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Abstract: This work addresses the problem of Shannon entropy estimation in countably infinite
alphabets studying and adopting some recent convergence results of the entropy functional,
which is known to be a discontinuous function in the space of probabilities in ∞-alphabets.
Sufficient conditions for the convergence of the entropy are used in conjunction with some deviation
inequalities (including scenarios with both finitely and infinitely supported assumptions on the
target distribution). From this perspective, four plug-in histogram-based estimators are studied
showing that convergence results are instrumental to derive new strong consistent estimators for
the entropy. The main application of this methodology is a new data-driven partition (plug-in)
estimator. This scheme uses the data to restrict the support where the distribution is estimated by
finding an optimal balance between estimation and approximation errors. The proposed scheme
offers a consistent (distribution-free) estimator of the entropy in ∞-alphabets and optimal rates of
convergence under certain regularity conditions on the problem (finite and unknown supported
assumptions and tail bounded conditions on the target distribution).

Keywords: Shannon entropy estimation; countably infinite alphabets; entropy convergence results;
statistical learning; histogram-based estimators; data-driven partitions; strong consistency; rates
of convergence

1. Introduction

Shannon entropy estimation has a long history in information theory, statistics, and computer
science [1]. Entropy and related information measures (conditional entropy and mutual information) have
a fundamental role in information theory and statistics [2,3] and, as a consequence, it has found numerous
applications in learning and decision making tasks [4–15]. In many of these contexts, distributions are
not available and the entropy needs to be estimated from empirical data. This problem belongs to the
category of scalar functional estimation that has been thoroughly studied in non-parametric statistics.

Starting with the finite alphabet scenario, the classical plug-in estimator (i.e., the empirical distribution
evaluated on the functional) is well known to be consistent, minimax optimal, and asymptotically
efficient [16] (Sections 8.7–8.9). More recent research has focused on looking at the so-called large alphabet
(or large dimensional) regime, meaning a non-asymptotic under-sampling regime where the number of
samples n is on the order of, or even smaller than, the size of the alphabet denoted by k. In this context,
it has been shown that the classical plug-in estimator is sub-optimal as it suffers from severe bias [17,18].
For characterizing optimality in this high dimensional context, a non-asymptotic minimax mean square
error analysis (under a finite n and k) has been explored by several authors [17–21] considering the
minimax risk

R∗(k, n) = inf
Ĥ(·)

sup
µ∈P(k)

EX1,...Xn∼µn

{(
Ĥ(X1, . . . , Xn)− H(µ)

)2
}
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where P(k) denotes the collection of probabilities on [k] ≡ {1, . . . , k} and H(µ) is the entropy of µ

(details in Section 2). Paninski [19] first showed that it was possible to construct an entropy estimator
that uses a sub-linear sampling size to achieve minimax consistency when k goes to infinity, in the
sense that there is a sequence (nk) = o(k) where R∗(k, nk) −→ 0 as k goes to infinity. A set of results by
Valiant et al. [20,21] shows that the optimal scaling of the sampling size with respect to k is O(k/log(k)),
to achieve the aforementioned asymptotic consistency for entropy estimation. A refined set of results
for the complete characterization of R∗(k, n), the specific scaling of the sampling complexity, and the
achievability of the obtained minimax L2 risk for the family {P(k) : k ≥ 1} with practical estimators
have been presented in [17,18]. On the other hand, it is well-known that the problem of estimating
the distribution (consistently in total variation) in finite alphabets requires a sampling complexity
that scales as O(k) [22]. Consequently, in finite alphabets the task of entropy estimation is simpler
than estimating the distribution in terms of sampling complexity. These findings are consistent with
the observation that the entropy is a continuous functional of the space of distributions (in the total
variational distance sense) for the finite alphabet case [2,23–25].

1.1. The Challenging Infinite Alphabet Learning Scenario

In this work, we are interested in the countably infinite alphabet scenario, i.e., on the estimation
of the entropy when the alphabet is countably infinite and we have a finite number of samples.
This problem can be seen as an infinite dimensional regime as the size of the alphabet goes unbounded
and n is kept finite for the analysis, which differs from the large dimensional regime mentioned above.
As argued in [26] (Section IV), this is a challenging non-parametric learning problem because some
of the finite alphabet properties of the entropy do not extend to this infinite dimensional context.
Notably, it has been shown that the Shannon entropy is not a continuous functional with respect to
the total variational distance in infinite alphabets [24,26,27]. In particular, Ho et al. [24] (Theorem 2)
showed concrete examples where convergence in χ2-divergence and in direct information divergence
(I-divergence) of a set of distributions to a limit, both stronger than total variational convergence [23,28],
do not imply the convergence of the entropy. In addition, Harremoës [27] showed the discontinuity of
the entropy with respect to the reverse I-divergence [29], and consequently, with respect to the total
variational distance (the distinction between reverse and direct I-divergence was pointed out in the
work of Barron et al. [29]). In entropy estimation, the discontinuity of the entropy implies that the
minimax mean square error goes unbounded, i.e.,

R∗n = inf
Ĥ(·)

sup
µ∈H(X)

EX1,...Xn∼µn

{(
Ĥ(X1, . . . , Xn)− H(µ)

)2
}
= ∞,

whereH(X) denotes the family of finite entropy distribution over the countable alphabet set X (the
proof of this result follows from [26] (Theorem 1) and the argument is presented in Appendix A).
Consequently, there is no universal minimax consistent estimator (in the mean square error sense) of
the entropy over the family of finite entropy distributions.

Considering a sample-wise (or point-wise) convergence to zero of the estimation error (instead of
the minimax expected error analysis mentioned above), Antos et al. [30] (Theorem 2 and Corollary 1)
show the remarkable result that the classical plug-in estimate is strongly consistent and consistent
in the mean square error sense for any finite entropy distribution (point-wise). Then, the classical
plug-in entropy estimator is universal, meaning that the convergence to the right limiting value H(µ)

is achieved almost surely despite the discontinuity of the entropy. Moving on the analysis of the
(point-wise) rate of convergence of the estimation error, Antos et al. [30] (Theorem 3) present a finite
length lower bound for the error of any arbitrary estimation scheme, showing as a corollary that no
universal rate of convergence (to zero) can be achieved for entropy estimation in infinite alphabets [30]
(Theorem 4). Finally, constraining the problem to a family of distributions with specific power tail
bounded conditions, Antos et al. [30] (Theorem 7) present a finite length expression for the rate of
convergence of the estimation error of the classical plug-in estimate.
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1.2. From Convergence Results to Entropy Estimation

In view of the discontinuity of the entropy in ∞-alphabets [24] and the results that guarantee
entropy convergence [25–27,31], this work revisits the problem of point-wise almost-sure entropy
estimation in ∞-alphabets from the perspective of studying and applying entropy convergence results
and their derived bounds [25,26,31]. Importantly, entropy convergence results have established
concrete conditions on both the limiting distribution µ and the way a sequence of distributions
{µn : n ≥ 0} converges to µ such that limn→∞ H(µn) = H(µ) is satisfied. The natural observation
that motivates this work is that consistency is basically a convergence to the true entropy value that
happens with probability one. Then our main conjecture is that putting these conditions in the context
of a learning task, i.e., where {µn : n ≥ 0} is a random sequence of distributions driven by the classical
empirical process, will offer the possibility to study a broad family of plug-in estimators with the
objective to derive new strong consistency and rates of convergence results. On the practical side,
this work proposes and analizes a data-driven histogram-based estimator as a key learning scheme,
since this approach offers the flexibility to adapt to learning task when appropriate bounds for the
estimation and approximation errors are derived.

1.3. Contributions

We begin revisiting the classical plug-in entropy estimator considering the relevant scenario
where µ (the unknown distribution that produces the i.i.d. samples) has a finite but arbitrary large and
unknown support. This is declared to be a challenging problem by Ho and Yeung [26] (Theorem 13)
because of the discontinuity of the entropy. Finite-length (non-asymptotic) deviation inequalities and
intervals of confidence are derived extending the results presented in [26] (Section IV). From this, it is
shown that the classical plug-in estimate achieves optimal rates of convergence. Relaxing the finite
support restriction on µ, two concrete histogram-based plug-in estimators are presented, one built
upon the celebrated Barron-Györfi-van der Meulen histogram-based approach [29,32,33]; and the other
on a data-driven partition of the space [34–36]. For the Barron plug-in scheme, almost-sure consistency
is shown for entropy estimation and distribution estimation in direct I-divergence under some mild
support conditions on µ. For the data-driven partition scheme, the main context of application of this
work, it is shown that this estimator is strongly consistent distribution-free, matching the universal
result obtained for the classical plug-in approach in [30]. Furthermore, new almost-sure rates of
convergence results (in the estimation error) are obtained for distributions with finite but unknown
support and for families of distributions with power and exponential tail dominating conditions.
In this context, our results show that this adaptive scheme has a concrete design solution that offers
very good convergence rate of the overall estimation error, as it approaches the rate O(1/

√
n) that is

considered optimal for the finite alphabet case [16]. Importantly, the parameter selection of this scheme
relies on, first, obtaining expressions to bound the estimation and approximation errors and, second,
finding the optimal balance between these two learning errors.

