

ECOLOGICAL Society of America

Ecology/Ecological Monographs/Ecological Applications

PREPRINT

This preprint is a PDF of a manuscript that has been accepted for publication in an ESA journal. It is the final version that was uploaded and approved by the author(s). While the paper has been through the usual rigorous peer review process of ESA journals, it has not been copy-edited, nor have the graphics and tables been modified for final publication. Also note that the paper may refer to online Appendices and/or Supplements that are not yet available. We have posted this preliminary version of the manuscript online in the interest of making the scientific findings available for distribution and citation as quickly as possible following acceptance. However, readers should be aware that the final, published version will look different from this version and may also have some differences in content.

The doi for this manuscript and the correct format for citing the paper are given at the top of the online (html) abstract.

Once the final published version of this paper is posted online, it will replace the preliminary version at the specified doi.

- 1 **Running Head: A fire driven switch between stable states**
- 2 Title: A fire driven shift from forest to non-forest: evidence for alternative stable
- 3 states?
- 4
- 5 *Michael-Shawn Fletcher^{1, 2,3}
- 6 msfl@unimelb.edu.au
- 7
- 8 Sam W. Wood⁴
- 9 <u>samuel.wood@utas.edu.au</u>
- 10
- 11 Simon G. Haberle²
- 12 <u>simon.haberle@anu.edu.au</u>
- 13
- ¹Department of Resource Management and Geography, University of Melbourne,
- 15 Parkville, Victoria, Australia 3010
- ¹⁶ ²Archaeology and Natural History, College of Asia and the Pacific, The Australian
- 17 National University, Canberra, Australia 0200
- ³Institute of Ecology and Biodiversity, University of Chile, Santiago, Chile
- ⁴School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania
- 20 7001, Australia
- 21
- 22 *corresponding author
- 23
- 24

25 Abstract

26 We test the validity of applying the alternative stable state paradigm to account for the 27 landscape-scale forest/non-forest mosaic that prevails in temperate Tasmania, Australia. 28 This test is based on fine scale pollen, spore and charcoal analyses of sediments located 29 within a small patch of non-forest vegetation surrounded by temperate forest. Following 30 nearly 500 years of forest dominance at the site, a catastrophic fire drove an irreversible 31 shift from a forested Cyperaceae-Sphagnum wetland to a non-forested Restionaceae 32 wetland at ca.7000 cal vr BP. Persistence of the non-forest/Restionaceae vegetation state 33 over 7000 years despite long fire-free intervals implies that fire was not essential for the 34 maintenance of the non-forest state. We propose that reduced interception and transpiration of the non-forest state resulted in local waterlogging, presenting an eco-35 36 hydrological barrier to forest reestablishment over the succeeding 7000 years. We further 37 contend that the rhizotamous nature of the non-forest species presented a reinforcing ecophysical barrier to forest development. Our results satisfy a number of criteria for 38 39 consideration as an example of a switch between alternative stable states, including 40 different origin and maintenance pathways, and provide insights into the role of threshold 41 dynamics and hysteresis in forest/non-forest transitions. 42

Keywords: Alternative stable states, Palaeoecology, Forest, Non-forest, Fire, regime
shift, Tasmania, Australia, Hysteresis.

45 Introduction

46 Large sudden shifts in ecosystem states, such as sudden shifts between forest and 47 grassland, occur when an ecological system crosses a threshold (Scheffer et al. 2001, 48 Scheffer and Carpenter 2003). Such shifts in ecosystem states can have serious 49 ramifications for ecosystem functioning, for example forests have a substantially higher 50 carbon storage potential relative to grasslands (Casini et al. 2009). Understanding of how 51 and why they occur is, thus, a critical endeavour. Triggers for shifts across ecological 52 thresholds include large external perturbations, small incremental environmental changes and internal feedbacks (Scheffer and Carpenter 2003). Following a catastrophic regime 53 54 shift, a system may return to its original state or the system may settle around a new state (Scheffer and Carpenter 2003). This latter situation may arise from the existence of 55 56 alternative stable ecosystem states.

57

58 The model of alternative stable states is often invoked to account for the persistence of 59 different species assemblages within the same environment (Petraitis and Latham 1999). 60 Shifts between stable ecosystem states occur when (i) a critical threshold is crossed that results in the removal of species required for the self-maintenance of one state, (ii) the 61 62 arrival of species that initiate a switch to an alternative state and (iii) the new species 63 assemblage is capable of self-maintenance for more than one generation (Connell and 64 Sousa 1983, Petraitis and Latham 1999, Scheffer et al. 2001, Scheffer and Carpenter 65 2003). In terrestrial vegetation systems, alternative stable states often manifest spatially as sharp transitions in either assemblage and/or physiognomic state (Wilson and Agnew 66 67 1992), while temporal shifts may manifest as historical discontinuities in vegetation

