Proyecciones
Vol. 26, N^{o} 1, pp. 91-103, May 2007.
Universidad Católica del Norte
Antofagasta - Chile

ASYMPTOTICS FOR SECOND ORDER DELAYED DIFFERENTIAL EQUATIONS

SAMUEL CASTILLO *
UNIVERSIDAD DEL BÍO - BÍO, CHILE
and
MANUEL PINTO ${ }^{\dagger}$
UNIVERSIDAD DE CHILE, CHILE

Received: August 2006. Accepted: January 2007

Abstract

In this work we present a way to find asymptotic formulas for some solutions of second order linear differential equations with a retarded functional perturbation.

AMS MSC 2000 : 34K06, $34 K 20,34 K 25$.
Keywords : Second order linear delayed functional differential equations, Asymptotic formula, Haddock-Sacker conjecture

[^0]
1. Introduction

The initial motivation of this work is the conjecture of Haddock-Sacker [16] (1980). They consider a differential system

$$
\begin{equation*}
y^{\prime}=\Lambda y+R(t) y(t-r), \tag{1.1}
\end{equation*}
$$

where Λ and R are $N \times N$ matrix valued functions of $t \geq 0$ such that $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, with $\Re e \lambda_{i} \neq \Re e \lambda_{j}$ for $i \neq j$ and the operator norm $\|R(t)\|$ is in L^{2}. Then, they conjecture that the fundamental matrix of (1.1) $Y=Y(t)$ such that $Y(0)=I$ satisfies

$$
Y(t)=(I+o(1)) \exp \left(t \Lambda+e^{-\Lambda r} \int_{0}^{t} \operatorname{diag}[R(s)] d s\right)
$$

as $t \rightarrow+\infty$. This conjecture is a version of the asymptotic theorem of Hartman-Wintner [18] (1955) for an autonomous diagonal differential system with a $L^{p}(p=2)$ linear perturbation with delayed argument. This and similar problems were considered by Arino-Győri [2] (1989), Ai [1] (1992) and Cassel-Hou [6] (1993) (here $p \geq 2$ is considered) for a system where the non-perturbed system is diagonal and satisfies the hypotheses of the Hartman-Wintner's asymptotic theorem.

A result which extend the Conjecture of Haddock and Sacker [16] and the result of Cassel and Hou [6] is the following:
Proposition 1. (See Castillo [7, 2003] Consider the linear differential system

$$
\begin{equation*}
y^{\prime}(t)=B(t) y(t)+R\left(t, y_{t}\right), \tag{1.2}
\end{equation*}
$$

where $y_{t}(s)=y(t+s)$ the matrix B is in Jordan form, that is

$$
B(t)=\left[\oplus_{i=1}^{k-1} J_{n_{i}}\left(\lambda_{i}(t)\right)\right] \oplus \lambda_{k}(t) \oplus\left[\oplus_{i=k+1}^{m} J_{n_{i}}\left(\lambda_{i}(t)\right)\right],
$$

where $J_{n_{i}}(\lambda)$ are the $n_{i} \times n_{i}$ Jordan matrices

$$
J_{n_{i}}(\lambda)=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right)
$$

and the λ_{i} 's are functions from \mathbf{R} into \mathbf{C} satisfying

$$
\begin{gathered}
\Re e\left(\lambda_{i}(t)-\lambda_{k}(t)\right)<-\eta<0, \quad i=1, \cdots, k-1 \\
\Re e\left(\lambda_{i}(t)-\lambda_{k}(t)\right)>\eta>0, \quad i=k+1, \cdots, m
\end{gathered}
$$

where η is a constant, $y_{t}:[-\tau, 0] \rightarrow \mathbf{C}^{N}$ defined as $y_{t}(s)=y(t+s)$ for all $t \geq 0,\{R(t, \cdot)\}_{t \geq 0}$ is a family of bounded linear functionals from the set of the essentially bounded functions $[-\tau, 0] \rightarrow \mathbf{C}^{N}$ into $\mathbf{C}^{N}, N=\sum_{j=1}^{m} n_{j}$ and
$\left\|R\left(t, \exp \left(\int_{t}^{t+\cdot} \lambda_{k}(\tau) d \tau\right) I\right)\right\| \in L^{p}, 1 \leq p \leq 2$. Then (2) has a solution $y=y_{0}(t)$ such that

