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We study the dynamics ofdiscrete vector solitonsin arrays of weakly coupled birefringent optical
waveguides with cubic nonlinear response. We start with a modulational instability analysis, followed by
approximate analytical solutions in the form of strongly localized modes. Next, we compute the effective
Peierls-Nabarro potential for these modes and obtain the spatial average of the power transfer between both
polarizations modes as a function of their relative phase. Finally, we combine the concepts of polarization
mode instability with discreteness-induced beam trapping by the array, and demonstrate numerically the am-
plification of a weak signal by a strong pump of the other polarization, combined with simultaneous discretized
all-optical switching.
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I. INTRODUCTION

The study ofdiscrete spatial solitonshas attracted a lot of
attention during the last years because of many successful
experimental observations of such solitons in different lattice
systems, including arrays of weakly coupled optical
waveguides in AlGaAs semiconductor structuresf1g, opti-
cally induced photonic lattices in photorefractive materials
f2g, and voltage-controlled waveguide arrays in nematic liq-
uid crystalsf3g ssee also a number of comprehensive review
papersf4gd.

Discrete spatial solitons have been first introduced as spa-
tially localized nonlinear modes of weakly coupled optical
waveguides, which can exist due to a balance between dis-
crete diffraction in the array and nonlinear response of the
waveguide materialf5g. A standard theoretical approach to
study discrete spatial optical solitons is based on the deriva-
tion of an effective discrete nonlinear model and the analysis
of its stationary localized solutions—discrete localized
modesf6g.

As localized modes of discrete nonlinear models, such
discrete solitons appear in many diverse areas of physicsf7g.
For example, they have been theoretically predicted to exist
in many systems, including the Bose-Einstein condensates
loaded onto an optical latticef8g, electronic transport in crys-
tals, biopolymer chainsf9g, etc. More importantly, the dis-
crete solitonssalso called “discrete breathers”d have been
observed in a number of different physical systems such as
low-dimensional molecular crystalsf10g, antiferromagnetic
chainsf11g, arrays of Josephson junctionsf12g, and micro-
mechanical oscillator arraysf13g.

In optical waveguide arrays, both propagation and steer-
ing of scalardiscrete solitons have been studied more exten-
sively because of potential applications for all-optical
switching devices. These studies include, for example, trap-
ping, reflection, and refraction of discrete solitons in wave-
guide arrays with defectsf14g, and soliton switching in

waveguide arrays with quadratic nonlinear responsef15g.
Recently, we suggestedf16,17g to control multiport switch-
ing of discrete solitons in waveguide arrays by engineering
the coupling between the neighboring waveguides: this in-
duces a change of the dynamic properties of the array
through the modification of the effective Peierls-Nabarro
sPNd potential, a nonlinear discreteness-induced potential
that is responsible for the transverse dynamics and steering
of discrete solitons in waveguide arraysssee, e.g., Refs.
f18,19gd. This year Kartashovet al. f20g showed that in the
quasicontinuous limit a similar digital switching effect can
be observed opening many possibilities for observation in
real experiments.

Most of the earlier studies analyzed the properties ofsca-
lar discrete solitons. However, the nonlinear cubic
waveguides that constitute the array are always birefringent;
thus we can expect a very rich dynamics via coupling be-
tween the orthogonal polarizationsssee, e.g., Ref.f6gd. One
of the major results in the study of the polarization dynamics
in homogeneous systems is the existence ofpolarization in-
stability demonstrated for birefringent optical fibersf21,22g
and planar optical waveguidesf23–25g. As a consequence of
this instability, the fast modes become unstable whereas slow
modes remain stable, and the instability dynamics results in
the energy exchange between the polarizations. The defini-
tions of the transverse electricsTEd modes and the transverse
magneticsTMd modes as slow or fast depends on the system
geometry. In AlGaAs optical waveguides the TE mode is
slow and, therefore, it constitutes a stable modef25g.

Vector solitons have been suggested for different schemes
of all-optical switching, e.g., by employing collisions be-
tween orthogonally polarized solitons withf26g or without
f27g four-wave mixingsFWMd effects. The FWM effect is
responsible for the energy exchange between the two or-
thogonal sTE and TMd polarization modes. The theory of
discrete vector solitons developed so far does not include the
analysis of the FWM effectssas an example, see Ref.f28gd.
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However, the first experimental studies of the vectorial inter-
actions in waveguide arrays and observation of discrete vec-
tor solitonsf29g suggest the importance of the FWM effects
by demonstrating that the initial phase between the TE and
TM modes defines the energy exchange between the modes
due to coupling between two orthogonal polarizations.

