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Abstract

We use the discrete nonlinear Schrödinger (DNLS) equation to describe tunneling through a single magnetic impurity
connected to two perfect leads, in the presence of a magnetic field. Due to the presence of a strong on-site nonlinear interaction
between two opposite spins at the impurity site, the zero voltage conductance exhibits strong correlations between parallel and
anti-parallel spin conduction channels. 2002 Elsevier Science B.V. All rights reserved.

PACS: 71.55.-i; 72.10.Fk; 73.40.Gk

1. Introduction

Nonlinear effects have been the subject of intense research in condensed matter physics, both from the theo-
retical and experimental point of view [1]. This is due, in part, to the wide range of potential applications in the
design of new optical and electronic devices for computing and communications. For instance, it has been shown
that nonlinearity gives rise to multistability, noise and might originate a chaotic behavior in certain systems. Trans-
port properties of nonlinear chains of atoms and double barrier structures under applied electric fields have been
recently examined by Cota et al. [2]. Their work shows that resonances shift in the presence of nonlinearity and
that their width decreases as the nonlinearity becomes stronger. A subclass of nonlinear problems that also have
received attention recently is the problem of single, or few, nonlinear impurities embedded in a linear host [3–6]. In
these cases, the source of the nonlinearity is a strong coupling between an excitation and a local vibrational mode.
In the approximation where one assumes a rapid readjustment of the local vibration to the presence of the excita-
tion, one quickly arrives at the discrete nonlinear Schrödinger (DNLS) equation as the effective evolution equation
for the excitation [7]. By using an extension of the Green’s function formalism, it has been possible to examine the
formation of bound states in one-dimensional [3], two-dimensional [5] and three-dimensional lattices [6].

Nonlinearity is also relevant to transport problems in nanoscale devices [8]: It is known that the electron–
electron interaction is important in any serious study of the transport properties of small systems such as quantum
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dots and few impurity models [9]. Generally speaking, the Coulomb interaction gives rise to a nonlinear term in the
Schrödinger equation. In this case the Coulomb interaction is modeled by a cubic, nonlocal term in the equation of
motion of the corresponding fermionic field operators. To proceed further a Hartree–Fock approximation for the
nonlinear term is used [10]. One can also use a perturbative approach in the Coulomb interaction [11].

In this Letter we take the alternative approach of modelling the effect of the electron–electron interaction by a
nonlinear local term in the Schrödinger equation. One can look at such an approximation as being a Hartree-like
approximation of the original many-body problem. We examine a one-dimensional nonlinear impurity problem
where the source of the nonlinearity is due to the presence of a strong on-site Coulomb interaction between the
two opposite spins at the impurity site, rather than to a strong electron–phonon coupling. Since the spin degree
of freedom plays an important role in the correlated transport through the localized impurity state, a study of the
magnetic field dependence of the linear conductance will exhibit a lift of the degeneracy of the two spin states
when a strong magnetic field is applied. That is why we will focus on the zero voltage conductance as a function
of the external magnetic field.

2. Theoretical model

We consider the problem of the transmission of an electron incident with energyE, upon a strongly localized
impurity region where electron–electron interaction is important. In the impurity region we impose a strong local
interaction term that mimics the on-site Coulomb interactionUρ0σ ρ0−σ which is proportional to both spin up
and spin down local densities,ρ0σ = |Ψ0σ |2, whereΨ0σ is the probability amplitude of finding an electron at the
impurity site.U is a parameter measuring the strength of the local Coulomb interaction. This repulsive interaction
arises from the charge accumulation and shifts the energy levels of the opposite spin states. Thus we expect our
model to adequately describe the nonlinear effects due to charge accumulation at the impurity site, and will also be
valid in the extreme case of a quantum dot containing only one level.

The model consists of three regions: a single magnetic impurity atn = 0, and two perfect semi-infinite leads
on the left−∞ < n < 0 and the right 0< n < +∞ described by a tight binding Hamiltonian. The noninteracting
electrons in the leads are described by

(1)H0 =
∑
n,σ

[
εn,σ Ψ

∗
n,σΨn,σ +

∑
m�=n

Vn,mΨ ∗
n,σΨm,σ

]
,

whereΨn,σ (t) andεn,σ are the probability amplitude of finding the electron at siten and the corresponding local
energy, respectively, at siten for an electron with spinσ . The on site energyεn,σ = εn − σB is defined in terms of
the zero-field on-site energy levelεn shifted by the Zeeman energy.Vn,m is the overlap integral which, in general,
depends only on the distance between the two sitesm andn, so thatVn,m = Vm,n. The localized impurity state is
described by

(2)HI =
∑
σ

[
ε0,σΨ

∗
0,σΨ0,σ + 1

2
U |Ψ0,σ |2|Ψ0,−σ |2

]
.

