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1. Introduction. The Eisenstein series twisted by modular symbols is
the prime example of a second-order automorphic form. It was introduced
by Goldfeld in [6] to study the distribution of modular symbols and to
provide a new approach to Szpiro’s conjecture. Since then, these series have
been studied and generalized by many authors ([2], [4], [7], [8], [11]–[13]).
The twisted Eisenstein series is not an automorphic form in the classical
sense but satisfies a shifted automorphy relation which involves the ordinary
Eisenstein series.

Automorphic functions of the same kind were also encountered by Kleban
and Zagier in their research on crossing probabilities. In [9] they initiated
the study of nth order modular forms, i.e. functions whose deviation from
modularity is an (n− 1)th order modular form.

In this paper we will restrict ourselves to the study of second order
modular forms. Fix positive integers N and k with k even. Let H be the
complex upper half-plane. If f = f(τ) : H → C is any function and γ =(
a b
c d

)
a matrix in GL+

2 (R), the usual slash operator is

f(τ)
∣∣
k
[γ] = (det γ)k/2(cτ + d)−kf

(
aτ + b

cτ + d

)
.

By linearity this defines an action of the group ring ZGL+
2 (R) on the set of

holomorphic functions on H.

A second-order modular form F (τ) of weight k and level N is a function
F : H → C such that

(i) F (τ) is holomorphic on H,
(ii) F (τ)

∣∣
k
[γ] has at most polynomial growth at the cusps for each γ ∈

Γ0(N),
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(iii) F (τ)
∣∣
k
[(γ1 − I2)(γ2 − I2)] = 0 for all γ1, γ2 in Γ0(N),

(iv) F (τ)
∣∣
k
[γ − I2] = 0 for every parabolic element γ in Γ0(N).

The C-vector space of second-order modular forms of weight k and level
N is denoted by M

2
k(N). It has been investigated in [1] and [5]. In partic-

ular, a decomposition theorem in terms of elliptic modular forms is proved
in [1], while in [5] the dimension of the space is found and a cohomological
interpretation is given. Denote by M

1
k(Γ ) the space of elliptic modular forms

of weight k over a group Γ ⊂ SL2(R), and by M
1
k(N) the same space when-

ever Γ = Γ0(N). Clearly M
1
k(N) ⊆ M

2
k(N). In most cases the containment

is proper.

By (i), (ii) and (iv) above, any second-order modular form has a Fourier
series representation and hence an obvious Dirichlet series associated to it.
In this note we investigate some properties of the latter. More precisely, for
a Fourier series F (τ) =

∑∞
n=0An exp (2πinτ) and for s in C let

L(F ; s) =
∞∑

n=1

Ann
−s and ΛN (F ; s) =

(
2π√
N

)−s

Γ (s)L(F ; s).

For any primitive Dirichlet character χ of conductor m with gcd(N,m) = 1
let

L(Fχ; s) =
∞∑

n=1

χ(n)Ann
−s and ΛNm2(Fχ; s) =

(
2π

m
√
N

)−s

Γ (s)L(Fχ; s).

(The corresponding definition for the trivial character mod m is slightly
different and is given in Section 4.) Our main result is a converse theorem
for M

2
k(N).

Theorem. Let {An}n and {Bn}n be two sequences in C with An =
O(nν) and Bn = O(nν) for some ν > 0. Define functions

F (τ) =
∞∑

n=0

An exp(2πinτ) and G(τ) =
∞∑

n=0

Bn exp(2πinτ)

on H. Then statements (A) and (B) below are equivalent.

(A) F (τ) and G(τ) are in M
2
k(N) with G(τ) = F (τ)

∣∣
k
[w(N)].

(B) The following conditions on the corresponding Dirichlet series hold.

The series

ΛN (F ; s) +
A0

s
+ ik

B0

k − s

has a holomorphic continuation to the whole s-plane, is bounded on

any vertical strip and satisfies

ΛN (F ; s) = ikΛN (G; k − s).
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If aχ0 (resp. bχ0 ) is the constant term in the Fourier series of

Gχ(τ)
∣∣
k
[w(Np2)] (resp. Fχ(τ)

∣∣
k
[w(Np2)]), where χ is any Dirichlet

character mod p and p is an odd prime with gcd(N, p) = 1, then:

(i) The function

ikΛNp2(Gχ; k − s) − CχΛNp2(Fχ; s) +
aχ0
s

− ikCχ
bχ0
k − s

has a holomorphic continuation to the whole s-plane, bounded

on any vertical strip.