68	communities that may be represented as jumps in time-series data (Scheffer and
69	Carpenter 2003). Despite the recent widespread application of the alternative stable state
70	model to a range of natural systems (e.g. Scheffer et al. 1993, Scheffer and Carpenter
71	2003, Petraitis and Dudgeon 2004, Warman and Moles 2009, Odion et al. 2010, Hirota et
72	al. 2011, Mayer and Khalyani 2011), demonstrating that the same site conditions can
73	support alternative states in terrestrial vegetation systems is far from easy (Petraitis and
74	Latham 1999, Schröder et al. 2005, Odion et al. 2010). A complicating factor in
75	terrestrial vegetation systems is demonstrating <i>stability</i> : the ability of the vegetation state
76	to maintain itself through more than one generation (Connell and Sousa 1983, Peterson
77	1984). This problem is most salient in long-lived vegetation systems, such as forests and
78	shrublands, where generational times are long. Such systems require novel approaches to
79	gathering the data needed to understand the underlying mechanisms governing their
80	apparent stability (e.g. Warman and Moles 2009, Odion et al. 2010, Hirota et al. 2011,
81	Jeffers et al. 2011). Here, we use palaeoecology to reconstruct a regime shift between
82	temperate forest and non-forest vegetation states in the southern hemisphere.
83	
84	Mosaics of forest, savanna and grasslands have been used as a model system for

85 exploring the efficacy of the alternative stable states model for terrestrial landscapes

86 (Staver et al. 2011; Lehmann et al. 2011; Mayer et al. 2011; Hirota et al. 2011). In this

87 system, vegetation transitions between three states - forest, savannah, grassland -

88 according to feedback mechanisms related to rainfall and fire (Mayer and Khalyani

89 2011). Drawing on the state and transition concepts put forward for the forest-savannah-

90 grassland system and the early work of Jackson (1968) in Tasmania, Wood and Bowman

91	(2012; see also Wood et al. 2011a,b) framed the vegetation landscape of temperate
92	southwest Tasmania in the alternative stable states framework. This system has four
93	vegetation states: rainforest, eucalypt forest, sclerophyll shrubs and moorland. Rainforest
94	and eucalypt forest in southwest Tasmania are sensitive to frequent fires, but produce a
95	considerable amount of fuel that is flammable when dry (particularly eucalypt forest).
96	The forest state is maintained by an infrequent fire regime (70-400 year fire-return
97	interval for eucalypt forest and >400 year fire-return interval for rainforest) that has a
98	twofold effect: (1) the establishment of slower growing trees relative to non-forest
99	species; and (2) the accumulation of soil nutrients that are essential for forest
100	development in this extremely oligotrophic region (Jackson 1968, Pyrke and Marsden-
101	Smedley 2005, Bowman and Wood 2009, Wood and Bowman 2012). These positive
102	feedbacks between fire, vegetation and soil characteristics engender an inertia to change
103	in these vegetation states, but repeat fires or high severity fires can trigger transitions
104	between vegetation states.

105

106 While there is evidence for fire-vegetation-soil feedbacks that reflect the mechanisms of 107 self-maintenance in this system (Wood and Bowman 2012), the factors leading to the 108 establishment of these alternative vegetation states remain untested (i.e. the problem of 109 'origin'; Petraitis and Latham 1999). Only one study that unequivocally documents the 110 establishment of non-forest vegetation in place of forest in this region and the factors 111 leading to the establishment of non-forest at that site (the origin) are unknown (Ellis and 112 Thomas 1988). Moreover, while fire clearly plays a key role in this vegetation landscape, 113 relatively little attention has been given to the potential role of other factors, such as

114	hydrology, in maintaining alternate vegetation states in this system (Pemberton 1989).
115	Anecdotal information on the role of hydrology in temperate forest/non-forest dynamics
116	can be drawn from other high-rainfall temperate regions, where permanent
117	transformations from forest to non-forest are observed after forest removal and is
118	explained by reduced transpiration rates under forest canopies relative to non-forest (Díaz
119	and Armesto 2007). The altered transpiration regime results in soil waterlogging and
120	excludes tree seedling reestablishment (Díaz and Armesto 2007). While not explicating a
121	mechanistic pathway, Pemberton (1989) invoked hydrology as a possible factor in the
122	apparent inability of forest to encroach upon some non-forest patches in the humid
123	landscape of Tasmania. However, the influence of hydrology in this system has been
124	largely ignored.
125	
126	Here, we interrogate the roles of fire and hydrology in the origin and maintenance of
127	forest and non-forest vegetation states by reconstructing vegetation and fire history over
128	the last 7500 years of a small (<18 ha) moorland (non-forest) patch surrounded by forest
129	on the Gog Range in Tasmania, Australia. The plateau of the Gog Range is characterised
130	by a series of discrete non-forest patches nested within a larger forest matrix (Fig. 1).
131	Palaeoecological research from within a patch of moorland on the Gog Range reveals that
132	at least parts of the plateau that now host moorland were occupied by forest during the
133	mid Holocene, with fire implicated in the permanent transition from forest to non-forest
134	
	(Webb et al. 1994). We focus on multi-decadal scale dynamics close to a forest/non-

136 establishment of non-forest in place of forest in this temperate system (i.e. the problem of

- 137 *origin*)? (2) do forest and non-forest represent alternative stable states in this system; and
- 138 (3) what are the mechanisms of self-maintenance of vegetation states in this system?
- 139