1.4. Organization

The rest of the paper is organized as follows. Section 2 introduces some basic concepts, notation,
and summarizes the main entropy convergence results used in this work. Sections 3–5 state and
elaborate the main results of this work. Discussion of the results and final remarks are given in
Section 6. The technical derivation of the main results are presented in Section 7. Finally, proofs of
auxiliary results are relegated to the Appendix Section.

2. Preliminaries

Let X be a countably infinite set and let P(X) denote the collection of probability measures in
X. For µ and v in P(X), and µ absolutely continuous with respect to v (i.e., µ � v), dµ

dv (x) denotes
the Radon-Nikodym (RN) derivative of µ with respect to v. Every µ ∈ P(X) is equipped with its
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probability mass function (pmf) that we denote by fµ(x) ≡ µ ({x}), ∀x ∈ X. Finally, for any µ ∈ P(X),
Aµ ≡

{
x ∈ X : fµ(x) > 0

}
denotes its support and

F (X) ≡
{

µ ∈ P(X) :
∣∣Aµ

∣∣ < ∞
}

(1)

denotes the collection of probabilities with finite support.
Let µ and v be in P(X), then the total variation distance of µ and v is given by [28]

V(µ, v) ≡ sup
A∈2X

|v(A)− µ(A)| , (2)

where 2X denotes the subsets of X. The Kullback–Leibler divergence or I-divergence of µ with respect
to v is given by

D(µ||v) ≡ ∑
x∈Aµ

fµ(x) log
fµ(x)
fv(x)

≥ 0, (3)

when µ� v, while D(µ||v) is set to infinite, otherwise [37].
The Shannon entropy of µ ∈ P(X) is given by [1,2,38]:

H(µ) ≡ − ∑
x∈Aµ

fµ(x) log fµ(x) ≥ 0. (4)

In this context, letH(X) ⊂ P(X) be the collection of probabilities where (4) is finite, letAC(X|v) ⊂
P(X) denote the collection of probabilities absolutely continuous with respect to v ∈ P(X), and let
H(X|v) ⊂ AC(X|v) denote the collection of probabilities where (3) is finite for v ∈ P(X).

Concerning convergence, a sequence {µn : n ∈ N} ⊂ P(X) is said to converge in total variation
to µ ∈ P(X) if

lim
n→∞

V(µn, µ) = 0. (5)

For countable alphabets, ref. [31] (Lemma 3) shows that the convergence in total variation is
equivalent to the weak convergence, which is denoted here by µn ⇒ µ, and the point-wise convergence
of the pmf’s. Furthermore, from (2), the convergence in total variation implies the uniform convergence
of the pmf’s, i.e, limn→∞ supx∈X |µn({x})− µ({x})| = 0. Therefore, in this countable case, all the
four previously mentioned notions of convergence are equivalent: total variation, weak convergence,
point-wise convergence of the pmf‘s, and uniform convergence of the pmf’s.

We conclude with the convergence in I-divergence introduced by Barron et al. [29]. It is said
that {µn : n ∈ N} converges to µ in direct and in reverse I-divergence if limn→∞ D(µ||µn) = 0 and
limn→∞ D(µn||µ) = 0, respectively. From Pinsker’s inequality [39–41], the convergence in I-divergence
implies the weak convergence in (5), where it is known that the converse result is not true [27].

2.1. Convergence Results for the Shannon Entropy

The discontinuity of the entropy in ∞-alphabets raises the problem of finding conditions under
which convergence of the entropy can be obtained. On this topic, Ho et al. [26] have studied the
interplay between entropy and the total variation distance, specifying conditions for convergence
by assuming a finite support on the involved distributions. On the other hand, Harremoës [27]
(Theorem 21) obtained convergence of the entropy by imposing a power dominating condition [27]
(Definition 17) on the limiting probability measure µ for all the sequences {µn : n ≥ 0} converging in
reverse I-divergence to µ [29]. More recently, Silva et al. [25] have addressed the entropy convergence
studying a number of new settings that involve conditions on the limiting measure µ, as well as
the way the sequence {µn : n ≥ 0} converges to µ in the space of distributions. These results offer
sufficient conditions where the entropy evaluated in a sequence of distributions converges to the
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entropy of its limiting distribution and, consequently, the possibility of applying these when analyzing
plug-in entropy estimators. The results used in this work are summarized in the rest of this section.

Let us begin with the case when µ ∈ F (X), i.e., when the support of the limiting measure is finite
and unknown.

Proposition 1. Let us assume that µ ∈ F (X) and {µn : n ∈ N} ⊂ AC(X|µ). If µn ⇒ µ, then
limn→∞ D(µn||µ) = 0 and limn→∞ H(µn) = H(µ).

This result is well-known because when Aµn ⊂ Aµ for all n, the scenario reduces to the finite
alphabet case, where the entropy is known to be continuous [2,23]. Since we obtain two inequalities
that are used in the following sections, a simple proof is provided here.

Proof. µ and µn belong to H(X) from the finite-supported assumption. The same argument can be
used to show that D(µn||µ) < ∞, since µn � µ for all n. Let us consider the following identity:

H(µ)− H(µn) = ∑
x∈Aµ

( fµn(x)− fµ(x)) log fµ(x) + D(µn||µ). (6)

The first term on the right hand side (RHS) of (6) is upper bounded by Mµ ·V(µn, µ) where

Mµ = log
1

mµ
≡ sup

x∈Aµ

|log µ({x})| < ∞. (7)

For the second term, we have that

D(µn||µ) ≤ log e · ∑
x∈Aµn

fµn(x)
∣∣∣∣ fµn(x)

fµ(x)
− 1
∣∣∣∣

≤ log e
mµ
· sup

x∈Aµ

∣∣ fµn(x)− fµ(x)
∣∣ ≤ log e

mµ
·V(µn, µ). (8)

and, consequently,

|H(µ)− H(µn)| ≤
[

Mµ +
log e
mµ

]
·V(µn, µ). (9)

Under the assumptions of Proposition 1, we note that the reverse I-divergence and the entropy
difference are bounded by the total variation by (8) and (9), respectively. Note, however, that these
bounds are a distribution-dependent function of mµ(Mµ) in (7) (it is direct to show that mµ(Mµ) < ∞
if, and only if, µ ∈ F (X)). The next result relaxes the assumption that µn � µ and offers a necessary
and sufficient condition for the convergence of the entropy.

Lemma 1. Ref. [25] (Theorem 1) Let µ ∈ F (X) and {µn : n ∈ N} ⊂ F (X). If µn ⇒ µ, then there exists
N > 0 such that µ� µn ∀n ≥ N, and

lim
n→∞

D(µ||µn) = 0.

Furthermore, limn→∞ H(µn) = H(µ), if and only if,

lim
n→∞

µn
(

Aµn \ Aµ

)
· H
(
µn
(
·|Aµn \ Aµ

))
= 0⇔ lim

n→∞ ∑
x∈Aµn\Aµ

fµn(x) log
1

fµn(x)
= 0, (10)

where µ(·|B) denotes the conditional probability of µ given the event B ⊂ X.,
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Lemma 1 tells us that to achieve entropy convergence (on top of the weak convergence), it is
necessary and sufficient to ask for a vanishing expression (with n) of the entropy of µn restricted to
the elements of the set Aµn \ Aµ. Two remarks about this result are: (1) The convergence in direct
I-divergence does not imply the convergence of the entropy (concrete examples are presented in [24]
(Section III) and [25]); (2) Under the assumption that µ ∈ F (X), µ is eventually absolutely continuous
with respect to µn, and the convergence in total variations is equivalent to the convergence in direct
I-divergence.

This section concludes with the case when the support of µ is infinite and unknown, i.e.,
∣∣Aµ

∣∣ = ∞.
In this context, two results are highlighted:

Lemma 2. Ref. [31] (Theorem 4) Let us consider that µ ∈ H(X) and {µn : n ≥ 0} ⊂ AC(X|µ). If µn ⇒
µ and

M ≡ sup
n≥1

sup
x∈Aµ

fµn(x)
fµ(x)

< ∞, (11)

then µn ∈ H(X) ∩H(X|µ) for all n and it follows that

lim
n→∞

D(µn||µ) = 0 and lim
n→∞

H(µn) = H(µ).

Interpreting Lemma 2 we have that, to obtain the convergence of the entropy functional (without
imposing a finite support assumption on µ), a uniform bounding condition (UBC) µ-almost everywhere
was added in (11). By adding this UBC, the convergence on reverse I-divergence is also obtained as
a byproduct. Finally, when µ� µn for all n, the following result is considered:

Lemma 3. Ref. [25] (Theorem 3) Let µ ∈ H(X) and a sequence of measures {µn : n ≥ 1} ⊂ H(X) such that
µ� µn for all n ≥ 1. If µn ⇒ µ and

sup
n≥1

sup
x∈Aµ

∣∣∣∣log
fµn(x)
fµ(x)

∣∣∣∣ < ∞ (12)

then, µ ∈ H(X|µn) for all n ≥ 1, and
lim

n→∞
D(µ||µn) = 0.