(ii) The function ikΛNp2(Gχ; k− s)−CχΛNp2(Fχ; s) is the (com-

pleted) L-function of a modular form in M
1
k(Γ0(Np

2)∩Γ1(p)).
(iii) The Dirichlet series

∑
χ χ(u)CχW (χ)ΛNp2(Gχ; s) (where the

sum is over all Dirichlet characters mod p) has a holomorphic

continuation to the whole s-plane, is bounded on vertical strips

and satisfies
∑

χ

χ(u)CχW (χ){ikΛNp2(Gχ; k − s) − CχΛNp2(Fχ; s)} = 0,

whenever u ∈ Z is such that (p± 1)2 ≡ 0 (moduN).

Here and from now on, w(x) =
( 0 −1
x 0

)
in GL+

2 (R), W (χ) is the Gauss

sum associated to χ and Cχ = χ(−N)W (χ)W (χ)−1.

Weil’s converse theorem allows us to replace condition (ii) above by a
set of functional equations. In Section 5 we rephrase our theorem in those
terms (see Theorem 2).

After the completion of this work we learned about a preprint of Dia-
mantis, Knopp, Mason and O’Sullivan [3]. They study a similar Dirichlet
series and prove a “partial” converse theorem (Thm. 14 in [3]). Their result
differs from ours in two ways. First, the space of forms considered in [3] is
not the one studied in this paper. Secondly, in the converse direction they
impose a “strong periodicity relation” which we do not assume here.

This article is organized as follows. In the next section we recall Weil’s
converse theorem in the form that we need. In Section 3 we give the defini-
tion of a second-order modular form. Then, in the following section we give
an equivalent description of those second-order modular forms using their
Fourier series and Dirichlet characters. Finally, in Section 5 we state and
prove the converse theorem of the title.

Notation. For convenience we use the symbols I2 and θ(x) for, respec-
tively, the matrices

( 1 0
0 1

)
and

( 1 x
0 1

)
in GL+

2 (R). Also, we write e(x) for
exp(2πix).
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2. Weil’s converse theorem. In this section we recall Weil’s converse
theorem and some standard lemmas which we will need. For their proofs see
for example [10, p. 117].

Lemma 1. Let f : H → C be a holomorphic function with a Fourier

series representation f(τ) =
∑∞

n=0 ane(nτ) which converges absolutely and

uniformly on compact subsets of H. If there is a real number ν > 0 such that

f(τ) = O(Im(τ)−ν) as Im(τ) → 0 uniformly in Re(τ), then an = O(nν).

Lemma 2. Let {an}∞n=0 be a sequence of complex numbers and set

(1) f(τ) =
∞∑

n=0

ane(nτ) for τ ∈ H.

If an = O(nν) for some real number ν > 0, then the series (1) converges

absolutely and uniformly on compact subsets of H. In particular f is a holo-

morphic function on H. Moreover both f(τ) = O(Im(τ)−ν−1) as Im(τ) → 0
and f(τ) − a0 = O(e−2π Im(τ)) as Im(τ) → ∞, uniformly in Re(τ).

By these results, the holomorphic functions on H satisfying the hypoth-
esis of Lemma 1 correspond bijectively to the sequences {an}n in C with
an = O(nν) for some ν > 0.

Definition 1. Let f(τ) =
∑∞

n=0 ane(nτ) be a function as in Lemma 1.
For s in C define

L(f ; s) =

∞∑

n=1

ann
−s and ΛN (f ; s) =

(
2π√
N

)−s

Γ (s)L(f ; s).

Let χ be a primitive Dirichlet character of conductor m with gcd(N,m) = 1.
For s in C define

L(f, χ; s) =
∞∑

n=1

χ(n)ann
−s and ΛNm2(f, χ; s) =

(
2π

m
√
N

)−s

Γ (s)L(f, χ; s).

Since an = O(nν) for some ν > 0, the series L(f ; s), L(f, χ; s), ΛN (f ; s)
and ΛNm2(f, χ; s) are absolutely and uniformly convergent on compact sub-
sets of the half-plane Re(s) > ν + 1.

The following result is due to Hecke.

Proposition 1. Let f(τ) =
∑∞

n=0 ane(nτ) and g(τ) =
∑∞

n=0 bne(nτ)
be functions on H satisfying the hypothesis of Lemma 1. Then statements

(A) and (B) below are equivalent.

(A) g(τ) = f(τ)
∣∣
k
[w(N)].

(B) ΛN (f ; s) and ΛN (g; s) admit meromorphic continuations to the

whole s-plane and they satisfy

ΛN (f ; s) = ikΛN (g; k − s).
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Moreover ΛN (f ; s)+a0/s+i
kb0/(k − s) is holomorphic on the whole

s-plane and bounded on any vertical strip.

Hecke used Proposition 1 to get his converse theorem for elliptic modular
forms over SL2(Z). André Weil [15] proved such a converse theorem for
modular forms over congruence subgroups Γ0(N) by considering Fourier
series twisted with Dirichlet characters.