140 Methods

141 To reconstruct vegetation and fire history over the last 7500 years on the Gog Range 142 (41°30'28"S. 146°23'5"E), we retrieved a 94 cm core from Granta Pools using a D-143 section corer. The Gog Range is a low (~750 m) 13 km range that is crested by a flat 144 narrow plateau. The climate is humid, with an annual winter dominant rainfall of 1200 145 mm. The Granta Pools are surrounded by a <18 ha patch of non-forest moorland (one of 146 many that line the plateau), and tall *Eucalyptus* forest with an understorey of mesophyte 147 wet forest and rainforest species (temperate eucalypt/wet sclerophyll forest) cloak the 148 northern and southern slopes of the Gog Range, growing to within 120 m of Granta Pools 149 (Fig. 1). The site occupies a shallow depression in the Ordovician conglomerate bedrock that has in-filled with organic sediments. Ordovician conglomerate, along with 150 Precambrian quartzite, are low nutrient yielding and highly resistant rock types that 151 dominate the geology of west and southwest Tasmania (Woodward et al. 1993), giving 152 153 rise to the extreme oligotrophy that characterises this landscape. 154 155 To enable the vegetation and fire reconstruction, we analysed contiguous 1 cm-thick 156 sediment samples from the Granta Pools core for pollen, spores and charcoal following 157 standard protocols (Faegri and Iversen 1989, Whitlock and Larsen 2001). Pollen 158 percentages were calculated with two sums: one including all taxa, and the other 159 including terrestrial taxa only. Pollen analysis is a powerful tool for vegetation 160 reconstruction that relies on an appreciation of the relationship between pollen deposition 161 and vegetation (Bunting 2003). Of particular relevance to the present study are the well 162 established depositional characteristics of wetland and arboreal pollen types: wetland

163	pollen types are rarely transported far from their source plants and are good indicators of
164	local wetland dynamics (e.g. Bunting 2003), while arboreal pollen types can be grossly
165	over-represented in pollen spectra relative to their presence in the vegetation. Critically,
166	all key tree pollen types in Tasmania are over-represented in the modern pollen rain
167	(Macphail 1979, Fletcher and Thomas 2007).
168	
169	Fletcher and Thomas (2007) conducted a thorough numerical analysis of pollen-
170	vegetation relationships in western Tasmania that is vital for interpreting pollen data in
171	this region in terms of vegetation. The key relevant findings of that study for the present
172	paper are summarised here. The principal rain forest species in Tasmania, Nothofagus
173	cunninghamii, can comprise up to 50% of the terrestrial pollen sum of pollen spectra
174	from non-forest vegetation. Eucalyptus, the dominant tree type in the study area, can
175	contribute more than 30% of the terrestrial pollen sum at sites where Eucalyptus species
176	are absent from the local vegetation. Likewise, the other dominant arboreal taxon at
177	Granta Pools Pomaderris apetala, can register values higher than 20% of terrestrial
178	pollen sums at sites where it is <i>absent</i> from the local flora (Fletcher and Thomas 2007).
179	In contrast, non-forest taxa (Gymnoschoenus sphaerocephalus, Melaleuca and
180	Leptospermum/Baeckea) are uniformly under-represented in the modern pollen rain of
181	Tasmania and are rarely encountered in the pollen spectra of sites from which they are
182	absent (Fletcher and Thomas 2007). Indeed, the key moorland plant species,

183 Gymnoschoenus sphaerocephalus, registers pollen values as low as 5% at sites where it

184 comprises almost 60% of the local vegetation (Fletcher and Thomas 2007).

186	The accumulation rates of pollen and spores (PAR) and charcoal (CHAR), which reveal
187	changes in the actual influx of pollen or charcoal independent of variables other than
188	time, were calculated using ages interpolated to each sample level based on an age-depth
189	model derived from 4 radiocarbon ages. Radiocarbon ages were converted to calendar
190	years (cal yr BP) using the southern hemisphere calibration curve (McCormac et al.
191	2004) (see Fig. 5 and Table 1). Detrended Correspondence Analysis (DCA) was used to
192	identify compositional trends in the (relative) terrestrial pollen dataset using PCOrd 4.27
193	(McCune and Mefford 1999). To reconstruct the local fire history, we employed
194	CharAnalysis software (Higuera et al. 2009). The CHAR data was interpolated to the
195	median sample resolution (63 yr sample ^{-1}) for the analysis of CHAR peak frequency.
196	Charcoal peaks, a proxy for local fire episodes (Higuera et al. 2010), were identified as
197	the positive residuals exceeding a locally fitted CHAR background model (400 year
198	window).

