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Swirling granular solidlike clusters
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Experiments and three-dimensional numerical simulations are presented to elucidate the dynamics of granu-
lar material in a cylindrical dish driven by a horizontal, periodic motion. The following phenomena are
obtained both in the experiments and in the simulations: First, for large particle numbersN the particles
describe hypocycloidal trajectories. In this state the particles are embedded in a solidlike cluster~‘‘pancake’’!
which counter-rotates with respect to the external driving~reptation!. Self-organization within the cluster
occurs such that the probability distribution of the particles consists of concentric rings. Second, the system
undergoes phase transitions. These can be identified by changes of the quantitydEkin /dN (Ekin is the mean
kinetic energy! between zero~rotation!, positive~reptation!, and negative values~appearance of the totality of
concentric rings!.

PACS number~s!: 81.05.Rm, 68.35.Rh, 83.10.Pp
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I. INTRODUCTION

Although much theoretical progress has recently b
achieved in uncovering the physics of granular media~see,
e.g., Ref.@1#! a general theory for a consistent deduction
specific phenomena, e.g., finger patterns in granular fl
@2#, localized states in vertically vibrated layers@3#, or strati-
fication in a binary mixture of granular material@4#, is still
missing. To establish a theoretical description of granu
matter is not merely an academic challenge; there is a
mand to control granular materials in industrial proces
involving basic materials, such as metallic powder, brok
glass or sunflower grains, as well as final products, such
candy, champagne corks, or uranium tablets. To handle t
materials different processes are involved: grinding@5#, mix-
ing @6#, storing @7#, transporting, and pouring@8#. During
these processes there are a number of phenomena whic
duce the production efficiency or increase the risk. Examp
of those phenomena are arching, charging, density wa
dilatancy, fluidization, and segregation~see Ref.@9# for a
review!.

Lacking a general theory, in recent years numerical sim
lations have proved to be a powerful tool to model spec
industrial applications or certain experimental setups@10#.
To give a specific example, soft-sphere molecular dynam
simulations~MD! showed that material pulses at the outlet
vertical pipe conveyers are due to dynamical arches in
transportation belt@11#. On these conveyers the opaque ru
ber belt does not allow a visualization of the granular d
namics. This clearly demonstrates the advantages of sim
ing granular material.

Besides the already mentioned soft-sphere molecular
namics simulation, other numerical techniques are used,
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event driven~ED! codes, Monte Carlo~MC! simulations,
cellular automata, or a combination of ED and MC metho
Especially in MD and ED methods, the quality of the n
meric code often relies on accurately modeling two thin
first, the interaction of the particles with the confinin
boundaries of the setup; and second, the particle–par
interactions. To improve and test different models, sim
experimental setups were recently considered to compare
perimental and numerical results. A remarkable agreem
between experiment and simulation is known, e.g., in
case of vertical oscillations of granular material@12# and for
horizontal vibrations@13#.

Difficulties in the numerical simulations normally aris
due to the high computational effort in handling the lar
number of particles (.104) in typical experimental systems
Therefore, we study an experimental setup which hand
only a small number of particles (,79); this avoids simpli-
fications in the numerical model due to computational lim
tations. The system consists of a horizontally aligned cy
drical dish, which is driven externally in a horizonta
swirling motion. It has been seen@14# that when there are
only a few particles in the dish the spheres revolve about
center of the dish in the same direction as the external
tion. This mode is calledrotation. If the particles exceed a
certain number they move counterclockwise~reptation!. The
observed phenomena depend sensitively on parameters
particle number, driving frequencyf d , and driving ampli-
tudeA @14,15#. Moreover, if f d.2.5 Hz, material and sur
face properties of spheres play a role@16#.

Experiments at high solid fractions give a visual impre
sion that the ensemble of reptating particles behave lik
pancake which is shaken in a frying pan to prevent it fro
burning. If, in fact, this picture of a rotating pancake is co
rect, then an individual particle should move on a hypoc
loidal trajectory like a point on a solid disk does. In th
present paper, we investigate the validity and limitations
this picture of a ‘‘granular pancake.’’