In this paper, we study the dynamics of discrete vector
solitons in arrays of weakly coupled birefringent optical
waveguides with cubic nonlinear response, taking into con-
sideration recent experimental observationsf29g. First, we
find approximate analytical solutions for strongly localized
vectorial modes. Using these modes, we study the energy
transfer between the orthogonal polarizations and polariza-
tion mode instability, and also calculate the effective PN po-
tential. Finally, we employ the concept of the polarization
instability and discreteness-induced beam trapping by the ar-
ray and demonstrate a novel approach to all-optical soliton
switching, amplification of a weak signal by a strong pump
of the other polarization combined with simultaneous dis-
cretized switching.

II. VECTOR DISCRETE NONLINEAR SCHRÖDINGER
EQUATIONS

We describe propagation of light in arrays of weakly
coupled birefringent waveguidesf29g by using the couple-
mode theory combined with the slowly varying envelope ap-
proximation. Then, the mode dynamics is described by dis-
crete dynamical equations of the form,

i
dun

dz
+ un + Csun+1 + un−1d + uunu2un + Auvnu2un + Bvn

2un
* = 0,

s1d

i
dvn

dz
− vn + Csvn+1 + vn−1d + uvnu2vn + Auunu2vn + Bun

2vn
* = 0,

whereun andvn are the normalized envelopes of the TE and
TM electric field components, respectively,z is the propaga-
tion distance,C is the coupling parameter being the same for
both polarizationssboth modes have similar transversal ex-
tensionsd, the coefficientsA and B characterize the cross-
phase modulation and FWM effects, respectivelysbeing both
normalized to the self-focusing termd. Figure 1 shows a sche-
matic transversal view of the waveguide array, where the
orthogonal polarizations have been chosen along thex andy
directions. For the AlxGa1−xAs waveguide arraysf29g the
parameters areA=1, B=0.5, and the TE mode corresponds
to the slow wave whereas the TM mode—to the fast wave.
To consider the nonlinear Kerr effect in a experiment using
Al xGa1−xAs, it is necessary to take the photon energies below
one-half of the semiconducting band gap energys"v

,Eg/2d. In such material this energy corresponds to al
<1.5 mm, where the linear and nonlinear absorption effects
are minimizedf30g.

The normalized power and Hamiltonian are given by

P = Pu + Pv = o
n

suunu2 + uvnu2d, s2d

H = − o
n
SCsun

*un+1 + unun+1
* + vn

*vn+1 + vnvn+1
* d + uunu2 − uvnu2

+
1

2
suunu4 + uvnu4d + Auunu2uvnu2 +

B

2
svn

2un
*2 + un

2vn
*2dD , s3d

and they are conserved by the dynamics. These quantities
play an important role in the theoretical analysis, in checking
numerical accuracy, and in the real power estimation for the
switching-amplification processsfor Al xGa1−xAs waveguides
f29g, Preal<56PfWgd.

Equationss1d–s3d indicate explicitly that the slow and fast
modes are not equivalent. This is confirmed, for example, by
numerical simulations of the nonlinear dynamics of both
slow and fast modes. Moreover, it is easy to see that the
Hamiltonian for the slow wave is lower than for the fast
wave. This suggests that the fast wave may become unstable
with respect to its transformation into the slow wave. In the
next section, we study this issue in detail.