U is the strength of the on-site interaction andε0,σ is the local energy at the impurity site. Putting these Ham-
iltonians together and including the hopping between the leads and the impurity localized state (which we will
denote later asVL andVR for the left and right leads), we obtain the total Hamiltonian:

(3)H =
∑
n,σ

[
εn,σ Ψ

∗
n,σΨn,σ +

∑
m�=n

Vn,mΨ ∗
n,σΨm,σ + 1

2
Uδn,0|Ψn,σ |2|Ψn,−σ |2

]
.

It is clear from our model Hamiltonian that the nonlinear interaction exists only at the impurity siten = 0,
and its magnitude is proportional to the product of the probability densities of up and down spin states at the
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impurity site. From this point of view this interaction term mimics the famous Hubbard termUn↑n↓ in the Ham-
iltonian formalism. Besides this apparent similarity there is no connection between our model which deals with an
approximate nonlinear equation for the probability amplitudes and the actual Hubbard Hamiltonian which deals
with fermionic field operators.

The field amplitudesΨn,σ andiΨ ∗
n,σ form canonically conjugate variables andi (d/dt)Ψn,σ = −∂H/∂Ψ ∗

n,σ is
the corresponding equation of motion. From the above Hamiltonian we then obtain

(4)i
d

dt
Ψn,σ +

∑
m

Vn,mΨm,σ + (
εn,σ +Uδn,0|Ψn,−σ |2)Ψn,σ = 0.

This equation is a variant of the discrete nonlinear Schrödinger (DNLS) equation whose properties been studied
extensively in recent years. It is worth mentioning that the DNLS equation can be derived, in principle, from
the more general nonlinear Schrödinger equationi∂tΨ + ∂2

xΨ + f (x, |Ψ |2)Ψ = 0. The functionf (x, |Ψ |2)
characterizes the nonlinearity of the interaction, e.g., self-interaction of the quasiparticles in the system. The
complete integrability of this equation forf (x, |Ψ |2) = |Ψ |2 was established in a seminal paper by Zakharov
and Shabat [12]. The origin of the nonlinearity in our case stems from the local Coulomb interaction and shifts
the energy levels of opposite spins at the impurity site. However, the local nature of this interaction term makes it
inadequate to describe the long range Coulomb interaction. Thus, our model (4) does not correspond to the well-
known Hubbard model, often used as a model Hamiltonian to describe nanostructure devices. Also, Eq. (4) does
not even correspond to the classical Hartree approximation of the Hubbard model. In the Hartree approximation,
the nonlinear term is described not by a single orbit as described in Eq. (4) but rather by the sum of all orbits below
the Fermi level. Nevertheless, the discrete nonlinear Schrödinger (DNLS) equation (4) does contain some essential
features of the interacting system, such as the repulsive and nonlinear nature of the interaction.

Let us find the stationary states of (4), i.e., we look for solutions of the typeΨn,σ (t) = eiEtΨn,σ (E), whereE
is the associated eigenvalue. We restrict ourselves to a nearest-neighbors tight-binding approximation. LetVn,n+1
be the hopping integral between thenth and the (n+ 1)th site, then under these assumptions our previous equation
becomes

(5)(E − εn,σ )Ψn,σ = Vn,n−1Ψn−1,σ + Vn,n+1Ψn+1,σ + δn,0U |Ψn,−σ |2Ψn,σ .

We now choose the hopping integrals as follows:

(6)Vn,n+1 =
{
VL for n = −1,
VR for n = 0,
V for n �= −1,0.

That is, the hopping within the leads isV while the links of the magnetic impurity with the left and right leads
areVL andVR , respectively. The latter express the degree of hybridization of the localized impurity state with the
extended states at the leads. Forn = −1, 0 and 1, the eigenvalue equation (5) reads

(7)(E − ε0,σ )Ψ0,σ = VLΨ−1,σ + VRΨ1,σ + U |Ψ0,−σ |2Ψ0,σ ,

(8)(E − ε−1,σ )Ψ−1,σ = VΨ−2,σ + VLΨ0,σ ,

(9)(E − ε1,σ )Ψ1σ = VRΨ0,σ + VΨ2,σ .

To study the scattering properties of our single magnetic impurity located at the origin, we send a plane wave
towardsn = 0 from the left and study its transmission. Thus, we assume a solution of the form

(10)Ψn,σ =
{
(Iσ e

ikn + Rσe
−ikn)χσ for n � −1,

Tσ e
iknχσ for n � 1.