For simulating the system we use a more detailed mec
nism than previously~in Ref. @14#!, namely, a three-
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dimensional molecular dynamical model, where the rolli
motion of the spheres and the interactions of the partic
with the bottom and the wall of the dish are taken into a
count. To characterize the dynamics of the pancakelike s
and of other modes, we determine the following from n
merical and experimental data:~a! the short time trajectories
of the spheres;~b! the probability densities of particle pos
tions; ~c! the mean frequencies of rotation around the cen
of mass and around the center of the dish; and~d! the mean
kinetic energy of the particles.

II. METHODS

A. Experiments

The experimental setup shown in Fig. 1 is similar to t
setup used in Refs.@14,16#. It consists of an adjustable re
ciprocating orbital shaker~Thermolyne AROS 160! which is
mounted on a heavy marble table to avoid internal vib
tions. During one oscillation period of the orbital shaker e
ery point (x,y) on the table moves on a circle in the labor
tory frame according tox5A cos(vt) andy5A sin(vt). A is
the amplitude of the orbital motion,v52p f d , and f d is the
driving frequency of the shaker.A is fixed to 9.53 mm andf d
to 1.5 Hz. A cylindrical dish is fastened on the swirling tab
by a holding device. The dish is milled out of Plexiglass.
inner radiusR is 50 mm. The height is 10 mm. A white piec
of paper between the top of the holding device and the b
tom of the dish ensures a light background.

To characterize the bottom profile of the dish we use
surface analyzer~Talysurf Serie 120! with a resolution of
32.0 nm. As seen in Fig. 2, the bottom profile has a sli
monotonous drop towards the center of the dish. The he
difference from the boundaries to the center, as determ
in two different directions of the profile, is 12565 mm.

As granular material we useN spheres of two differen
types of soda lime glass, whereN ranges between 1 and 7
~the latter is the maximum number of spheres in the d
having contact with the bottom!. A single particle consists o
polished, black soda lime glass, and serves as a tracer sp
The other spheres are uncolored and have a rough sur
Thus they diffuse the light and are not visible on the wh
background of the dish at bright illumination. Although th
black sphere and the uncolored ones have different sur
roughnesses it was shown in Ref.@16# for a different geom-
etry ~annular channel! that this does not influence the dynam
ics of the particles, namely, particle-wall and particle-parti
interactions, if the particles are swirled at driving frequenc

FIG. 1. Experimental setup.
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below 2.5 Hz. All particles have the same radiusr p of 5
60.01 mm. The material density isr52.5 g cm23. A
CCD camera~Sony XC-77RR-CE! is mounted on top of the
swirling table to take images in the comoving frame. T
exposure time of the camera is set to 1/100 s. The pix
synchronous signals of the camera are grabbed for ins
image processing by a real-time framegrabber board~BFP-
AT, Leutron Vision! which is controlled by a 90-MHz per
sonal computer. To obtain a homogeneous illumination
use two different light systems: First, there is an annu
22-W neon lamp~Philips TLE Cool White! which is fixed
around the dish. Second, there is an additional ring la
~Schott KL 1500 electronic! on top of the setup.

Figure 3 illustrates the procedure of detecting the cen
of the black tracer sphere. There areN spheres in the circula

FIG. 2. Measured bottom profile of the cylindrical dish in th
experiment.

FIG. 3. Scheme demonstrating the procedure to detect the ce
of the single black tracer particle. The white spheres, whose bou
aries are shown here, are not visible on the light background.
horizontal and vertical lines are used for the image processing
gorithm. Only four points are necessary to calculate the coordin
of the center of the tracer particle:x1 , x2 , y1, and y2. The thick
black circle shows the wall of the dish.
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PRE 61 4071SWIRLING GRANULAR SOLIDLIKE CLUSTERS
dish ~thick circle!. Although theN21 light spheres are no
visible in the image, their boundaries are shown in this fig
~thin circles!. The diameter of the dish corresponds to 2
pixels in the digitized image. Thus the diameter of a sph
is given by 21.4 pixels. Figure 3 shows a quadratic lattice
consists of ten horizontal lines and ten vertical lines. T
lattice spacing is set to 20 pixels. This guarantees that
black tracer sphere cuts twice, both a horizontal line an
vertical line of the lattice. An image with the size o
2563256 pixel is frozen every 20 ms. To detect the cente
the tracer sphere only the gray values along the horizo
and vertical lines have to be analyzed. This drastically
duces the computation time. We start to examine the g
values of the horizontal lines from left to right and the ve
tical lines from bottom to top. When the gray value is belo
a certain thresholdT the left boundaryx1 or the lower
boundaryy1 of the tracer sphere is detected. When the va
exceedsT after having detectedx1 or y1 we obtain the right
boundaryx2 and the upper boundaryy2, respectively. Hav-
ing detected these four coordinates the center of the tr
sphererWc5(xc ,yc) can be calculated by