III. MODULATIONAL INSTABILITY

We study modulational instabilitysMI d of finite-amplitude
solutions of the discrete vectorial model. We employ a stan-
dard analytical approachf31g and consider the evolution of a
weakly perturbed finite-amplitude plane wavesunszd=fu0

+dunszdgeisqun+kuzd, vnszd=fv0+dvnszdgeisqvn+kvzd, whereu0 and
v0 are the mode amplitudes,dun anddvn are small perturba-
tion functions,qu and qv are the transverse components of
the wave vectors, andku andkv are the propagation constants
of the TE and TM modes, respectively. The perturbation
functions are taken of the formdunszd=u1e

isQn−Kzd

+u2
*e−isQn−K*zd, dvnszd=v1e

isQn−Kzd+v2
*e−isQn−K*zd, where the

amplitudesu1, u2
* , v1, andv2

* , are assumed to be small, where
Q andK are the wave vector parameters of the perturbation.
The modulational instability gainG can be defined asG
; ImfKg. The instability regions corresponds to the condition
G.0, while for G,0, the plane wave solutions are stable.
The results of the MI analysis suggest that when plane waves
are unstable, we can expect the formation of spatially local-
ized structures in the waveguide array, the so-calleddiscrete
vector solitons.

After substituting these weakly perturbed plane waves
into the dynamical Eqs.s1d and after applying a standard

FIG. 1. Schematic head-on
view of the waveguide array.
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analysisf31g, we obtain a simple quadratic equation forK2,
K4+a1K

2+a2=0, where

a1 ; − sf2 + g2d + s1 + B2du0
4 − 4Bs2A + 2B − 1du0

2v0
2

+ s1 + B2dv0
4

and

a2 ; hsf − u0
2dsg − Bu0

2d − ff + Bg+ s3B2 − 1du0
2gv0

2 + Bv0
4j

3ˆsf + u0
2dsg + Bu0

2d + hf + Bg− fs2A + Bds2A + 3Bd

− 1gu0
2jv0

2 + Bv0
4
‰,

where f =−4Csu sin2sQ/2d+u0
2−Bv0

2, g=−4Csv sin2sQ/2d
+v0

2−Bu0
2, where su=cosqu and sv=cosqv describe the

structure of the carrier waves in both the components. In
particular we are interested in unstaggered modes, that imply
to takequ=qv=0 sfor staggered modes we need to takequ
=qv=pd. After solving the quadratic equation, we obtain for
the MI gain,

G ; ImfKg = ±
1
Î2

Imfs− a1 ± Îa1
2 − 4a2d1/2g. s4d

For B=0, expressions4d is close to the MI gain for the
two-component coupled discrete fields of Refs.f32,33g. The
effect of the FWM term is to decrease the necessary power to
observe the modulational instability. The energy exchange
between orthogonal polarizations improve the instability of
plane waves allowing the formation of localized structures
like discrete vector solitons.

To identify the regions of instability, in Fig. 2 we display
the results of our analysis in the form of a contour plot in
su0,v0d space where the more clear regions correspond to
larger values of the MI gain, whereas darker regions corre-
spond to lower or zero MI gain. In Fig. 2 the coupling pa-
rameter is weak,C=0.1, and we can see that discrete solitons
are expected foru0=v0*0.4.

The results for MI in the vectorial case that follow from
Eq. s4d can be shown to reduce to the results for the scalar
case studied earlierf31g. Indeed, taking one of the ampli-
tudes equal to zero, or the nonlinear couplingsA=B=0, or
by takingB=0 and imposing that both modes possess equal
amplitude, we obtaina2=0 andG= ±Îa1, and the expression
reduces to the scalar MI gain from Ref.f31g,

G = ± H4Csu sin2SQ

2
DF2u0

2 − 4Csu sin2SQ

2
DGJ1/2

.

Having identified the regions of modulational instability,
we proceed now with the analysis of the localized modes, the
energy transfer between the polarizations, and the calculation
of the PN barrier that controls the transversal dynamics of
the discrete solitons. To keep the description simple and ob-
tain closed-form analytical expressions, we restrict our study
by the case of strongly localized modessSLMd. This restric-
tion to SLMs is, however, of great technological importance
when trying to control the power exchange and steering of
these modes for all-optical computing or communications
purposes. Therefore, our focus is primarily on narrow optical
solitons.