Here,χσ describes the electronic spin state which is assumed to be conserved all along the transmission process
since we are ignoring spin flip processes.
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After inserting Eq. (10) into Eqs. (7)–(9), and after using the lead’s dispersion relationE = 2V cos(k), where
the on-site energy is set to zero for simplicity, the transmission coefficientτσ ≡ |Tσ |2/|Iσ |2 is found to obey the
following nonlinear equation:

(11)τσ = 4V 2
L sin2 k

|(V /VR)(2V cos(k) − ε0,σ −U(V/VR)2τ−σ |I−σ |2) − VR(1+ (VL/VR)2)eik|2 .

We note that the initial wave amplitude|I−σ | renormalizes the nonlinearity term to an effective Coulomb strength
Ueff = U |I−σ |2. Since we are interested in spin effects rather than in renormalization effects due to the incident
wave, we set the amplitude of the incident wave to unity independently of the spin,|Iσ |2 = |I−σ |2 = 1. This
simplifying assumption will not affect the conclusions of our present work. Our previous equation forτσ can be
rendered in the compact form

(12)τσ = D

Cσ + Bσ τ−σ + Aτ2−σ

,

where

A =
(

V

VR

)6

U2,

Bσ = 2U

(
V

VR

)2
[
−
(

V

VR

)2(
2V cos(k) − ε0,σ

)+ V

(
1+ V 2

L

V 2
R

)
cos(k)

]
,

Cσ = V 2

V 2
R

[
2V cos(k) − ε0,σ

]2 + V 2
R

(
1+ V 2

L

V 2
R

)2

− 2V
[
2V cos(k) − ε0,σ

](
1+ V 2

L

V 2
R

)
cos(k),

D = 4V 2
L sin2(k).

3. Transmission features

The solution of the above equation forτσ seems quite demanding at first sight. Not only do we have a nonlinear
transmission, but the spins are also correlated due to the fact that transmission for the up spin depends on the
transmission of the down spin, as it is clear from Eq. (12). The transmission formula reduces to the spinless case
of Tsironis et al. [4] when we setVL = VR = V andB = 0. Eqs. (12) can be combined into an algebraic fifth-order
equation forτσ , which we solve numerically. Hereafter, we assumeVL = VR = V for simplicity. That is, if we
assume that our problem represents an impurity within a barrier, then the equality of the left and right hopping
matrix elements amounts to have the impurity at the center of the barrier. In all our numerical computations we set
the energy unit to be the host hopping integral (i.e.,V = 1) and all other energies are counted in units ofV . Fig. 1
shows some plots ofτσ versus cos(k), for a fixed value ofU (U/V = 3) and several magnetic field intensities.
In general, the transmission for spin up (parallel to the magnetic field) is different from the one for spin down
(anti-parallel to the magnetic field), in the presence of a nonzeroB. Starting from zero field, the transmissivity for
up spins seems to increase withB, reaches a maximum (where resonances occur) and then decreases upon further
increment inB. The fact that the magnetic field lowers the energy of the up spins and increases the energy of the
down spins plays an important role in the transport properties of the spin channel. In our case since we set all
site energies to zero (i.e.,εn = 0) we end up withε0σ = −σB, σ = ±. Thus the application of a magnetic field
transforms our impurity site either to an effective potential well (ε0↑ = −B) or potential barrier (ε0↓ = B). The
transmission, on the other hand, is enhanced for potential wells while it is suppressed for potential barriers as it is
clearly exhibited in Fig. 1. Due to our particular choice of parameters,VL = VR = V = 1, the magnetic impurity is
strongly coupled to the leads and this results in a broad transmission curve as it is observed in this figure.
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Fig. 1. Transmission coefficient across the magnetic impurity for both channels, parallel (up) and antiparallel (down) to the external field, as a
function of the incoming plane wave energy, for different values of the external fieldB (U = 3, VL = VR = V = 1).

A simple analysis from Eq. (12) shows that at resonance (τσ = 1), the plane wave energy satisfies

cos2(k) = 1− (σB/V 2)(σB + U)2

U − σB
.

And, since 0� cos2(k) � 1, we deduce that a resonance is only possible whenσB > 0 (i.e.,σ = + or parallel
spin) andU > σB. Also, it is possible to show that the maximumσB value at which a resonance occurs is 1/

√
2

whenU/V = 3/
√

2. Fig. 2 shows the resonant energies in terms ofB, for severalU values. As anticipated, the
curves never extend beyondB/V = 1/

√
2. AsU/V is increased past 3/

√
2, the curves begin to contract towards

theB = 0 axis.
In the limit of largeU (keepingB fixed), important for Coulomb correlations effects, it can be shown that the

transmission for both spin signs approach a common limit:

τσ → 1− cos(2k)

(B/V )2 + 2(1− cos(2k))
.

