i?]nlﬁgv&?tr:tthN'irIﬁH
square lattice, with NN and NNN interactions. s first heighbors along the chain a ose €

In spite of the fact that the results of MG are obtained for"eXt and preceding tum of the helix. They are specified by

spin 3, while our formalism is rigorously valid in th&— o
limit, it is possible to establish a qualitative comparison of
some of the relevant conclusions reached through both ap- V=14 In, if n=N, (3.9
proaches. To do so we recall that a Bethe lattice of coordi-
nationc=2 is a genuine one-dimensional infinite chain; if in
addition we limit the arbitrary range of the interactions to  opyiously, we are most interested in competitive interac-
NNN, our problem becomes analogous with MG’s, with thetjons and will concentrate on them later on, but as of now we

caveat stated at the beginning of this paragraph. In this congaye all sign options open. Minimization of the per site en-
text our formalism, as well as MG's, yields a nonmagneticergy yields

ground state, except when all interactions are FM, and also

an instability of the FM order against spin waves for 1

a<—1/4. However, the most striking feature of our results E(6,k=0)=— §|J1|S[sgr(Jl)cos 0)

is that they lend support to the conjecture of MG thatO is

a critical value for the stability of the FM state, against a

transition to a total spirs=0 state in theN—o limit. The +XncogNo)], 3.5
evidence for the preceding statement is apparent from th

fact that& is practically stationary in the neighborhood of responds tot (—) for FM (AFM) interactions/J,| is the

g T Oe, ficiér??;lilcgfgﬁg\ﬁevilll\]ﬂegoﬁi VJP;%ZAT}S'\L‘ZS”?;:I atheabsolute value of the NN interaction, which is just an energy
ge p 9 . v scaling factorXy is the interaction strength ratio defined by
same energy. In other words, the FM state of a linear chain iS

unstable against a total sp8+ 0 state, for anyw<<0, in the
Sior— limit and quite likely also in thes=3 case. Xy

‘]l! if n:].,

0 otherwise.

\Where the function sigrf) denotes the sign of, which cor-

In

:m. (3.6)

C. Helical systems Figure 2 illustrates the behavior &, as a function of

The study of simple models of helical structures is of X, for various values oN. It is noticed that critical values
interest because they allow to describe polymers and mobf Xy do exist for which both the FM and the AFM order
ecules with this symmetry, like e.g., DN .Previous work  becomes unstable, giving rise to ground state helical struc-
on these system¥ ' is limited to Ising-type interactions. tures of the system. It can be rigorously shown that the criti-
Below we present an application of the formalism developedtal values ofXy are given by
in Sec. Il, to helical structures described by a Heisenberg

Hamiltonian. The systems we study are structures generated 1 ]

by one-dimensional chains of atoms wrapped on the surface N2 if sgn(Jy)=+1,

of a cylinder of radiug. The positions of the atoms on the xg{it: (3.7
cylinder (in cylindrical coordinatesare specified by, the (—1)N+1i if sgn(Jy)=—1

polar angleg,,, and the coordinate, along thez axis. The N2 ! '
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FIG. 4. 0,/ as a function of the nondimensional second- and
third-nearest-neighbor interaction strengthsand 3, respectively,
for a linear chain with FM first neighbor interactiaR>0.

FIG. 5. 6,,»/m as a function of the nondimensional second- and
third-nearest-neighbor interaction strengthsand 3, respectively,
for a coordinationc=6 Bethe lattice with a FM first-neighbor in-
S i >0).
which implies that the ground state of the system adopt.%eractlon 0:>0)

i crit,
helical _order f0r|),<N|>|XN E , , ) chain c=2) case. Analytically, the interactions, of Egs.
In Fig. 3 we display the magnon dispersion relation for 4(2.4) and(2.16) are specified by

helix of N=5 spins per turn, for both signs df and several

values ofXy . They are stable over the whole intervak., J; if n=1,
no negative frequency values are foundHowever, a new ] it n=2
feature emergesiw has a minimum valuew=0 for V.= 2 ' (3.9
ka= 0,,, which, within the present formalism, can be rigor- " Js if n=3,
ously shown to be a general result for systems of coordina- 0 if n=4.