IV. STRONGLY LOCALIZED MODES

First, we find the profiles of strongly localized modes of
the simplest odd symmetry. We use the standard ansatz,

unszd < Uh. . .,0,«eiku,1,«e−iku,0, . . .jeiluz,
s5d

vnszd < Vh. . .,0,deikv,1,de−ikv,0, . . .jeilvz,

whereU and V are the amplitudes,ku and kv are the trans-
verse components of the wave vectorsswhich describe initial
kicks applied to the componentsd, the parameters« and d
characterize the mode decay for the TE and TM components,
and they are assumed to be small. After substituting this
ansatz into Eq.s1d and keeping only the first-order terms ine
andd, we obtain

« <
C cosskud

U2 + sA + BdV2, d <
C cosskvd

V2 + sA + BdU2 . s6d

Similarly, we find the profiles of strongly localized even
modes, using the other ansatz,

ūn < Ūh. . .,0,«̄eiku,1,e−iku,«̄e−2iku,0, . . . ,jeilu
−z,

s7d
v̄n < V̄h. . .,0,d̄eikv,1,e−ikv,d̄e−2ikv,0, . . . ,jeilv

−z,

whereŪ and V̄ are the mode amplitudes,ku and kv are the

transverse components of the wave vectors,«̄ andd̄ are small
parameters. To first order we obtain

«̄ <
C cosskud

C cosskud + Ū2 + sA + BdV̄2
,

s8d

FIG. 2. sColor onlined Gain of modulational instability as a
function of the mode amplitudes,u0 and v0, for C=0.1. No insta-
bility exists in the darkest area.
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d̄ <
C cosskvd

C cosskvd + V̄2 + sA + BdŪ2
.

From Eqs.s7d ands8d, it follows that our assumptions that all

parameterse, d, ẽ, d̃ are small can always be satisfied for
small values of the coupling parameter and high enough
mode amplitudes.

We varied both, the mode amplitudesU=V, and the cou-
pling parameterC, and confirmed numerically that the three-
site analytical solutions approximate well the modes with
large enough amplitudes or weak enough waveguide cou-
pling. These modes display stability properties in agreement
with Fig. 2. A complete analysis of the families of localized
modes and their linear stability is still an open problem, and
it is beyond the main scope of this paper.

V. POWER TRANSFER

A. General comments

The analysis presented above corresponds to the symmet-
ric mode profiles and stable mode propagation. However,
similar to the continuous cases of two-mode polarization dy-
namics f21–25g, the TE and TM polarization modes ex-
change their powers while traveling along a waveguide array.
Moreover, this effect can bereversedif we change the initial
phase difference between the polarizations at the array input.

In order to get a deeper insight into the polarization insta-
bility dynamics and to study the mechanism of the power
exchange, we study the partial powers in more detail. From
conservation of the total powerP, it follows that

]P

]z
= 0 ⇒

]Pu

]z
= −

]Pv

]z
, s9d

i.e., as one of the polarizations gains extra power the other
one loses it in the very same amount. Using the dynamical
Eqs.s1d, it is easy to show that

]Pu

]z
= −

]Pv

]z
= o

n
Sun

* ]un

]z
+ un

]un
*

]z
D

= 2Bo
n

Imfunszd2vn
*szd2g, s10d

which highlights the role played by the FWM coupling terms
in the power exchange. In the absence of FWM effects, i.e.,
for B=0, there are two conservation laws, two conserved
powers, while in the presence ofB these restrictions are re-
laxed and only the total power is conserved, opening the
route for the exchange of powers between the components.
Also, the change of the relative phase between the polariza-
tion modes along the propagation directionz is important for
the power exchange, if the relative phase is zerose.g., both
the fields can be treated as reald, the power exchange is ab-
sent. Thus, the initial phase between the modes is a very
important quantity that determines the polarization mode dy-
namics. In order to pursue this idea analytically and examine
the power transfer mechanism in detail, we employ the ap-
proximation of strongly localized modes used before, in Sec.
IV. This approximation is very useful because, aside from

simplifying the mathematical problem considerably, it still
describes correctly the dynamics of different kinds of very
localized input states which can be realized in experiment.

B. Analytical results

From Eq. s10d, we notice that in the limit of strongly
localized modes, only the contribution of the central wave-
guide field is important while other terms are proportional to
the small parameter«2d2. Thus, in this approximation,
dPu/dz<2B Imfsu0v0

*d2g. Using SLMs, we poseunszd
=Uh. . . ,0 ,«eiku,1 ,«e−iku,0 , . . .jeiluz+ifu and vnszd=Vh. . . ,0 ,
deikv ,1 ,de−ikv ,0 , . . .jeilvz+ifv, and wherefu and fv are the
initial phases of the modes.

