
 

 
 
 
 
 

 
Interdependence in Replacement Decisions 

 
 Virtually every household in a modern economy owns a refrigerator, a personal computer and an 
automobile. Given the inter-temporal nature of replacement decisions, the existing literature has resorted to 
the technique of dynamic programming, and most recently to the theory of stochastic processes. This article 
focuses on micro replacement decisions. We study replacement of home appliances in the United States, and 
construct a test statistic that leads to conclude that replacement decisions might be correlated across 
appliances. Finally, we enrich our analysis by developing a theoretical model in which replacement decisions 
are interdependent.  
 
Subject classification: Economics. Keywords: replacement, stochastic process. 
 
1 Introduction 
 
 Technological innovations have contributed over the years to an increasing stock of 

durable goods—products that are not immediately consumed but provide a stream of 

services over a long period of time. Indeed, virtually every household in the United States, 

and to a great extent in the rest of the world, owns or has access to a microwave oven, a 

cloth washer, a computer, among many other durable goods. Despite the rich theoretical 

body of knowledge existing in different fields (e.g., economics and operations research) to 

analyze durable goods purchases, only in the past few years have applied researchers 

succeeded in identifying the forces behind replacement of durable goods.  

 Given that time plays an essential role in replacement decisions, dynamic 

programming has naturally arisen as an adequate mathematical tool to tackle the replacement 

problem. The most recent literature has also resorted to the theory of stochastic processes, and 

characterized the physical decay of a durable good as a Markov process in either discrete time 
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or continuous time. Even though enormous progress has been made on the theoretical 

ground, most empirical studies of acquisition and replacement of durable goods do not arise 

from a consumer or firm’s optimization process. Instead, they present ad-hoc statistical 

models developed from the techniques of discrete choice and duration analysis. Exceptions, 

among others, are the work of Dubin and McFadden (1984), Rust (1987), Lai, Leung, Tao, 

Wang (2000), and Martin (2001). 

2 The Model 
 
 Our statistical model is based on work by Ye (1990). Ye's replacement model 

assumes that the instantaneous maintenance and operation cost increases stochastically with 

physical deterioration. One appealing feature of his set-up is that it gives rise to a 

parsimonious structural model that can be fitted to real data. Ye assumes that in every instant 

of time the consumer or firm must decide either to continue paying a rising maintenance and 

operation cost for the deteriorating piece of equipment; or, to sell it in the secondary market, 

and pay a fixed cost to purchase a new piece of equipment with a guaranteed low initial 

maintenance and operation cost. The objective function in this model is the expected total 

discounted cost of maintenance and operation as well as of purchasing. 

 The instantaneous maintenance and operating cost is represented by xt. This may also 

be indicative of the state of the equipment. A higher xt indicates a more physically deteriorated 

piece of equipment. The evolution of xt is described by an arithmetic Brownian motion with 

constant drift, b, and instantaneous volatility, σ, where b>0 and σ≥0: 

 dxt = b dt + σ dWt        (1) 
 
where dWt represents an increment of a standard Wiener process. 
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The expected discounted total cost of obtaining the required service from this piece of 

equipment is given by: 

K(x)=E[ ]xxdsxe 0s0

rs =∫
∞ −        (2) 

 
where xs evolves according to (1), r is the discount rate, and x0 represents the state of the piece 

of equipment at time zero, which does not necessarily equal that of a new one, x*. 

 The installation cost of new equipment is a fixed amount, C
~

, and the scrap value of 

the previous equipment is zero. When x reaches x , an upper barrier, replacement takes place 

and the following condition is satisfied:  

 K( x ) = C
~

 + K(x*)        (3) 

That is, the total cost right before replacement, )x(K , equals the total cost after replacement, 

K(x*), plus the cost of installing a new piece of equipment, C
~

.  