$$
\begin{align*}
y_{0}(t) & =\exp \left(\int_{0}^{t}\left[\lambda_{k}(s)+e_{\tilde{k}}^{*} \cdot R\left(s, \exp \left(\int_{s}^{s+\cdot} \lambda_{k}(\tau) d \tau\right) e_{\tilde{k}}\right)\right]\right) \tag{1.3}\\
& \times\left(e_{\tilde{k}}+o(1)\right)
\end{align*}
$$

as $t \rightarrow \infty$, where $\tilde{k}=n_{1}+\cdots+n_{k-1}+1$.
A scalar version with the more general perturbation is given by the following result:

Proposition 2. (Castillo-Pinto [11, 2004]) Consider the linear functional differential equation

$$
\begin{equation*}
y^{\prime}(t)=\lambda_{0}(t) y(t)+b\left(t, y_{t}\right), t \geq 0 \tag{1.4}
\end{equation*}
$$

where $\lambda_{0}:[0,+\infty[\rightarrow \mathbf{C}$ is a locally integrable function and

$$
b:\left[0,+\infty\left[\times L^{\infty}([-\tau, 0], \mathbf{C}) \rightarrow \mathbf{C}\right.\right.
$$

is a continuous function and linear in the second variable function such that

$$
\sup _{t \geq T} \int_{t-\tau}^{t} \left\lvert\, b\left(s, \exp \left(\int_{s}^{s+\cdot} \lambda_{0}(\xi) d \xi\right) \left\lvert\, d s<\frac{1}{e}\right.\right.\right.
$$

for T large enough. Then, every solution of (1.4) has the following asymptotic formula

$$
\begin{align*}
y(t) & =\exp \left(\int_{\tau}^{t}\left[\lambda_{0}(s)+b\left(s, e^{\int_{s}^{s+\cdot} \lambda_{0}(\xi) d \xi}\right)+\sum_{n=1}^{+\infty} \Delta_{n}(s)\right] d s\right) \tag{1.5}\\
& \times(c+o(1))
\end{align*}
$$

as $t \rightarrow+\infty$, where $\Delta_{n}(t)=b\left(t, e^{\int_{t}^{t+\cdot} \lambda_{0}(\xi) d \xi}\left[e^{\int_{t}^{t+\cdot} \mu_{n}(\xi) d \xi}-e^{\int_{t}^{t+\cdot} \mu_{n-1}(\xi) d \xi}\right]\right)$, $\mu_{n}(t)=b\left(t, e^{\int_{t}^{t+\cdot} \lambda_{0}(\xi) d \xi} e^{\int_{t}^{t+\cdot} \mu_{n-1}(\xi) d \xi}\right)$, for all $t \geq n \tau, \mu_{n}(t)=0$ for all $t \in\left[0, n \tau\left[, \mu_{0}=0\right.\right.$ and $n \in \mathbf{N}$. Conversely, given $c \in \mathbf{C}$ there is a solution $y=y(t)$ of (1.4) satisfying (1.5).

2. Preliminaries

It is assumed that:
Hypothesis 1. The second order ordinary differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=a(t) x^{\prime}(t)+b(t) x(t), t \geq 0 \tag{2.1}
\end{equation*}
$$

has a complex valued solution $x=x_{0}(t)$ such that $x_{0}(t) \neq 0$ for all $t \geq 0$, where $a, b:[0,+\infty[\rightarrow \mathbf{R}$ are locally integrable functions.