Similarly, forB large, keepingU fixed, the transmission for both spins approach

τσ → 4V 2(1− cos(2k))

B2
.

We therefore conclude that, regardless of the value of the Coulomb energyU , the presence of a strong external
magnetic field will decrease the transmission as 1/B2.
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Fig. 2. Resonant energiesE∗ as a function of the external fieldB, for different normalized Coulomb correlation energiesu ≡ U/V . The curves
never extend beyondB/V = 1/

√
2 which occurs atu = 3/

√
2.

4. Coulomb interaction effect on the conductance

In order to obtain a realistic picture of our model, it is necessary to include in our study finite temperature
effects. The two-probe conductance (in units of 2e2/h̄) at finite temperature is defined by the thermal average of
the transmission coefficient [13]:

(13)G(T ,µ) =
∑
σ

∫ (
−∂f (µ,E)

∂E

)∣∣τσ (E)
∣∣2.

Heref (µ,E) is the Fermi–Dirac distribution function given by

(14)f (µ,E) = (
e(E−µ)/kBT + 1

)−1
,

wherekB is the Boltzmann constant andµ the chemical potential of the sample. Since the derivative of the Fermi–
Dirac function is a strongly peaked function ofE, which vanishes everywhere except for energies close to the
chemical potential,µ, the integral will be essentially zero outside an interval of widthkBT . The conductance, in
general, will be enhanced if the chemical potential is close to a set of transmission peaks (resonances) and reduced
when the chemical potential is away from resonant transmission peaks. Thus the conductance as a function of
temperature will exhibit several characteristic structures depending on the location of the chemical potential. In
our case, since we are just interested in the field dependence of the conductance and the effect of the nonlinear
interaction, we will fix our chemical potential to zero in all computations. We should also keep in mind that
our energies are counted in units ofV , which in general is of the order of few meV. Thus while computing the
conductance in Eq. (13) it should be born in mind that temperatures of the order ofT � 10−1–10−2 are reasonably
low temperatures whileT � 1 correspond to high temperatures.

We have calculated the conductance numerically using the transmission coefficient obtained in the previous
section. Fig. 3 shows the normalized conductanceG(B)/G(0) as a function ofB/kBT , for a relatively large, fixed
value ofU (U/V = 3). The dashed lines show the contributions toG stemming from the individual spin channels,
while the solid line shows the total conductance. It is clear from this figure that the up spin channel contributes the
most to the conductance. The maximum contribution to the conductance occurs at fieldsB � KT and is mainly
due to the up spin channel. At very large magnetic fieldsB � KT both spin channels will be suppressed and so
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Fig. 3. Normalized conductance versus the applied field, for a relatively high Coulomb correlation energy (U/V = 3 andVL = VR = V = 1).
The dashed curves show the contributions from the individual channels while the solid line is the total conductance.

does the conductance as shown in Fig. 3. Thus the magnetic field dependence of the conductance exhibits a clear
transition from correlated to uncorrelated transport and the crossover arises whenB � U . At this stage it is worth
mentioning the major difference between the nonlinear impurity problem we have studied in this work and the
Anderson impurity problem treated in the literature. The Anderson Hamiltonian treats the system at the quantum
level with an on-site Hubbard interactionUn↑n↓ which in the presence of a magnetic field will lift the degeneracy
of the two spin states. Thus in the largeU limit and at finite temperature (B � kT ) only one spin channel will be
available for transport. In this caseG(B)/G(0) will have a finite asymptotic value reflecting the blockage of one
of the spin channels. In our case the Coulomb interaction is weighted by the probability amplitude|Ψ0σ |2 and, due
to the continuous nature of this amplitude, the Coulomb effect will be averaged out.

5. Conclusion

We have studied in this Letter a simple alternative model for the transmission properties of a single magnetic
impurity embedded in a perfect chain and subject to a static magnetic field, based on an extension of the DNLS
equation. The results show that the transmission for an electron with spin parallel to the external field is always
greater than the transmission for the antiparallel spin. This result is in accord with the Hubbard model and kinetic
equation approaches and reflects the strong Coulomb correlation in the system. Contrary to what is usually observed
in one-impurity problems, the transmission across our magnetic impurity does show the existence of resonances,
for a range of magnetic fields 0< B/V < 1/

√
2 and correlation energies 0< U/V < 3/

√
2. A completely

reflectionless mode has also been observed in the problem of a ferromagnetic Heisenberg chain with a nonlinear
anisotropic impurity [14]. The normalized conductanceG(B)/G(0) shows a single maximum as a function of the
external field intensity, which occurs at relatively low field intensities, then it decreases quickly at large fields.
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