The function K(x) is assumed bounded to avoid the problem of explosive behavior: 

 ∞<∞→ )x(Klimx         (4) 

Ye shows that the solution of K(x) is: 
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where λ is the positive root of the characteristic equation (1/2)σ2p2+bp−r=0. The optimal 

upper barrier is unique, and can be found from the condition K'( x )=0:  

 1 + λ(rC
~

+x*−x ) = exp(λ(x*−x ))      (6) 
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3 An Empirical Application of Replacement of Home Appliances 

This section is divided into four parts. In section 3.1, we estimate replacement 

models for refrigerators and water heaters using a sample of U.S. households from the 

Residential Energy Consumption Survey (RECS). Based upon our estimation results of 

Section 3.1, in Section 3.2 we test the dependence of replacement decisions across 

appliances. In section 3.3 we develop a more general model where households consider the 

replacement of more than one appliance at a time. Finally, in Section 3.4, we present a 

simulation exercise in which replacement decisions are correlated.  

3.1 A Replacement Model 

Consider the Wiener process, {x(t)} of (1) when the upper barrier, x , is determined 

by (6). From the theory of stochastic processes (see Cox and Miller, 1965, pp. 219-221), the 

transition probability density function (p.d.f.) of {x(t)}, p(x, t), must be the solution to the 

differential equation: 
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∂σ  (x< x ),      (7) 

subject to the boundary conditions: 

 p(x, 0)=δ(x−x*),        (8) 

 p( x , t)=0 (t>0),        (9) 

where x  is defined by the implicit function H( x , b, σ2)≡1+λ(rC+x*−x )−exp[λ(x*−x )]=0. 

 Equation (7) the Kolmogorov forward equation describes the evolution of the 

p.d.f. p(x, t) over time. Condition (8) states that, at time t=0, p(x, t) is located entirely at the 

point x=x*, where δ(.) represents the Dirac delta function. Condition (9) states that p(x, t) 

must vanish at x= x  for all t. That is, the process is terminated if x  is ever reached. 
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The p.d.f. of the first passage time for the Wiener process {x(t)}, T, can be obtained 

once we find the solution for the density p(x, t) from (7), (8) and (9) (see Cox and Miller, 

pp. 219-225, or Lancaster, 1990, pp. 118-121): 

gT(t|b, σ, x , x*)= 
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Its survivor function, GT(t), is given by: 

 GT(t|b,σ, x , x*)= 
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where Φ(.) represents the cumulative distribution function of a standard normal, and x  is 

given by the implicit function H( x , b, σ2)=0. 

 In order to calibrate our model, we take a sample from the Residential Energy 

Consumption Survey (RECS). The RECS is a statistical survey of the U.S. Department of 

Energy that collects energy-related data for occupied primary housing units in the 50 states 

and District of Columbia. Our sample was taken from the RECS 1990, which contains 

approximately 5,100 households, out of which 3,398 are homeowners.  

One shortcoming of the RECS is that it does not provide information on 

replacement times. It only records current equipment ages in intervals: category 

01=equipment is less than 2 years old, category 02=equipment is between 2 and 4 years 

old, category 03= equipment is between 5 and 9 years old, category 04= equipment is 

between 10 and 19 years old, and category 05= equipment is 20 years old or older. 

Therefore, the model parameters cannot be estimated directly from the p.d.f. of replacement 

times in (10). Instead, the p.d.f. of equipment age, U, must be used. It can be shown that an 
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asymptotic approximation for the p.d.f. of U can be obtained from the renewal theorem (see 

Fernandez, 2000, for the technical details): 

fU(u|b, σ, x , x*)=
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In turn, the cumulative distribution function of equipment age or elapsed duration is 

given by 

FU(u|b, σ, x , x*) 
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 Characteristics of household 'i' are incorporated into the model through ( x −x*)i/σi: 

 
i

i
* )xx(

σ
−

=exp(ββββ′zi)        (14) 

where ββββ is a vector of parameters, and zi represents a vector of household characteristics. This 

functional form ensures the non-negativity of ( x −x*)i/σi. For simplicity, the ratio bi/σi is 

assumed to be constant across households, and equal to b/σ. Under these extra assumptions, an 

asymptotic approximation to the likelihood function of n independent observations is given 

by: 
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where b~ ≡b/σ.  
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 Estimates of ( x −x*)i, bi, σi for household 'i' can be obtained by numerical solution 

from equation (16), once b
~

 and ββββ have been estimated. 