Here, it is considered as a perturbation of the equation (2.1), the second order retarded functional differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)=[a(t)+\hat{a}(t)] y^{\prime}(t)+b(t) y(t)+c\left(t, y_{t}\right), t \geq 0 \tag{2.2}
\end{equation*}
$$

where $a, b:\left[0,+\infty\left[\rightarrow \mathbf{R}\right.\right.$ are locally integrable functions, $\{c(t, \cdot)\}_{t \geq 0}$ is a family of linear functional from the set of the locally integrable functions $[-\tau, 0] \rightarrow \mathbf{C}$, with $\tau>0$, into \mathbf{C} and for every function $y:[-\tau,+\infty[\rightarrow \mathbf{C}$ it is denoted $y_{t}(s)=y(t+s)$ for all $(t, s) \in[0,+\infty[\times[-\tau, 0]$.

Remark 1. Notice that the equation (2.2) is the perturbation of equation (2.1). The terms $\hat{a}(t) y^{\prime}(t)$ and $c\left(t, y_{t}\right)$ are the perturbations which will satisfy smallness conditions as it is mentioned below.

Hypothesis 2. Every member of the family $\{c(t, \cdot)\}_{t \geq 0}$ leads the set of the locally integrable functions $[-\tau, 0] \rightarrow \mathbf{R}$, with $\tau>0$, into \mathbf{R}.

It is wanted to get an asymptotic formula for a solution of (2.2) which is a small perturbation of x_{0}. For that, one aditional definition and a hypothesis are given.

Let

$$
\Phi(t, s)=\exp \left(\int_{s}^{t}\left[a(\xi)-2 \lambda_{0}(\xi)\right] d \xi\right),
$$

for all $t, s \geq 0$, where $\lambda_{0}=\frac{x_{0}^{\prime}}{x_{0}}$.
Assume that:
Hypothesis 3. There are positive constants α and K such that

$$
\int_{s}^{t} \Re e\left[a(\xi)-2 \lambda_{0}(\xi)\right] d \xi \leq \ln K-\alpha|t-s|
$$

for all $t, s \geq 0$, where $\lambda_{0}=\frac{x_{0}^{\prime}}{x_{0}}$ and x_{0} is a solution of a non perturbed second order linear equation (2.1) which satifies the Hypothesis 1.

Then, under the Hypothesis 3, we have the following inequality:

$$
\begin{equation*}
|G(t, s)| \leq K e^{-\alpha|t-s|} \tag{2.3}
\end{equation*}
$$

for all $t, s \geq 0$, where

$$
G(t, s)=\left\{\begin{array}{rll}
\Phi(t, s), & \text { if } & \Re e \int_{s}^{t}\left[a(\xi)-2 \lambda_{0}(\xi)\right] d \xi<0 \\
0, & \text { if } & \text { else }
\end{array}\right.
$$

When (2.1) is autonomous, i.e., $a(t)=a_{0}$ and $b(t)=b_{0}$ are real constants we have

$$
\lambda_{0}=\frac{1}{2}\left(a_{0} \pm \sqrt{a_{0}^{2}+4 b_{0}}\right),
$$

which are roots of the characteristic equation of (2.1), i.e,

$$
\begin{equation*}
\lambda^{2}-a_{0} \lambda-b_{0}=0 \tag{2.4}
\end{equation*}
$$

and the term

$$
a(\xi)-2 \lambda_{0}(\xi)=a_{0}-2 \lambda_{0}=-\left.\frac{d}{d \lambda}\left[\lambda^{2}-a_{0} \lambda-b_{0}\right]\right|_{\lambda=\lambda_{0}}=\mp \sqrt{a_{0}^{2}+4 b_{0}},
$$

is the difference between the two roots of the characteristic equation (2.4).