199	Results
200	In this section, we present a detailed analysis of the period between ca.7500-6500 cal yr
201	BP, highlighting the critical transition between forest and non-forest at the site. The
202	dominant pollen and spores between ca.7400-7000 cal yr BP are Cyperaceae and
203	Sphagnum (aquatic/wetland component) and Eucalyptus and Pomaderris (terrestrial
204	component). Peak CHAR values at ca.7000 cal yr BP coincide with a spike in
205	Botryococcus, a replacement in the wetland flora of Cyperaceae by Restionaceae and in
206	the terrestrial flora by Leptospermum/Beackea, G. Sphaerocephalus and Melaleuca.
207	These latter taxa remain dominant for the remainder of the record.
208	
209	Rapidly accumulating peat occurred under a Sphagnum-Cyperaceae wetland and a forest
210	dominated by <i>Pomaderris</i> and other forest elements between ca.7400-7000 cal yr BP
211	(Fig. 2). This 400 year phase documents a period when the temperate eucalypt forest that
212	presently cloaks the slopes of the Gog Range occupied the currently non-forested patch
213	of vegetation at the Granta Pools site. Our results mirror a lower resolution pollen record
214	from within moorland on the Gog Range plateau (Webb et al. 1994). Together these
215	results imply that significant portions of, if not the entire, summit plateau hosted
216	temperate eucalypt forest through this time. Peak CHAR values occur at ca.7000 cal yr
217	BP (Fig. 3c) coincident with a major, abrupt and transition in the terrestrial and wetland
218	systems (Fig. 2,3b). Cyperaceae replaced Restionaceae as the dominant wetland taxon
219	around 7000 cal yr BP, punctuated by a brief (33 year) Botryococcus (a colonial algae)
220	phase between ca.7060-7000 cal yr BP (Fig. 2). This brief algal phase is coincident with
221	peak CHAR values and a marked drop in Sphagnum (Fig. 2b), suggesting the destruction

222	of the Sphagnum-Cyperaceous wetland and the transitory development of areas of open
223	water prior to the colonisation of the site by Restionaceous species. A shift from high
224	arboreal pollen values (Fig. 2d) to high values of non-forest moorland/scrub taxa
225	(Gymnoschoeunus sphaeocephalus, Melaleuca and Leptospermum/Beackea) also begins
226	at ca.7000 cal yr BP (Fig. 2e), culminating in an arboreal minimum at ca.6800 cal yr BP
227	and a maximum of moorland/scrub taxa between ca.6650-6600 cal yr BP (Figs 2d,e).
228	
229	The most salient feature of our data is the abrupt and unidirectional nature of the
230	transition between forest and non-forest at ca.7000 cal yr BP (Fig. 3b). The DCA of the
231	terrestrial pollen dataset reveals two statistically significant populations along the main
232	axis of variation (DCA axis 1) marking this transition (Figs 3c,4): a population of forest
233	taxa prior to the transition and a population of moorland/scrub taxa after (Fig. 4).
234	Following this transition, the non-forest state displays a remarkable degree of stability
235	throughout the record (Fig. 3). The stability of the non-forest state occurs despite more
236	than 700 years elapsing before another local fire episode at the site and despite prolonged
237	periods low fire episode frequency and between 4000-1000 cal yr BP (Fig. 3).
238	

239 **Discussion**

240 FOREST/NON-FOREST TRANSITION

241 Various feedback mechanisms (Fig. 5) may have contributed to the changes changes 242 observed between ca. 7500-6500 cal yr BP at Granta Pools, and to the maintenance of the 243 stable vegetation states (sensu Wood and Bowman 2012). Each vegetation community 244 may modify the rate of fuel accumulation and fuel characteristics (and therefore fire 245 frequency), soil nutrient capital and light environment in a direction that enhances its own 246 growth and survival, and simultaneously hinders or constrains other vegetation types 247 (Fig. 5b). The results of the present analysis suggest an alternate self-maintenance pathway in this system: eco-hydrology (Fig. 5c). High transpiration rates under forest 248 249 canopies in high rainfall regions facilitates the aeration of soils, which are susceptible to 250 waterlogging that can inhibit tree establishment (Díaz and Armesto 2007). Eucalyptus species exhibit remarkably high evapo-transpiration rates (Sharma 1984) and the 251 252 persistence of temperate eucalypt forest at Granta Pools under a wet climate regime prior 253 to 7000 cal yr BP is consistent with high transpiration rates under forest vegetation. 254 Temperate eucalypt forest in Australia is sensitive to frequent fire, but produces a 255 considerable amount of flammable fuel and is maintained by an infrequent (70-400 year 256 fire return interval) fire regime. While able to persist as a distinct vegetation state for 257 millennia (Macphail 1984), under certain conditions (dry summer-autumn) temperate 258 eucalypt forest is a highly flammable vegetation type with a high fuel load (Bradstock 259 2010). The fire at ca.7000 cal yr BP at Granta Pools had a catastrophic local impact, 260 destroying the then extant forest system and resulting in an immediate transition to non-261 forest vegetation at the site (Figs 3b,5c,d).

262

263	The destruction of the forest vegetation and Sphagnum-Cyperaceae wetland by fire
264	facilitated the invasion of the site by Restionaceae species and, subsequently, by the
265	rhizomatous sedge, G. sphaerocephalus. Restionaceae species commonly occupy the
266	most waterlogged areas in Tasmanian non-forest vegetation (moorland in this case) and
267	are the principal peat forming species in many ponds within moorland vegetation.
268	Elsewhere in the oligotrophic systems of Tasmania, the resilience of widespread tracts of
269	non-forest vegetation appears to be related to a complex suite of feedbacks related to a
270	high frequency of fire and interactions of fire with soil nutrients (Fig. 5b; reviewed by
271	Wood et al. 2011). However, the low levels of charcoal since the establishment of non-
272	forest vegetation at Granta Pools appear to discount frequent fire as a factor in the
273	maintenance of this system.
274	
275	We suggest two additional feedback mechanisms that contribute to the inability of forest
276	species to invade into the non-forest system at Granta Pools and elsewhere in Tasmania
277	(Fig. 5c). The first is related to the effect of reduced interception and transpiration on the
278	hydrologic regime of the local non-forest vegetation system. Observations of increasingly

279 waterlogged soils across forest/non-forest boundaries are common in high-rainfall,

280 oligotrophic Tasmania, with most authors invoking topography (Di Folco and Kirkpatrick

281 2011) and a reduced interception and transpiration in non-forest systems (Brown et al.