Definition 2. Let f : H → C be a holomorphic function represented
by a Fourier series f(τ) =

∑∞
n=0 ane(nτ), and χ any primitive Dirich-

let character of conductor m. The Fourier series twisted by χ is fχ(τ) =∑∞
n=0 χ(n)ane(nτ).

Notice that ΛNm2(fχ; s) = ΛNm2(f, χ; s). A standard computation yields

(2)
∑

u (modm)

χ(u)f(τ)
∣∣
k
[θ(u/m)] = W (χ)fχ(τ).

Next, we recall Weil’s converse theorem in a form that is convenient for
our purposes.

Let m be a positive integer with gcd(N,m) = 1. We denote by M(N,m)
any set of odd prime numbers relatively prime to Nm2 and congruent to
1 mod m, such that M(N,m) ∩ {a+ lcNm2 | l ∈ Z} is not empty whenever
a and c are integers with gcd(cNm2, a) = 1 and a ≡ 1 (modm). (Such a set
always exists by Dirichlet’s theorem on primes in arithmetic progressions.)

Theorem 1. Let {an}n and {bn}n be two sequences in C with an =
O(nν) and bn = O(nν) for some ν > 0. Define functions

f(τ) =
∞∑

n=0

ane(nτ) and g(τ) =
∞∑

n=0

bne(nτ)

on H. Then statements (A) and (B) below are equivalent :

(A) f(τ) and g(τ) are in M
1
k(Γ0(Nm

2) ∩ Γ1(m)) and satisfy g(τ) =
f(τ)

∣∣
k
[w(Nm2)].

(B) The following conditions on the corresponding Dirichlet series hold.

The series ΛNm2(f ; s)+a0/s+ ikb0/(k − s) has a holomorphic con-

tinuation to the whole s-plane, is bounded on any vertical strip and

satisfies

(3) ΛNm2(f ; s) = ikΛNm2(g; k − s).

For any primitive Dirichlet character ψ whose conductor t is in

M(N,m), the series ΛNm2t2(f, ψ; s) has a holomorphic continuation

to the whole s-plane, is bounded on any vertical strip and satisfies

(4) ΛNm2t2(f, ψ; s) = ikψ(m2)CψΛNm2t2(g, ψ; k − s).
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3. Definitions and basic properties. Recall that the formal defini-
tion of second-order modular forms of level N was given in the introduction.
In the first result of this section we describe them in a slightly different way.

Lemma 3. A function F : H → C is in M
2
k(N) if and only if

(a) F (τ) is holomorphic on H,
(b) F (τ) has at most polynomial growth at the cusps,

(c) F (τ)
∣∣
k
[γ − I2] ∈ M

1
k(N) for any γ =

( p −v
−uN q

)
in Γ0(N) such that

u = 0 or whose entries p, q are two distinct odd primes,
(d) F (τ)

∣∣
k
[γ − I2] = 0 for every matrix γ as above such that u = 0 or

p+ q ≡ ±2 (moduN).

Proof. Clearly the definition of second-order modular forms yields (a),
(b) and (c). In fact, (c) holds for any matrix γ in Γ0(N). As for (d), we
observe that (iv) implies

(5) F (τ)
∣∣
k

[
±
(

1 l

0 1

)]
= F (τ)

for all integers l. If γ =
( p −v
−uN q

)
is in Γ0(N) with u 6= 0 and p + q ≡ ±2

(moduN), we can write p+ q = ±2 + uNl for some l in Z. Then

γ

(
1 l

0 1

)
=

(
p ∗
∗ q − uNl

)

is a parabolic element of Γ0(N). Consequently, (iii) and (iv) yield

F (τ)
∣∣
k
[γ − I2] = F (τ)

∣∣
k
[γ − I2]

∣∣
k

[(
1 l

0 1

)]

= F (τ)
∣∣
k
[γ − I2]

∣∣
k

[(
1 l

0 1

)]
+ F (τ)

∣∣
k

[(
1 l

0 1

)
− I2

]

= F (τ)
∣∣
k

[
γ

(
1 l

0 1

)
− I2

]
= 0.