rWc5S xc

yc
D 5

1

2 S x11x2

y11y2
D . ~1!

xc and yc are stored for later analysis. The procedure
detecting the center of the tracer sphere is repeated ever
ms. Thus the trajectory of the sphere is tracked in real ti
Because the data size of the detected point is small, this
be done over a long period of time to obtain good statist

It is seen that the trajectory of the tracer sphere for sm
N depends sensitively on the horizontal alignment of
dish. Here the dip toward the dish’s center~see Fig. 2! serves
to level the setup. This is shown in Fig. 4. We use fi
spheres~which as shown below form a swarm! in the level-
ing process. The center of the spheres are detected ov
period of 1310.70 s which corresponds to 216 detections.

FIG. 4. Illustration of the alignment procedure of the dish.
~a!, ~b!, and~c!, the alignment is improved by putting small pap
stripes below the dish, until the center of all detected particle co
dinates is in the middle of the dish~d!.
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First the dish is aligned horizontally by using a circular sp
level. Figure 4~a! shows that the tracer sphere does not s
in the middle of the dish. It tends to collide with the wall o
the dish~right bottom in the image!. There it gains kinetic
energy by hitting the moving wall. As time proceeds, t
trajectory is blurred over the entire range of the dish,
mean value being displaced with respect to the center of
dish. By putting small pieces of paper below the dish,
time-averaged position of the tracer sphere is shifted to
dish’s center@Figs. 4~b! and 4~c!#. The thickness of the pape
is 0.11 mm, which results in a change of the horizontal alig
ment of at least 231023 rad. This procedure gives reliabl
results as seen in Fig. 4~d!, where the dish is now horizon
tally leveled. The tracer sphere stays around the center o
dish and does not hit the walls anymore.

In an experimental run we detected the trajectory of
tracer sphere for every number of spheres ranging from
78. Between each measurement we keep the driving c
stant, and add one particle at the wall of the cluster. We w
2 min between each run to let the cluster dynamics re
The detection process is started when the tracer sphe
again at the wall of the cluster.

B. Numerical simulations

The described system is simulated by using soft-sph
molecular dynamics. We made a three-dimensional mode
N spheres.R, r p , andr were set to the experimental value
A particle i is described by its positionrW i , velocity vW i , and
angular velocityvW i . Two particlesi and j interact, if the
distance between their centers of massurW i2rW j u is smaller
than the sphere diameter; the overlap isz52r 2urW i2rW j u. The
resulting normal forceFW n

( i ) on particlei acts along the line
connecting the centers of mass of the two interacting p
ticles i and j: nW 5(rW i2rW j )/urW i2rW j u. The force experienced by
particle j is deduced by exchanging subscriptsi and j. We
choose a nonlinear repulsive force according to the He
theory with a viscoelastic dissipation of energy@17#:

FW n
( i )5@Yz3/22gnAz~vW i2vW j !nW #nW . ~2!

Since the impact velocity in our experiment is of the order
0.1 m/s and thus smaller than the yield velocity, which is
order 1 m/s@18#, we assume that there are no plastic def
mations in our material, and only the viscoelastic dissipat
of energy is the relevant mechanism in a binary collisio
Equation ~2! implies that the coefficient of restitution de
creases when the collision velocity increases and is in g
agreement with experimental data of two particle collisio
~For a comparison of numerical simulations and experim
tal data, see Refs.@19,22#!. The stiffness of the particles i
chosen to beY51.03105 kg m21/2s22 and the energy is
dissipated throughgn530.0 kg m21/2s21, leading to a res-
titution coefficient of the order of 0.67 for a velocity of 0.
m s21. This value is smaller than the value 0.97, measu
by Foersteret al. @20# at 1.0 m s21, but leads to a robus
agreement between experimental and simulational quanti
Furthermore a shear forceFW s

( i ) acting perpendicular to the
normal force is added:

r-
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FW s
( i )52

vW s

uvW su
min $msuFW n

( i )u,gsuvW su%. ~3!