282 1982, Aabay and Berglund 1986, Bowman et al. 1986, Rumpff 2002, Di Folco 2007,

283 Wood et al. 2011) as key factors in this disparity. At Granta Pools, reduced transpiration

rates due to the immediate replacement of trees by peat forming wetland plants,

285	rhizomatous sedges and non-forest species tolerant of waterlogged soils (such as
286	Melaleuca) may have amplified soil waterlogging in this local topographic depression,
287	effectively precluding seedling establishment (sensu Díaz and Armesto 2007). The
288	capacity for rhizomatous plants to endure, colonize and dominate waterlogged terrain
289	(Koncalov 1990) would act as a positive eco-hydrological feedback that effectively
290	excludes tree establishment and facilitates maintenance of waterlogging at the site.
291	Secondly, the dense sedge swards that dominate non-forest vegetation at Granta Pools (G.
292	sphaerocephalus) are likely to exclude trees through inter-specific competition (Fensham
293	and Kirkpatrick 1992). Field and pot experiments have demonstrated that the
294	development of grass swards in open environments in Tasmania inhibits the
295	establishment of trees by blanketing the ground, and if germination occurs, seedling
296	growth is likely to be inhibited because of the grass root mat imposes a physical barrier to
297	root development (Fensham and Kirkpatrick 1992, Kube 1993).
298	
299	A CATASTROPHIC REGIME SHIFT BETWEEN ALTERNATIVE STABLE
300	STATES?
301	A call for an application of the alternative stable state theoretical framework to the
302	vegetation landscape of the humid regions of Tasmania draws support from conceptual
303	models (Jackson 1968, Bowman and Jackson 1981). It is also consistent with recent
304	studies that provide tentative (Wood and Bowman 2012) and more speculative (Fletcher
305	and Thomas 2010) evidence that forest and non-forest are alternative stable states in the

306 landscape of western and southern Tasmania. The fire-driven transition from forest to

307 non-forest vegetation at Granta Pools, Tasmania, represents a clear example of a

308	catastrophic regime shift. Catastrophic regime shifts occur when a regime threshold is
309	crossed in response to environmental forcing and a system reorganizes around a new
310	basin of attraction (Scheffer and Carpenter 2003). This type of response can be an
311	artefact of a non-linear reaction to a gradual environmental change or response to a
312	stochastic event, such as fire. Within the alternative stable state paradigm, if a system has
313	only one basin of attraction (stable state), it will follow a trajectory back toward that same
314	state after a perturbation. If there are multiple basins of attraction (alternative stable
315	states), a sufficiently severe event will force the system toward an alternative basin and
316	the system settles around an alternative stable state (Scheffer and Carpenter 2003). Such
317	critical transitions are manifest on either side of a breakpoint in time-series data (Willis et
318	al. 2010, Jeffers et al. 2011). Our time-series data of vegetation change at Granta Pools
319	display a clear breakpoint at ca.7000 cal yr BP (Fig. 5b), coincident with maximum
320	CHAR values that documents a regime shift from a forest (temperate eucalypt forest) to a
321	non-forest (moorland) basin of attraction in response to a stochastic fire episode (Figs
322	4,5).

323

324 ON THE PROBLEM OF "ORIGIN"

Broad-scale palaeoecological studies of the Tasmanian forest/non-forest system argue that the application of fire after the arrival of people to a largely non-forested landscape through the Last Glacial Stage essentially deflected post-glacial vegetation development toward species that could tolerate the altered fire regime and increasing humidity through the transition to the succeeding interglacial period (the Holocene): namely non-forest moorland species (Fletcher and Thomas 2010). Fletcher and Thomas (2010) further

331 contend that the inherent flammability of non-forest vegetation in this region was sufficient to maintain non-forest dominance throughout the climatic vicissitudes of the 332 333 Holocene to the present day. While this thesis may hold at the coarse spatio-temporal 334 scale (landscape and millennial) afforded by their regional palaeoecological synthesis, it 335 is very likely that transitions between forest and non-forest occurred at smaller scales of 336 space and time through the Holocene resulting from, for example, stochastic fire events 337 like we have documented here. Underpinning this notion, and indeed all attempts to 338 account for the contemporary vegetation landscape of southwest Tasmanian, is the 339 widespread and untested assumption that fire is the key factor in the *origin* of this 340 landscape mosaic. Importantly, our study is the *only* study to-date that reveals fire as the 341 causal factor leading to the establishment of non-forest vegetation in place of forest in 342 Tasmania. The implication from our data that, once established, the self-maintenance of 343 non-forest vegetation at Granta Pools is facilitated via eco-hydrological and eco-physical 344 feedbacks, whilst in need of empirical data for conclusive support, is consistent with 345 experimental and observational studies documenting the eco-hydrological effects of 346 forest removal (e.g. Tallis 1991, Díaz and Armesto 2007). Further, the implication that 347 hydrology, rather than fire, was sufficient for self-maintenance of the non-forest state 348 corroborates the notion that self-maintenance pathways can vary from those that lead to 349 the establishment of an alternative stable state (Drake 1991). Moreover, in potentially 350 identifying both the origin and maintenance mechanisms of this system, we satisfy those 351 who require independent treatment of these key processes in order to validate the 352 existence of alternative stable states (Petraitis and Latham, 1999).