Next we prove the equivalence in the other direction.
If γ =

(
a b
cN d

)
∈ Γ0(N) with c 6= 0 we consider the integral sequences

{a + lcN | l ∈ Z} and {d + lcN | l ∈ Z}. By Dirichlet’s theorem on primes
in arithmetic progressions, each of them contains infinitely many primes.
In particular, there are arbitrarily large odd primes p 6= q of the form p =
a+ tcN , q = d+ scN for some integers t, s. Put u = −c and v = −(b+ sp+
stuN + qt). Then

γ̃ =

(
p −v

−uN q

)
∈ Γ0(N) and γ =

(
1 −t
0 1

)
γ̃

(
1 −s
0 1

)
.
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Consequently, from (5) and hypothesis (c) one gets

(6) F (τ)
∣∣
k
[γ − I2]

= F (τ)
∣∣
k

[(
1 −t
0 1

)
− I2

]
∣∣
k

[
γ̃

(
1 −s
0 1

)]
+ F (τ)

∣∣
k

[
γ̃

(
1 −s
0 1

)
− I2

]

= F (τ)
∣∣
k
[γ̃ − I2]

∣∣
k

[(
1 −s
0 1

)]
+ F (τ)

∣∣
k

[(
1 −s
0 1

)
− I2

]

= F (τ)
∣∣
k
[γ̃ − I2].

Thus F (τ)
∣∣
k
[γ − I2] is in M

1
k(N) and (iii) follows.

Suppose that the matrix γ above is also parabolic. Then a+ d = ±2. If
c = 0 there is nothing to prove. Otherwise p+ q = a+ d+ (t+ s)cN ≡ ±2
(moduN). Hence (6) and (d) yield (iv).

We have already shown that F (τ)
∣∣
k
[γ − I2] ∈ M

1
k(N) for all γ ∈ Γ0(N).

Hence these functions must have polynomial growth at the cusps. As the
same is true for F (τ), we obtain (ii).

Notice that our proof of (d) from the definition of second-order modular
forms is valid for any matrix γ =

(
a b
cN d

)
in Γ0(N) with a+d ≡ ±2 (mod cN).

Consider next the following generalization of condition (d): For a holo-
morphic function F : H → C, let

(D) F (τ)
∣∣
k
[γ − I2] = 0 for every matrix γ =

( p −v
−uN q

)
in Γ0(N) such

that u = 0 or p+ q ≡ ±2 (moduN) with p an odd prime.

From equation (6) with s = 0 one can show that (D) implies part (iv) in
the definition of a second-order modular form.

4. Fourier series and Dirichlet characters. In this section we give
a characterization of a second-order modular form using its Fourier series at
infinity and twists of it by Dirichlet characters.

Throughout this section F (τ) andG(τ) are always holomorphic functions
on H represented by the Fourier series F (τ) =

∑∞
n=0Ane(nτ) and G(τ) =∑∞

n=0Bne(nτ) with An, Bn in C, An = O(nν) and Bn = O(nν) for some
ν > 0. Moreover they satisfy G(τ) = F (τ)

∣∣
k
[w(N)].

Any γ in Γ0(N) defines functions fγ , gγ : H → C by

fγ(τ) = F (τ)
∣∣
k
[γ − I2] and gγ(τ) = G(τ)

∣∣
k
[γ − I2].

For convenience we write fp,v(τ) (resp. gp,v(τ)) instead of fγ(τ) (resp.

gγ(τ)) if γ =
( p −v
−uN q

)
∈ Γ0(N). A straightforward computation shows that

the notation is not ambiguous.
Let f : H → C be a holomorphic function represented by the series

f(τ)=
∑∞

n=0 ane(nτ). We have already defined fχ(τ) for a primitive Dirichlet
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character χ. It is also convenient to define fχ0
(τ) for the trivial character

χ0 mod m whenever m is a prime. Set fχ0
(τ) = f(τ) −m

∑
m|n ane(nτ).

One reason for such a definition is that fχ0
(τ) satisfies an identity like (2).

Namely

(7)
∑

u (modm)

f(τ)
∣∣
k
[θ(u/m)] = m

∑

m|n

ane(nτ).

The analogy is more evident once we observe that W (χ0) = −1.

Lemma 4. Let m be a positive integer with gcd(N,m) = 1. If χ is ei-

ther a primitive Dirichlet character of conductor m or the trivial Dirichlet

character mod m with m prime, then

(8) Gχ(τ)
∣∣
k
[w(Nm2)] − CχFχ(τ)

= CχW (χ)−1
∑

v (modm)

χ(v)fm,v(τ)
∣∣
k
[θ(v/m)].

Proof. Let u, v be integers such that −uvN ≡ 1 (modm). Then

(9) θ(u/m)w(Nm2)θ(−v/m) = mw(N)γm,v

for some γm,v =
( m −v
−uN ∗

)
in Γ0(N). If χ is a primitive (resp. trivial) char-

acter, we use (2) (resp. (7)) and (9) to get

Gχ(τ)
∣∣
k
[w(Nm2)] = W (χ)−1

∑

u (modm)

χ(u)F (τ)
∣∣
k
[γm,vθ(v/m)]

= W (χ)−1χ(−N)
∑

v (modm)

χ(v){F (τ) + fm,v(τ)}
∣∣
k
[θ(v/m)]

= CχFχ(τ) + CχW (χ)−1
∑

v (modm)

χ(v)fm,v(τ)
∣∣
k
[θ(v/m)].