We obtain,

su0v0
*d2 = U2V2f1 + 2ed cossku − kvdg2

3expf2islu − lvdz+ 2isfu − fvdg. s11d

This implies,

dPu

dz
< 2BU2V2f1 + 2ed cossDkdg2sinf2Dlz+ 2Dfg,

s12d

whereDl;lu−lv, Dk;ku−kv, andDf;fu−fv. After in-
tegrating this expression, we find the approximate power
variation inz,

Puszd < U2 +
2BU2V2s1 + 2ed cossDkdd2

2Dl
fcoss2Dfd

− coss2Dlz+ 2Dfdg. s13d

On the other hand, to first order ine ,d and assuming small
transversal momentaku,kv, we find lu<1+sC/ed=1+U2

+sA+BdV2, andlv<−1+sC/dd=−1+V2sA+BdU2. This im-
plies, Dl<2−sA+B−1dsU2−V2d. Thus, the power varia-
tions in z are approximately given by

Puszd < U2 +
2BU2V2

4 − 2sA + B − 1dsU2 − V2d
fcoss2Dfd

− coss2Dlz+ 2Dfdg + Ose2,d«d,
s14d

Pvszd < V2 −
2BU2V2

4 − 2sA + B − 1dsU2 − V2d
fcoss2Dfd

− coss2Dlz+ 2Dfdg + Osd2,d«d.

From these, we find the spatial average output powers for
both modes,

kPul < U2 +
2BU2V2

4 − 2sA + B − 1dsU2 − V2d
coss2Dfd

+ Os«2,d«d,
s15d

kPvl < V2 −
2BU2V2

4 − 2sA + B − 1dsU2 − V2d
coss2Dfd + Osd2,d«d.

Equationss15d describe, in a very simple way, the depen-
dence of the power transfer on the relative phase between the
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polarization modes. For the linear polarizationsi.e., Df
=0,pd, the TE mode gains extra power from the TM mode.
On the other hand, if the initial polarization is ellipticsDf
=p /2d, the power exchange process becomes reversed, and
Eq. s15d shows that the TM mode gains some power from the
TE mode.

C. Numerical results

In Fig. 3, we show the contour plots of the average TE
output power for weak couplingsC=0.1d as a function of the
amplitudes of both modes. We present also a comparison
between our theoretical predictionssleft columnd based on
Eqs. s15d, and direct numerical simulationssright columnd
based on integration of Eqs.s1d. In Figs. 3sad and 3sbd, i.e.,
for the case of linear polarization, the tendency is that for
bigger amplitudes of the modes, bigger TE output power is
achieved. In this case, the gain for the TE mode from the TM
mode is about,25%. In Figs. 3scd and 3sdd, i.e., for the case
of elliptic polarization, the TE output power is always lower
than the TE input power, and the TM mode gains up to
,25% of the TE mode power. In Figs. 3sed and 3sfd, there is
no power gain, and this corresponds to the dynamics without
exchange of power, on average. The three cases presented in
Fig. 3 show a very good agreement between direct numerical
results and our theoretical approximation, for the power

transfer and the minimum and maximum TE power expected
at the output. The average TM mode output power can be
calculated askPvl<U2+V2−kPul.

In Figs. 3sad, 3scd, and 3sed, we marked three points la-
beled as P1, P2, and P3. For all of them,U=V=0.95. In Fig.
4, we show the power evolution at these points in thez
direction. We display the dynamics for twoz intervals, from
0 to 5 sleft-hand sided, and from 95 to 100sright-hand sided.
Our main idea is to compare the initial and final dynamics
and observe if our approximation is good at the beginning
and the end of the waveguide array. In this figure, we exhibit
numericalsboldd, theoreticalsgrayd, and average theoretical
shorizontal line grayd results for the power dynamics of the
TE ssolidd and TM sdashedd modes. Figure 4 shows a very
good agreement between the theoretical and numerical re-
sults. In Fig. 4sad spoint P1d, the TE mode acquires power
from the TM mode at the output, for the case of linear initial
polarization. Also, the average power prediction from Eqs.
s15d seems to work very well. Figure 4sbd spoint P2d shows
the opposite power dynamics. For an elliptic initial polariza-
tion, the TM mode gains power from the TE mode. Also in
this case, the average power prediction works very well, too.
In Fig. 4scd spoint P3d, the average power estimation is still
in good agreement with the numerical results, but it fails to
describe the details of the power dynamics.

