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Bianchi identities for Yang-Mills fields
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We propose an indirect way to study some solutions of Yang-Mills equations, which is based on the analysis of the

following closely related equations: aF + A &(F = 0 and 8F + A XF = 0. The former is one of the standard Yang-
Mills equations. The latter is the well- known "Bianchi identity" for Yang-Mills fields; but here we do not assume

the usual relation between field strenghts and poteritials of the Yang-Mills equations. We give a method that allows

the investigation of certain families of solutions of these equations. In particular, we find a family of solutions that
does not contain any solution of the Yang-Mills equations. The inverse, of course, cannot happen.

I. INTRODUCTION

In this paper we are concerned with the equations

tentials g,„ in terms of the field strengths I',„„.
The algebraic problem of the inversion A =A(F)
is worked out starting from the equations

E,q„'" + ~„,A~&E,„,= o,
I',„„'"+c„,A,"I',„„==0

~aviv'" '&abc»" I'cI v—

~apv abc+5 +c pv

(1.6)

(1.7)

~aviv ~abc +b +cpv (1.4)

(1.5)~apv +av, p ~a/, v abc bII c v '

In fact Eqs. (1.4) and (1.1) are the same, and if
the fields strengths P,„,are given in terms of the
potentials A,„by (1.5), then Eqs. (1.2) become the
well-known Bianchi identities. Thus, e~ery solu-
tion of the Yang-Mills equations (1.4) and (1.5) is
also a solution of Eqs. (1.1) and (1.2). However,
as we will explicitly show, there are "field
strengths" E,„„and "potentials" P,„, solutions
of Eqs. (1.1) and (1.2), that cannot be written as
in (1.5). Nevertheless, if we were able to find
families of solutions of the system (1.1) and (1.2),
then it would be reasonable to ask which members
of those families are also solutions of the Yang-
Mills equations.

In this paper we consider the case of O(3) as
the gauge group and present an algorithm that
allows the investigation of some families of solu-
tions of the system (1.1) and (1.2). Our approach
is based on the inversion that expresses the po-

where a bar over an antisymmetric tensor denotes
its dual, that is,

(1 8)

Equations (1.1) and (1.2) are written in terms of
covariant derivatives since we will be using non-
Cartesian coordinates in four-dimensional Min-
kowski space-time.

Our interest in the study of Eqs. (1.1) and (1.2)
is due to their close relationship to the Yang-Mills
equations

where

E,q
+ sF (1.8)

Any field configuration (A,„, F, „) that is a solution
of (1.1) and (1.2) gives, by (1.8), a configuration
(A,„,F' „) that is a solution of (1.6) and (1.7).
And conversely, if (A,„, F,'„„)is a solution of
(1.6) and (1.7), then(A, „, F,„,= (F;„„+F,„,)/2)
is a solution of (1.1) and (1.2). We carry out the
inversion process A =A(F) in Eqs. (1.6) and (1.7)
rather than in Eqs. (1.1) and (1.2), since this is
easier. We remark that there are some field con-
figurations (A, „, F,„,) for which it is possible to
obtain the inversion A =A(F) starting from Eqs.
(1.1)-(1.2), while this relation cannot be obtained
from Eqs. (1.6)-(1.7) because the corresponding
determinant vanishes. The opposite case can also
happen.

It turns out that the Newmann-Penrose null-
tetrad formalism fits very nicely to our purpose.
Using this formalism we find, in the case of real
fields, a general and explicit formula that expres-
ses the potentials in terms of the field strengths.
This formula allows us to investigate in a rather
systematic way some field configurations solutions
of (1.1) and (1.2). In particular, we study here in
detail the simplest configutation of j',„„for which
the inversion A =A(F) is possible. Although in
this case the family of solutions of Eqs. (1.1) and
(1.2) that we display explicitly is rather large, it
is not large enough to contain a solution of the
Yang-Mills equations (1.4) and (1.5).

The contents of this paper is as follows. In
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Sec. II we carry out in an explicit way the inver-
sion g =g(E). In Sec. III we particularize this
formalism to the simplest ease and the corre-
sponding first-order differential equations are
completely integrated. The family of solutions
of (1.1) and (1.2) thus obtained is examined in the
static case in Sec. IV, and it is shown that it does
not contain any solution of the Yang-Mills equa-
tions. In Sec. IV we also exhibit a field configura-
tion for which it is not possible to carry out the
inversion g =&(E) starting from (1.1) and (1.2),
although it can be obtained from (1.6) and (1.7).
In this paper we do not impose any gauge restric-
tion.

l,„=l„, l,„=n„j l3+ My
' l,„=m„.