The first term describes the Coulomb sliding friction and
second term the viscous friction, respectively@21#. In gen-
eral, this also leads to a realistic reproduction of experim
tal data as shown in Refs.@19,22#. The parameters of the
shear force are set togs520.0 kg s1 andms50.45. These
values were chosen to reproduce first the experimental
in Figs. 5 and 8, and second the experimental data repo
in Ref. @14#. It is observed that a lower value ofms destroys

FIG. 5. Experimental~a! and numerical~b! trajectories of the
center of a particle. The center of the tracer particle is plotted ev
20 ms. The cross marks the starting point of the trajectory.
number in the lower left corner of each image denotes the t
numberN of spheres in the dish. A circle with an arrow in the upp
right corner gives the sense of excitation caused by the orbital
tion of the dish. The radius of this circle is the amplitude of t
orbital motion. Due to different velocities of the tracer sphere
different solid fractions we display different time periodst to avoid
overlapping of the trajectories:N51, t56 s; N510, t520 s; N
545, t514 s; andN563, t58 s.
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the loops of the trajectories by causing a more sliding th
rolling movement of the particles. A higher value leads
stronger interactions of neighboring particles and therefor
a different frequency of rotation. Furthermore, a differe
value ofgs shifts the rotation frequency slightly. The she
velocity vW s is given in the following way@23#: vW s5vW i2vW j

2@(vW i2vW j )nW #nW 1r pnW 3(vW i1vW j ).
The interaction of a particle with the boundaries~bottom

and wall! of the dish are simulated by a real particle and
virtual particle, where the latter plays the role of the boun
ary. The virtual particle has the same velocity as the sim
lated boundary, and the same properties as the real partic
is positioned in a way that its normal vectornW is perpendicu-
lar to the corresponding boundary. Due to the constant
tance between the particle and the bottom of the dish, the
no energy dissipation in this interaction. However, dissip
tion occurs by introducing an additional force, namely, ro
ing friction,

FW r5m r

uFW n
( i )u

r p
•

vW 2vW i

uvW 2vW i u
, ~4!

which is only acting on particlei if there is an interaction
between the particle and the bottom of the dish. Rolling fr
tion only plays a relevant role in dissipating energy at ve
low particle numbers (N,4). It prevents the particles o
moving with unrealistic high velocities caused by wall col
sions and missing damping due to rare particle-particle c
lisions as observed in the experiment.FW r is added to the
other forces@Eqs. ~2! and ~3!# if there is an interaction be
tween a particle and the bottom of the dish.m r was opti-
mized by comparing experiments and simulations in Fi
5–8; best agreement was obtained form r53.031025 m. vW
is determined by the swirling motion of the table, and giv
the velocity of every point on the dish
vW 5„2Av sin(vt), Av cos(vt),0…. Furthermore, the heigh
profile of the dish~see Fig. 2! is adapted by a paraboli
curvature of the simulated bottomh(r )5ar2, wherer is the
distance from the center of the dish, anda is set to 0.04 m21.
The roughness of the dish is simulated by adding a stoc
tically determined quantityq to the center of the virtua
sphere, and thus to the bottom height at each time step.
agreement with the experiments was obtained by choo
an equally distributedq with 210 mm,q,10 mm, i.e., by
assuming a somewhat larger value than in Fig. 2. Finally
gravity g59.8 m s22 is acting on the particles along th
negativez axis. The resulting differential equations for th
translation and the rotation are solved numerically by a Ge
predictor-corrector algorithm@24# of sixth order with an in-
tegration time step of 5.031025 s.

In a simulational run the system is allowed to relax for
s. Then the positions and velocities of all simulated partic
are stored for later analysis every 20 ms~as in the experi-
ment!, over a total time of 100 s.