2.1. Procedure

We make the change of variables, $y(t)=x_{0}(t) z(t)$ for $t \geq 0$ and we arrive to the differential equation:

$$
\left.\begin{array}{rl}
z^{\prime \prime}(t)= & {\left[a(t)-2 \lambda_{0}(t)\right] z^{\prime}(t)+\hat{a}(t)\left[\lambda_{0} z+z^{\prime}\right]} \\
& +c\left(t, e^{\int_{t}^{t+}} \lambda_{0}(\xi) d \xi\right. \tag{2.5}\\
z
\end{array}\right), t \geq \tau .
$$

For simplifying notations it is made $\tilde{c}(t, \varphi)=c\left(t, e^{\int_{t}^{t+}} \lambda_{0}(\xi) d \xi \cdot \varphi\right)$ for every locally integrable function $\varphi:[-\tau, 0] \rightarrow \mathbf{C}$. Let

$$
f_{1}(t)=\tilde{c}(t, 1)+\hat{a}(t) \lambda_{0}(t),
$$

and $f(t, \mu)=\hat{a}(t) \mu(t)+\tilde{c}\left(t,\left[e^{t_{t}^{t+}} \mu(\xi) d \xi-1\right]\right)-\mu(t)^{2}$. Then, for every solution of the equation

$$
\begin{equation*}
\mu^{\prime}(t)=\left[a(t)-2 \lambda_{0}(t)\right] \mu(t)+f_{1}(t)+f(t, \mu), \quad t \geq 2 \tau+t_{0} \tag{2.6}
\end{equation*}
$$

we have that $z(t)=e^{\int_{2 \tau}^{t} \mu(s) d s}$ is a solution of the equation (10), for $t \geq 2 \tau$.

Notice that $f(t, 0)=0$.
The following steps are
a) Consider

$$
\mathcal{T}: X \rightarrow X
$$

where $X=(X,\|\cdot\|)$ is a suitable Banach space, defined by
$(\mathcal{T} \mu)(t)=\left\{\begin{array}{rll}\int_{t_{0}+2 \tau}^{+\infty} G(t, s)\left[f_{1}(s)+f(s, \mu)\right] d s, & \text { if } & t \geq 2 \tau+t_{0} \\ 0, & \text { if } & t \in\left[t_{0}-\tau, t_{0}+2 \tau[.\right.\end{array}\right.$
b) Find an attractor fixed point for $\mathcal{T}: \mu_{\infty} \in X\left(\mu_{\infty}=\mathcal{T} \mu_{\infty}\right)$, so equation (2.2) has a solution y such that

$$
\begin{align*}
y(t) & =x_{0}(t) e^{\int_{t_{0}}^{t} \mu_{\infty}(\xi) d \xi}, \tag{2.8}\\
y^{\prime}(t) & =\left[\lambda_{0}(t)+\mu_{\infty}(t)\right] y(t)
\end{align*}
$$

c) Since μ_{∞} is an attractor we have that μ_{∞} can be written as

$$
\begin{equation*}
\mu_{\infty}=\mathcal{T}(0)+\sum_{n=1}^{+\infty}\left[\mathcal{T}^{n+1}(0)-\mathcal{T}^{n}(0)\right] \tag{2.9}
\end{equation*}
$$

in the chosen norm.

3. Cases

3.1. The perturbations $\hat{a}(t)$ and $c\left(t, e^{\int_{t}^{t+\cdot} \lambda_{0}(\xi) d \xi}-\right)$ are bounded

Proposition 3. Let M, k_{1} and k_{2} be such that $\left.M \in\right] 0, \frac{\alpha}{2 K}\left[, k_{2} \in\right] 0,1-$ $\frac{2 M K}{\alpha}\left[\right.$ and $\left.k_{1} \in\right] 0, \frac{M^{2} K}{2 \alpha}[$. Suppose that in equation (2.1), hypotheses 1,2 and 3 are satisfied. Assume that in equation (2.2), $\hat{a}(t)$ and $\left|c\left(t, e^{\int_{t}^{t+} \lambda_{0}(\xi) d \xi}-\right)\right|$ are so small that satisfy

$$
\begin{equation*}
\left|\int_{2 \tau}^{+\infty} G(t, s) f_{1}(s) d s\right| \leq k_{1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{2 \tau}^{+\infty} e^{-\alpha|t-s|}\left[|\hat{a}(s)|+e^{\frac{\alpha \tau}{2 K}} \tau\left|c\left(s, e^{\int_{s}^{s+\cdot} \lambda_{0}(\xi) d \xi}-\right)\right|\right] d s \leq k_{2} \tag{3.2}
\end{equation*}
$$