tion c=2. On the other hand, these zeroes do not imply a

ground state degeneracy, since they correspond to a superpo-We readily obtain the angle between consecutive spins,
sition of an excitation which is commensurate with thewhich substituted in expressid@.32 for the energy yields
ground state. Moreover, the other local minima that are ob-
served in the figure correspond to higher order harmonics,£(9,k=0)=— 3 |J,|Sd sgr(J;)cog 6) + a(c—1)cog 26)
with ka=n 6.
The bounds ord,,,;, imply a tendency towards stability of +B(c—1)%cog30)], (3.9
helical order commensurate with the helix periodicity. Since o ) )
this feature is found in the absence of anisotropy, whichvhere|J,| again is only an energy scaling factor, which we
would further enhance it, we conclude that a helix is theUSe to reduce the number of free parameters by means of
most stable configuration once FM or AFM order breaks 3 3
down. a:_z' 18:_3. (3.10
The above results are examples of many open options. In |34 94|
fact, while the sgn}) andN characterize the helical system, This way, the sgrl), @ and 8, are the relevant variables,
the parameteXy, which can be varied externally by stretch- \\hich in combination withd,,;,, span the parameter space
ing or reducing the pitch of the helix, induces interestinght determines the physics of the problem. In Fig. 4 we plot
transitions. In fact, for values diXy|>|X{"| conventional 4 a5 a function ofx and B, for c=2 and FM interaction
ordering (both FM and AFM breaks down. Finally, it is = 3 'FM, AFM and helical order are readily noticed, with both
worth mentioning that the analytic values we obtain, for thesharp and smooth transitions between them. Similar features
N dependence ok, are in good agreement with those in are observed in Fig. 5, which corresponds to coordination
the literature’®®=4° c=6.
These figures imply an interesting result: for up to third
D. Longer-range interactions NN interactions(nonzeroa and 8) the ground state is nei-

Usually the study of the Heisenberg model faces rathePher F_M nor AFM belpvv_ a universal valug<—0.5. The
formidable difficulties, both in analytic and numeric "€Sulting helical order is independent of sgi@nd depends
treatmenté242This is especially true when long-range inter- ©1Y Weakly ons andc. Furthermore, the pitch of the helix
actions are added, which explains why so few references cdigaches well defined limiting values for large given by
be found on the subject. Actually, the notable early exception
being the pioneer work of Majumdar and Ghds# men- for p<—1,
tioned in Sec. lll B. Instead, our formalism constitutes a o (3.11)
rather simple approach, within the limitations of the Bethe min T '
lattice approximation. At this point, and in order to keep the 3 for g>+1.
dimensionality of the parameter space manageable, we limit
the interactions to first-, second-, and third-nearestThese values o, turn out to be independent af and
neighbors. In addition, this allows us to compare with thesgng;) and can be understood as follows: &1
numeric results of Méas and Vogéf obtained for the linear (8<—1) the dominant interaction is a third neighbor FM

w3
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the equilibrium configuration as a function of the parameter
g that characterizes the commensurability of the oscillating
RKKY interaction in relation to the lattice periodicity. It is

defined as
[s~X} H @0 H okea
4=, (313
-5 -5 ar
wherea is the lattice parameter arkg the Fermi wave num-
05— T ber. The stationary values of pitch of the heliy,;,, as a

function of g, are displayed in Fig. 7. Wide phase locked
regions (both FM and AFM and sharp transitions, with
FIG. 6. Magnetic phase diagrams for a linear chain. The full ather narrow regions separating them, are observed in the
lines are our results and the dashed lines are after Ref. 43. Thﬁustratlon They constitute a Clear’ and rather Suranlng,
labels FM, AFM and H correspond to ferro-, antiferro- and helical-indication that the RKKY interaction favors simple FM and
magnetic order, respectively. (@) sgn@)>0; in (b) sgn@y)<0. AFM magnetic ordering, even in the semiclassiGab =
limit. A simplified version of the RKKY coupling, in which
(AFM) coupling. Thus, third neighbors align parali@nti-  the periodicity of the interaction was assumed commensurate
paralle) to each other and &,;,=27 (3 0= ). with a FM lattice, was already investigated by Trias and
In order to test the power of our formalism in a rather Yndurain®
extreme case we compare our results with the ones obtained
by Mesas and Voget? who computed the ground state of a IV. SUMMARY

. _ l_ . . . _
spin S=3 linear chain W'th AF.M-NN["sgn(ll)— 1], and In this paper we have provided an analytic treatment of a
arbitrary second and third NN, interactions. They proceedegeisenberg Hamiltonian, with arbitrarily long-range interac-

via a direct diagonalization of the Heisenberg Hamiltonian ofijons on a Bethe lattice, assuming an initial general helical
a 10-spin linear chain. Consequently, there are two importardroynd state configuration of the system. This could be
d|fferencies between their study and the present Ghehe  5chieved by restricting ourselves to the semiclassgcabe

spin S=; they adopt contrasts with our spin-wave approxi-jimjt. The Green’s function solution derived above is also

mation (S—¢); and (ii) their treatment applies to a linear \4jig for other elementary excitations, like electrons and
chain subject to periodic boundary conditions, which are €Xphonons.

trapolated to obtain results valid for an infinite chain, while " |, gec. |11 several examples were developed, mostly in-

we treat an infinite system from the outset. In spite of thesgs|ying frustrated magnetic configurations. First, well known
caveats our results, which are displayed in Fig. 6, show @egyts, like those of Trias and Yndurafhwere recovered in
quite remarkable agreement with Ref. 43. Sec. Ill A; as an extra bonus, the dispersion relations for both
FM and AFM 1D chains with NN interactions were derived
E. RKKY interaction within a single formalism. After doing so, we contrasted our