III. RESULTS AND DISCUSSION

A. Particle trajectories

For a first and qualitative description of the dynamics
the cluster, we look at short time series of the trajectory
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PRE 61 4073SWIRLING GRANULAR SOLIDLIKE CLUSTERS
the tracer sphere. In Fig. 5~a! we show examples of the ex
perimental trajectories for different particle numbers. The
compare well with trajectories of the corresponding nume
cal simulation@Fig. 5~b!#.

For N51 the path of the tracer sphere consists o
curved motion superimposed with loops. The loops refl
the driving frequency of the swirling table. The curvature
the path is due to the bottom profile of the circular dish.

For smallN the particles move around in a swarm, i.
the particles stay close together and perform the same c
lar motion. Thus neighboring spheres have the same sen
spinning motion as they roll on the dish. It follows that tw
touching spheres have opposite velocities at their con
point. Therefore, friction between touching spheres is h
and they slow down, stay close together, and build the
served swarm. If a sphere collides with the wall of the c
cular dish, its velocity significantly increases. The sph

FIG. 6. Probability distribution of the particle position~a! in the
experiments and~b! in the numerical simulations. The intensity i
each image is scaled from 0 to 255. Thus dark regions refer to
probability distributions, and light spots to low ones. The numbe
particlesN is given in the lower left corner of each image.
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FIG. 7. Dependence of the probability distribution on the rad
position of the dish and the number of particles in the experim
~a! and in the numerical simulation~b!. The probabilities corre-
spond to the azimuthal average. The logarithm of the probabili
is mapped to a grey scale; white corresponds to a low probabi
and dark to a high probability. All probabilities below 1024 are set
to 0.

FIG. 8. Comparison between experimentally and numerica
determined dependence of the mean frequency of rotation of
cluster~around the center of the dish! on the number of spheres.



B
ti

te
ve
ay
ig

s
m
e

ck
ck

i
io

r
n
es
th

in
ob
fo
ps
.
-

te

th
s

w

e
th
ig
-

he

e
tri

e
s
th
e

he
ow
t
n
he
r
e

en
ac-
u-

m-
cle

by

d
tal
pied
e-

us-
xi-

ly a
ion

be
rted

o-
eds

hat

ults.
ar-
the
. In
the

the

of
the

ac-
ro-
he
en-
ster

he
zed
ing
he

ter
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then hits the cluster and reduces its speed significantly.
sound emission it is noticeable that the additional kine
energy is dissipated by multiple collisions inside the clus
Because of the dip in the bottom profile and the abo
mentioned horizontal alignment of the dish the cluster st
in the neighborhood of the dish’s center. This is seen in F
5~a! and 5~b! for N510.

For N530 it is observed that the number of collision
with the wall increases, as the size of the cluster beco
larger. ForN.35 the particles starts to reptate as describ
in Ref. @14#. Reptation means that the particles rotate clo
wise although the driving of the system is a counterclo
wise motion. Examples of reptation are seen in Figs. 5~a! and
5~b! for 45 spheres. In this case the mixing of particles
high, i.e., the tracer particle does not stay in the outer reg
where it started.

For 63 particles@Figs. 5~a! and 5~b!# the path of the trace
sphere resembles a hypocycloid. Hypocycloids occur whe
solid disk unrolls at the inner wall of a circle. Their shap
depend on the ratio between the radius of the disk and
radius of the circle. Furthermore it is important which po
on the disk is tracked to obtain the trajectory: loops are
served for a point inside the disk, whereas cusps appear
point on the wall of the disk. The outer flattening of the loo
for N563 in Figs. 5~a! and 5~b! is due to slipping at the wall
The loops become cusps whenN is increased in our experi
mental and numerical setup. At highN it is observed that the
tracer particle is confined to the outer regions of the clus
although it sometimes jumps to inner regions. Finally forN
578, where we have the highest possible solid fraction,
dynamics is almost frozen and the trajectory just consist
a thin annulus.

B. Probability distributions

We look at the long time behavior of the particles, and
calculate the probability distributionP5P(rW,N) for each
image pixelrW5(x,y) in our dish. In the experiments only th
position of the tracer particle is analyzed, whereas in
simulation the positions of all particles are considered. F
ures 6~a! and 6~b! show probability distributions for the ex
periments and the numerical simulations, respectively.