Then, equation (2.2) has a solution with the following formula

$$
\begin{align*}
y(t) & =x_{0}(t) \exp \left(\int_{2 \tau}^{t}\left[\mu_{1}(s)+\sum_{n=1}^{+\infty} \Delta_{n}(s)\right] d s\right), \\
y^{\prime}(t) & =\left[\lambda_{0}(t)+\mu_{1}(t)+\sum_{n=1}^{+\infty} \Delta_{n}(t)\right] y(t), \tag{3.3}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta_{n}(t)=\int_{2 \tau}^{+\infty} G(t, s)\left[f\left(s, \mu_{n}\right)-f\left(s, \mu_{n-1}\right)\right] d s \tag{3.4}
\end{equation*}
$$

and the functions $\left\{\mu_{n}\right\}_{n=0}^{+\infty}$ are given by $\mu_{0}=0$
and

$$
\mu_{n}(t)=\left\{\begin{align*}
\int_{2 \tau}^{+\infty} G(t, s)\left[f_{1}(s)+f\left(s, \mu_{n-1}\right)\right] d s, & \text { for } t \geq(n+1) \tau \tag{3.5}\\
0, & \text { for } t \in[0,(n+1) \tau[
\end{align*}\right.
$$

for $n \in \mathbf{N}$.

Proof of Proposition 3 :

It can be proved that M, k_{1} and k_{2} satisfy

$$
\begin{aligned}
k_{1}+M k_{2}+\frac{M^{2} K}{\alpha} & \leq \frac{M^{2} K}{2 \alpha}+M\left(1-\frac{2 M K}{\alpha}\right)+\frac{M^{2} K}{\alpha} \\
& =M\left(1-\frac{M K}{2 \alpha}\right) \\
& <M
\end{aligned}
$$

and $k_{2}+\frac{2 M K}{\alpha}<1$.
Then, if we consider $B[0, M]$ as the closed ball centered in 0 with radius M in $\left(\mathcal{B}\left(\left[0,+\infty[, \mathbf{R}),\|\cdot\|_{\infty}\right)\right.\right.$, then by the relations (3.1) and (3.2), $\mathcal{T}(B[0, M]) \subseteq B[0, M]$ and the restriction

$$
\mathcal{T}: B[0, M] \rightarrow B[0, M]
$$

is a contraction operator. So, there exists a unique

$$
\mu_{\infty} \in B[0, M]: \mathcal{T} \mu_{\infty}=\mu_{\infty} .
$$

Then,

$$
\begin{equation*}
\mu_{\infty}(t)=\int_{2 \tau}^{+\infty} G(t, s)\left[f_{1}(s)+f\left(s, \mu_{\infty}\right)\right] d s \tag{3.6}
\end{equation*}
$$

for $t \geq 2 \tau$. From (2.8), the formula (3.3) is obtained.
To make the formula (3.3) easier to be understood, the following remarks are given.

Remark 2. Let $\lambda_{n}(t)=\lambda_{0}(t)$, for $t \in[0, \tau[$ and

$$
\lambda_{n}(t)=\lambda_{0}(t)+\mu_{1}(t)+\sum_{j=1}^{n} \Delta_{j}(t), \text { for } t \geq \tau
$$

and $n \in \mathbf{N}$. Then, given $n_{0} \in \mathbf{N}, \lambda_{n}(t)=\lambda_{n_{0}}(t)$, for $t \in\left[0,\left(n_{0}+1\right) \tau[\right.$ and $n \geq n_{0}$. So, (3.3) can be written as:

$$
y(t)=\exp \left(\int_{0}^{t}\left[\lim _{n \rightarrow+\infty} \lambda_{n}(s)\right] d s\right)(c+o(1))
$$

as $t \rightarrow+\infty$.
Remark 3. If $\Delta_{k} \in L^{1}$ for some $k \in \mathbf{N}$, then $\sum_{m=k}^{+\infty} \Delta_{m} \in L^{1}$. In this case (3.3) can be written as