The physics of the power transfer mechanism observed in
the interaction between the TE and TM modes is explained

FIG. 3. sColor onlined Com-
parison of the average TE output
power as a function of the initial
amplitudesU and V, for C=0.1,
and zmax=100. Left, analytical
predictions; right, numerical re-
sults.sa,bd Df=0, sc,dd Df=p /2,
se,fd Df=p /4.
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by the specific properties of birefringence of the cubic non-
linear response, and it is similar to the case of a homoge-
neous medium. If we consider only the linear terms of bire-
fringence from Eqs.s1d for n=0, it is easy to show that the
power variation for both modes has the form

]Pu

]z
= −

]Pv

]z
< ± 2BU2V2 sins4zd,

where the1 and 2 signs represent the lineal and elliptic
initial polarization cases, respectively. Now, let us exchange
the birefringence. This implies TE↔TM ⇒ fast wave
→slow wave⇒sins4zd→−sins4zd. As a result,

]Pu

]z
= −

]Pv

]z
< 7 2BU2V2 sins4zd.

This demonstrates that birefringence plays an important role
in the dynamics of the modes. Choosing an elliptical initial
polarization, is the same as changing the sign of the birefrin-
gence, and therefore exchanging the slow and fast waves.

VI. PEIERLS-NABARRO POTENTIAL

To understand the transversal dynamics of the discrete
vector solitons, we calculate the Peierls-Nabarro barrier. Us-
ing the power and Hamiltonian from Eqs.s2d and s3d, and
assuming strong localization of the odd and even nonlinear
modes described by Eq.s6d and Eq.s8d, we can estimate the
mode power and the Hamiltonian,

Podd< U2 + V2, Peven< 2sŪ2 + V̄2d, s16d

Hodd< − fU2 − V2 + 1
2sU4 + V4d + sA + BdU2V2g ,

Heven< − 2fŪ2 − V̄2 + 1
2sŪ4 + V̄4d + sA + BdŪ2V̄2

+ CsŪ2 + V̄2dcoskg , s17d

where we takeku=kv=k. Next, and for the sake of simplicity,

we take U=V and Ū=V̄. Following a standard procedure
f17–19g, we consider the odd and even modes astwo differ-
ent statesof the same nonlinear mode shifted by a half of the
array period. This implies that the power should be the same
for both modes, i.e.,Podd=Peven. With these assumptions, we
evaluate the value of the Hamiltonian for these two modes,
in terms of the mode amplitudeU,

Hodd< − s1 + A + BdU4,
s18d

Heven< − 1
2s1 + A + BdU4 − 2CU2 cosk.

Finally, an estimate for the Peierls-Nabarro barrier is ob-
tained by subtracting the values of both Hamiltonians,DH
;Hodd−Heven,

DH < − 1
2s1 + A + BdU4 + 2CU2 cosk. s19d

This expression is similar to the scalar case discussed before
f17g, but it includes the effect of renormalization due to the
cross-phase modulation coupling.

Results19d means that at high powers and for small initial
transversal momentumsor kickd, the discrete vector soliton is
not able to propagate across the waveguide array, because it
needs to overtake the effective energy barrier which is very
deep; the discrete soliton gets trapped at the input wave-
guide. At low powers and a finite initial kick, the effective
trapping energy is low and the discrete soliton can travel

FIG. 4. Numericalsboldd, analytical sgrayd,
and average analyticalshorizontal gray lined re-
sults for the power evolution of the TEssolidd
and TM sdashedd modes, atC=0.1. Dynamics is
shown in two different ranges ofz. Left, z=0–5.
Right, z=95–100. Casessad, sbd, and scd repre-
sents the points P1, P2, and P3 in Figs. 3sad, 3scd,
and 3sed, respectively.
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across the waveguide array. At intermediate powers, the dis-
crete soliton travels across the array for some distance from
the input waveguide, and then gets trapped in some wave-
guide because of the nonlinearity. This kind of dynamics is a
feature of nonlinear discrete systems, and it was recently
suggested for multiport all-optical switchingf16,17g.