The probability distribution forN51 is related to the bot-
tom profile of the dish. In the simulations we assumed
parabolic bottom profile which is more perfect than in t
experiments. It follows~in spite of the large value of the
stochastic parameterq) that the sphere circles around th
center of the dish, which implies an annular particle dis
bution with a minimum atr 50. For few particles~e. g.,N
510) we observe that the probability distribution becom
more homogeneously distributed around the center. Thi
due to the above-mentioned swarmlike behavior of
spheres, and because multiple collisions dissipate the kin
energy.

For an increasing number of particles, collisions with t
wall of the dish become more abundant. In Fig. 6 we sh
an example forN545. The probability distribution is high a
r'45 mm because there are collisions with the wall, a
the spheres change their direction. Closer to the center t
is an annular zone whereP is smaller, because of the highe
velocities of the particles after collisions with the wall. In th
y
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central regionP is larger because, due to collisions betwe
spheres, they slow down and cluster. At higher solid fr
tions we observe a ring structure in the probability distrib
tion ~target pattern!. This is seen forN563 in Fig. 6.

While Fig. 6 shows the behavior for some particle nu
bers only, Fig. 7 summarizes the dynamics for all parti
numbers. The gray scale values in Fig. 7 are determined
the azimuthal average ofP(rW,N):

G~r ,N!5E
0

2p

P~r ,w,N!dw. ~5!

We map lnG(r,N) to a gray scale with 256 levels.
Figures 7~a! and 7~b! show the experimental results an

the numerical simulations, respectively. In the experimen
situation we see a sharp decrease of the size of the occu
region asN increases from 1 to 3. This is due to the abov
mentioned energy dissipation by multiple collisions and cl
tering. At higher N the occupied area increases appro
mately linearly withN. As N is increased further, first the
outer rings start to emerge and then the inner rings. Final
target pattern is formed as given in Fig. 6. Closer inspect
shows that the regions in which rings have emerged can
considered as solidlike bodies rotating in a nearly conce
way. In each ring, the particles describe a hypocycloidal m
tion. Such a motion consists of alternating large inner spe
~implying small G) and smaller outer speeds~implying
larger G). This leads to the observed annuli ofP. For N
.57, all rings are formed. The whole~reptating! cluster can
then be approximated by a solid disk and this state is w
we compare with a ‘‘pancake.’’

A comparison of Figs. 7~a! and 7~b! shows a qualitative
agreement between the experimental and numerical res
The disagreement in both images at low radii and high p
ticle numbers is due to the fact that the time series in
experimental runs are too short for high particle numbers
fact, since the tracer sphere always starts at the wall of
cluster, it does not have enough time to travel toward
central region at highN.

C. Global quantities

1. Different mean frequencies of rotation

In Sec. III B we carried out a qualitative comparison
experiments and simulations. We now want to compare
results in a quantitative way by determining global char
terizing quantities. For this purpose, we first extract the
tation frequency of the cluster from the time series in t
experiments and in the simulations. Three different frequ
cies may be considered: the rotation frequency of the clu
around the center of the dish (f cc), the rotation frequency of
the cluster around the center of mass of the cluster (f cm), and
finally the rotation frequency of the center of mass of t
cluster around the center of the dish. The latter was analy
in the simulations, and was seen to be equal to the driv
frequency of the table for every particle number, while t
first two have a more complicated dependence onN, which
will be discussed here in more detail.

Figure 8 compares the rotation frequency of the clus
around the center of the dish in the numerical simulationf cc

sim

with that in the experimentf cc
expt. In the simulations the mean
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frequency of rotation is calculated by

f cc
sim5

1

2pN K (
i 51

N urW i3vW i u

urW i u2
L

t

, ~6!

whererW i and vW i refer to the reference frame of the movin
dish.

In the experiments we analyze the time series of the tra
sphere to derivef cc

expt. Here we suppose that the time scale
each measurement is long enough to represent the rot
frequency of the cluster. When the solid fraction (Nrp

2/R2) is
low the particles mix, and thus the tracer sphere is presen
all regions of the cluster. At high solid fractions mixing
not important, and it is assumed that the angular behavio
the spheres is the same regardless of the position of
sphere in the cluster.