$$
y(t)=\exp \left(\int_{2 \tau}^{t}\left[\lambda_{0}(s)+\mu_{1}(s)+\sum_{j=1}^{n-1} \Delta_{j}(s)\right] d s\right)(\hat{c}+o(1))
$$

as $n \rightarrow+\infty$, for some $\hat{c} \in \mathbf{C}$. Here $\sum_{j=1}^{n-1} \Delta_{j}(s)=0$ if $n=1$.
3.2. The perturbations $\hat{a}(t)$ and $c\left(t, e^{\int_{t}^{t+\cdot} \lambda_{0}(\xi) d \xi}-\right)$ are in L^{p}

Similar relations to (3.1) and (3.2) can be given for the cases where $f_{1}(t)$ and $f(t, \mu)$ and μ are in L^{p}. So, we have the following result.

Proposition 4. Suppose that in equation (2.1), hypotheses 1, 2 and 3 are satisfied. Assume that in equation (2.2), $c\left(t, e^{\int_{t}^{t+\cdot} \lambda_{0}(\xi) d \xi}-\right) \in L^{p}$ for some $p \in\left[2^{n-1}, 2^{n}[\right.$ and $n \in \mathbf{N}$. Then, (2.2) has a solution with the following asymptotic formula

$$
\begin{equation*}
y(t)=x_{0}(t) \exp \left(\int_{2 \tau}^{t}\left[\mu_{1}(s)+\sum_{j=1}^{n-1} \Delta_{j}(s)\right] d s\right)(c+o(1)) \tag{3.7}
\end{equation*}
$$

as $t \rightarrow+\infty$, where the functions $\left\{\Delta_{j}\right\}_{j=1}^{+\infty},\left\{\mu_{j}\right\}_{j=0}^{+\infty}$ are given by the relation (3.4) and (3.5).

Example 1: Consider the second order delayed differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)=\left(a_{0}+\hat{a}(t)\right) y^{\prime}(t)+\left(b_{0}+\hat{b}(t)\right) y(t)+\hat{c}(t) y(t-\tau), t \geq 0 \tag{3.8}
\end{equation*}
$$

where $a_{0}, b_{0} \in \mathbf{R}$ such that $a_{0}^{2}+4 b_{0}>0$ and $\hat{a}, \hat{b}, \hat{c} \in L^{2}$. If we consider

$$
x^{\prime \prime}(t)=a_{0} x^{\prime}(t)+b_{0} x(t), t \geq 0,
$$

as the equation (2.1) which has the following characteristic roots $\lambda_{0 \pm}=$ $\frac{1}{2}\left(a_{0} \pm \sqrt{a_{0}^{2}+4 b_{0}}\right)$, then

$$
a_{0}-2 \lambda_{0 \pm}=\mp \sqrt{a_{0}^{2}+4 b_{0}}=\lambda_{0 \mp}-\lambda_{0 \pm} .
$$

Since $a_{0}^{2}+4 b_{0}>0,(2.3)$ is satisfied. In (2.2) we take,

$$
c(t, \varphi)=\hat{b}(t) \varphi(0)+\hat{c}(t) \varphi(-\tau)
$$

Then, when we consider $\lambda_{0}=\lambda_{0-}$. So,

$$
\mu_{\infty}(t)=\int_{t}^{+\infty} e^{\left(\lambda_{0+}-\lambda_{0-}\right)(t-s)}\left[\hat{a}(s) \lambda_{0-}+\hat{b}(s)+e^{-\lambda_{0-} \tau} \hat{c}(s)\right] d s+\Theta(t),
$$

for $t \geq 2 \tau$, where

$$
\begin{aligned}
\Theta(t) & =\int_{t}^{+\infty} e^{\left(\lambda_{0+}-\lambda_{0-}\right)(t-s)} \\
& \times\left[\hat{a}(s) \mu_{\infty}(s)\right. \\
& +\hat{c}(s) e^{-\lambda_{0-} \tau}\left[e^{\int_{s}^{s+\cdot} \mu_{\infty}(\xi) d \xi}-1\right] \\
& \left.-\mu_{\infty}(s)^{2}\right] d s .
\end{aligned}
$$