VII. MULTIPORT DISCRETIZED ALL-OPTICAL
SWITCHING

The results obtained so far suggest that there is a polar-
ization instability where the flow of power could be directed
by an appropriate choice of the initial relative phase between
the TE and TM modes. Also, and due to the interplay of
discreteness and nonlinearity, the lateral propagation of the
optical soliton can be controlled by means of a judicious kick
or amplitude tuningf16,17g. In this section we examine the
combined switching or amplification of a narrow input beam,
by solving Eq.s1d numerically. The beam profile is chosen in
the form of a highly truncated sechlike profilef16,17g,

uns0d = u0 sechfu0sn − ncud/Î2ge−ikusn−ncudeifu,
s20d

vns0d = v0 sechfv0sn − ncvd/Î2ge−ikvsn−ncvdeifv,

for n−ncu=n−ncv=0, ±1, and uns0d=vns0d=0, otherwise.
Parametersu0 andv0 are the initial amplitudes,ku andkv are
the initial kickssthe input anglesd, ncu andncv are the initial
soliton coordinates, andfu and fv are the initial mode
phases for the TE and TM polarization components, respec-
tively. From previous worksf16,17g, we know that this an-
satz works well for the case of scalar modes when the model
is reduced to the discrete nonlinear SchrödingersDNLSd

equation. We point out that the choice of the initial input is
not a crucial issue; the discrete soliton is a self-adjusting
mode, and the energy excess is liberated in the form of ra-
diation modesf23g. We have made numerical simulations
with other profiles, such as strongly localized modes and
discretized Gaussian modes, and the dynamic behavior is
similar, although the sechlike input seems to work better.

The idea is to control a small TEsor TMd signal beam by
means of a TMsor TEd kicked pump. In numerical simula-
tions, we takezmax=50 and an array of 110 waveguides. The
value of the coupling parameter,C=0.92, is taken from re-
cent experimentsf29g. We use a small unkicked signal with
an initial power of 0.03fwhich corresponds to the dimension
power,1.68 sWattsdg. In the absence of a pump mode, the
signal diffracts in the array and no discrete vector soliton is
formed. In the presence of a strong pump, the power transfer
is observed with the gain calculated asG;fkPu,vszmaxdl
−Pu,vs0dg /Pu,vs0d. The coupled dynamics of two polarization
components leads to the formation of a discrete vector soli-
ton that can be switched by varying the input kick.

Figure 5 shows results of multiport switching through the
coupling of the TE and TM modes. Figure 5sad shows an
example of the eight-site switching. In this case, the gain
power for the TE mode is of,90%. In Fig. 5sbd there is no
switching, and the gain for the TE mode is very high,
,6000%. A four-site switching is shown in Fig. 5scd where
the initial polarization is elliptical. The gain for the TM mode
is ,45%. Finally, Fig. 5sdd shows no switching of both
modes, with the gain of,30%.

VIII. CONCLUSIONS

We have studied the properties of discrete vector solitons
in arrays of weakly coupled birefringent optical waveguides

FIG. 5. sColor onlined Examples of all-optical multiport switching based on discrete vector solitons. The coupling parameter isC
=0.92. Lineal polarization,sad ku=0, kv=−0.5,u0=0.1, andv0=1.248, andsbd ku=kv=0, u0=0.1, andv0=1.5. Elliptic polarization,scd ku

=−0.8,kv=0, u0=1.38, andv0=0.1, andsdd ku=kv=0, u0=1.5, andv0=0.1. Note that contour plots have different power scales for the TE
and TM modes in each case.

POLARIZATION INSTABILITY, STEERING, AND… PHYSICAL REVIEW E 71, 056613s2005d

056613-7



with cubic nonlinear response. We have analyzed the effects
of vectorial interaction on modulational instability, and ob-
tained the profiles of strongly localized nonlinear modes. We
have studied the polarization mode instability in the case of
strongly localized solitons and demonstrated that the insta-
bility and power exchange between the TE and TM polariza-
tion components can be controlled by choosing the initial
phase. We have calculated the effective Peierls-Nabarro po-
tential for the discrete vector solitons and demonstrated how
to employ the concepts of polarization instability and

discreteness-induced beam trapping for achieving simulta-
neous switching and amplification of a weak signal by a
strong pump of the other polarization.
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