Notice that fp,v(τ) is not defined if gcd(v,m) > 1, but then χ(v) = 0.

Definition 3. Let m > 1 be an integer relatively prime to N . If χ
is any primitive Dirichlet character of conductor m or the trivial Dirichlet
character mod m with m prime, let Hχ(τ) be the left hand side of (8), i.e.

(10) Hχ(τ) = Gχ(τ)
∣∣
k
[w(Nm2)] − CχFχ(τ).

Let p be a prime number with gcd(N, p) = 1. Then every Dirichlet
character mod p is either primitive or trivial. Hence equation (8) and the
orthogonality relations for characters yield

(11) (p− 1)fp,v(τ)
∣∣
k
[θ(v/p)] =

∑

χ

χ(v)CχW (χ)Hχ(τ)

for any integer v with gcd(v, p) = 1. Here the sum is over all characters
mod p.
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Next we recall some standard notation and prove a technical lemma. Let
M and m be two positive integers. As usual, the symbols Γ 0

0 (M,m) and
Γ 1(m) denote the groups

Γ 0
0 (M,m) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (modM), b ≡ 0 (modm)

}

and

Γ 1(m) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣ a ≡ 1 (modm), b ≡ 0 (modm)

}
.

Lemma 5. Let p and q be two distinct odd primes such that pq−uvN = 1
for some u, v in Z. Then

〈
Γ0(Np

2) ∩ Γ1(p), Γ
0
0 (N, q2) ∩ Γ 1(q)

〉
(the subgroup

of SL2(Z) generated by the two intersections) is equal to Γ0(N).

Proof. Let
(
a b
cN d

)
∈ Γ0(N) with a ≡ 1 (mod q). There are integers x, y

such that (
x yq2

−cN a

)
∈ Γ 0

0 (N, q2) ∩ Γ 1(q).

Thus (
x yq2

−cN a

)(
a b

cN d

)
=

(
∗ ∗
0 1

)

is in Γ0(Np
2) ∩ Γ1(p) as desired.

Let
(
a b
cN d

)
∈ Γ0(N) with c relatively prime to q. There exists c∗ ∈ Z

such that cc∗ ≡ 1 (mod q). Therefore
(

1 uvc∗(a− 1)

0 1

)(
a b

cN d

)
=

(
a+ uvc∗(a− 1)cN ∗

cN d

)
∈ Γ0(N)

with a+ uvc∗(a− 1)cN ≡ 1 (mod q). By the previous argument this matrix
is in

〈
Γ0(Np

2) ∩ Γ1(p), Γ
0
0 (N, q2) ∩ Γ 1(q)

〉
, and hence so is

(
a b
cN d

)
.

Finally, we look at the case
(
a b
cN d

)
∈ Γ0(N) with c ≡ 0 (mod q). As

p 6= q there is a∗ ∈ Z such that aa∗ ≡ 1 (mod q) and a∗ ≡ 1 (modpN).
Hence there are integers d′, b′ such that

(
a∗ b′

Np2 d′

)
∈ Γ0(Np

2) ∩ Γ1(p)

and (
a∗ b′

Np2 d′

)(
a b

cN d

)
=

(
a∗a+ b′cN ∗
Np2a+ d′cN ∗

)
∈ Γ0(N)

with a∗a + b′cN ≡ 1 (mod q). By the previous argument this matrix, and
therefore

(
a b
cN d

)
, is in 〈Γ0(Np

2) ∩ Γ1(p), Γ
0
0 (N, q2) ∩ Γ 1(q)〉.
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The next proposition describes a second-order modular form in terms of
the functions Hχ(τ) given in (10). It is a key result for the proof of our main
theorem.

Proposition 2. F (τ) is in M
2
k(N) if and only if the following four

statements hold :

(a′) F (τ) is holomorphic on H.

(b′) F (τ) has at most polynomial growth at the cusps.

(c′) For any odd prime p relatively prime to N and arbitrary Dirichlet

character χ mod p,

Hχ(τ) ∈ M
1
k(Γ0(Np

2) ∩ Γ1(p)).

(d′) For any odd prime p relatively prime to N and arbitrary u ∈ Z with

(p± 1)2 ≡ 0 (moduN),
∑

χ

χ(u)CχW (χ)Hχ(τ) = 0

where the sum is over all Dirichlet characters χ mod p.

Proof. First we assume that F (τ) is in M
2
k(N).