Clearly, $\Theta \in L^{1}$.
Then, by integration by parts

$$
\int_{0}^{t} \mu_{\infty}(s) d s=\frac{1}{\lambda_{0-}-\lambda_{0+}} \int_{0}^{t}\left[\hat{a}(s) \lambda_{0-}+\hat{b}(s)+e^{-\lambda_{0+} \tau} \hat{c}(s)\right] d s+\gamma(t)
$$

where $\lim _{t \rightarrow+\infty} \gamma(t)=$ const. So, equation (3.8) has a solution $y(t)$ such that
$y(t)=x_{0}(t) \exp \left(\frac{1}{\lambda_{0+}-\lambda_{0-}} \int_{0}^{t}\left[\hat{a}(s) \lambda_{0-}+\hat{b}(s)+e^{-\lambda_{0-} \tau} \hat{c}(s)\right] d s\right)(c+o(1))$, as $t \rightarrow+\infty$.

Now, when we consider $\frac{x_{0}^{\prime}}{x_{0}}=\lambda_{0}=\lambda_{0+}$ Then, (2.2) has a solution y such that
$y(t)=x_{0}(t) \exp \left(\frac{1}{\lambda_{0-}-\lambda_{0+}} \int_{0}^{t}\left[\hat{a}(s) \lambda_{0+}+\hat{b}(s)+e^{-\lambda_{0+} \tau} \hat{c}(s)\right] d s\right)(c+o(1))$, as $t \rightarrow+\infty$.

3.3. Equation (2.1) satisfies Hyp. 1 and a weaker hypothesis than

 Hyp. 3 but perturbations $\hat{a}(t)$ and $c\left(t, e^{\int_{t}^{t+\cdot} \lambda_{0}(\xi) d \xi}-\right)$ are in L^{1}Consider the following hypothesis
Hypothesis 4. $\int_{s}^{t} \Re e\left[a(\xi)-2 \lambda_{0}(\xi)\right] d \xi$ is bounded for all $t, s: s \geq t \geq 0$ or

$$
\lim _{t \rightarrow+\infty} \int_{s}^{t} \Re e\left[a(\xi)-2 \lambda_{0}(\xi)\right] d \xi=-\infty
$$

Under Hypothesis 4, the relations (3.1) and (3.2) can be extended for the cases where $f_{1}(t)$ and $f(t, \mu)$ and μ are in L^{1} for a parameter t large enough. So, we have the following result.

Proposition 5. Suppose that in equation (2.1), hypotheses 1, 2 and 4 are satisfied. Assume that in equation (2.2), $c\left(t, e^{\int_{t}^{t+\cdot} \lambda_{0}(\xi) d \xi}-\right) \in L^{1}$. Then, (2.2) has a solution with the following asymptotic formula

$$
\begin{equation*}
y(t)=x_{0}(t)(c+o(1)) \tag{3.9}
\end{equation*}
$$

as $t \rightarrow+\infty$, where the functions $\left\{\Delta_{n}\right\}_{n=1}^{+\infty},\left\{\mu_{n}\right\}_{n=0}^{+\infty}$ are given by the relation (3.4) and (3.5).

Example 1: Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(t)+a^{2} y(t)=\frac{1}{t^{2}} y(t-\tau), t \geq 0 \tag{3.10}
\end{equation*}
$$

has solutions y_{0}, y_{1} with the following asymptotic formulas
$y_{0}(t)=\cos (a t)(1+o(1))$ and $y_{1}(t)=\sin (a t)(1+o(1))$, as $t \rightarrow+\infty$.

Acknowledgment

The authors of that work express their gratefulness to the anonymous referee for the valuable suggestions.