Figure 8 shows the rotation mode (f cc.0) for low par-
ticle numbers, and the transition to the reptation modef cc

,0) for higher particle numbers. By comparingf cc
sim and

f cc
expt we find a good agreement forN.35 where the cluster is

in the reptation mode. For smaller values the scatter of
experimental data is larger. In addition, there is a noticea
disagreement forN,4. The higher value from simulations i
due to the fact that a single particle circles around the ce
of the dish because of the parabolic profile of the bottom@see
N51 in Fig. 6~b!#; the higher randomness of the trajectori
in the experiments decreases the rotation frequency.

The mean frequency of rotation of all simulated partic
around the center of mass of the cluster is given by

f cm
sim5

1

2pN K (
i 51

N rW i* 3vW i*

urW i* u2 L
t

. ~7!

rW i* andvW i* are the position and velocity of particlei relative
to the cluster:

rW i* 5rW i2
1

N (
j 51

N

rW j , vW i* 5vW i2
1

N (
j 51

N

vW j . ~8!

In Fig. 9 we comparef cm
sim with f cc

sim. Here it is seen that in
the rotation modef cm

sim is much smaller thanf cc
sim. This means

that it is the rotation of the particles around the center of
dish rather than the overall spin of the cluster which contr
utes to the appearance of what is called the rotation mo
However, at high solid fractions there is a convergence
both measures caused by the fact that the cluster radius
proaches the dish radius.

f cc
sim and f cm

sim are compared with an analytical value whic
we call the frequency of rotation of the hypocycloidf hyp. As
already mentioned, the global motion of the cluster at h
solid fractions appears as if a solid disk unrolls at the in
wall of a circle. Neglecting the slip between the disk and
wall, any point in the disk thus has a frequency of rotati
around its center of mass given by

f hyp5S 12
R

r d
D f d . ~9!
er
f
ion
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e
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If we assume that the particles cluster as a disk, its radiur d

is given byAN/prp . Hence we obtain

f hyp5S 12Ap

N

R

r p
D f d . ~10!

We distinguish between two different packing densitiesp:
First we assume a cubic packing~cub! of the cluster with
pcub5p/4, and second a random loose packing structure~rlp!
with prlp5p2/12 @25#.

Figure 9 shows bothf hyp
cub(N) and f hyp

rlp (N). It is seen that
the data points at high solid fractions (N.68) are close to
cubic and random loose packing structures. This confirms
idea of a solid ‘‘granular pancake’’ at highN. Although the
motion of a solidlike pancake is applicable forN.57, i.e., if
all rings are formed, the geometric approximation~10! is
only valid if p is nearly independent ofN, which is the case
for N.68.

2. Mean kinetic energy

In addition to the different frequencies of rotation of th
cluster, we now use a thermodynamical quantity to char
terize the behavior of the cluster in dependence onN,
namely, the mean kinetic energyEkin . In the numerical
simulationEkin is given by

Ekin
sim~N![K m

2N (
i 51

N

„vW i~ t !…2L
t

, ~11!

wherevW i(t) refers to the reference frame of the moving dis
In the experiment only the centerrWc of the tracer sphere is

known at given time intervalsDt520 ms. In this case the
mean kinetic energy is given by

FIG. 9. Comparison between two different numerically det
mined mean frequencies of rotation. The open circles show
frequency of rotationf cc

sim as given in Fig. 8 and the closed squar
describe the rotation of the particles around the center of mass~cm!
of the cluster. ForN.65, the closed squares are almost not visib
because they coincide with the open circles. The solid line descr
the frequency of rotationf hyp

cub obtained by the hypocycloid mode
@Eq. ~10!# with a cubic packing of the spheres, whereasf hyp

rlp is due
to a random loose packing.
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4076 PRE 61SCHERER, KÖTTER, MARKUS, GOLES, AND REHBERG
Ekin
expt~N![ K m

2N
„vc~ t !…2L

t

. ~12!

The velocity of the tracer spherevc is calculated in the fol-
lowing way: vc(t)5urWc(t1Dt)2rWc(t)u/Dt.