Furthermore, limn→∞ H(µn) = H(µ), if and only if,

lim
n→∞ ∑

x∈Aµn\Aµ

fµn(x) log
1

fµn(x)
= 0. (13)

This result shows the non-sufficiency of the convergence in direct I-divergence to achieve entropy
convergence in the regime when µ � µn. In fact, Lemma 3 may be interpreted as an extension of
Lemma 1 when the finite support assumption over µ is relaxed.

3. Shannon Entropy Estimation

Let µ be a probability in H(X), and let denote by X1, X2, X3, . . . the empirical process induced
from i.i.d. realizations of a random variable driven by µ, i.e., Xi ∼ µ, for all i ≥ 0. Let Pµ denote the
distribution of the empirical process in (X∞,B(X∞)) and Pn

µ denote the finite block distribution of
Xn ≡ (X1, . . . , Xn) in the product space (Xn,B(Xn)). Given a realization of X1, X2, X3, . . . , Xn, we can
construct an histogram-based estimator like classical empirical probability given by:

µ̂n(A) ≡ 1
n

n

∑
k=1

1A(Xk), ∀A ⊂ X, (14)
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with pmf given by fµ̂n(x) = µ̂n({x}) for all x ∈ X. A natural estimator of the entropy is the plug-in
estimate of µ̂n given by

H(µ̂n) = − ∑
x∈X

fµ̂n(x) log fµ̂n(x), (15)

which is a measurable function of X1, . . . , Xn (this dependency on the data will be implicit for the rest
of the paper).

For the rest of this Section and Sections 4 and 5, the convergence results in Section 2.1 are used to
derive strong consistency results for plug-in histogram-based estimators, like H(µ̂n) in (15), as well
as finite length concentration inequalities to obtain almost-sure rates of convergence for the overall
estimation error |H(µ̂n)− H(µ)|.

3.1. Revisiting the Classical Plug-In Estimator for Finite and Unknown Supported Distributions

We start by analyzing the case when µ has a finite but unknown support. A consequence of the
strong law of large numbers [42,43] is that ∀x ∈ X, limn→∞ µ̂n({x}) = µ({x}), Pµ-almost surely (a.s.),
hence limn→∞ V(µ̂n, µ) = 0, Pµ-a.s. On the other hand, it is clear that Aµ̂n ⊂ Aµ holds with probability
one. Then Proposition 1 implies that

lim
n→∞

D(µ̂n||µ) = 0 and lim
n→∞

H(µ̂n) = H(µ), Pµ-a.s., (16)

i.e., µ̂n is a strongly consistent estimator of µ in reverse I-divergence and H(µ̂n) is a strongly consistent
estimate of H(µ) distribution-free in F (X). Furthermore, the following can be stated:

Theorem 1. Let µ ∈ F (X) and let us consider µ̂n in (14). Then µ̂n ∈ H(X) ∩H(X|µ), Pµ-a.s and ∀n ≥ 1,
∀ε > 0,

Pn
µ (D(µ̂n||µ) > ε) ≤ 2|Aµ|+1 · e

−
2m2

µ ·nε2

log e2 , (17)

Pn
µ (|H(µ̂n)− H(µ)| > ε) ≤ 2|Aµ|+1 · e

− 2nε2

(Mµ+
log e
mµ )2 . (18)

Moreover, D(µ||µ̂n) is eventually finite with probability one and ∀ε > 0, and for any n ≥ 1,

Pn
µ (D(µ||µ̂n) > ε) ≤ 2|Aµ|+1 ·

[
e
− 2nε2

log e2 ·(1/mu+1)2 + e−nm2
µ

]
. (19)

This result implies that for any τ ∈ (0, 1/2) and µ ∈ F (X), |H(µ̂n)− H(µ)|, D(µ̂n||µ), and
D(µ||µ̂n) goes to zero as o(n−τ) Pµ-a.s. Furthermore, EPn

µ
(|H(µ̂n)− H(µ)|) and EPn

µ
(D(µ̂n||µ))

behave like O(1/
√

n) for all µ ∈ F (X) from (30) in Section 7, which is the optimal rate of convergence
of the finite alphabet scenario. As a corollary of (18), it is possible to derive intervals of confidence for
the estimation error |H((µ̂n)− H(µn)|: for all δ > 0 and n ≥ 1,

Pµ

|H((µ̂n)− H(µn)| ≤
(
Mµ + log e/mµ

)√ 1
2n

ln
2|Aµ|+1

δ

 ≥ 1− δ. (20)

This confidence interval behaves like O(1/
√

n) as a function of n, and like O(
√

ln 1/δ) as a
function of δ, which are the same optimal asymptotic trends that can be obtained for V(µ, µ̂n) in (30).

Finally, we observe that Aµ̂n ⊂ Aµ Pn
µ-a.s. where for any n ≥ 1, Pn

µ(Aµ̂n 6= Aµ) > 0 implying that
EPn

µ
(D(µ||µ̂n)) = ∞ for all finite n. Then even in the finite and unknown supported scenario, µ̂n is not

consistent in expected direct I-divergence, which is congruent with the result in [29,44]. Besides this
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negative result, strong consistency in direct I-divergence can be obtained from (19), in the sense that
limn→∞ D(µ||µ̂n) = 0, Pµ-a.s.

3.2. A Simplified Version of the Barron Estimator for Finite Supported Probabilities

It is well-understood that consistency in expected direct I-divergence is of critical importance
for the construction of a lossless universal source coding scheme [2,23,29,44–48]. Here, we explore an
estimator that achieves this learning objective, in addition to entropy estimation. For that, let µ ∈ F (X)
and let assume v ∈ F (X) such that µ � v. Barron et al. [29] proposed a modified version of the
empirical measure in (14) to estimate µ from i.i.d. realizations, adopting a mixture estimate of the form

µ̃n(B) = (1− an) · µ̂n(B) + an · v(B), (21)

for all B ⊂ X, and with (an)n∈N a sequence of real numbers in (0, 1). Note that Aµ̃n = Av then µ� µ̃n

for all n and from the finite support assumption H(µ̃n) < ∞ and D(µ||µ̃n) < ∞, Pµ-a.s.. The following
result derives from the convergence result in Lemma 1.

Theorem 2. Let v ∈ F (X), µ� v and let us consider µ̃n in (21) induced from i.i.d. realizations of µ.

(i) If (an) is o(1), then limn→∞ H(µ̃n) = H(µ), limn→∞ D(µ||µ̃n) = 0, Pµ-a.s., and
limn→∞ EPµ

(D(µ||µ̃n)) = 0.
(ii) Furthermore, if (an) is O(n−p) with p > 2, then for all τ ∈ (0, 1/2), |H(µ̃n)− H(µ)| and D(µ||µ̃n)

are o(n−τ) Pµ-a.s, and EPµ
(|H(µ̃n)− H(µ)|) and EPµ

(D(µ||µ̃n)) are O(1/
√

n).

Using this approach, we achieve estimation of the true distribution in expected information
divergence as well as strong consistency for entropy estimation as intended. In addition, optimal rates
of convergence are obtained under the finite support assumption on µ.

4. The Barron-Györfi-van der Meulen Estimator

The celebrated Barron estimator was proposed by Barron, Györfi and van der Meulen [29] in the
context of an abstract and continuous measurable space. It is designed as a variation of the classical
histogram-based scheme to achieve a consistent estimation of the distribution in direct I-divergence [29]
(Theorem 2). Here, the Barron estimator is revisited in the countable alphabet scenario, with the
objective of estimating the Shannon entropy consistently, which, to the best of our knowledge, has not
been previously addressed in literature. For that purpose, the convergence result in Lemma 3 will be
used as a key result.

Let v ∈ P(X) be of infinite support (i.e., mv = infx∈Av v({x}) = 0). We want to construct
a strongly consistent estimate of the entropy restricted to the collection of probabilities in H(X|v).
For that, let us consider a sequence (hn)n≥0 with values in (0, 1) and let us denote by πn =

{An,1, An,2, . . . , An,mn} the finite partition of X with maximal cardinality satisfying that

v(An,i) ≥ hn, ∀i ∈ {1, . . . , mn} . (22)

Note that mn = |πn| ≤ 1/hn for all n ≥ 1, and because of the fact that infx∈Av v({x}) = 0 it
is simple to verify that if (hn) is o(1) then limn→∞ mn = ∞. πn offers an approximated statistically
equivalent partition of X with respect to the reference measure v. In this context, given X1, . . . , Xn, i.i.d.
realizations of µ ∈ H(X|v), the idea proposed by Barron et al. [29] is to estimate the RN derivative
dµ
dv (x) by the following histogram-based construction:

dµ∗n
dv

(x) = (1− an) ·
µ̂n(An(x))
v(An(x))

+ an, ∀x ∈ Av, (23)
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where an is a real number in (0, 1), An(x) denotes the cell in πn that contains the point x, and µ̂n is the
empirical measure in (14). Note that

fµ∗n(x) =
dµ∗n
dλ

(x) = fv(x) ·
[
(1− an) ·

µ̂n(An(x))
v(An(x))

+ an

]
,

∀x ∈ X, and, consequently, ∀B ⊂ X

µ∗n(B) = (1− an)
mn

∑
i=1

µ̂n(An,i) ·
v(B ∩ An,i)

v(An,i)
+ anv(B). (24)

By construction Aµ ⊂ Av ⊂ Aµ∗n and, consequently, µ� µ∗n for all n ≥ 1. The next result shows
sufficient conditions on the sequences (an) and (hn) to guarantee a strongly consistent estimation of
the entropy H(µ) and of µ in direct I-divergence, distribution free inH(X|v). The proof is based on
verifying that the sufficient conditions of Lemma 3 are satisfied Pµ-a.s.