References

[1] S. Ai, Asymptotic integration of delay differential systems, J. Math. Anal. Appl. 165, pp. 71-101, (1992).
[2] O. Arino and I. Győri, Asymptotic integration of delay differential systems, J. Math. Anal. Appl. 138, pp. 311-327, (1989).
[3] O. Arino, I. Győri and M. Pituk, Asymptotic diagonal delay differential systems, J. Math. Anal. Appl 204, pp. 701-728, (1996).
[4] O. Arino and M. Pituk, More on linear differential systems with small delays, J. Differential Equations 170, pp. 381-407, (2001).
[5] F. Atkinson and J. Haddock, Criteria for asymptotic constancy of solutions of functional differential equations, J. Math. Anal. Appl 91, pp. 410-423, (1983).
[6] J. Cassell and Z. Hou, Asymptotically diagonal linear differential equations with retardation, J. London Math. Soc. (2) 47 (1993) 473-483.
[7] S. Castillo, Asymptotic formula for functional dynamic equations in time scale with functional perturbation, Functional Differential Equations, The Research Institute, The College of Judea and Samaria, Ariel Israel Vol 10. No. 1-2, pp. 107-120, (2003).
[8] S. Castillo and M. Pinto, Asymptotic integration of ordinary differential systems. J. Math. Anal. Appl. 218, pp. 1-12, (1998).
[9] S. Castillo and M. Pinto, Levinson theorem for functional differential systems, Nonlinear Analysis, Vol 47/6, pp. 3963-3975, (2001).
[10] S. Castillo and M. Pinto, An asymptotic theory for nonlinear functional differential equations. Comput. Math. Appl. 44, N. 5-6, pp. 763-775, (2002).
[11] S. Castillo and M. Pinto, Asymptotics of Scalar Functional Differential Equations, Functional Differential Equations, The Research Institute, The College of Judea and Samaria, Ariel Israel Vol 11. N 1-2, pp. 29-36, (2004).
[12] K. Cooke, Functional differential equations close to differential equations, Bull. Amer. Math. Soc. 72, pp. 285-288, (1966).
[13] R. Driver, Linear differential systems with small delays, J. Differential Equations 21, pp. 149-167, (1976).
[14] M. Eastham, The Asymptotic Solution of Linear Differential Systems, Applications of the Levinson Theorem, Clarendon, Oxford, (1989).
[15] I. Győri and M. Pituk, $L^{2}-$ Perturbation of a linear delay differential equation, J. Math. Anal. Appl., 195, pp. 415-427, (1995).
[16] J. Haddock and R. Sacker, Stability and asymptotic integration for certain linear systems of functional differential equations, J. Math. Anal. Appl., 76, pp. 328-338, (1980).
[17] W. Harris and D. Lutz, A unified theory of asymptotic integration, J. Math. Anal. Appl. 57, pp. 571-586, (1977).
[18] P. Hartman and A. Wintner, Asymptotic integration of linear differential equations, Amer. J. Math. 77, pp. 48-86 and 932, (1955).
[19] N. Levinson, The asymptotic behavior of system of linear differential equations, Amer. J. Math. 68, pp. 1-6, (1946).
[20] M. Pituk, Asymptotic characterization of solutions of functional differential equations, Boll. Un. Math. Ital. 7-B, pp. 653-689, (1993).
[21] M. Pituk, The Hartman-Wintner theorem for functional-differential equations. J. Differential Equations 155, N. 1, 1-16, (1999).

Samuel Castillo

Departamento de Matemática
Facultad de Ciencias
Universidad del Bío-Bío
Casilla 5-C
Concepción - Chile
e-mail : scastill@ubiobio.cl
and

Manuel Pinto

Departamento de Matemática
Facultad de Ciencias
Universidad de Chile
Casilla 653
Santiago - Chile
e-mail : pintoj@uchile.cl

[^0]: *Supported partially by FONDECYT 1030535, Fundación Andes C-13760 and DIUBB 057108 3/F. This research was started when this author was visiting the Departamento de Matemática of the Facultad de Ciencias of the Universidad de Chile by the grant of MECESUP PUC 0103.
 ${ }^{\dagger}$ Supported by FONDECYT 1030535.

