Special values of Dirichlet series and zeta integrals

Friedman, Eduardo

Pereira, Aldo
For f and g polynomials in p variables, we relate the special value at a non-positive integer $s=-N$, obtained by analytic continuation of the Dirichlet series ? $(\mathrm{s} ; \mathrm{f}, \mathrm{g})=? \mathrm{k} 1=0 ? ? ? \mathrm{kp}=0 ? \mathrm{~g}(\mathrm{k} 1, ?, \mathrm{k}$ $p) f(k 1, ?, k p)-s(\operatorname{Re}(s) ? 0)$, to special values of zeta integrals $Z(s ; f, g)=? x ?[0, ?) p g(x) f(x)-s d x$ ($\operatorname{Re}(\mathrm{s}) ? 0$). We prove a simple relation between ? $(-\mathrm{N} ; \mathrm{f}, \mathrm{g})$ and $\mathrm{Z}(-\mathrm{N} ; \mathrm{f} \mathrm{a}, \mathrm{g} \mathrm{a})$, where for $\mathrm{a} ?$? $\mathrm{p}, \mathrm{fa}(\mathrm{x})$ is the shifted polynomial $f a(x)=f(a+x)$. By direct calculation we prove the product rule for zeta integrals at $s=0$, degree $(f h) \cdot Z(0 ; f h, g)=\operatorname{degree}(f) \cdot Z(0 ; f, g)+\operatorname{degree}(h) \cdot Z(0 ; h, g)$, and deduce the corresponding rule for Dirichlet series at $\mathrm{s}=0$, degree(fh) $\cdot ?(0 ; \mathrm{fh}, \mathrm{g})=$ degree(f) $\cdot ?(0 ; \mathrm{f}$, g)+degree(h) ? (0;h, g). This last formula generalizes work of Shintani and Chen-Eie. © 2012 World Scientific Publishing Company.