In addition to the successful use of our procedure in thereSUItS with those obtained, in a pioneer work, by Majumdar

s e and GhosH>>* who included NN and NNN interactions.
above examples many other possible applications can be e

plored. As a particularly interesting case, which can easily bééOOd qualitative and quantitative agreement was found, in

tackled in this way, we mention the RKKY interactish. Spite of the fact that they treated the extreme quantum limit

Basically it is of infinite range, and few results have been.(SZ 1/2). Next, in Sec. Ill C we studied helical systems, with

reported in this context. Consequently, even the One|_nteract|0ns between nearest and far apart neighbors, as well

i ) Doy . as systems with longer-range interactions. Again we found
dimensional casect=2) is of interest. We have computed our results to be in accord with previously published wdrk
for the RKKY interaction p yp

carried out in the extreme quantum limit and including up to
third NN interactions. Finally, in Sec. lll E, we applied our
, (3.12 formalism to a linear chain with magnetic moments coupled
by the very long-range RKKY interaction, to obtain interest-
ing new insights.
1.0 . While we solved the problem for any value thec=2
© ' coordination (linear chain Bethe lattice was used as the
T prevalent illustration in the preceding examples, both be-
. cause of its simplicity and because it could be compared with
0.5 results available in the existing literature. In all of the cases
explored above we found that the formalism is convenient to
apply and that it leads to robust and reliable results.

4, Sin(mgn) — mqn cog wqn)
(mqn)*

V,=—-Jq
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APPENDIX: DETERMINATION OF Gg(w)

L
_ _ n/2
Our aim is to eliminate ther dependence 06y(w). To 92(‘1"9)}; Va(c=1)

do so we combine the solutions found for the auxiliary func- )
tions I'y(w) and Ag(w), given by Egs.(2.27, with Egs. «|2 cogne)+ c—2sif(n—1)¢]
(2.17), to obtain c—1 sin(¢)

Go(w)=c(c—1) fo c?—4(c—1)cog(¢p)

This way o is finally determined from Eqgs(2.6) and

1 1 d
><( ~ + — )_¢ (A1) reads
T;)l_Wl 62_W2 ™
__ However, ther dependence dBy(w) by way ofw; , and e(0)—Q1(0,0)
W, , also has to be removed. To achieve this we use the o= \/W- (Ad)

definitions(2.243 to rewrite Egs(2.29 as follows:

e(0) ~ 1
w1=w— Q=Wl(¢;,0)z -—04(¢,6), (A2a) Now, all what we need to evalua@®,(w) is the bracket
7 i in the integral of Eq(Al); thus, we have to calculate
By=w—e(0)o=Wy(¢,0)=—0Qy($,0), (A2b)

where 1 1

L
04(,6)= 2, Va(c—1)"’cosno) _ -

= = ———, (A5)
c—2siM(n—1)¢] B 10— Wy — @, Wy + W W,
X 2005{n¢)+0_1 Sin( ) ;
(A3a) Using relationg/A2) we obtain
|
—_ 20—{[(e(0)— Q1]o " +[e(6) — Q] 0} (A6)
T [w—€e(0)o Ho—eo]t[wr—e(0)]Q+[wo 1—e(0)]Q+ Q.05
which can be rearranged as follows:
. 20— ({e(0)—Q1}o  +[e(0) — Q,]0) (A7)
T o o[{e(0)—Qi}o T +{e(6)— Qla]+[e(0)— Q1][e(0) — Q5]
Using Egs.(A3) we obtain
[{e(6)—Qato +{e(8) —Qotal=2\{e(6) — Q1 He(6) — O}, (A8)
which replaced in EqgA7) yields
_ 20-2(e(0)—0)(e(0)—Q,) 2
E= 5= , (A9)
[o—V(e(0)—Q1)(e(0)—Q2)]* 0= VWi(¢h,0)Wy(b,0)
where
Wi(¢,0)=€(0)—Qi(,0). (A10)

Substitution ofZ in Eq. (A1) yields the Green’s function we seek:
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Go(w)=2c(c—l)f:c
with Wy (¢, 60) andW,(¢, 6) given by
L

Wy(¢,0)= n§=)1 V,cogné)

L

W2(¢,9):n§=:1 Vn[ COS{”@)C(C—l)“*l—(C_

sir( ) 1 d¢ ALD

*—4(c—1)coS(}) w— \Wy(b,0)Wy(h,0) T
[c(c—l)“l—(c—l)"’2 2 cogng)+ z:i S'”[;r;(_d)l))d’] ] (A124)
1)™ 2 cogng) + z:i Sm[s(ir;(_ ¢1))¢] ] (A12b)
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