Let us introduce the bivectors

(2.6)

(2.7)

The most general, real antisymmetric tensor
E,„„canbe written in texms of these quantities in
the form

II. THE INVERSION + z 4'+ „+z O' *,N *„„+z (4, —@~)P„„, (2.8)

The technique of the null-tetrad formalism has
been applied previously to the Yang-Mills equa-
tions by Carmeli, ' and by Newman. ' Here we wil. l.

use the same coordinate system and nul. l tetrad
of Newman and Penrose. ' 'Then, instead of the
usual Cartesian coordinates (t,x,y, z) of Minkow-
ski space, w'e use

M„„=iM„„, (2.9)

where the scalars 4„X„@,are in general com-
plex quantities. It is easy to see that the duals of
the bivectors (2.7) are given by

x'=u, z'=r, x'=8, z'=P,
which are related to (t, z,y, z) by

f = 2 '~'(2u+r), x= 2 '~2r sin8cosp,

y=2 '~'r sin8sinp, z= 2 '~'rcos8.
The corresponding metric is given by

1 0 0

0 0 r'/2-
0 0 0 r'sin'8/2-

In particular, we have

y'sine-
]iPPo 2 g PPo

(2.1)

(2.2)

(2.3)

(2.4)

E,„„is simply the complex conjugate of E;„„be-
cause we are considering only real fields E,„„.

Let us denote by 8„the components of the po-
tentials A,„over the null tetrad, that is,

A, -8,)lq (2.12)

where the internal index a takes the values 1,2, 3;
and the index i =1,2, 3,4 labels the vectors of the
tetrad according to (2.6). When we project Eq.
(1.6) on the tetrad, we get

Therefore, the tensors E', „defined in (1.8) can
be written as

E;„„=4,(L„„+P„„)+X,M*„„+O',N„„, (2.10)

where i„„„is the four-dimensional completely
antisymmetric constant tensor with co,g3 +1.

'The null tetrad of Ref. 3 is defined in the co-
ordinate system (2.1) as

' (2.13)

We denote by F+ the 12x 12 matrix that appears
in this equation, that is,

~4eE cgalfl) ' (2.14)

m„= ——(6„'+i sin85„'),y (2.5)

If we write this matrix in terms of 4x4 submatri-
ces (a), a = 1,2, 3, it is easy to see that it has the
structure

m„*= --(6„' i sin86,')—.
—(3) (0) (1) (2.15)

Here and in what follows an asterisk denotes the
complex-conjugate quantity. We also use an al-
ternative notation for the null vectors of the tet-
rad, namely,

where each submatrix (a) can be written in terms
of the scalars „X„and 4„which define the
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0

fields in (2.8) in the form

0
(a) =

0 0

x*.
(2.18)

( )
—@a 0 Xa 0

0 -X, 0
(2.16}

P Xg 4g 0

0 —4, 0

$ gpss C~Fagvl fig (2.17)

In a similar way, from Eq. (1.7) we obtain the
matrix 7 defined by

'The problem of finding the inverse of the ma-
trices 7' and 7 is simplified considerably due to
the simple structure of the submatrices (a) and
(a). It is straightforward to show that the inverse
of 7' is given by

which has the same structure as (2.15), but with

(a) (a), where

(s')-'= Ib~I, a, t =1,2, 3

where the 8~ are the 4x4 matrices

(2.19)

1
g

&r-.@'i~a.

@.@&+X.+p

@aXy —Xa@'y

4 4 ++~.