353

354 Conclusion

- 355 We have documented an unequivocal transition between forest and non-forest in the
- 356 humid forest/non-forest landscape mosaic of Tasmania. Critically, we have identified
- 357 different origin and maintenance pathways in this regime shift between alternative stable
- 358 states. Initially, fire destroyed the then extant forest, opening the system to an invasion
- 359 by a suite of non-forest plant species that altered the local hydrological and physical
- 360 environment. The maintenance of the non-forest state for ca. 7000 years following the
- 361 forest/non-forest transition occurs despite widely varying fire-regimes and we postulate
- that the maintenance of the non-forest state is via eco-hydrological and eco-physical
- 363 feedbacks that differ from the origin (fire).
- 364

365 Acknowledgements

- 366 M.-S.F was supported by ARC project DI110100019, Fondecyt project 3110180 and the
- 367 Institute of Ecology and Biodiversity, Chile, through the life of this project. We thank
- 368 Phil Roberts for assistance with charcoal analysis and Graeme Haberle for help in the
- 369 field. Thanks to Bree Fletcher for assistance with laboratory work. We thank Ian
- 370 Thomas for fruitful discussion over the temporal dynamics of Tasmanian vegetation.

371 **References**

372	Aabay, B. and B. E. Berglund. 1986. Characterization of peat and lake deposits. in B. E.
373	Berglund and M. Ralska-Jasiewiczowa, editors. Handbook of Holocene
374	Palaeoecology and Palaeohydrology. John Wiley and Sons Ltd, Wiltshire.
375	Bowman, D. M. J. S. and W. D. Jackson. 1981. Vegetation succession in southwest
376	Tasmania. Search 12:358-362.
377	Bowman, D. M. J. S., A. R. Maclean, and R. K. Crowden. 1986. Vegetation-soil
378	relationships in the lowlands of south-west Tasmania. Australian Journal of
379	Ecology 11 :141-153.
380	Bowman, D. M. J. S. and S. W. Wood. 2009. Fire driven land cover change in Australia
381	and W.D. Jackson's theory of the fire ecology of southwest Tasmania. Pages 87-
382	111 in M. A. Cochrane, editor. Tropical fire ecology: climate change, land use
383	and ecosystem dynamics. Springer-Praxis, Heidelberg
384	Bradstock, R. A. 2010. A biogeographic model of fire regimes in Australia: current and
385	future implications. Global Ecology and Biogeography 19 :145-158.
386	Brown, M. J., R. K. Crowden, and S. J. Jarman. 1982. Vegetation of an alkaline pan -
387	acidic peat mosaic in the Hardwood River Valley, Tasmania. Australian Journal
388	of Ecology 7 :3-12.
389	Bunting, M. J. 2003. Pollen-vegetation relationships in non-arboreal moorland taxa.
390	Review of Palaeobotany and Palynology 125:285-298.
391	Casini, M., J. Hjelm, JC. Molinero, J. Lövgren, M. Cardinale, V. Bartolino, A.
392	Belgrano, and G. Kornilovs. 2009. Trophic cascades promote threshold-like shifts

- in pelagic marine ecosystems. Proceedings of the National Academy of Sciences **106**:197-202.
- Connell, J. H. and W. P. Sousa. 1983. On the evidence needed to judge ecological
 stability or persistence. American Naturalist 121:789-824.
- 397 Di Folco, M. B. 2007. Tasmanian Organic Soils. University of Tasmania, Hobart,
 398 Australia.
- Di Folco, M. B. and J. B. Kirkpatrick. 2011. Topographic variation in burning-induced
 loss of carbon from organic soils in Tasmanian moorlands. Catena 87:216-225.
- 401 Díaz, M. and J. Armesto. 2007. Physical and biotic constraints on tree regeneration in
- 402 secondary shrublands of Chiloe Island, Chile. Revista Chilena De Historia Natural
 403 80:13-26.
- 404 Drake, J. A. 1991. Community-assembly mechanics and the structure of an experimental
 405 species ensemble. American Naturalist:1-26.
- 406 Ellis, R. C. and I. Thomas. 1988. Pre-settlement and post-settlement vegetational change
- 407 and probable Aboriginal influences in a highland forested area in Tasmania.*in* K.
- 408 J. Frawley and N. M. Semple, editors. Australia's Ever-changing Forests:
- 409 Proceedings of the First National Conference on Australian Forest History.
- 410 Department of Geography and Oceanography, Australian Defence Force
- 411 Academy, Canberra, Australia.
- 412 Faegri, K. and J. Iversen. 1989. Textbook of pollen analysis. Wiley, New York.
- 413 Fensham, R. J. and J. B. Kirkpatrick. 1992. The eucalypt forest-grassland/grassy
- 414 woodland boundary in central Tasmania. Australian Journal of Botany **40**:123-
- 415 138.

