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The relationship between global softness and static dipole polarizability is explored from the analogy of the
spherical averages defined within density functional theory. A cubic relationship is obtained that is consistent
with the experimental observation for atoms. The relationship is found to hold reasonably well for similarly
bonded molecules.

Global softness (S) and static electric dipole polarizability
(R) are very important properties to characterize the reactive
nature of atomic and molecular species. The former, introduced
by Pearson,1 is a measure of the ability of a system to change
for any external action; this idea is closely linked with the
Huheey’s concept2 of charge capacity, and a reasonable ap-
proximation is (I - A)-1. The latter describes (to first order)
the change of the electron cloud due to the presence of an
electric field. The two quantities depend primarily on the
valence electrons and play a central role in the establishment
of the hard and soft acids and bases (HSAB) principle,3 which
seems to be a universal principle of chemical interactions; hard
acids prefer to coordinate to hard bases and soft acids to soft
bases. Usually these properties are numerically calculated by
means of ab initio procedures. Hence the relations between
them, even when formally possible, are difficult to elucidate.
The relationship between global softness and the static electric

dipole polarizability was first investigated by Politzer4 some
time ago. Later, it was empirically studied by Fuentealba and
Reyes5 and Ghanty and Ghosh.6 Both works showed that global
softness correlates linearly withR1/3. Using empirical arguments
Hati and Datta7 found analytical expressions, including a
relationship with the ionization potential, consistent with the
above observations. They discussed the application to atoms,
ions, and clusters. The paper of Vela and Ga´zquez8 represents
the first attempt to derive, systematically, from density functional
theory the relationship betweenSandR. This work proposed
a linear dependence, which is only approximately consistent
with experimental observation. For an empirical study propos-
ing a linear dependence for these quantities, see ref 9.
In this work, we present further evidence for a cubic

relationship between the softness and the static dipole polariz-
ability. The starting point is the Berkowitz-Parr equation10

where the linear response function,ø(r ,r ′), is related to the

softness kernel,s(r ,r ′), the local softness function,s(r ), and the
global softness,S.
The static dipole polarizability can be defined in term of the

linear response function as

where the perturbationδV(r ) corresponds to an infinitesimal
applied static electric field.
For the purposes of this paper, the main observation is that

the spherical average global softness is

and the spherical average dipole polarizability, in a local
approximation of density functional theory, can be written as

Both integrals are in one dimension and over the whole space.
Equation 4 was first derived by Vela and Ga´zquez.8

Equations 3 and 4 can be rationalized through an expression
of the type

wheren) 2 correspond to the global softness andn) 4 to the
dipole polarizability. The constantcn stands for the factor
outside the integrals in eqs 3 and 4.
Since an exact expression for the local softness is not known,

the evaluation of eq 5 can be done only by resorting to some
model for the softness. Hence, in this work the local softness
proposed in ref 11 will be used

where c is an adjustable parameter andF(r) the spherical
† E-mail: ysimon@ws.puc.cl.
‡ E-mail: pfuentea@abello.dic.uchile.cl.

ø(r ,r ′) ) -s(r ,r ′) +
s(r ) s(r ′)

S
(1)

R ) 1
2∫∫ø(r ,r ′) δV(r ) δV(r ′) dr dr ′ (2)

S) 4π∫dr r 2s(r) (3)

R ) 4π
3∫dr r 4s(r) (4)

〈n〉 ) cn
∂
n

∂tn|t)0∫dr e-tr s(r) (5)

s(r) )
9F(r)2/3

10cFF(r)
1/3 + 4c
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averaged electron density. For atoms, the electron density in
the valence region can be approximated by

For one-electron atoms, this is the exact expression withA
) Z3/π andλ ) 2Z. For the rest of the atoms, Sen et al.12 have
found the bestA, λ values to fit the electronic densities in the
valence region. Guided by the expression for the hydrogen atom
a relation of the typeA ) kλ3 has been postulated, wherek is
a different constant for elements having different valence
structures.
Inserting eqs 6 and 7 into eq 5, we obtain (see Appendix)

and

Table 1 shows a comparison of the experimental values of
global softness and dipole polarizability with the calculated
values by eqs 8 and 9 for p-elements. We take the valuesc )
4.96, ref 12, andk ) 0.164. Given its simple derivation, eqs 8
and 9 are reasonably accurate. The softnesses are calculated
within 10% of the experimental values with the only exception
of nitrogen atom. The dipole polarizabilities are in reasonably
good agreement with the experimental values considering that
R is a very sensitive quantity and experimental measurements
sometimes have a large uncertainty. The main point in this
work is the relation ofR andS. Combining eqs 8 and 9, the
following relationship betweenR andS is obtained:

The present DFT approach vindicates the cubic relationship
proposed earlier5,6 on empirical grounds. For molecules, using
the arithmetic average principle13 for the global softness, one
can write

and according to classical arguments and the jellium model,R
∼ ra3, with ra the atomic radius. Taking the atomic radius as
ther value corresponding to the Hartree-Fock density of 10-3
au, one obtains a reasonable result for the dipole polarizability.14

Substituting in eq 11, one obtains,

which is an acceptable approximation for the global softness
of the molecule or cluster.
In the following we try to give additional proofs for the

validity of this relation. Figures 1, 2, and 3 show the plottedR
againstS3 for s, p, and d-elements (data from refs 16 and 17).
For p-elements the slope of the plot is 0.063, very close to the
value 0.068 suggested by the relation in eq 10. For s and
d-elements it is necessary to take groups of elements with similar
behavior. For the alkali and alkaline earth metal atoms, there
is clear the break in the slope going from Li to Na and Mg to
Ca. This is clearly an effect of then ) 3 shell where the
excitations to the 3d-states play an important role. For
d-elements the analysis is more difficult owing to the major
complexity of these atoms and the lack of reliable experimental
values. Nevertheless the 3d-elements, exceptV and Cr, and
the platinum metals seems to obey the cubic relation.