+,@& —+,+a

4}' 4'~ —Q 4~

Xa4'y —C'aXy

—44 -X+ (2.20)

For the inverse of F we find

(5 ) '= I&~I
where

@,+4 g+ QgXg

0

(2.21)

g
imp J n 4'Rg —x*.@f

+Ofc@+ @of(Q+

(2.22)

Thus, the matrices F' and F are invertible if and
only if

(2.23)

Denoting by F' the column vector F a„„'"l",- and

by 8 the column vector 8», we can write Eq.
(2.13) as

The projections F ' „'~l",- are given by

&;„„'"I",= '+ 2r '4, —y '(4', cote+ bk, ),ayv

F+ ~Qlv- a a+ 2
94

agav 2 g& 8+
+ a

F'+ X'8 =0, (2.24)
—&-'(X, «te+ 5q, ), (2.27)

and the corresponding equation associated with
(1.7) is

+ Q v

Bg

F-+ S-8 = 0. (2.25} F+ $p lv — a a+ +-j.g + +-l g+4,
84 84

4 ex Su
Now, under the condition (2.23), Eqs. (2.24) and
(2.25) are equivalent to

(2.26)

which are 12 first-order differential equations
for the scalars 4„X„and 4, that appear in the
definition of the field strengths in (2.8}. In par-
ticular, these equations imply that the potentials
A,„ in (2.12) are real.

where 3 is the angular differential operator de-
fined by

(2.28)

The projections F,„„'"l",can be inferred easily
from (2.27) since E,„„is the complex conjugate
of F a„v.
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III. A SPECIAL CASE

A simple field configuration consistent with
(2.23) is given by the ansatz

4, =4,=0, 4, =-4,

r 10 0 0 0 0 —0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ——0 0
1

1

X

Xg-X3-0& X2 X»

(3.1)
0 0 0 0 0 0 0 0 0 1

X

In addition, we assume that the functions 4, X,
and 4' do not have zeros In .this case (2.23) re-
duces to

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1

&]..~)~m. = ~X~ ~ (3.2) 0 0 0 0 0 0 0 0 ——
~ 0
1

Then, according to (2.8), the corresponding fields
F,„„are given by 0 0 ——0 0 0 0 0 0 0

1

F,„„=,'(@+e»)f-.„„+,' (e —4*)P-„„.

(3.3)

0 0 0 0 0 0 —,—0 0 4 0X*~*

0 0 0 4 0 0 0 0 0
1

X x'~*

If we insert the quantities (3.1) in the matrix given
in (2.19) and (2.20), we get

0 0 0 0 0 — 0 0 0 0 0 0
4

1
0 0 0 0 0 0 0 0 0 0 -- 0

X

0 0 0 0 —
~ 0 0 0 0 0

1

10-—, 0 0 0 0 0 0 0 0
X

X

(3.6)

1
0 0 0 Q 0 0 0 0 0 — 0 0

X

From these matrices and Eq. (2.2'7), particular-
ized to the case (3.1), we find that Eq. (2.26) can
be written as

0 0 0 0 0 0 —— 0 0 0 0 01

1
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 Q 0 0 0 0 0
4

0 O O-—QO O O O O O O
1
4

1
0 0 Q 0 0 0 0 0 -~ 0 0 0

4*(X cot&+ 8*X ) = e(X*cotg+ 8X» ),
X*84 = XA*4*,

8X* l 84 84+r-'X"
l
= e» ———+ 2» 'el, -

8r j er eu

4 *g*l -484*
4»(4 cote+ 84 )= 4 (4'» cote+ 5»4 *),

@"I—---+r '+ =el +2» 'e» l,
&ee ee, fee»
(er eu ( er j'

(3.6)

(3.7)

(3.6)

(3.9)

(3.10)

(3.11)

1 4
0 0 0 0 0 0 0 ——0 0 0

XC

Q 0 — 0 0 0 0 0 —. 0 0 01 4
X

0 —— 0 0 0 0 0 0 0 0 01 4

X

4
4'0 0 0 0 —' 0 0 0 0 0 -----Q

X%'

(3.4)

On the other hand, for the matrix in (2.21) and

(2.22} we find

f 84 84 ) (8@»—--+ 2» '@
I
=C'*@xl

~ar eu

+2r 'C» l,

4'+*X*&*@= -@*+X~*@*

(3.13)

(3.14)

The three remaining equations are the comp1ex

(3.12}

~~*X*l—+2» + I=4*~Xi +2» '~» I,
fee & (ae»

j



3122 L. ALTAMIRANO AND D. VILLARROKL

conjugates of (3.8), (3.11), and (3.14).
From Eqs. (3.6)-(3.14) we see that the choice

(3.1) has the remarkable property of giving rise to
equations where the variables (r, u) are separated
from the angular variables (8, (tt). Although Eqs.
(3.6)-(3.14) seem to be tractable in the general
case, in what follows we will consider only real
valued sealars 4, g, and%', that is,