416	Fletcher, MS. and I. Thomas. 2007. Modern pollen-vegetation relationships in western
417	Tasmania, Australia. Review of Palaeobotany and Palynology 146:146-168.
418	Fletcher, MS. and I. Thomas. 2010. The origin and temporal development of an ancient
419	cultural landscape. Journal of Biogeography 37:2183-2196.
420	Higuera, P. E., L. B. Brubaker, P. M. Anderson, F. S. Hu, and T. A. Brown. 2009.
421	Vegetation mediated the impacts of postglacial climate change on fire regimes in
422	the south-central Brooks Range, Alaska. Ecological Monographs 79:201-219.
423	Higuera, P. E., D. G. Gavin, P. J. Bartlein, and D. J. Hallett. 2010. Peak detection in
424	sediment-charcoal records: impacts of alternative data analysis methods on fire-
425	history interpretations. International Journal of Wildland Fire 19 :996-1014.
426	Hirota, M., M. Holmgren, E. H. Van Nes, and M. Scheffer. 2011. Global resilience of
427	tropical forest and savanna to critical transitions. Science 334 :232-235.
428	Jackson, W. D. 1968. Fire, air, water and earth – an elemental ecology of Tasmania.
429	Proceedings of the Ecological Society of Australia 3 :9-16.
430	Jeffers, E. S., M. B. Bonsall, S. J. Brooks, and K. J. Willis. 2011. Abrupt environmental
431	changes drive shifts in tree-grass interaction outcomes. Journal of Ecology
432	99 :1063-1070.
433	Koncalov, H. 1990. Anatomical adaptations to waterlogging in roots of wetland
434	graminoids: limitations and drawbacks. Aquatic Botany 38:127-134.
435	Kube, P. 1993. Establishment Techniques and Early growth of eucalypt seedlings on a
436	high elevation grass site in Tasmania. Tasforests:63-75.
437	Macphail, M. K. 1979. Vegetation and climates in southern Tasmania since the last
438	glaciation. Quaternary Research 11:306-341.

439	Macphail, M. K. 1984. Small-Scale Dynamics in and early Holocene Wet Sclerophyll
440	Forest in Tasmania. Pages 131-147 New Phytologist.
441	Mayer, A. L. and A. H. Khalyani. 2011. Grass trumps trees with fire. Science 334:188-
442	189.
443	McCormac, F. G., A. G. Hogg, P. G. Blackwell, C. E. Buck, T. F. G. Higham, and P. J.
444	Reimer. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP.
445	Radiocrbon 46 :1087-1092.
446	McCune, B. and M. J. Mefford. 1999. PC-Ord for Windows. MjM Software, Gleneden
447	Beach, OR.
448	Odion, D. C., M. A. Moritz, and D. A. DellaSala. 2010. Alternative community states
449	maintained by fire in the Klamath Mountains, USA. Journal of Ecology 98:96-
450	105.
451	Pemberton, M. 1989. Land systems of Tasmania (south west). Tasmanian Government
452	Printer, Hobart.
453	Peterson, C. H. 1984. Does a rigorous criterion for environmental identity preclude the
454	existence of multiple stable points? American Naturalist 124 :127-133.
455	Petraitis, P. S. and S. R. Dudgeon. 2004. Detection of alternative stable states in marine
456	communities. Journal of Experimental Marine Biology and Ecology 300:343-371.
457	Petraitis, P. S. and R. E. Latham. 1999. The importance of scale in testing the origins of
458	alternative community states. Ecology 80:429-442.
459	Pyrke, A. F. and J. B. Marsden-Smedley. 2005. Fire-attributes catefories, fire sensitivity,
460	and flammability of Tasmanian vegetation communities. Tasforests 16:35-46.

- 461 Rumpff. 2002. Chickens or eggs? The nature of the edaphic influence on vegetation
- 462 succession in Tasmania. University of Melbourne, Melbourne, Australia.
- 463 Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker. 2001. Catastrophic
- 464 shifts in ecosystems. Nature **413**:591-596.
- Scheffer, M. and S. R. Carpenter. 2003. Catastrophic regime shifts in ecosystems: linking
 theory to observation. Trends in Ecology & Evolution 18:648-656.
- 467 Scheffer, M., S. Hosper, M. Meijer, B. Moss, and E. Jeppesen. 1993. Alternative
- 468 equilibria in shallow lakes. Trends in Ecology & Evolution 8:275-279.
- 469 Schröder, A., L. Persson, and A. M. De Roos. 2005. Direct experimental evidence for
- 470 alternative stable states: a review. Oikos **110**:3-19.
- 471 Sharma, M. L. 1984. Evapotranspiration from a Eucalyptus community. Agricultural
 472 Water Management 8:41-56.
- 473 Tallis, J. 1991. Forest and Moorland in the South Pennine Uplands in the Mid-Flandrian
- 474 Period.: III. The Spread of Moorland--Local, Regional and National. The Journal
 475 of Ecology:401-415.
- 476 Warman, L. and A. T. Moles. 2009. Alternative stable states in Australia's wet tropics: a
- 477 theoretical framework for the field data and a field-case for the theory. Landscape
 478 Ecology 24:1-13.
- 479 Webb, J., I. Thomas, and K. Thiele. 1994. The Physical Setting of the Gog
- 480 Range. Pages 39-51 in A. Sagona, editor. Bruising the Red Earth: Ochre Mining and
- 481 Ritual in Aboriginal Australia. Melbourne University Press, Melbourne.

