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Abstract Endoplasmic reticulum vesicles isolated from rat 
brain cortex and fused with lipid bilayers displayed ryanodine- 
sensitive calcium channels, with three cytoplasmic calcium 
dependences. A: Channels ( n = 5 )  stimulated by Ca 2+ 
"(/f0.s = 1.2 ~M and nHill = 1.9) and not inhibited up to 0.5 mM 
C a  ~÷ • B: Channels  (n = 14) cooperat ively  activated 
(/~o.5 = 6.9 ttM and nHin = 1.8), and inhibited by Ca 2+ 
(Ko.5 = 152 JIM and nI-nU = 1.8). C: Low Po (<0.1)  channels 
(n = 22), non-cooperatively activated and inhibited with the same 

2 +  K,s  = 26.3 ~tM Ca . These three types of responses to 
• 2 +  c~toplasmic [Ca ] may underlie separate calcium release 

pathways in neurons of rat brain cortex. 

I~,y words." Ca 2+ release; Ca 2-- regulation; Brain cortex; 
lx euron; Intracellular calcium; Ryanodine receptor isoform 

1. Introduction 

The resting free calcium concentrat ion in neurons is -<100 
n M  [1]. A large number  of  cellular processes, including elec- 
trogenesis, synaptic transmission, synaptic plasticity, gene ex- 
pression, embryonic growth and differentiation, are mediated 
b'.' transient increments in neuronal  cytoplasmic [Ca 2+] [1]. 
Calcium release from the endoplasmic reticulum (ER) plays 
a,~ important  role in these cellular responses [2], and the phys- 
iological mechanisms that elicit calcium release are currently 
t t e  subject of  active study. Neurons have two separate intra- 
ctqlular calcium release pathways [2], the IP3 receptors (IP3- 
R), which function as inositol-l,4,5-trisphosphate (IPa) gated 
channels, and the ryanodine receptors, which are activated by 
paysiological mechanisms not  well understood at the present 
time. Three ryanodine receptor isoforms (ryanodine receptor- 
1 ryanodine receptor-2 and ryanodine receptor-3) are ex- 
p'essed in rat brain [2-4], and more than one ryanodine re- 
c~'ptor isoform may be expressed in a single neuron [4]. 

Ryanodine binding studies in microsomes indicate that 
b a i n  ryanodine receptors are modulated by some of the 
s~Lme agents that modify calcium release in other tissues [5 
9 .  Ryanodine binding is activated by millimolar ATP analogs 
[~ 9], caffeine [5,7,8], and micromolar [Ca 2+] [6-9], and is 
il hibited by millimolar Mg 2+ [6-9], millimolar [Ca 2+] [7-9], 
a i d  micromolar ruthenium red [9]. 

Few studies have described the channel properties of brain 
r: anodine  receptors. High conductance ( =  100 pS) ryanodine- 
sensitive calcium channels present in rat [10], bovine [11], and 
r~tbbit [5] brain have been studied after fusion with planar 
li~id bilayers; these channels are activated by millimolar 
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ATP [5,10,11], caffeine [5] and micromolar IP3 [10,11]. Micro- 
molar calcium activates a ryanodine receptor purified from 
bovine brain that corresponds to the cardiac isoform [11]. 

The present work presents a systematic study of the effects 
of changing cytoplasmic [Ca 2+] on the ryanodine-sensitive 
calcium channels present in a well-defined endoplasmic reticu- 
lum fraction isolated from rat brain cortex. These channels 
were studied at the single channel level after fusion of the 
isolated microsomes with planar lipid bilayers. 