(3.15)

r
(v=42(r)+2r ' te'(t)dt+r 2F,(u, 8)

0
(3.26)

appea. r in (3.24) and (3.25), respectively, is limited
by the condition of producing functions g and 4
which are real and without zeros. In spite of this,
the set of solutions of (3.22) and (3.23) is very
large. As an illustration of this point let us
choose 4 as a positive function that depends only
on the variable ~. Then it is easy to see that

Under this hypothesis Eqs. (3.12) and (3.13) do
not impose any restrictions on the functions 4, g,
and 21; and Eqs. (3.V), (3.9), and (3.14) become

r
T=C'(r)+2r ' t4'(t)dt+r 21' ,(u+'r, 8)

0
(3.2V)

84 = 3*c,
5*4 = —8*4,

(3.16)

2 1 .
C 2 (3.17)

which imply &4 /8 8= 0 and 84 /sf = 0. That is, 4 is
independent of the angular variables (8, (t)). On the
other hand, from Eqs. (3.6) and (3.10) it follows
that g and 4' are independent of the angular vari-
able (j). Thus Eqs. (3.6)-(3.14) reduce to

are solutions of (3.22) and {3.23), respectively,
for arbitrary I", and I"2. Now, if we choose &, and

+2 positive but otherwise arbitrary, the functions
g= ~' ' and 4 = T.' ' are real-valued solutions with-
out zeros of Eqs. (3.1V) and (3.18), respectively.

For the choice given by (3.1) and (3.15), we get
from (2.26), (3.4), and (3.5) the following ex-
pressions for the components of the potentials
Qgg

IB+ ~, t84
ei —+r—'—e =ei —+2r 'e

(Bt' BQ ( BX
(3.18)

8 =~ 'C ' gcot6+—11 Bg 9

Q»=0,

The integration of these equations is trivial be-
cause they are linear in X' and 4'. Let us intro-
duce the notation

84 BC )0: =8 =-g ' 2r 'C+———
~13 14

821= 0,

and

BC
X(u, r) —= 243 ——+2r 'C

BQ

84
Y(u, r) =- M —+ 2r '4 ~,8& )

7—=42.

(3.19)

(3.20)

(3.21)

6 =r 'C ' 4 cot8+—
~22 80)

848„=8„=4' ' S '4+—
Bg

84 844 2x 4+31

(3.28)

Then we can write (3.1V) and (3.18) as

BQP—+2r '(u=X (3.22)

l 2x '4+—
32 9

where 4 (u, r) is an arbitrary real function without
zeros and g, 4' are determined by means of (3.24)
and (3.25), respectively. The potentials d'i, „ob-
tained by replacing (3.28) in (2.12), together with
the field strengths I',„,given by

+1)tP 2 (+)2 P + ~)t V) 3

2„u —2X(M„. +
) .) 3

87 87———+ 2x '7= F.Bf' BQ
{3.23)

The general solution of (3.22) is given. by

u(u, r, 3)=r 'f t'Ã(ut)dt+r *E(u, 3), (32, 4)
0

(3.29)where F(u, 8) is a rather arbitrary function of two
variables. The solution r= r(u, r, 8) of Eq (3.23).
is implicitly defined through an almost arbitrary
function Q of three variables as

E CL,

are solutions of Eqs. (1.1) and (1.2).

IV. YANG-MILLS EQUATIONS

In this section we discuss the relation of the
family of solutions of Eqs. (1.1) and (1.2) found inThe arbitrariness of the functions I" and Q, which

r
t) u+r; 4;r't —f t'Y( r —tl)udt+=0. (3 23),

0
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Sec. III with the Yang-Mills equations (1.4) and
(1.5). Equation (1.4) is obviously satisfied because
it is identical to (1.1); it remains to study Eq.
(1.5). For simplicity we will consider the static
case, that is, when 4, g, and 4 do not depend on
u. For a given & (r), real and without zeros, let
G(r) be defined by

(2.8) over the tetrad are given by

F.„„I~n' = ——21(4.+ 4.*),
F / m'=

apIj 2 8

IjI',„,n m

F,„,m "m*" = (C.* —4.).