Theorem 3. Let v be in P(X) ∩H(X) with infinite support, and let us consider µ inH(X|v). If we have that:

(i) (an) is o(1) and (hn) is o(1),

(ii) ∃τ ∈ (0, 1/2), such that the sequence
(

1
an ·hn

)
is o(nτ),

then µ ∈ H(X) ∩H(X|µ∗n) for all n ≥ 1 and

lim
n→∞

H(µ∗n) = H(µ) and lim
n→∞

D(µ||µ∗n) = 0, Pµ-a.s.. (25)

This result shows an admisible regime of design parameters and its scaling with the number
of samples that guarantees that the Barron plug-in entropy estimator is strongly consistent in
H(X|v). As a byproduct, we obtain that the distribution µ is estimated consistently in direct
information divergence.

The Barron estimator [29] was originally proposed in the context of distributions defined in
an abstract measurable space. Then if we restrict [29] (Theorem 2) to the countable alphabet case,
the following result is obtained:

Corollary 1. Ref. [29] (Theorem 2) Let us consider v ∈ P(X) and µ ∈ H(X|v). If (an) is o(1), (hn) is o(1)
and lim supn→∞

1
nanhn

≤ 1 then
lim

n→∞
D(µ||µ∗n) = 0, Pµ-a.s.

When the only objective is the estimation of distributions consistently in direct I-divergence,
Corollary 1 should be considered to be a better result than Theorem 3 (Corollary 1 offers weaker
conditions than Theorem 3 in particular condition (ii)). The proof of Theorem 3 is based on verifying
the sufficient conditions of Lemma 3, where the objective is to achieve the convergence of the entropy,
and as a consequence, the convergence in direct I-divergence. Therefore, we can say that the stronger
conditions of Theorem 3 are needed when the objective is entropy estimation. This is justified from
the observation that convergence in direct I-divergence does not imply entropy convergence in
∞-alphabets, as is discussed in Section 2.1 (see, Lemmas 1 and 3).

5. A Data-Driven Histogram-Based Estimator

Data-driven partitions offer a better approximation to the data distribution in the sample space
than conventional non-adaptive histogram-based approaches [34,49]. They have the capacity to
improve the approximation quality of histogram-based learning schemes, which translates in better
performance in different non-parametric learning settings [34–36,50,51]. One of the basic design
principles of this approach is to partition or select a sub-set of elements of X in a data-dependent
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way to preserve a critical number of samples per cell. In our problem, this last condition proves to be
crucial to derive bounds for the estimation and approximation errors. Finally, these expressions will be
used to propose design solutions that offer an optimal balance between estimation and approximation
errors (Theorems 5 and 6).

Given X1, . . . , Xn i.i.d. realizations driven by µ ∈ H(X) and ε > 0, let us define the data-driven
set

Γε ≡ {x ∈ X : µ̂n({x}) ≥ ε} , (26)

and φε ≡ Γc
ε. Let Πε ≡ {{x} : x ∈ Γε} ∪ {φε} ⊂ 2X be a data-driven partition with maximal resolution

in Γε, and σε ≡ σ(Πε) be the smallest sigma field that contains Πε (as Πε is a finite partition, σε is the
collection of sets that are union of elements of Πε). We propose the conditional empirical probability
restricted to Γε by:

µ̂n,ε ≡ µ̂n(·|Γε). (27)

By construction, it follows that Aµ̂n,ε = Γε ⊂ Aµ, Pµ-a.s. and this implies that µ̂n,ε � µ for all
n ≥ 1. Furthermore, |Γε| ≤ 1

ε and, importantly in the context of the entropy functional, it follows that

mε
µ̂n
≡ inf

x∈Γε

µ̂n({x}) ≥ ε. (28)

The next result establishes a mild sufficient condition on (εn) for which H(µ̂n,εn) is strongly
consistent distribution-free inH(X). Considering that we are in the regime where µ̂n,εn � µ, Pµ-a.s.,
the proof of this result uses the convergence result in Lemma 2 as a central result.

Theorem 4. If (εn) is O(n−τ) with τ ∈ (0, 1), then for all µ ∈ H(X)

lim
n→∞

H(µ̂n,εn) = H(µ), Pµ-a.s.

Complementing Theorem 4, the next result offers almost-sure rates of converge for a family of
distributions with a power tail bounded condition (TBC). In particular, the family of distributions
studied in [30] (Theorem 7) are considered.

Theorem 5. Let us assume that for some p > 1 there are two constants 0 < k0 ≤ k1 and N > 0 such that
k0 · x−p ≤ µ({x}) ≤ k1x−p for all x ≥ N. If we consider that (εn) ≈ (n−τ∗) for τ∗ = 1

2+1/p , then

|H(µ)− H(µ̂n,εn)| is O(n−
1−1/p
2+1/p ), Pµ-a.s.

This result shows that under the mentioned p-power TBC on fµ(·), the plug-in estimator H(µ̂n,εn)

can achieve a rate of convergence to the true limit that is O(n−
1−1/p
2+1/p ) with probability one. For the

derivation of this result, the approximation sequence (εn) is defined as a function of p (adapted to
the problem) by finding an optimal tradeoff between estimation and approximation errors while
performing a finite length (non-asymptotic) analysis of the expression |H(µ)− H(µ̂n,εn)| (the details
of this analysis are presented in Section 7).

It is insightful to look at two extreme regimes of this result: p approaching 1, in which the rate
is arbitrarily slow (approaching a non-decaying behavior); and p → ∞, where |H(µ)− H(µ̂n,εn)| is
O(n−q) for all q ∈ (0, 1/2) Pµ-a.s.. This last power decaying range q ∈ (0, 1/2) matches what is
achieved for the finite alphabet scenario (for instance in Theorem 1, Equation (18)), which is known to
be the optimal rate for finite alphabets.

Extending Theorem 5, the following result addresses the more constrained case of distributions
with an exponential TBC.
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Theorem 6. Let us consider α > 0 and let us assume that there are k0, k1 with 0 < k0 ≤ k1 and N > 0 such
that k0 · e−αx ≤ µ({x}) ≤ k1 · e−αx for all x ≥ N. If we consider (εn) ≈ (n−τ) with τ ∈ (0, 1/2), then

|H(µ)− H(µ̂n,εn)| is O(n−τ log n), Pµ-a.s.

Under this stringent TBC on fµ(·), it is observed that |H(µ)− H(µ̂n,εn)| is o(n−q) Pµ-a.s., for any
arbitrary q ∈ (0, 1/2), by selecting (εn) ≈ (n−τ) with q < τ < 1/2. This last condition on
τ is universal over α > 0. Remarkably, for any distribution with this exponential TBC, we can
approximate (arbitrarily closely) the optimal almost-sure rate of convergence achieved for the finite
alphabet problem.

Finally, the finite and unknown supported scenario is revisited, where it is shown that the
data-driven estimator exhibits the optimal almost sure convergence rate of the classical plug-in entropy
estimator presented in Section 3.1.

Theorem 7. Let us assume that µ ∈ F (X) and (εn) being o(1). Then for all ε > 0 there is N > 0 such that
∀n ≥ N

Pn
µ (|H(µ̂n,εn)− H(µ)| > ε) ≤ 2|Aµ|+1 ·

e
− 2nε2

(Mµ+
log e
mµ )2

+ e−
nm2

µ
4

 . (29)

The proof of this result reduces to verify that µ̂n,εn detects Aµ almost-surely when n goes to infinity
and from this, it follows that H(µ̂n,εn) eventually matches the optimal almost sure performance of
H(µ̂n) under the key assumption that µ ∈ F (X). Finally, the concentration bound in (29) implies that
|H(µ̂n,εn)− H(µ)| is o(n−q) almost surely for all q ∈ (0, 1/2) as long as εn → 0 with n.

6. Discussion of the Results and Final Remarks

This work shows that entropy convergence results are instrumental to derive new (strongly
consistent) estimation results for the Shannon entropy in ∞-alphabets and, as a byproduct, distribution
estimators that are strongly consistent in direct and reverse I-divergence. Adopting a set of sufficient
conditions for entropy convergence in the context of four plug-in histogram-based schemes, this work
shows concrete design conditions where strong consistency for entropy estimation in ∞-alphabets can
be obtained (Theorems 2–4). In addition, the relevant case where the target distribution has a finite
but unknown support is explored, deriving almost sure rates of convergence results for the overall
estimation error (Theorems 1 and 7) that match the optimal asymptotic rate that can be obtained in the
finite alphabet version of the problem (i.e., the finite and known supported case).