TABLE 1: Parameters and Calculated Atomic Softness and
Dipole Polarizabilities for Some p-Atomsa

atoms λ Scal (au) Sexp (au) Rcal (au) Rexp (au)

B 1.634 7.062 7.070 23.770 20.447
Al 1.250 9.232 9.823 53.094 56.279
Ga 1.288 8.960 9.383 48.532 54.795
In 1.230 9.382 9.717 55.727 55.824
C 1.939 5.951 5.442 14.224 11.877
Si 1.454 7.940 8.050 33.735 36.305
Ge 1.460 7.904 8.002 33.321 40.962
Sn 1.367 8.442 8.921 40.595 51.960
N 2.248 5.133 3.763 9.128 7.423
P 1.660 6.952 5.576 22.670 24.496
As 1.626 7.097 6.047 24.122 29.084
Sb 1.509 7.647 7.160 30.179 44.537
O 2.542 4.540 4.475 6.313 5.412
S 1.866 6.184 6.572 15.960 19.570
Se 1.788 6.454 7.031 18.141 25.441
Te 1.644 7.019 7.730 23.338 37.115
F 2.843 4.059 3.881 4.513 3.779
Cl 2.065 5.588 5.814 11.776 14.711
Br 1.947 5.927 6.447 14.050 20.582
I 1.774 6.505 7.373 18.574 33.133

a Experimental values from refs 15 and 16.
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Figure 1. Dipole polarizability vs cubic global softness for atoms with
a valence s-shell.

Figure 2. Dipole polarizability vs cubic global softness for atoms with
a valence p-shell.
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Figures 4 and 5 and Table 2 show the dependence of dipole
polarizability on the global softness for diatomic and hydro-
carbon molecules, respectively. The dipole polarizabilities of
hydrocarbon molecules follow very nicely the cubic relation.
For the diatomic molecules the results are not as good
presumably due to the lack of spherical symmetry. For
molecules, other effects such as temperature and vibrational
contributions are surely important.

Finally, it could be interesting to look at the two quantities,
softness and dipole polarizabilities, as two moments of the

moment expression of the local softness. Define

so that the global softness (S), corresponds toS0 and the dipole
polarizability is one-third ofS2. In general, it is easy to show
that

with N the number of electrons and〈rn〉 the expectation value
of rn. If one thinks of Sn as the moments ofr over the
distribution function s(r ), one finds that the mean-square
deviation (S2 - S12) is given by

In conclusion, we have shown that the empirically proposed
cubic relationship between the dipole polarizability and the
global softness here has been theoretically justified within the
local density model. Extensive further numerical tests in support
of this relationship have been presented. Finally, the dipole
polarizability and the global softness have been connected as
two moments ofr over the distribution functions(r ).
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Appendix

Substituting eq 7 into eq 6, we have

with â ) (1/3)λ andγ ) 4c/10cFk1/3λ.

Figure 3. Dipole polarizability vs cubic global softness for atoms with
a valence d-shell.

Figure 4. Dipole polarizability vs cubic global softness for diatomic
molecules of Table 2.

Figure 5. Dipole polarizability vs cubic global softness for hydrocarbon
molecules of Table 2.

TABLE 2: Polarizabilities and Global Softness of Molecules

molecules R (au)a S(au)b

Diatomic Molecules
F2 8.380 2.634
Cl2 31.112 5.915
N2 11.740 3.057
Na2 202.462 11.779
Li2 229.457 10.417
K2 411.673 15.798

Hydrocarbon Molecules
methane 17.499 2.642
ethane 30.167 3.328
propene 42.247 3.838
benzene 69.647 5.134
toluene 83.009 5.442
cyclohexene 72.211 4.947
p-xylene 95.157 5.669

a From ref 15.bCalculated with the approximation 2/(εLUMO -
εHOMO) from MP2 results using the basis set 6-31G**. For organic
molecules after semiempirical full optimization with PM3 Hamiltonian.
The program SPARTAN18 was used.

Sn )∫rns(r) dr (13)

Sn ) S
∂〈rn〉
∂N

(14)

σs ) 3R - (S∂〈r〉∂N )2 (15)

s(r) ) 27k1/3â
10cF

e-2âr

3-âr + γ
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After substitution in eq 5 it is necessary to solve the integral

with R ) t + 2â.
Despite its easy appearance, it does not appear tabulated in

the commonly used Mathematical Tables. Therefore we explain
the procedure used by us.
Transforming

we expand like (1+ x)-1

Then, exchanging the sum and the integral we obtain

which is a hypergeometric series17 that converges very rapidly.
In fact, the dipole polarizability of the hydrogen atom does not

change in an appreciable way when the series is truncated at
the first term. After the truncation one takes the second and
fourth derivates with respect tot and evaluates it fort ) 0. In
this way, one obtains eqs 8 and 9 of the text.
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