(4.Va)

(4.Vb)

(4.Vc)

(4.Vd)

G(t')=t'd 2tJ t4"(t)dt. (4. 1)
0

From Eqs. (3.19), (3.20), (3.21), (3.22), and (3.23)
it follows that

X=+ '[G( )+F{e)]"-=
+=~2 '[o(r)+II(e)]'i2=2 's

(4.2)

(4.3)

The functions E(8) and H(&) must be such that they
give rise to functions g and 4, which are real and

without zeros, but otherwise they are arbitrary.
The explicit form of the components 8„- of the po-
tentials A„are given in this ease by

8» —8»-833=834= 0&

"+8228, = 0,Br (4.Qa)

BN2"+C„C„=O, (4.9b)

When we particularize Eqs. (4.6) to the com-
ponents (4.4), and {4.7) to the case (3.2S), we see
that

G.„„m~m*"=S' m "m+", ~=1,2, 3. (4.6)

However, the other equations obtained by equating
(4.6a) with (4.7a), (4. 6b) with (4.Vb), and (4.6c)
with (4.7c) do not reduce to an identity for the
components (4.4) and field strengths (3.29). These
equations are

r '4 ' Acote+ Bg

BS't8 = 2 24 'I S cot 8+—
i22 ( Sei t

(4.4)

BC3,
2 —822 8„=—@

Br

f B

i
—+2' ' 8, —831823 = 2)I' t3

+r g +r + 831813 0-1 -1 22

(4.9c)

(4.Qd)

(4.Se)

"1 "1c„=c„=r's '—(r'4), -1 31 —822813=0 t (4.9f)

8„=8, = eR 's-' -(2'e-). —
dr ag I S2t 813 831 23 (4.Qg)

G,~p -A,„q -A, p „+g,b, AbqA, „. (4.5}

Let us denote by C,„„the following 18 quantities: +r 8 +8 83 ——2~, (4.9h)

~abc~b2~c4 &
(4.6b)

Projecting this equation over the tetrad we get

~ay&~ "&' = 681,.—e~,.+@82,r+ abc@b2ec1 ~

(4.6a)

-1 631 + e„823=0. (4.9i}

Let us analyze the restrictions that these equa-
tions impose on the functions 4'(2"), F(6), and P(6)
that appear in (4.2) and (4.3). It is easy to see
that the choice 4=cr ', with t." a constant, gives
rise to 8»= 8»= 823=0, which are in contradic-
tion with (4.9d). Now, under the hypothesis

+ @a4 ~ abceb1@c4 ~

C m~m+" =r-'B*@ -r-'aa
8/lU 84 A3

(4.6c)
—(~'4) ~0,dr

Eqs. (4.9f) and (4.9i) tell us that

(4.10)

+ (Cttd Cd3) cot8+ cd()d83d8d3 '

(4.6d)
II=I +

C
sin'8 ' (4.11)

The projections G,„,l "m*" and G,„„n"m*"are the
complex conjugates of (4.6b) and (4.6c), respec-
tively, because we are dealing with reals poten-
tials A„. On the other hand, the projections of

B
(4.12)

where C is an arbitrary constant. On the other
.hand, from Eqs. (4.9a) and (4.9b) it follows that
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But from (4.4) and (4.11) we obtain

2 C cot 0 1 (dE
ka

1 dI' 2C cote
4$' d 8 sin'6

which does not depend on & only if C =0. That is,
we must put ft =S in (4.4). In this case Eq. (4.9a)
takes the form

2 cot &R'+ —~A'+ 2r '4' = 0,dE~t. . . dI'
(4.13)

from which we obtain an R' in contradiction with
its definition given by (4.2). Therefore, in the
static case, the family of solutions of (1.1) and

(1.2) given in Sec. III does not contain any solution
of the Yang-Mills equations (1.4) and (1.5}.

Finally, we want to make a remark on the in-
version A =A(F). Projecting Eq. (1.1) on the te-
trad we obtain

F.„,:~l; + (e.„F,„„l ', l,")6„=0 .

It can be shown that the matrix

+ = &a~c +cpv l i l )

in the ca:e (3.3) is such that its determinant is
given by

det5:=2 "(4' —C*')'(ye —g*e*)',

which is zero if 4, y, and 4' satisfy (3.15}. Thus,
in this case the inversion A =A(F) cannot be ac-
complished by starting from (1.1), but such inver-
sion can be obtained from (1.6).
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