As the main context of application, this work focuses on the case of a data-driven plug-in estimator
that restricts the support where the distribution is estimated. The idea is to have design parameters
that control estimation-error effects and to find an adequate balance between these two learning
errors. Adopting the entropy convergence result in Lemma 2, it is shown that this data-driven scheme
offers the same universal estimation attributes than the classical plug-in estimate under some mild
conditions on its threshold design parameter (Theorem 4). In addition, by addressing the technical
task of deriving concrete closed-form expressions for the estimation and approximation errors in
this learning context a solution is presented where almost-sure rates of convergence of the overall
estimation error are obtained over a family of distributions with some concrete tail bounded conditions
(Theorems 5 and 6). These results show the capacity that data-driven frameworks offer for adapting
aspects of their learning scheme to the complexity of the entropy estimation task in ∞-alphabets.

Concerning the classical plug-in estimator presented in Section 3.1, it is important to mention that the
work of Antos et al. [30] shows that limn→∞ H(µ̂n) = H(µ) happens almost surely and distribution-free
and, furthermore, it provides rates of convergence for families with specific tail-bounded conditions [30]
(Theorem 7). Theorem 1 focuses on the case when µ ∈ F(X), where new finite-length deviation
inequalities and confidence intervals are derived. From that perspective, Theorem 1 complements the
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results presented in [30] in the non-explored scenario when µ ∈ F(X). It is also important to mention
two results by Ho and Yeung [26] (Theorems 11 and 12) for the plug-in estimator in (15). They derived
bounds for Pn

µ(|H(µ̂n)− H(µ)| ≥ ε) and determined confidence intervals under a finite and known
support restriction on µ. In contrast, Theorem 1 resolves the case for a finite and unknown supported
distribution, which is declared to be a challenging problem from the arguments presented in [26]
(Theorem 13) concerning the discontinuity of the entropy.

7. Proof of the Main Results

Proof of Theorem 1. Let µ be inF (X), then
∣∣Aµ

∣∣ ≤ k for some k > 1. From Hoeffding’s inequality [28],
∀n ≥ 1, and for any ε > 0

Pn
µ (V(µ̂n, µ) > ε) ≤ 2k+1 · e−2nε2

and EPn
µ
(V(µ̂n, µ)) ≤ 2

√
(k + 1)log 2

n
. (30)

Considering that µ̂n � µ Pµ-a.s, we can use Proposition 1 to obtain that

D(µ̂n||µ) ≤
log e
mµ
·V(µ̂n, µ), and |H((µ̂n)− H(µn)| ≤

[
Mµ +

log e
mµ

]
·V(µ̂n, µ). (31)

Hence, (17) and (18) derive from (30).
For the direct I-divergence, let us consider a sequence (xi)i≥1 and the following function

(a stopping time):

To(x1, x2, . . .) ≡ inf
{

n ≥ 1 : Aµ̂n(xn) = Aµ

}
. (32)

To(x1, x2, . . .) is the point where the support of µ̂n(xn) is equal to Aµ and, consequently, the direct
I-divergence is finite (since µ ∈ F (X)). In fact, by the uniform convergence of µ̂n to µn (Pµ-a.s.) and
the finite support assumption of µ, it is simple to verify that Pµ(To(X1, X2, . . .) < ∞) = 1. Let us define
the event:

Bn ≡ {x1, x2, · · · : To(x1, x2, . . . ) ≤ n} ⊂ XN, (33)

i.e., the collection of sequences in XN where at time n, Aµ̂n = Aµ and, consequently, D(µ||µ̂n) < ∞.
Restricted to this set

D(µ||µ̂n) ≤ ∑
x∈Aµ̂n ||µ

fµ̂n(x) log
fµ̂n(x)
fµ(x)

+ ∑
x∈Aµ\Aµ̂n ||µ

fµ̂n(x) log
fµ(x)
fµ̂n(x)

(34)

≤ log e · ∑
x∈Aµ̂n ||µ

fµ̂n(x) ·
(

fµ̂n(x)
fµ(x)

− 1
)

+ log e ·
[
µ(Aµ \ Aµ̂n ||µ)− µ̂n((Aµ \ Aµ̂n ||µ))

]
(35)

≤ log e · (1/mu + 1)V(µ, µ̂n), (36)

where in the first inequality Aµ̂n ||µ ≡
{

x ∈ Aµ̂n : fµ̂n(x) > fµ(x)
}

, and the last is obtained by the
definition of the total variational distance. In addition, let us define the ε-deviation set Aε

n ≡
{x1, x2, · · · : D(µ||µ̂n(xn)) > ε} ⊂ XN. Then by additivity and monotonicity of Pµ, we have that

Pµ(Aε
n) ≤ Pµ(Aε

n ∩ Bn) + Pµ(Bc
n). (37)
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By definition of Bn, (36) and (30) it follows that

Pµ(Aε
n ∩ Bn) ≤ Pµ(V(µ||µ̂n) log e · (1/mu + 1) > ε)

≤ 2|Aµ|+1 · e
− 2nε2

log e2 ·(1/mu+1)2 . (38)

On the other hand, ∀εo ∈ (0, mµ) if V(µ, µ̂n) ≤ εo then To ≤ n. Consequently Bc
n ⊂

{x1, x2, · · · : V(µ, µ̂n(xn)) > εo}, and again from (30)

Pµ(Bc
n) ≤ 2|Aµ|+1 · e−2nε2

o , (39)

for all n ≥ 1 and ∀εo ∈ (0, mµ). Integrating the results in (38) and (39) and considering ε0 = mµ/
√

2
suffice to show the bound in (19).

Proof of Theorem 2. As (an) is o(1), it is simple to verify that limn→∞ V(µ̃n, µ) = 0, Pµ-a.s. Also note
that the support disagreement between µ̃n and µ is bounded by the hypothesis, then

lim
n→∞

µ̃n
(

Aµn \ Aµ

)
· log

∣∣Aµ̃n \ Aµ

∣∣ ≤ lim
n→∞

µ̃n
(

Aµn \ Aµ

)
· log |Av| = 0, Pµ-a.s. (40)

Therefore from Lemma 1, we have the strong consistency of H(µ̃n) and the almost
sure convergence of D(µ||µ̃n) to zero. Note that D(µ||µ̃n) is uniformly upper bounded by
log e · (1/mµ + 1)V(µ, µ̃n) (see (36) in the proof of Theorem 1). Then the convergence in probability
of D(µ||µ̃n) implies the convergence of its mean [42], which concludes the proof of the first part.

Concerning rates of convergence, we use the following:

H(µ)− H(µ̃n) = ∑
x∈Aµ∩Aµ̃n

[
fµ̃n(x)− fµ(x)

]
log fµ(x) + ∑

x∈Aµ∩Aµ̃n

fµ̃n(x) log
fµ̃n(x)
fµ(x)

− ∑
x∈Aµ̃n\Aµ

fµ̃n(x) log
1

fµ̃n(x)
. (41)

The absolute value of the first term in the right hand side (RHS) of (41) is bounded by Mµ ·V(µ̃n, µ)

and the second term is bounded by log e/mµ ·V(µ̃n, µ), from the assumption that µ ∈ F (X). For the
last term, note that fµ̃n(x) = an · v({x}) for all x ∈ Aµ̃n \ Aµ and that Aµ̃n = Av, then

0 ≤ ∑
x∈Aµ̃n\Aµ

fµ̃n(x) log
1

fµ̃n(x)
≤ an · (H(v) + log

1
an
· v(Av \ Aµ)).

On the other hand,

V(µ̃n, µ) =
1
2 ∑

x∈Aµ

|(1− an)µ̂n({x}) + anv({x})− µ({x})|+ ∑
x∈Av\Aµ

anv({x}).

≤ (1− an) ·V(µ̂n, µ) + an.

Integrating these bounds in (41),

|H(µ)− H(µ̃n)| ≤ (Mµ + log e/mµ) · ((1− an) ·V(µ̂n, µ) + an) + an · H(v) + an · log
1
an

= K1 ·V(µ̂n, µ) + K2 · an + an · log
1
an

, (42)

for constants K1 > 0 and K2 > 0 function of µ and v.
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Under the assumption that µ ∈ F (X), the Hoeffding’s inequality [28,52] tells us that
Pµ(V(µ̂n, µ) > ε) ≤ C1 · e−C2nε2

(for some distribution free constants C1 > 0 and C2 > 0). From this
inequality, V(µ̂n, µ) goes to zero as o(n−τ) Pµ-a.s. ∀τ ∈ (0, 1/2) and EPµ

(V(µ̂n, µ)) is O(1/
√

n).
On the other hand, under the assumption in ii) (K2 · an + an · log 1

an
) is O(1/

√
n), which from (42)

proves the rate of convergence results for |H(µ)− H(µ̃n)|.
Considering the direct I-divergence, D(µ||µ̃n) ≤ log e ·∑x∈Aµ

fµ(x)
∣∣∣ fµ(x)

fµ̃n (x) − 1
∣∣∣ ≤ log e

mµ̃n
·V(µ̃n, µ).

Then the uniform convergence of µ̃n({x}) to µ({x}) Pµ-a.s. in Aµ and the fact that
∣∣Aµ

∣∣ < ∞ imply
that for an arbitrary small ε > 0 (in particular smaller than mµ)

lim
n−→∞

D(µ||µ̃n) ≤
log e

mµ − ε
· lim

n−→∞
V(µ̃n, µ), Pµ-a.s.. (43)

(43) suffices to obtain the convergence result for the I-divergence.