For any integer v relatively prime to p consider the matrix γp,v in Γ0(N)
determined by equation (9). Then fp,v(τ) = F (τ)

∣∣
k
[γp,v−I2] is in M

1
k(N) (see

proof of Lemma 3) and therefore fp,v(τ)
∣∣
k
[θ(v/p)] is in M

1
k(Γ0(Np

2)∩Γ1(p)).

This fact and Lemma 4 yield (c′).

In order to deduce (d′) we write (p ± 1)2 = luN for some l in Z. Then
luN ≡ 1 (mod p) and therefore l ≡ −v (mod p) for any integer v such that
−uvN ≡ 1 (modp). Put l = −v + tp for some t in Z. Clearly

(p± 1)2 = (tp− v)uN, i.e. p+
1 + vuN

p
= ∓2 + tuN.

Notice that q = (1 + vuN)/p ∈ Z,
( p −v
−uN q

)
∈ Γ0(N) and p + q ≡ ±2

(moduN). By Lemma 3 we conclude that fp,v(τ)
∣∣
k
[θ(v/p)] = 0. Now we use

(11) and the congruence −uvN ≡ 1 (mod p) to get (d′).

Next we prove the converse implication. Evidently, it suffices to show
that (a′), (b′), (c′) and (d′) imply statements (c) and (d) of Lemma 3.

Let

γp,v0 =

(
p −v0

−u0N q

)
∈ Γ0(N)

with p, q two distinct odd primes. Then gcd(N, p) = gcd(N, q) = 1 and
gcd(v0, p) = 1 (resp. gcd(u0, q) = 1). From (c′) and (11) we infer that
fp,v0(τ)

∣∣
k
[θ(v0/p)], and hence fp,v0(τ), are in M

1
k(Γ0(Np

2) ∩ Γ1(p)).
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On the other hand, w(Np2) is in the normalizer of the group Γ0(Np
2)∩

Γ1(p), w(Np2)2 = −Np2I2 and CχCχ = 1. Hence (c′) also implies

Hχ(τ)
∣∣
k
[w(Np2)] ∈ M

1
k(Γ0(Np

2) ∩ Γ1(p))

for all Dirichlet characters χ mod p. Using the previous argument with q
(resp.G(τ)) instead of p (resp. F (τ)) we deduce that gq,−u0

(τ)∈M
1
k(Γ0(Nq

2)
∩ Γ1(q)). The identities fp,v0(τ)

∣∣
k
[w(N)] = gq,−u0

(τ) and

w(N)−1(Γ0(Nq
2) ∩ Γ1(q))w(N) = Γ 0

0 (N, q2) ∩ Γ 1(q)

are easy to check. Thus

fp,v0(τ) ∈ M
1
k(〈Γ0(Np

2) ∩ Γ1(p), Γ
0
0 (N, q2) ∩ Γ 1(q)〉).

By Lemma 5 we conclude that fp,v0(τ) is in M
1
k(N), which is (c).

Finally, consider a matrix
( p −v
−uN q

)
in Γ0(N) whose entries p, q are

distinct odd primes such that p+q ≡ ±2 (moduN). Since pq ≡ 1 (moduN)
we have p(±2 − p) ≡ 1 (moduN) and therefore (p∓ 1)2 ≡ 0 (moduN). By
hypothesis (d′), equation (11) and the relation −uvN ≡ 1 (mod p), we get
fp,v(τ)

∣∣
k
[θ(v/p)] = 0 and therefore fp,v(τ) = 0.

5. The main theorem. In this section we first state an auxiliary propo-
sition and introduce a new kind of twist of Fourier series with Dirichlet
characters. Then we restate our main result in terms of different twists of
Dirichlet series and give the proof of it.

Proposition 3. Let F1(τ) =
∑∞

n=0Ane(nτ), f1(τ) =
∑∞

n=0 ane(nτ),

F2(τ) =
∑∞

n=0Bne(nτ) and f2(τ) =
∑∞

n=0 bne(nτ) be functions on H sat-

isfying the hypothesis of Lemma 1. Let M be a positive integer. Then state-

ments (A′) and (B′) below are equivalent.

(A′) F1(τ) + f1(τ) = F2(τ)
∣∣
k
[ω(M)] and f1(τ) = f2(τ)

∣∣
k
[ω(M)].

(B′) ΛM (F1; s) and ΛM (F2; s) admit meromorphic continuations to the

whole s-plane and they satisfy

ikΛM (F2; k − s) = ΛM (F1; s) + ΛM (f1; s)

and

ΛM (f2; s) = ikΛM (f1; k − s).

Moreover , both

ΛM (F1; s) +
A0

s
+ ik

B0

k − s
− ik

b0
k − s

and ΛM (f1; s) +
a0

s
+ ik

b0
k − s

are holomorphic on the whole complex s-plane and bounded on any

vertical strip.