482	Whitlock, C. and C. P. S. Larsen. 2001. Charcoal as a fire proxy. Tracking environmental
483	change using lake sediments. Kluwer Academic Publishers, Dordrecht, The
484	Netherlands.
485	Willis, K., R. Bailey, S. Bhagwat, and H. Birks. 2010. Biodiversity baselines, thresholds
486	and resilience: testing predictions and assumptions using palaeoecological data.
487	Trends in Ecology & Evolution 25 :583-591.
488	Wilson, J. B. and A. D. Agnew. 1992. Positive-feedback switches in plant communities.
489	Academic Press.
490	Wood, S. W. and D. M. J. S. Bowman. 2012. Alternative stable states and the role of
491	fire-vegetation-soil feedbacks in the temperate wilderness of southwest
492	Tasmania. Landscape Ecology:1-16.
493	Wood, S. W., Q. Hua, and D. M. J. S. Bowman. 2011. Fire-patterned vegetation and the
494	development of organic soils in the lowland vegetation mosaics of south-west
495	Tasmania. Australian Journal of Botany 59 :126-136.
496	Woodward, N., D. Gray, and C. Elliott. 1993. Repeated Palaeozoic thrusting and
497	allochthoneity of Precambrian basement, northern Tasmania. Australian Journal
498	of Earth Sciences 40:297-311.
499	
500	

- 502 Table 1 Table showing the results of the radiocarbon dating. Upper and lower ranges are
- 503 based on 2-sigma error ranges. Calibrations are based on the southern hemisphere
- 504 calibration curve of McCormac *et al.* (2004).

Lab Code	Depth	Radiocarbon	Median	Lower range	Upper range
	(cm)	Age (¹⁴ C years)	probability	(cal yr BP)	(cal yr BP)
			(cal yr BP)		
S-ANU4630	19	1590	1429	1332	1530
S-ANU4631	42	4675	5400	5089	5467
S-ANU4632	67	6185	6980	6907	7160
S-ANU4633	89	6470	7347	7254	7429

506	Fig. 1 An image of the Gog Range plateau showing the coring site within Granta Pools
507	and highlighting (bordered in white) the non-forest vegetation on the plateau. The
508	location of the core site in Tasmania is shown in the inset. Image source: "Gog Range"
509	41°30'S, 146°23'E. Google Earth. March 22, 2010. March 22, 2013.
510	
511	Fig. 2 Pollen and spore data from Granta Pools from 7500-6600 cal yr BP.
512	
513	Fig. 3 A time series plot of environmental data over the last 7500 years pertinent to
514	Granta Pools. (a) The linear age-depth curve based on 5 radiocarbon ages. Error bars
515	indicate the 2-sigma error range of the calibrated radiocarbon ages; (b) Ordination axis
516	scores from a detrended correspondence analysis (DCA axis 1) of the terrestrial pollen
517	dataset from Granta Pools (the orange (green) horizontal bar indicates the mean axis
518	value for the non-forest (forest) vegetation states, while the shaded area indicates 2
519	standard deviations from the mean) ; (c) Charcoal accumulation (CHAR) and fire episode
520	frequency at Granta Pools.
521	
522	Fig. 4 Detrended correspondence analysis biplot of the terrestrial pollen dataset from
523	Granta Pools. The position of fossil samples is shown: Open circles denote samples with
524	a strong (negative) correlation to forest pollen taxa (green arrows pointing left); closed
525	circles denote samples with a strong (positive) correlation to non-forest pollen taxa
526	(orange arrows pointing right). The arrow length indicates the strength of the correlation
527	and the correlation statistics are listed. The ages indicate the timing of the transition from
528	forest to non-forest.

530	Fig. 5 A hypothetical stability landscape (after Scheffer et al. 2001) and proposed
531	feedback mechanisms for the alternative stable states found in the humid landscape of
532	Tasmania based on our interpretation of the Granta Pools data (after Wood and Bowman,
533	2011). (a) a 3-dimensional stability landscape that depicts rainforest and non-forest
534	(moorland/scrub) as deep and resilient basins (with transitions into or out of these basins
535	requiring strong environmental forcing) and temperate eucalypt (wet sclerophyll) forest
536	as a shallower basin. The arrow follows the trajectory of the Granta Pools (this study)
537	vegetation system in response to a catastrophic fire. The position of the ball shows the
538	vegetation state after this stochastic disturbance event, with the vegetation state now
539	lying within the deep, stable and resilient non-forest basin. (b & c) The self-regulating
540	internal feedback mechanisms maintaining stability within the forest and non-forest
541	vegetation states: (b) those depicted by Wood and Bowman (2011) as operating in the
542	landscape of southwest Tasmania; and (c) those proposed as operating at Granta Pools.
543	(d) A summary of the temporal sequence between 7500-6500 cal yr BP that lead to the
544	critical transition between a forest and non-forest vegetation state at Granta Pools
545	following the stochastic fire event.

546 Fig. 1

548 Fig. 2

550 Fig. 3

551

554 Fig. 4

ECOLOGICAL SOCIETY OF AMERICA