Proof of Theorem 3. Let us define the oracle Barron measure µ̃n by:

fµ̃n(x) =
dµ̃n

dλ
(x) = fv(x)

[
(1− an) ·

µ(An(x))
v(An(x))

+ an

]
, (44)

where we consider the true probability instead of its empirical version in (23). Then, the following
convergence result can be obtained (see Proposition A2 in Appendix B),

lim
n→∞

sup
x∈Aµ̃n

∣∣∣∣dµ̃n

dµ∗n
(x)− 1

∣∣∣∣ = 0, Pµ-a.s.. (45)

Let A denote the collection of sequences x1, x2, . . . where the convergence in (45) is holding (this
set is typical meaning that Pµ(A) = 1). The rest of the proof reduces to show that for any arbitrary
(xn)n≥1 ∈ A, its respective sequence of induced measures {µ∗n : n ≥ 1} (the dependency of µ∗n on the
sequence (xn)n≥1 will be considered implicit for the rest of the proof) satisfies the sufficient conditions
of Lemma 3.

Let us fix an arbitrary (xn)n≥1 ∈ A:
Weak convergence µ∗n ⇒ µ: Without loss of generality we consider that Aµ̃n = Av for all

n ≥ 1. Since an → 0 and hn → 0, fµ̃n(x) → µ({x}) ∀x ∈ Av, we got the weak convergence of

µ̃n to µ. On the other hand by definition of A, limn→∞ supx∈Aµ̃n

∣∣∣∣ fµ̃n (x)
fµ∗n (x) − 1

∣∣∣∣ = 0 that implies that

limn→∞

∣∣∣ fµ∗n(x)− fµ̃n(x)
∣∣∣ = 0 for all x ∈ Av and, consequently, µ∗n ⇒ µ.

The condition in (12): By construction µ � µ∗n, µ � µ̃n and µ̃n ≈ µ∗n for all n, then we will use
the following equality:

log
dµ

dµ∗n
(x) = log

dµ

dµ̃n
(x) + log

dµ̃n

dµ∗n
(x), (46)

for all x ∈ Aµ. Concerning the approximation error term of (46), i.e., log dµ
dµ̃n

(x), ∀x ∈ Aµ

dµ̃n

dµ
(x) = (1− an)

[
µ(An(x))

µ({x})
v({x})

v(An(x))

]
+ an

v({x})
µ({x}) . (47)

Given that µ ∈ H(X|v), this is equivalent to state that log( dµ
dv (x)) is bounded µ-almost everywhere,

which is equivalent to say that m ≡ infx∈Aµ

dµ
dv (x) > 0 and M ≡ supx∈Aµ

dµ
dv (x) < ∞. From this,

∀A ⊂ Aµ,
mv(A) ≤ µ(A) ≤ Mv(A). (48)
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Then we have that, ∀x ∈ Aµ
m
M ≤

[
µ(An(x))

µ({x})
v({x})

v(An(x))

]
≤ M

m . Therefore for n sufficient large,

0 < 1
2

m
M ≤ dµ̃n

dµ (x) ≤ M
m + M < ∞ for all x in Aµ. Hence, there exists No > 0 such that

supn≥No
supx∈Aµ

∣∣∣log dµ̃n
dµ (x)

∣∣∣ < ∞.

For the estimation error term of (46), i.e., log dµ̃n
dµ∗n

(x), note that from the fact that (xn) ∈ A, and

the convergence in (45), there exists N1 > 0 such that for all n ≥ N1 supx∈Aµ

∣∣∣log dµ̃n
dµ∗n

(x)
∣∣∣ < ∞, given

that Aµ ⊂ Aµ̃n = Av. Then using (46), for all n ≥ max {N0, N1} supx∈Aµ

∣∣∣log dµ∗n
dµ (x)

∣∣∣ < ∞, which
verifies (12).

The condition in (13): Defining the function φ∗n(x) ≡ 1Av\Aµ
(x) · fµ∗n(x) log(1/ fµ∗n(x)), we want

to verify that limn→∞
∫
X φ∗n(x)dλ(x) = 0. Considering that (xn) ∈ A for all ε > 0, there exists

N(ε) > 0 such that supx∈Aµ̃n

∣∣∣∣ fµ̃n (x)
fµ∗n (x) − 1

∣∣∣∣ < ε and then

(1− ε) fµ̃n(x) < fµ∗n(x) < (1 + ε) fµ̃n(x), for all x ∈ Av. (49)

From (49), 0 ≤ φ∗n(x) ≤ (1 + ε) fµ̃n(x) log(1/(1− ε) fµ̃n(x)) for all n ≥ N(ε). Analyzing fµ̃n(x)
in (44), there are two scenarios: An(x) ∩ Aµ = ∅ where fµ̃n(x) = an fv(x) and, otherwise, fµ̃n(x) =
fv(x)(an + (1− an)µ(An(x) ∩ Aµ)/v(An(x))). Let us define:

Bn ≡
{

x ∈ Av \ Aµ : An(x) ∩ Aµ = ∅
}

and Cn ≡
{

x ∈ Av \ Aµ : An(x) ∩ Aµ 6= ∅
}

. (50)

Then for all n ≥ N(ε),

∑
x∈X

φ∗n(x) ≤ ∑
x∈Av\Aµ

(1 + ε) fµ̃n(x) log 1/((1− ε) fµ̃n(x))

= ∑
x∈Bn

(1 + ε)an fv(x) log
1

(1− ε)an fv(x)
+ ∑

x∈X
φ̃n(x), (51)

with φ̃n(x) ≡ 1Cn(x) · (1 + ε) fµ̃n(x) log 1
(1−ε) fµ̃n (x) . The left term in (51) is upper bounded by an(1 +

ε)(H(v) + log(1/an)), which goes to zero with n from (an) being o(1) and the fact that v ∈ H(X).
For the right term in (51), (hn) being o(1) implies that x belongs to Bn eventually (in n) ∀x ∈ Av \ Aµ,
then φ̃n(x) tends to zero point-wise as n goes to infinity. On the other hand, for all x ∈ Cn (see (50)),
we have that

1
1/m + 1

≤
µ(An(x) ∩ Aµ)

v(An(x) ∩ Aµ) + v(Av \ Aµ)
≤ µ(An(x))

v(An(x))
≤

µ(An(x) ∩ Aµ)

v(An(x) ∩ Aµ)
≤ M. (52)

These inequalities derive from (48). Consequently for all x ∈ X, if n sufficiently large such that
an < 0.5, then

0 ≤ φ̃n(x) ≤ (1 + ε)(an + (1− an)M) fv(x) log
1

(1− ε)(an + (1− an)m/(m + 1))

≤ (1 + ε)(1 + M) fv(x)
[

log
2(m + 1)
(1− ε)

+ log
1

fv(x)

]
. (53)

Hence from (50), φ̃n(x) is bounded by a fix function that is `1(X) by the assumption that v ∈ H(X).
Then by the dominated convergence theorems [43] and (51),

lim
n→∞ ∑

X
φ∗n(x) ≤ lim

n→∞ ∑
X

φ̃n(x).
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In summary, we have shown that for any arbitrary (xn) ∈ A the sufficient conditions of Lemma 3
are satisfied, which proves the result in (25) reminding that Pµ(A) = 1 from (45).

Proof of Theorem 4. Let us first introduce the oracle probability

µεn ≡ µ(·|Γεn) ∈ P(X). (54)

Note that µεn is a random probability measure (function of the i.i.d sequence X1, . . . , Xn) as Γεn is
a data-driven set, see (26). We will first show that:

lim
n→∞

H(µεn) = H(µ) and lim
n→∞

D(µεn ||µ) = 0, Pµ-a.s. (55)

Under the assumption on (εn) of Theorem 4, limn→∞ |µ(Γεn)− µ̂n(Γεn)| = 0, Pµ-a.s. (this result
derives from the fact that limn→∞ V(µ/σεn , µ̂n/σεn) = 0, Pµ-a.s. , from (63)) In addition, since (εn)

is o(1) then limn→∞ µ̂n(Γεn) = 1, which implies that limn→∞ µ(Γεn) = 1 Pµ-a.s. From this µεn ⇒ µ,
Pµ-a.s. Let us consider a sequences (xn) where limn→∞ µ(Γεn) = 1. Constrained to that

lim sup
n→∞

sup
x∈Aµ

fµεn (x)
fµ(x)

= lim sup
n→∞

1
µ(Γεn)

< ∞. (56)

Then there is N > 0 such that supn>N supx∈Aµ

fµεn (x)
fµ(x)

< ∞. Hence from Lemma 2,

limn→∞ D(µεn ||µ) = 0 and limn→∞ |H(µεn)− H(µ)| = 0. Finally, the set of sequences (xn) where
limn→∞ µ(Γεn) = 1 has probability one (with respect to Pµ), which proves (55).