2. Materials and methods 

2.1. Isolation of membrane fractions 
Six week old male Sprague-Dawley rats, weighing on average 250 g, 

were killed by decapitation; brains were removed and placed in ice- 
cold buffer A (20 mM MOPS/Tris, pH 7.0, 5 mM DTT, 1 I.tg/ml 
leupeptin, 1 ~tg/ml pepstatin, 0.4 mM benzamidine, 1 mM phenyl- 
methyl-sulfonyl-fluoride, 10 Ixg/ml trypsin inhibitor). All subsequent 
procedures were carried out at 4°C in a cold room. Finely minced 
pieces of dissected cortex were homogenized in a glass Potter homo- 
genizer, using 10 ml of buffer A per g wet tissue. After addition of 3 M 
sucrose to a final sucrose concentration of 0.3 M, the homogenate was 
sedimented at 1000×g for 10 min. The resulting supernatant was 
sedimented at 20000×g for 20 min; the pellet was discarded and 
microsomes were collected by sedimentation of the supernatant at 
100000×g for 1 h. The microsomal pellet (P3) was resuspended in 
ice-cold buffer B (buffer A plus 0.3 M sucrose), solid KC1 was added 
to a final concentration of 0.5 M KC1, and the microsomes were 
incubated at 0°C for 15 min. This suspension was loaded on top of 
a discontinuous sucrose gradient made of equal volume layers of 19% 
and 27.5% sucrose solutions (w/v, adjusted by refractometry), contain- 
ing 20 mM MOPS/Tris, pH 7.0, 0.15 M KC1 and the above mixture of 
protease inhibitors. The fraction (P31) banding at the 19-27.5% su- 
crose interface was collected by aspiration and, after dilution in buffer 
B, it was sedimented at 100 000 x g for 1 h and resuspended in a small 
volume of buffer B. The same procedure was followed with the pellet 
fraction (P32). Membrane fractions, in aliquots of <0.1 ml, were 
quickly frozen in liquid N2 and stored at -80°C for up to one month. 
Protein was determined according to Bradford [12]. Standard proce- 
dures were followed for SDS-PAGE gels and Western blot analysis of 
membrane fractions [13], using 2G6 anti-ryanodine-receptor antibody 
[14] kindly provided by Drs. J. Airey and J. Sutko. 

2.2. Binding experiments 
Determination of binding site density for [SH]IP3 was performed as 

described [15]. Binding of [3H]ryanodine was assayed as described 
previously [16], except that in some experiments 10 [aM [Ca 2+] was 
present in the incubation solution (adjusted with 2 mM HEDTA and 
1.56 mM CaClz). Binding of [3H]saxitoxin ([3H]STX) was assayed 
using a modification of a previous protocol [17]; briefly, membranes 
at 0.5 mg of protein per ml were incubated for 1 h at 22°C in 0.3 ml of 
a solution containing 120 mM choline chloride, 2.5 mM KCI, 1.8 mM 
CaCI2, 10 mM Tris-HC1, pH 7.4, and 10 nM [ZH]STX. To unmask 
latent sites, 0.4 mg/ml of saponin was added during the incubation. 
Non-specific binding was determined in the presence of 100 nM te- 
trodotoxin. [3H]IP3 and [3H]Rya were obtained from Dupont Co. 
(Boston, MA) and [3H]STX from Amersham Int. (Buckinghamshire, 
UK). Protease inhibitors and other analytical reagents were obtained 
from Sigma Chemical Co. (St. Louis, MO). 
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2.3. Channel recording and analysis 
Planar phospholipid bilayers were painted with a mixture of palmi- 

toyloleoyl phosphatidylethanolamine (POPE), phosphatidylserine (PS) 
and phosphatidylcholine (PC) in the proportion POPE:PS:PC= 
5 : 3 : 2. Lipids, obtained from Avanti Polar Lipids, Inc. (Birmingham, 
AL), were dissolved in decane to a final concentration of 37.5 mg/ml. 
Fusion of vesicles to negatively charged Mueller-Rudin membranes 
was performed as described in previous work [18], with slight mod- 
ifications. Vesicles were added to the cis compartment, which con- 
tained 200 mM CsC1, 100 gM CaCI2, 25 mM HEPES/Tris, pH 7.4. 
The other compartment (trans) contained 25 mM HEPES/Tris, pH 
7.4. After fusion, the cis compartment was perfused with 5 times the 
compartment volume of a solution containing 225 mM HEPES/Tris, 
pH 7.4. To obtain the desired cytoplasmic free calcium concentration, 
0.5 mM Ca-HEPES plus enough N-(2-hydroxyethyl)ethylenediamine- 
triacetic acid (HEDTA) were added to the cis compartment. Free 
[Ca ~+] values were always checked with a calcium electrode. The trans 
solution, which corresponds to the intrareticular space, was replaced 
with 40 mM Ca- or Ba-HEPES, 10 mM Tris-HEPES, pH 7.4. All 
experiments were carried out at room temperature (22-24°C). Voltage 
was applied to the cis compartment, and the trans compartment was 
held at virtual ground through an operational amplifier in a current- 
to-voltage configuration. Current signals were recorded on tape. All 
experiments were done with membranes held at 0 mV. 

Data analysis was done as described in detail in previous work [18]. 
Values given for Po were calculated from single channels records 
lasting at least 180 s. 