Proof. We can argue exactly as in the proof of Proposition 1. (See for
example [10, pp. 119–121].)
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Definition 4. Let f(τ) =
∑∞

n=0 ane(nτ) and g(τ) =
∑∞

n=0 bne(nτ) be
holomorphic functions on H satisfying the hypothesis of Lemma 1 and the re-
lation f(τ)

∣∣
k
[w(N)] = g(τ). Let m be a positive integer with gcd(N,m) = 1

and χ a primitive Dirichlet character of conductor m or the trivial character
mod m with m prime. We define

fχ(τ) = gχ(τ)
∣∣
k
[w(Nm2)].

The function fχ(τ) is similar to the twist of f(τ) by χ. Compare for
example the description of fχ(τ) in (2) with the trivial identity

(12) fχ(τ) = W (χ)−1
∑

u (modm)

χ(u)f(τ)
∣∣
k
[w(N)θ(u/m)w(Nm2)].

In the particular case that f(τ) is a modular form in M
1
k(N) one has fχ(τ) =

Cχfχ(τ).
It is easy to see that the definition above and a straightforward applica-

tion of Theorem 1 allow us to rephrase our main result (the Theorem in the
introduction) as Theorem 2 below. In the latter form the similarities with
Weil’s converse theorem are more evident.

Theorem 2. Let {An}n and {Bn}n be two sequences in C with An =
O(nν) and Bn = O(nν) for some ν > 0. Define functions

F (τ) =
∞∑

n=0

Ane(nτ) and G(τ) =
∞∑

n=0

Bne(nτ)

on H. Then statements (A) and (B) below are equivalent.

(A) F (τ) and G(τ) are in M
2
k(N) with G(τ) = F (τ)

∣∣
k
[w(N)].

(B) The following conditions on the corresponding Dirichlet series hold.

The series ΛN (F ; s) +A0/s+ ikB0/(k − s) has a holomorphic con-

tinuation to the whole s-plane, is bounded on any vertical strip and

satisfies

(13) ΛN (F ; s) = ikΛN (G; k − s).

If aχ0 (resp. bχ0 ) is the constant term in the Fourier series of Fχ(τ)
(resp. Gχ(τ)), where χ is any Dirichlet character mod p and p is an

odd prime with gcd(N, p) = 1, then:

(B.1) The function

ΛNp2(F
χ; s) − CχΛNp2(Fχ; s) +

aχ0
s

− ikCχ
bχ0
k − s

has a holomorphic continuation to the whole s-plane bounded

on any vertical strip.

(B.2) For any primitive Dirichlet character ψ of conductor t in

M(N, p), the function ΛNp2t2(F
χ, ψ; s) −CχΛNp2t2(Fχ, ψ; s)
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has a holomorphic continuation to the whole s-plane, and is

bounded on any vertical strip. Moreover

(14) ΛNp2t2(F
χ, ψ; s) − CχΛNp2t2(Fχ, ψ; s)

= ikψ(p2)CψΛNp2t2(Gχ, ψ; k − s)

− ikψ(p2)CψCχΛNp2t2(G
χ, ψ; k − s).

(B.3) The Dirichlet series
∑

χ χ(u)CχW (χ)ΛNp2(Gχ; s) (where

the sum is over all Dirichlet characters mod p) has a holo-

morphic continuation to the whole s-plane, is bounded on

vertical strips and satisfies

(15)
∑

χ

χ(u)CχW (χ){ikΛNp2(Gχ; k − s) − CχΛNp2(Fχ; s)} = 0

whenever u ∈ Z is such that (p± 1)2 ≡ 0 (moduN).

Proof. Assume that F (τ) is in M
2
k(N) and G(τ) = F (τ)

∣∣
k
[w(N)]. Then

F (τ) and G(τ) satisfy the hypothesis of Lemma 1 and by Proposition 3 we
get the first part of (B), i.e. the function ΛN (F ; s)+A0/s+i

kB0/(k − s) has
a holomorphic continuation to the whole s-plane, is bounded on any vertical
strip and satisfies (13).

Now let χ be a character as in the theorem. Proposition 2 shows that

Hχ(τ) = Fχ(τ) − CχFχ(τ) is in M
1
k(Γ0(Np

2) ∩ Γ1(p)).

Hence Theorem 1 implies that ΛNp2(F
χ; s) − CχΛNp2(Fχ; s) + aχ0/s −

ikCχb
χ
0/(k − s) has holomorphic continuation to the whole s-plane bounded

on any vertical strip.