For the rest of the proof, we concentrate on the analysis of |H(µ̂n,εn)− H(µεn)| that can be
attributed to the estimation error aspect of the problem. It is worth noting that by construction
Aµ̂n,εn

= Aµεn = Γεn , Pµ-a.s.. Consequently, we can use

H(µ̂n,εn)− H(µεn) = ∑
x∈Γεn

[µεn({x})− µ̂n,εn({x})] log µ̂n,εn({x}) + D(µεn ||µ̂n,εn). (57)

The first term on the RHS of (57) is upper bounded by log 1/mεn
µ̂n
· V(µεn , µ̂n,εn) ≤ log 1/εn ·

V(µεn , µ̂n,εn). Concerning the second term on the RHS of (57), it is possible to show (details presented
in Appendix C) that

D(µεn ||µ̂n,εn) ≤
2 log e

εn

µ(Γεn)
·V(µ/σεn , µ̂n/σεn), (58)

where
V(µ/σεn , µ̂n/σεn) ≡ sup

A∈σεn

|µ(A)− µ̂n(A)| . (59)

In addition, it can be verified (details presented in Appendix D) that

V(µεn , µ̂n,εn) ≤ K ·V(µ/σεn , µ̂n/σεn), (60)

for some universal constant K > 0. Therefore from (57), (58) and (60), there is C > 0 such that

|H(µ̂n,εn)− H(µεn)| ≤
C

µ(Γεn)
log

1
εn
·V(µ/σεn , µ̂n/σεn). (61)

As mentioned before, µ(Γεn) goes to 1 almost surely, then we need to concentrate on the analysis
of the asymptotic behavior of log 1/εn ·V(µ/σεn , µ̂n/σεn). From Hoeffding’s inequality [28], we have
that ∀δ > 0

Pn
µ (log 1/εn ·V(µ/σεn , µ̂n/σεn) > δ) ≤ 2|Γεn |+1 · e

− 2nδ2

(log 1/εn)2 , (62)
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considering that by construction |σεn | ≤ 2|Γεn |+1 ≤ 21/εn+1. Assuming that (εn) is O(n−τ),

lnPn
µ (log 1/εn ·V(µ/σεn , µ̂n/σεn) > δ) ≤ (nτ + 1) ln 2− 2nδ2

τ log n
.

Therefore for all τ ∈ (0, 1), δ > 0 and any arbitrary l ∈ (τ, 1)

lim sup
n→∞

1
nl · lnPn

µ (log 1/εn ·V(µ/σεn , µ̂n/σεn) > δ) < 0. (63)

This last result is sufficient to show that ∑n≥1 Pn
µ (log 1/εn ·V(µ/σεn , µ̂n/σεn) > δ) < ∞ that

concludes the argument from the Borel-Cantelli Lemma.

Proof of Theorem 5. We consider the expression

|H(µ)− H(µ̂n,εn)| ≤ |H(µ)− H(µεn)|+ |H(µεn)− H(µ̂n,εn)| (64)

to analize the approximation error and the estimation error terms separately.

• Approximation Error Analysis

Note that |H(µ)− H(µεn)| is a random object as µεn in (54) is a function of the data-dependent
partition and, consequently, a function of X1, . . . , Xn. In the following, we consider the oracle set

Γ̃εn ≡ {x ∈ X : µ({x}) ≥ εn} , (65)

and the oracle conditional probability

µ̃εn ≡ µ(·|Γ̃εn) ∈ P .(X). (66)

Note that Γ̃εn is a deterministic function of (εn) and so is the measure µ̃εn in (66). From definitions
and triangular inequality:

|H(µ)− H(µ̃εn)| ≤ ∑
x∈Γ̃c

εn

µ({x}) log
1

µ({x}) + log
1

µ(Γ̃εn)

+

(
1

µ(Γ̃εn)
− 1
)
· ∑

x∈Γ̃εn

µ({x}) log
1

µ({x}) , (67)

and, similarly, the approximation error is bounded by

|H(µ)− H(µεn)| ≤ ∑
x∈Γc

εn

µ({x}) log
1

µ({x})

+ log
1

µ(Γεn)
+

(
1

µ(Γεn)
− 1
)
· ∑

x∈Γεn

µ({x}) log
1

µ({x}) . (68)

We denote the RHS of (67) and (68) by aεn and bεn(X1, . . . , Xn), respectively.
We can show that if (εn) is O(n−τ) and τ ∈ (0, 1/2), then

lim sup
n→∞

bεn(X1, . . . , Xn)− a2εn ≤ 0, Pµ-a.s., (69)

which from (68) implies that |H(µ)− H(µεn)| is O(a2εn), Pµ-a.s. The proof of (69) is presented in
Appendix E.

Then, we need to analyze the rate of convergence of the deterministic sequence (a2εn).
Analyzing the RHS of (67), we recognize two independent terms: the partial entropy sum
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∑x∈Γ̃c
εn

µ({x}) log 1
µ({x}) and the rest that is bounded asymptotically by µ(Γ̃c

εn)(1 + H(µ)), using
the fact that ln x ≤ x− 1 for x ≥ 1. Here is where the tail condition on µ plays a role. From the tail
condition, we have that

µ(Γ̃c
εn) ≤ µ

({
(ko/εn)

1/p + 1, (ko/εn)
1/p + 2, (ko/εn)

1/p + 3, . . .
})

= ∑
x≥( ko

εn )
1/p+1

µ({x})

≤ k1 · S( ko
εn )

1/p+1, (70)

where Sxo ≡ ∑x≥xo x−p. Similarly as
{

0, 1, . . . , (ko/εn)1/p
}
⊂ Γ̃εn , then

∑
x∈Γ̃c

εn

µ({x}) log
1

µ({x}) ≤ ∑
x≥( ko

εn )
1/p+1

µ({x}) log
1

µ({x}) ≤ ∑
x≥( ko

εn )
1/p+1

k1x−p · log
1

k0x−p

≤ k1 log p · R
( ko

εn )
1/p+1 + k1 log 1/k0 · S( ko

εn )
1/p+1, (71)

whereRxo ≡ ∑x≥xo x−p log x.

In Appendix F, it is shown that Sxo ≤ C0 · x
1−p
o and Rxo ≤ C1 · x

1−p
o for constants C1 > 0 and

C0 > 0. Integrating these results in the RHS of (70) and (71) and considering that (εn) is O(n−τ),

we have that both µ(Γ̃c
εn) and ∑x∈Γ̃c

εn
µ({x}) log 1

µ({x}) are O(n−
τ(p−1)

p ). This implies that our oracle

sequence (aεn) is O(n−
τ(p−1)

p ).
In conclusion, if εn is O(n−τ) for τ ∈ (0, 1/2), it follows that

|H(µ)− H(µεn)| is O(n−
τ(p−1)

p ), Pµ-a.s. (72)

• Estimation Error Analysis

Let us consider |H(µεn)− H(µ̂n,εn)|. From the bound in (61) and the fact that for any τ ∈ (0, 1),
limn→∞ µ(Γεn) = 1 Pµ-a.s. from (63), the problem reduces to analyze the rate of convergence of the
following random object:

ρn(X1, . . . , Xn) ≡ log
1
εn
·V(µ/σ(Γεn), µ̂n/σ(Γεn)). (73)

We will analize, instead, the oracle version of ρn(X1, . . . , Xn) given by:

ξn(X1, . . . , Xn) ≡ log
1
εn
·V(µ/σ(Γ̃εn/2), µ̂n/σ(Γ̃εn/2)), (74)

where Γ̃ε ≡ {x ∈ X : µ({x}) ≥ ε} is the oracle counterpart of Γε in (26). To do so, we can show that if
εn is O(n−τ) with τ ∈ (0, 1/2), then

lim inf
n→∞

ξn(X1, . . . , Xn)− ρn(X1, . . . , Xn) ≥ 0, Pµ-a.s.. (75)

The proof of (75) is presented in Appendix G.
Moving to the almost sure rate of convergence of ξn(X1, . . . , Xn), it is simple to show for our

p-power dominating distribution that if (εn) is O(n−τ) and τ ∈ (0, p) then

lim
n→∞

ξn(X1, . . . , Xn) = 0 Pµ-a.s.,

and, more specifically,

ξn(X1, . . . , Xn) is o(n−q) for all q ∈ (0, (1− τ/p)/2), Pµ-a.s.. (76)
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The argument is presented in Appendix H.
In conclusion, if εn is O(n−τ) for τ ∈ (0, 1/2), it follows that

|H(µεn)− H(µ̂n,εn)| is O(n−q), Pµ-a.s., (77)

for all q ∈ (0, (1− τ/p)/2).

• Estimation vs. Approximation Errors

Coming back to (64) and using (72) and (77), the analysis reduces to finding the solution τ∗ in
(0, 1/2) that offers the best trade-off between the estimation and approximation error rate:

τ∗ ≡ arg max
τ(0,1/2)

min
{
(1− τ/p)

2
,

τ(p− 1)
p

}
. (78)

It is simple to verify that τ∗ = 1/2. Then by considering τ arbitrary close to the admissible limit
1/2, we can achieve a rate of convergence for |H(µ)− H(µ̂n,εn)| that is arbitrary close to O(n−

1
2 (1−1/p)),

P-a.s.
More formally, for any l ∈ (0, 1

2 (1− 1/p)) we can take τ ∈ ( l
(1−1/p) , 1

2 ) where |H(µ)− H(µ̂n,εn)|
is o(n−l), Pµ-a.s., from (72) and (77).