 1 + λ i(r iC
~

+(x*−x )i) = i
*

i )x(x e −λ   i=1, 2, ..., n   (16) 

where λ i represents the positive root of the characteristic equation (1/2)σi
2p2+bip−r=0. 

However, the likelihood function in (15) cannot be fitted to the RECS data because 

we do not observe the equipment ages. Instead, we are given only the intervals into which 

the age of each household’s appliance falls. Therefore, the relevant likelihood function 

takes the form: 
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where FU(.) is given by (13), dj=1 if age category = j, with j=1, 2, 3, 4 (for instance, d1=1 if 

age is less than two years old, and 0 otherwise), and u1=2, u2=5, u3=10, and u4=20.  

 As before, estimates of ( x -x*)i, bi, σi can be obtained from equation (16) for 

household ‘i’ once we have obtained estimates for b~  and β. 

Our application deals with replacement of refrigerators and water heaters. We first 

estimate separate replacement models for each appliance, and then test whether 

replacement decisions are correlated. Figure 1 illustrates how replacement sales have 

become a sizeable share of total annual shipments of refrigerators and electric water 

heaters. Indeed, this holds for all consumer durable goods with high market penetrations.  
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Figure 1 Estimated Annual Replacement Units as a Percentage of Total Annual Shipments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Own elaboration based upon the distribution of lifetime equipment calibrated with the RECS data, 
and data on annual shipments of appliances from the Statistical Abstract of the United States, various issues. 
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refrigerator in 1990 to be $1,355. Our estimate of the annual operating and maintenance 

costs of a new refrigerator is $105, which corresponds with the annual operation cost of 

equipment aged two years or less reported in the RECS. Our estimate of the average price 

of a new electric water heater in 1990 is $662, and it is based on information provided in 

the RECS 1990 and the "National Construction Estimator" (1990). From the RECS 1990 its 

annual operating and maintenance cost is estimated to be $241.  

The regressors in the replacement model of refrigerators are a constant, the age of 
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that takes on the value of 1 if the household has a poor credit rating and 0 otherwise. 

Households are classified as having a poor credit rating in case they have received aid in 

terms of food stamps, unemployment benefits or income from AFDC (Aid to Families with 

Dependent Children) during the 12 months prior to the conduction of the survey. 

Table 1 presents the estimation results for the refrigerator data. The exogenous 

variables that are statistically significant at the 5 percent level are the age of the head of the 

household and the size of the refrigerator. In particular, the older the head of the household, 

the less likely he/she will replace his/her piece of equipment. It is possible that older people 

have higher discount rates or, alternatively, that their preferences may change more slowly. 

By contrast, a greater refrigerator size accelerates replacement. This may be due to the fact 

that size is highly correlated with operating costs, after controlling for income, family size, 

and electricity rate, among others factors, as Table 2 shows. Although income and family 

size are not statistically significant at the conventional levels, they have the expected sign. 

That is, as income and family size increase, the gap between x  and x* shrinks making 

replacement more likely.  

Table 1. Replacement Model for Refrigerators 

 
Regressor Parameter 

estimate 
Standard error Asymptotic t-

statistic 
Constant 2.529 0.145 17.444* 
Age head of household (per 10 years) 0.099 0.013 7.679* 
Monthly income (per $10,000) -0.006 0.010 −0.538 
Urban area dummy (=1 if yes) 0.046 0.040 1.149 
Family size (number of members) −0.010 0.015 −0.703 
Refrigerator size (cubic3) −0.040 0.006 7.218* 
Poor credit rating dummy (=1 if yes) −0.067 0.082 −0.819 
Standardized drift, b/σ 0.624 0.032 19.375* 

Log of likelihood function at convergence =−3,612; n= 2,440 
*: Statistically significant at 5% level for H0: β=0 against H1: β≠0. 
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Table 2. Refrigerator Monthly Operating Cost Modeled as a Linear Function of Exogenous Regressors 
 

Regressor Parameter estimate Standard error t-statistic 
Constant  -48.145 7.567 −6.362* 
Monthly income (per $10,000) 1.847 0.679  2.721* 
Urban area dummy (=1 if yes) 7.831 2.707  2.893* 
Family size (number of members) −0.634 0.831 −0.764 
Refrigerator size (feet3) 5.053 0.348  14.541* 
Average electricity rate ($/kwh) 0.947 0.056  16.906* 

R2=0.194, Adjusted R2= 0.193; n=2,440 
*: Statistically significant at 5% level for H0: β=0 against H1: β≠0. 
 