Figure 10 shows that the kinetic energy from simulatio
compares well with that from experiments. There are, ho
ever, two discrepancies: the experimental values are hig
than the numerical ones, and the scatter in the experime
data is higher for largeN. The first discrepancy is explaine
by the fact that the tracer sphere always starts in the o
regions of the cluster where the kinetic energy is higher,
stays predominantly far from the center. It is left as an op
question why this discrepancy does not vanish at smalN,
where particle mixing is more probable. The large expe
mental scatter is explained by the fact that in some cases
particles remain confined in certain regions of the clus
while in other cases perturbations drive particles into ot
regions. These different results obtained from confined
nonconfined particles are averaged out in the simulations
which the whole particle ensemble is considered. In spite
these discrepancies, Fig. 10 allows one to discern three
namic behaviors, which are more clearly defined than in F
9 and may be identified here as granular phases. The firs
(dEkin /dN50) corresponds to the isolation mode with mis
ing particle-wall collisions and constantf cm

sim. The transition
to the second one (dEkin /dN.0) corresponds to the trans
tion to reptation, where the mean kinetic energy increa
with N due to an increasing energy input from the wall. T
third one (dEkin /dN<0) reflects the increasing dissipatio
due to particle-particle collisions; it manifests itself in th
appearance of the totality of concentric rings.

IV. CONCLUSIONS

We used experimental and numerical setups to explo
cluster of spheres in a cylindrical dish, which is driven in
orbital motion. In the experiment we followed the trajecto
of a single particle. This was done by image processing
using a simple algorithm to extract and store the position
the tracer bead for a long time. In the numerical setup

FIG. 10. Dependence of the mean kinetic energyEkin on the
number of spheres.Ekin

expt is obtained from the experiments andEkin
sim

by the molecular dynamics simulations.
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chose a three-dimensional molecular dynamics simulat
Here the rotation of the particles, the interactions with t
wall, and the bottom profile were taken into account.

By analyzing the trajectories we obtained information
the short- and long-time behaviors of the particles. Moreo
we determined global characterizing quantities of the clus
namely, two different mean frequencies of rotation and
kinetic energy. The short-time trajectories of single sphe
in the experiments and in the numerical simulations show
that the system is very sensitive to the bottom profile of
cylindrical dish and the horizontal alignment.

A central question of the investigations was whether
cluster dynamics can be captured by a solid-body~‘‘pan-
cake’’! model. The experimental and numerical findings c
roborate this view for largeN. First, the trajectories of the
particles in the experiments and in the simulations show
features known from hypocycloids. Second, we found a go
agreement off cc and f cm with a theoretically derived depen
dency of the frequency of rotation onN which is based on
the hypocycloid model. Despite this there was no evide
of a hypocycloidal behavior for smallN. Here the particles in
the cluster move around the center of the dish in a disorde
swarm. This clustering is due to the dissipation of kine
energy by multiple collisions.

By analyzing the long-time series of the tracer sphere
the experiments and all particle positions in the simulatio
we observed a target pattern in the probability distributio
of the spheres for high solid fractions. This distribution
due to self-organization into rings, all of them describi
hypocycloidal trajectories.

For the global behavior of the cluster we demonstra
that it is important to distinguish between two different fr
quencies of rotation: one around the center of the circu
dish and one around the center of mass of the cluster. Fo
first case there is a good quantitative agreement between
experimental and numerical findings. By comparingf cc and
f cm in the numerical simulations we showed that it is main
the rotation of the cluster around the center of the dish wh
contributes to the rotation mode; in contrast, the reptat
mode is characterized by a convergence of both frequen
for increasingN.

Finally, we calculated the mean kinetic energyEkin and
found phase transitions forN values agreeing between ex
periments and simulations. In fact,dEkin /dN clearly charac-
terizes the transitions between rotation, reptation, and
ring formation.

By comparing experimental and numerical results in
simple system we established a reliable numerical code
simulating granular dynamics in three dimensions, to wh
we attach importance for the following two reasons: Fir
the numerical simulations can guide the experimental w
to uncover the underlying physics for the observed tran
tions. Second, in a more general view, the extractable th
modynamic quantities—in our work the mean kine
energy—may support the establishment of a basic theor
granular media, and in particular of granular pha
transitions.
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