3. Results and discussion 

The procedure fol lowed in this work to isolate purified mi- 
crosomes from rat brain cortex was highly reproducible, and 
consistently yielded vesicular fraction of  similar characteristics 
(n = 15). The purified vesicular fraction P31 (see section 2.1), 
displayed a ryanodine receptor density o f  2.86 + 0.43 pmol /mg 
of  protein at 10 gM [Ca 2+] (Table 1). This ryanodine receptor 
density is several-fold higher than other values reported in 
brain microsomes [5-10]. Since ryanodine receptors seem to 
be absent in glial cells [2], the high ryanodine receptor density 
o f  fraction P31 suggests that these vesicles most  likely origi- 
nate from neuronal cells. A lower density o f  IP3 receptors was 
obtained (Table 1), with values that are in the range reported 
for rat brain microsomes [7]. The low density of  binding sites 
for STX indicates that fraction P3~ is not significantly con- 
taminated with plasma membrane fractions. 

Fusion of  fraction P31 with planar lipid bilayers was a re- 
producible and frequent event. High conductance (100 + 7 
pS; mean + S.E.M.) calcium channels were obtained 
(n = 41). The channels shown in this work were modulated 
by ryanodine; addition of  1M gM ryanodine locked the chan- 
nels in the lower ( =  40%) conductance level with a fractional 
open time near unity (not shown), which is the characteristic 
sub-conductance open state produced by this alkaloid [19]. 

Fig. 1. Examples of single channels records that show the different 
effects of cis calcium on Po. A: A channel stimulated by low [Ca 2+] 
and not inhibited by high [Ca ~+] (up to 500 laM). B: A channel sti- 
mulated by low [Ca 2+] and inhibited by high [Ca2+]. C: A channel 
with Po < 0.1 at low and high [Ca 2+] and thus defined as a low Po 
channel. Current amplitude for the open state of all channels mea- 
sured at 0 mV did not change in the range of 1-100 ktM free cal- 
cium (3.5 pA), but decreased 15% at 500 laM calcium, in correspon- 
dence with an increased calcium counterflux from the cis to the 
trans compartment. Cis and trans solutions are described in the 
text; the cis free [Ca 2+] is indicated at the left of each trace. Po val- 
ues shown were calculated from records lasting at least 180 s. All 
traces last 10 s. 
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These channels were classified into three groups (Fig. 1), 
according to the effect of cis (cytoplasmic) [Ca 2+] on their 

fractional open time (Po). 
The less frequent response to changes in cis [Ca 2+] (n = 5, 

out of 41 channels) corresponded to the calcium-stimulated 
channels (Fig. 1A). Significant channel activity (Po = 0.13) 
w~ts observed at 0.56 ~tM cis [Ca 2+] (top trace). Increasing 
ci [Ca 2+] to 8.6 ~tM (middle trace) produced further channel 
at tivation (Po = 0.62), which persisted on further increasing 
cl [Ca 2+] to 500 ~tM (lower trace). The calcium-dependence 
c l rve of Po showed that these calcium-stimulated channels 
(I ig. 2, open triangles) displayed sigmoidal activation by 
l e u  cytosolic [Ca2+], in the range of 0.3 ~tM to 10 ~tM, and 
v~ .'re not inhibited by increasing [Ca 2+] up to 0.5 mM. The 
e~perimental Po data, fitted to a Hill equation, yielded an 
a~tivation constant  of 1.2 ktM [Ca2+], a Hill coefficient of 
1~ and a maximal Po of 0.73 (Fig. 2, solid line through 
oi,en triangles). These results suggest that calcium binds co- 
operatively with a high affinity to two or more sites in order 
t, activate these channels. This calcium dependence has been 
dt.scribed for native [20,21] and purified [22] cardiac sarcoplas- 
n ic reticulum (SR) channels derived from dog hearts (ryano- 
d ne receptor-2) [23], for one calcium channel isoform present 
i~ fish skeletal muscle [24], and for 50% of the channels pres- 
e,~t in SR isolated from frog skeletal muscle [18]. Inhibit ion of 
c. rdiac ryanodine receptors by much higher cytoplasmic 
[( !a 2+] has been recently reported, with a K0.5 of 15 mM 
[7_5]. Since we routinely used calcium concentrations up to 
0 5 mM, we cannot  discard the possibility that higher calcium 
c,,ncentrations will inhibit the calcium-stimulated channels of 
b a in  cortex as well. It remains to be established whether this 
c tannel behavior reflects the presence in our isolated vesicles 
o ' t h e  ryanodine receptor-2 isoform, which is present in high 
d :nsity in rat brain cortex [9,11]. 