The estimation results for water heaters are presented in Table 3. The regressors are 

in this case a constant, age of the head of the household, monthly income, a dummy 

variable for those households that live in an urban area, a dummy variable for those 

households for which natural gas is available in their neighborhood, the tank size of the 

water heater (gallons), family size, and a dummy variable for those households with a poor 

credit rating. As we see, the regressors statistically significant at the 5 and 10 percent levels 

are the age of the head of the household, natural gas availability, tank size, and the poor 

credit rating dummy.  

Table 3  Replacement Model for Electric Water Heaters 
 

Regressor Parameter estimate Standard error Asymptotic t-
statistic 

Constant 1.249 0.179 6.939* 
Age head of household (per 10 years) 0.137 0.018 7.449* 
Monthly income (per $10,000) -0.069 0.140 −0.491 
Urban area dummy (=1 if yes) -0.064 0.059        −1.086 
Natural gas availability (=1 if yes) 0.219 0.057  3.830* 
Tank size (gallons) −0.004 0.002   −1.757** 
Family size (number of members) 0.146 0.090 1.617 
Poor credit rating dummy (=1 if yes) 0.039 0.021    1.866** 
Standardized drift, b/σ 0.516 0.025 20.615* 

 
Log of likelihood function at convergence =−2,612.9; n= 1,057 
*: Statistically significant at 5% level for H0: β=0 against H1: β≠0. 
** Statistically significant at 10% level for H0: β=0 against H1: β≠0. 
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As before, replacement is less likely as the head of the household becomes older. 

Natural gas availability and a poor credit rating have the same effect. In particular, natural 

gas availability might delay replacement because of differentials in operation costs between 

natural gas and electric powered equipment. Indeed, those households that would like to 

reduce operation costs by switching from electric to natural gas equipment cannot do it 

when natural gas is not available in their neighborhoods. Consequently, replacement of 

electric equipment becomes less likely. A poor credit rating delaying replacement is self-

evident. Like in the case of refrigerators, a larger equipment size makes replacement more 

likely because of its high and positive correlation with operation costs.  

Table 4 presents estimates for the difference between the threshold operation cost x  

and the operation cost of new equipment x*, equipment lifetime, the drift and the standard 

deviation of the arithmetic Brownian process, b and σ, respectively, and for the total 

expected discounted costs for both appliances. Our estimate of the expected lifetime of a 

refrigerator is approximately 16.5 years. If we start up with new equipment, the expected 

total discounted cost amounts to $4,271.87.  

Table 4. Estimates of x −x*, b, σ, Expected Equipment Lifetime and Total Discounted Cost 
 

Mean Standard deviation Estimates 
Refrigerator Water 

heater 
Refrigerator Water 

heater 
x −x* ($) 243.2 139.9 42.5 26.1 

b ($) 16.3 11.3 6.5 4.7 
σ ($) 26.1 21.8 10.4 9.2 

Expected lifetime (years) 16.5 13.7 4.3 3.4 
Total discounted cost ($) 4,271.6 5,539.3 596.8 309.6 

 

We should point out that our lifetime estimate is fairly close to that of the industry: 

an average lifetime of 16 years with a range of 10 (low)-20 (high) years (source: "A Portrait 
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of the U.S. Appliance Industry 1992", Appliance, September 1992, Dana Chase 

Publications). For water heaters, our estimates of the expected lifetime and expected total 

cost are 13.7 years and $5,526.6, respectively. Like for refrigerators, our estimate of 

equipment lifetime is quite close to that given by the industry in 1992: 14 years with a 

range of 10 (low)-18 (high) years.  