We also use Theorem 1 to conclude that for any primitive Dirichlet
character ψ as above the series ΛNp2t2(F

χ − CχFχ, ψ; s) has a holomorphic
continuation to the whole s-plane, is bounded on any vertical strip and
satisfies

ΛNp2t2(F
χ − CχFχ, ψ; s) = ikψ(p2)CψΛNp2t2(Gχ − CχG

χ, ψ; k − s).

From these equations and the linearity of the L-function we get (14).

For the proof of (B.3) consider

Fp,u(τ) =
∑

χ

χ(u)CχW (χ)Gχ(τ) and Gp,u(τ) =
∑

χ

χ(u)W (χ)Fχ(τ),

where the sums are over all Dirichlet characters mod p and u is any integer
such that (p± 1)2 ≡ 0 (moduN). Since the functions defined by the Fourier
series Fχ(τ) and Gχ(τ) satisfy the hypothesis of Lemma 1, the same is true
for Fp,u(τ) and Gp,u(τ).
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Part (d′) of Proposition 2 is equivalent to Fp,u(τ)
∣∣
k
[w(Np2)] = Gp,u(τ),

and this identity yields (B.3) by Proposition 1.

For the converse implication we argue as follows. The growth of the
Fourier coefficients An, Bn, together with Lemma 2, implies that both series
F (τ) and G(τ) define holomorphic functions on H. From the particular
meromorphic continuation of ΛN (F ; s) to the s-plane, equation (13) and
Proposition 1 we get G(τ) = F (τ)

∣∣
k
[w(N)].

Next we consider any odd prime p with gcd(N, p) = 1 and any Dirichlet
character χ mod p.

Claim. The function Hχ(τ) is invariant under the translation τ 7→ τ+1.

Proof of the Claim. Let Fp,u(τ) and Gp,u(τ) be as above. We use Propo-
sition 1 to deduce from (B.3) that

(16) Gp,u(τ) = Fp,u(τ)
∣∣
k
[w(Np2)].

Notice that (16) is equivalent to the equation in part (d′) of Proposition 2.
Arguing as in the proof of the latter we can deduce from (16) the invariance

of F (τ) under
( p −v
−uN q

)
in Γ0(N) where q is any integer with p + q ≡ ±2

(moduN). Now we recall the remark after Lemma 3 and conclude that F (τ)
is invariant under any parabolic element of Γ0(N). Since the conjugate of
any parabolic matrix by w(N) is parabolic, G(τ) = F (τ)

∣∣
k
[w(N)] is also

invariant under any parabolic element of Γ0(N). This fact and the identities

w(Np2)

(
1 1

0 1

)
=

(
1 0

−Np2 1

)
w(Np2)

and

θ

(
u

p

)(
1 0

−Np2 1

)
=

(
1 − uNp u2N

−Np2 1 + uNp

)
θ

(
u

p

)

imply that Fχ(τ) = Gχ(τ)
∣∣
k
[w(Np2)] is invariant under the translation

τ 7→ τ + 1. This implies the Claim.

Consequently, Hχ(τ) =
∑

n∈Z
ane(nτ) for some an ∈ C. Using now the

estimate Gχ(τ) = O(Im(τ)−ν−1) as Im(τ) → 0 we conclude that Hχ(τ) =∑
n≥0 ane(nτ).

Similarly one has Hχ(τ)
∣∣
k
[w(Np2)] =

∑
n≥0 bne(nτ) for some coefficients

bn in C. Proposition 3 then implies

ΛNp2(Hχ; s) = ikΛNp2(Gχ; k − s) − CχΛNp2(Fχ; s).

Notice that the linearity of the L-function yields
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ΛNp2t2(Hχ, ψ; s) = ΛNp2t2(F
χ, ψ; s) − CχΛNp2t2(Fχ, ψ; s)

and

ΛNp2t2(Hχ

∣∣
k
[w(Np2)], ψ; s) = ΛNp2t2(Gχ, ψ; s) − CχΛNp2t2(G

χ, ψ; s).

If we now use the hypothesis in (B.2) and Theorem 1 we conclude that
Hχ(τ) is in M

1
k(Γ0(Np

2) ∩ Γ1(p)).

We already know that F (τ)
∣∣
k
[γ − I2] = 0 for any parabolic γ in Γ0(N).

This identity and the estimate F (τ) = O(Im(τ)−ν−1) as Im(τ) → 0 (see
Lemma 2) imply that F (τ) has at most polynomial growth at every cusp of
Γ0(N) (details as in [10, p. 41] for example).

By Proposition 2 we conclude that F (τ) is in M
2
k(N).

Finally, we want to point out that it is possible to refine our converse
Theorem 2 to a statement where only finitely many twists of F (τ) and
G(τ) are necessary. One can proceed as in [14] where Razar makes such a
refinement of Weil’s theorem.
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