A second response to changes in eis [Ca 2+] was found more 
fl equently (n = 14) and characterized the calcium-stimulated 
a i d  calcium-inhibited channels (Fig. 1B). Cytosolic [Ca 2+] 
s ' imulated these channels in the range of 3 tiM (Fig. 1B, 
u ~per trace); further increasing cis [Ca z+] to 30 laM increased 
t ,  to 0.29 (Fig. 1B, middle trace). Channel  inhibition was 
o ~served at cis [Ca 2+] >30 ~tM (Fig. 2, solid circles), reaching 
a m o s t  complete inhibit ion at 0.5 mM [Ca 2+] (Fig. 1B, lower 
t~ace). The best fit to the Po data was obtained with the 
f, ,llowing equation (Eq. 1): 

1~ = P . . . . . .  /(1 + (K~/[Ca2+]) n + ([Ca'+]/Ki) ") (1) 

here P . . . . .  corresponds to the Po value of maximal activa- 
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Fig. 2. Calcium dependence of calcium channel open probability. 
Open circles: low Po channels; filled circles: calcium-stimulated and 
calcium-inhibited channels; open triangles: calcium-stimulated chan- 
nels. Numbers in parentheses represent the number of records aver- 
aged at each calcium concentration. Cis and trans solutions were as 
detailed in the text. Symbols represent mean values plus S.E.M. The 
solid lines represent the best non-linear fit of the data to the equa- 
tions defined in the text. The inset illustrates the behavior of the 
low Po channels shown in an amplified scale. 

tion by calcium, K~ is the calcium concentration for half-max- 
imal Po activation and is also defined as K0.5, n is the Hill 
coefficient for calcium binding, and Ki is the [Ca 2--] that pro- 
duced half-maximal inhibition of Po. The other symbols have 
their conventional meanings. The best fit was achieved with 
K~ = 6.9 p.M, Ki = 152 gM, n -- 1.8, and P, . . . . .  = 0.49 (Fig. 2, 
solid line through filled circles). These results indicate that this 
second channel behavior also reflects cooperative calcium 
binding to activation sites, as observed with the calcium-sti- 
mulated channels (Fig. 2). However, lower calcium affinity, as 
evidenced by the 6-fold higher K0.5 values for activation, was 
observed in this case. The response to cis Ca of the calcium 
stimulated and calcium inhibited channels of brain cortex mi- 
crosomes is similar to that found previously for the calcium 
channels of mammalian  skeletal SR [21,26], which correspond 
to the ryanodine receptor-I isoform [23]. A similar effect of 
Ca was also found in one of the two channel types present in 
fish skeletal muscle [24], and in half of  the channels present in 
SR from frog skeletal muscle [18]. Cooperative binding to 
activation sites has previously been described for purified rab- 

I able 1 
1~ eceptor density in different membrane fractions isolated from brain cortex 

[3H]Ryanodine [3H]IP3 [3H]Saxitoxin 
(pmol/mg) (pmol/mg) (pmol/mg) 

~ 0.15 + 0.04 (4) 0.14 + 0.07 b 4.9 -+ 0.60 b 
P ~1 1.07 + 0.07 (5) 0.38 + 0.03 (4) 0.6 -+ 0.40 b 

2.86 + 0.43 (5) a 
P ~2 0.18 + 0.04 (2) 0.08 + 0.02 (2) 16.7 -+ 6.38 b 

he density of binding sites for [3H]ryanodine, [3H]IP3 and [3H]saxitoxin was measured in fraction P3, which corresponds to the 100000×g 
n icrosomal pellet obtained from brain cortex, and in subfractions P31 and P32, which were obtained by fractionation of P3 in discontinuous 
s~tcrose density gradients as described in detail in the text. Data represent mean + S.E.M. of several different preparations, as indicated by the 
n ambers in parentheses. 
~l)ata measured at pCa 5.0. 
bl)ata given as mean + range of duplicate determinations done in a single preparation. 
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bit skeletal channels [27] and native frog skeletal muscle [18]. 
Cooperative inhibition is also present in rabbit skeletal muscle 
channels [25]. 

The most frequent response to changes in cis [Ca 2÷] 
(n = 22) defined the low Po channels (Fig. 1C). These channels 
were activated by increasing cis [Ca 2+] from 2.6 laM to 31.6 
~tM (Fig. 1C, upper and middles traces), and were inhibited 
by higher [Ca 2÷] (Fig. 1C, lower trace). At all [Ca 2÷] studied, 
the low Po channels displayed Po < 0.1 (Fig. 2, open circles). 
The best non-linear fit to these data was obtained with the 
following equation (Eq. 2): 

Po = Po m~/(1 + K/[Ca 2+] + [Ca2+]/K) (2) 

channel activity of these three isoforms. Although further 
studies are needed to test this possibility, we tentatively pro- 
pose that the three types of calcium sensitivity of ryanodine 
receptor calcium channels observed in brain cortex micro- 
somes represent different pathways for calcium release in neu- 
rons, that are differentially modulated by intracellular [Ca2+]. 
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