The overall fit for both models is quite good, as Table 5 shows. The percent error 

for all age categories of refrigerators is below 10 percent, being the greatest for equipment 

that are less than 2 years old, and between 5 and 9 years old. For water heaters in turn, the 

greatest percent error is below 5 percent in absolute value. Finally, Table 6 shows the 

impact of marginal changes in the value of the regressors on the probability of replacement 

over time. For example, a cubic-foot increase in refrigerator size leads to an increase of 

9.93 per cent in the probability of replacement within 20 years. The overall probability of 

replacement is very small within the first 9 years, as we might have expected.  

Table 5. Fitted and Actual Frequency for Each Age Category 

 
Fitted Actual Percent error Age Category 

Refrigerator Water 
heater 

Refrigerator Water 
heater 

Refrigerator Water 
heater 

Less than 2 years old 0.124 0.156 0.136 0.153  8.8 −1.9 
2-4 years old 0.185 0.228 0.187 0.227  1.1 −0.4 
5-9 years old 0.289 0.289 0.270 0.299 −7.0 3.3 

10-19 years old 0.311 0.242 0.318 0.234  2.2 −4.7 
Over 20 years old 0.090 0.084 0.088 0.086 −2.3 2.3 
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Table 6 Impact on the Probability of Replacement due to Marginal Changes in the Regressors 
 

 Time Period (years) 
1-3 7-9 1-20 Regressor 

Refrigerator Water 
heater 

Refrigerator Water 
heater 

Refrigerator Water 
heater 

Age of head of household 
(per 10 years) 

−5.61e-4 −0.065 −0.033 −0.062 −0.256 −0.366 

Monthly income 
(per $10,000) 

1.07e-6 0.003 0.002 0.031 0.016 0.285 

Equipment size (*) 2.17e-4 1.90e-4 0.013 0.002 0.099 0.011 

Probability of replacement 4.4e-4 0.011 0.088 0.131 0.730 0.796 

 
Notes: Marginal impacts are evaluated at sample means. (*): Equipment size is measured in feet for 
refrigerators and in gallons for water heaters. 

 
3.2 Are Replacement Decisions Independent? 
 
 In the previous section we modeled household decisions to replace a given set of 

appliances independently. However, it may be the case that such decisions are indeed 

correlated. Theoretically, the demand for durable goods is derived from a utility function 

that depends on the services these goods provide over time. Therefore, it would not be 

surprising to observe some degree of either substitution or complementarity in replacement 

decisions of different durable goods. 

 In order to test the hypothesis of independent replacement decisions for an 

individual household, we constructed a set of generalized residuals (Gourieroux and 

Monfort, 1987) based on the difference between observed and expected elapsed duration.  

In our model, the expectation of equipment age (elapsed duration) is given by:  

 2
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 In order to test the independence of replacement decisions, we utilized a score test 

of the form: 
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where i1ω̂  and i2ω̂  represent the estimates of the generalized residuals of appliance 1 

(refrigerator) and 2 (water heater) for household i, respectively. This test is asymptotically 

distributed as chi-square with 1 degree of freedom (see Gourieroux and Monfort for further 

details).  

 Each residual is computed as the difference between the observed equipment age 

and its expected value, evaluated at the parameter estimates of Section 3.1:  
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 Only those households that own both appliances are considered in our computations. 

We found positive correlation among residuals of refrigerators and water heaters: 11.6 

percent, and ξ n=20.8, being the 95-percent critical value for a χ2 (1) equal to 3.84. That is, 

we reject at the 95-percent confidence level the null hypothesis of independence of the 

residuals of the replacement models of refrigerators and water heaters. In addition, the 

positive correlation between the residuals indicates that unobservable factors that either 

accelerate or delay replacement of one appliance will also affect the other in the same 

direction.  

3.3 Estimating Replacement Decisions Simultaneously: Minimum and Maximum 

Stopping Times 

 Let t1, t2, ..., be a sequence of independent random variables. An integer-valued 

random variable T is said to be a stopping time for the sequence t1, t2, .., if the event {T=n} is 



 15

independent of tn+1, tn+2, for all n=1, 2, ... This means that we observe the tn's in sequential 

order and N denotes the number observed before stopping. If T=n, then we have stopped after 

observing t1, t2, ..., tn and before observing tn+1, tn+2, ...(see Ross, 1996, page 104).  

 Let us now consider two independent stopping times, T1 and T2, with corresponding 

cumulative density functions 
1TF and 

2TF , and density functions 
1Tf and

2Tf . For example, let us 

think of two home appliances whose times of either technical failure or obsolescence are 

independent of one another. This is the assumption in Section 3.1. But, how do we reconcile 

the assumption of independent stopping times with the evidence in Section 3.2? One way to 

go about it is by thinking that, although stopping times are independent, households replace 

their appliances jointly.  

 For instance, a household might wait and replace its obsolete microwave oven until the 

cutting-edge technology of refrigerators becomes available at the market place.1 Or, 

alternatively, the household might decide to replace its microwave oven and refrigerator at 

once, as soon as the technology of the former falls behind the new trends.  

 If that is so, then we can find the minimum and maximum bounds for the replacement 

time of both appliances. Let Z1=max(T1, T2) and Z2=min (T1, T2). The probability density 

function of Z1 and Z2 are given, respectively, by: 

 )z(f)z(F)z(F)z(f)z(f
21211 TTTTZ +=    z≥0   (21) 

 )z(f)z(f)z(f)z(f
1212 ZTTZ −+=    z≥0   (22) 

 One way to model joint replacement decisions is by assuming that replacement will 

take place somewhere between the minimum and the maximum stopping times . Therefore, 

we can define a new random variable W=Z2−Z1 that denotes the time elapsed between the 
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minimum and the maximum stopping times (Figure 2). Intuitively, households might replace 

both appliances right after any of them either becomes obsolete or breaks down. Or, 

alternatively, they might as well wait until both appliances render inadequate to their needs. 

The exact time at which households will replace both appliances is therefore random, and will 

be located somewhere between Z1 and Z2.  

Figure 2 Joint Replacement Decisions 
 
 
 
 
 
 
 
 
 
 

 Now, in order to determine the distribution function of W, we make use of 

convolutions: 
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 Now, given that both Z1 and Z2 are stopping times, Z2 is independent of Z1. Therefore, 

the distribution function of W boils down to: 

 11Z1
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21

+= ∫
∞

   w≥0   (23) 

where fW(w) is the convolution of )z(f 1Z1
 and )w(f

2Z .  

 In our model, the distribution function of the maximum is given by: 

                                                                                                                                                                                 
1 On the other hand, a household's postponing the purchase of new durable goods might be indicative of 
borrowing constraints.  

 

Z1=min(T1, T2) Z2=max(T1, T2) 

Replacement of appliances 1 and 2 
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 In turn the distribution function of the minimum is given by: 
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 Now suppose we have a cross section of n independent pairs of stopping times for n 

households. Then the likelihood function of the sample is given by: 
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where wi=Z2i−Z1i, Z2i=max(T1i, T2i) and Z1i=min(T1i, T2i).  

 How do we go about approximating the integral 11iZ1
0

Z dz)zw(f)z(f
i2i1

+∫
∞

? We know, 

from our estimation results, that the probability mass for a stopping time greater than some 
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constant M, large enough (say M=60), goes to zero. Therefore the above improper integral can 

be suitably truncated: 

 1iiZ1

M

0
Z11iZ1

0
Z dz)zw(f)z(fdz)zw(f)z(f

i2i1i2i1
+≈+ ∫∫

∞

 

Therefore the log likelihood function of the sample becomes: 
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 In turn the integral i1i1iZi1

M

0
Z dz)zw(f)z(f

i2i1
+∫  can be approximated by some numeric 

method, such as the trapezoidal rule:2 

 ( )m2m210
1

11iZ1

M

0
Z yy2...y2y2y

2
zdz)zw(f)z(f

i2i1
+++++∆≈+ −∫   (28) 

where 
m
Mz1 =∆ , )zw(f)z(f)z(gy 1iZ1Z1 i2i1

+≡= , and g(z1k)=g(k∆z1), k=0, 1, 2, ..., m.  

 As in Section 3.1, the parameters of the distributions of Z1i and Z2i, i=1, 2,..., n, may be 

modeled as functions of household characteristics and appliances features.  

3.4 A Simple Simulation Example on Replacement Interdependence 

 The model of the above section cannot be fitted to our RECS data set because it 

requires that we observe replacement times (i.e., complete durations). Therefore, in order to 

illustrate interdependence in replacement decisions, we present a simplified framework, but 

which goes along the lines of the two previous sections.  

 Let X=(X1,…, XN) be a random vector with cdf F. F can be decomposed into its 

univariate margins and another cdf called a copula. Let us assume that the univariate cdfs F(j) 

                                                           
2 The area of the first trapezoid is 1/2(y0+y1)∆z1, the area of the second trapezoid is 1/2(y1+y2)∆z1, etc. up to 
the area of the nth trapezoid, which is 1/2(yn−1+yn)∆z1.  
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are continuous. Then the random variables Xj can be transformed to (0, 1)-uniforms F(j)(Xj). 

The cdf C of the vector Y of transformed random variables Yj=F(j)(Xj) is called the copula 

pertaining to F. That is, 

 C(u)=P(Y1≤u1, …, YN≤uN)= )u(F),...,u(F(F N
1
)N(1

1
)1(

−− )    (29) 

where 1
)j(F−  is the quantal function of F(j). Conversely, one can go back to the original cdf F 

from the copula 

 F(x)= C(F(1) (x1),…, F(N) (xN))       (30) 

(see Reiss and Thomas, 2001). 
 
 Let us take two random variables T1 and T2, which are exponentially distributed, and 

that represents complete durations. For simplicity, we take a normal copula 

 C(u,ρ)= ))u(G),u(G( 2
1

21
1

1
−−Φ        (31) 

where Gi(.) is the cdf of an exponential random variable. The density is  

 




 −ρ−ρ=ρ −−

ζζu )1('
2
1exp||),(c 12

1

      (32) 

with ))u(G),u(G( 2
1

21
1

1
−−=ζ .  

 The advantage of taking the normal copula is that the parameter ρ is the Pearson 

correlation coefficient of the transformed data.  

 Now let us define W=max(T1,T2)−min(T1,T2), as in section 3.3. Table 7 presents 

simulations for W under independent random variables T1 and T2, and assuming a degree of 

correlation between the two random variables using the copulas approach. As ρ increases, the 

time elapsed between complete stopping times (Figure 2) decreases. That is, it becomes more 

likely that both appliances are replaced short after the first one either breaks down or becomes 

obsolete.  
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Table 7 Time elapsed between the minimum and the maximum stopping times, W 

  Normal Copula 

Statistic (years) 
Independent 

r.v. 
 

ρρρρ=0 ρρρρ=0.1 ρρρρ= 0.5 ρρρρ=0.7 ρρρρ=0.9 ρρρρ=1 
Average  7.60 7.61 7.24 5.49 4.34 2.76 1.64 
Median  5.24 5.22 4.92 3.53 2.72 1.64 1.13 

Std 7.65 7.77 7.49 6.03 4.94 3.31 1.66 
Interquartile range 8.30 8.32 7.95 6.00 4.83 3.09 1.79 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Maximum 71.41 86.54 82.28 68.70 66.09 46.94 16.76 

Sample size 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
 
Notes: T1 and T2 are assumed exponentially distributed with parameters 0.12 and 0.15, respectively.  
 
 It is worth noticing that the case of ρ=0 gives a very similar result to that obtained 

under the assumption of independent exponentially distributed random variables. 

5 Summary and conclusions 

 The core of this paper is the empirical results for replacement of home appliances in 

the United States, and the theoretical model of multiple replacement decisions. Based upon 

individual replacement models for electric water heaters and refrigerators, we concluded 

that demographics and appliance features might either accelerate or delay replacement. In 

addition, we constructed a test statistic that led us to conclude that replacement decisions 

might be correlated across appliances. Based upon this evidence, we enriched our model by 

allowing households to replace a set of appliances simultaneously rather than each one in 

isolation. Although the estimation process of this extension may be computationally 

intensive, it is still tractable.  
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