Finally, a simple corollary of this analysis is to consider τ(p) = 1
2+1/p < 1/2 where:

|H(µ)− H(µ̂n,εn)| is O(n−
1−1/p
2+1/p ), Pµ-a.s., (79)

which concludes the argument.

Proof of Theorem 6. The argument follows the proof of Theorem 5. In particular, we use the
estimation-approximation error bound:

|H(µ)− H(µ̂n,εn)| ≤ |H(µ)− H(µεn)|+ |H(µεn)− H(µ̂n,εn)| , (80)

and the following two results derived in the proof of Theorem 5: If (εn) is O(n−τ) with τ ∈ (0, 1/2)
then (for the approximation error)

|H(µ)− H(µεn)| is O(a2εn) Pµ-a.s., (81)

with aεn = ∑x∈Γ̃c
εn

µ({x}) log 1
µ({x}) + µ(Γ̃c

εn)(1 + H(µ)), while (for the estimation error)

|H(µεn)− H(µ̂n,εn)| is O(ξn(X1, . . . , Xn)) Pµ-a.s., (82)

with ξn(X1, . . . , Xn) = log 1
εn
·V(µ/σ(Γ̃εn/2), µ̂n/σ(Γ̃εn/2)).

For the estimation error, we need to bound the rate of convergence of ξn(X1, . . . , Xn) to zero
almost surely. We first note that {1, . . . , xo(εn)} = Γ̃εn with xo(εn) = b1/α ln(k0/εn)c. Then from
Hoeffding’s inequality we have that

Pn
µ ({ξn(X1, . . . , Xn) > δ}) ≤ 2|(Γ̃εn/2)| · e

−2n δ2

log(1/εn)2

≤ 21/α ln(2k0/εn)+1 · e
−2n δ2

log(1/εn)2 . (83)

Considering εn = O(n−τ), an arbitrary sequence (δn) being o(1) and l > 0, it follows from (83) that

1
nl · lnPn

µ ({ξn(X1, . . . , Xn) > δn}) ≤
1
nl ln(2) [1/α ln(2k0/εn) + 1]− n1−l δ2

n
log(1/εn)2 . (84)
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We note that the first term in the RHS of (84) is O( 1
nl log n) and goes to zero for all l > 0,

while the second term is O(n1−l δ2
n

log n2 ). If we consider δn = O(n−q), this second term is

O(n1−2q−l · 1
log n2 ). Therefore, for any q ∈ (0, 1/2) we can take an arbitrary l ∈ (0, 1 − 2q] such

that Pn
µ ({ξn(X1, . . . , Xn) > δn}) is O(e−nl

) from (84). This result implies, from the Borel-Cantelli
Lemma, that ξn(X1, . . . , Xn) is o(δn), Pµ-a.s, which in summary shows that |H(µεn)− H(µ̂n,εn)| is
O(n−q) for all q ∈ (0, 1/2).

For the approximation error, it is simple to verify that:

µ(Γ̃c
εn) ≤ k1 · ∑

x≥xo(εn)+1
e−αx = k1 · S̃xo(εn)+1 (85)

and

∑
x∈Γ̃c

εn

µ({x}) log
1

µ({x}) ≤ ∑
x≥xo(εn)+1

k1e−αx log
1

k0e−αx = k1 log
1
k0
· S̃xo(εn)+1

+ α log e · k1 · R̃xo(εn)+1, (86)

where S̃xo ≡ ∑x≥xo e−αx and R̃xo ≡ ∑x≥xo x · e−αx. At this point, it is not difficult to show that
S̃xo ≤ M1e−αxo and R̃xo ≤ M2e−αxo · xo for some constants M1 > 0 and M2 > 0. Integrating these
partial steps, we have that

aεn ≤ k1(1 + H(µ) + log
1
k0
) · S̃xo(εn)+1 + α log e · k1 · R̃xo(εn)+1 ≤ O1 · εn + O2 · εn log

1
εn

(87)

for some constant O1 > 0 and O2 > 0. The last step is from the evaluation of xo(εn) = b1/α ln(k0/εn)c.
Therefore from (81) and (87), it follows that |H(µ)− H(µεn)| is O(n−τ log n) Pµ-a.s. for all τ ∈ (0, 1/2).

The argument concludes by integrating in (80) the almost sure convergence results obtained for
the estimation and approximation errors.

Proof of Theorem 7. Let us define the event

Bε
n =

{
xn ∈ Xn : Γε(xn) = Aµ

}
, (88)

that represents the detection of the support of µ from the data for a given ε > 0 in (26). Note that
the dependency on the data for Γε is made explicit in this notation. In addition, let us consider the
deviation event

Aε
n(µ) = {xn ∈ Xn : V(µ, µ̂n) > ε} . (89)

By the hypothesis that
∣∣Aµ

∣∣ < ∞, then mµ = minx∈Aµ
fµ(x) > 0. Therefore if xn ∈ (Amµ/2

n (µ))c

then µ̂n({x}) ≥ mµ/2 for all x ∈ Aµ, which implies that (Bε
n)

c ⊂ Amµ/2
n (µ) as long as 0 < ε ≤ mµ/2.

Using the hypothesis that εn → 0, there is N > 0 such that for all n ≥ N (Bεn
n )c ⊂ Amµ/2

n (µ)

and, consequently,

Pn
µ((Bεn

n )c) ≤ Pn
µ(A

mµ/2
n (µ)) ≤ 2k+1 · e−

nm2
µ

4 , (90)

the last from Hoeffding’s inequality considering k =
∣∣Aµ

∣∣ < ∞.
If we consider the events:

Cε
n(µ) = {xn ∈ Xn : |H(µ̂n,εn)− H(µ)| > ε} and (91)

Dε
n(µ) = {xn ∈ Xn : |H(µ̂n)− H(µ)| > ε} (92)
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and we use the fact that by definition µ̂n,εn = µ̂n conditioning on Bεn
n , it follows that Cε

n(µ) ∩ Bεn
n ⊂

Dε
n(µ). Then, for all ε > 0 and n ≥ N

Pn
µ(Cε

n(µ)) ≤ Pn
µ(Cε

n(µ) ∩ Bεn
n ) + Pn

µ((Bεn
n )c)

≤ Pn
µ(Dε

n(µ)) + Pn
µ((Bεn

n )c)

≤ 2k+1

e
− 2nε2

(Mµ+
log e
mµ )2

+ e−
nm2

µ
4

 , (93)

the last inequality from Theorem 1 and (90).
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Appendix A. Minimax risk for Finite Entropy Distributions in ∞-Alphabets

Proposition A1. R∗n = ∞.

For the proof, we use the following lemma that follows from [26] (Theorem 1).

Lemma A1. Let us fix two arbitrary real numbers δ > 0 and ε > 0. Then there are P, Q two finite supported
distributions on H(X) that satisfy that D(P||Q) < ε while H(Q)− H(P) > δ.

The proof of Lemma A1 derives from the same construction presented in the proof of [26]
(Theorem 1), i.e., P = (p1, . . . , pL) and a modification of it QM = (p1 · (1 − 1/

√
M), p2 +

p1/M
√

M, . . . , pL + p1/M
√

M, p1/M
√

M, . . . , p1/M
√

M) both distribution of finite support and
consequently in H(X). It is simple to verify that as M goes to infinity D(P||QM) −→ 0 while
H(QM)− H(P) −→ ∞.

Proof. For any pair of distribution P, Q in H(X), Le Cam’s two point method [53] shows that:

R∗n ≥
1
4
(H(Q)− H(P))2 exp−nD(P||Q) . (A1)

Adopting Lemma A1 and Equation (A1), for any n and any arbitrary ε > 0 and δ > 0, we have
that R∗n > δ2 exp−nε /4. Then exploiting the discontinuity of the entropy in infinite alphabets, we can
fix ε and make δ arbitrar large.

Appendix B. Proposition A2

Proposition A2. Under the assumptions of Theorem 3:

lim
n→∞

sup
x∈Aµ̃n

∣∣∣∣dµ̃n

dµ∗n
(x)− 1

∣∣∣∣ = 0, Pµ-a.s. (A2)

Proof. First note that Aµ̃n = Aµ∗n , then dµ̃n
dµ∗n

(x) is finite and ∀x ∈ Aµ̃n

dµ̃n

dµ∗n
(x) =

(1− an) · µ(An(x)) + anv(An(x))
(1− an) · µ̂n(An(x)) + anv(An(x))

. (A3)
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Then by construction,

sup
x∈Aµ̃n

∣∣∣∣dµ̃n

dµ∗n
(x)− 1

∣∣∣∣ ≤ sup
A∈πn

|µ̂n(A)− µ(A)|
an · hn

. (A4)

From Hoeffding’s inequality, we have that ∀ε > 0

Pn
µ

(
sup
A∈πn

|µ̂n(A)− µ(A)| > ε

)
≤ 2 · |πn| · exp−2nε2

. (A5)

By condition ii), given that (1/anhn) is o(nτ) for some τ ∈ (0, 1/2), then there exists τo ∈ (0, 1)
such that

lim
n→∞

1
nτo

lnPn
µ

(
sup

x∈Aµ̃n

∣∣∣∣dµ̃n

dµ∗n
(x)− 1

∣∣∣∣ > ε

)
≤ lim

n→∞

1
nτo

ln(2 |πn|)− 2 · (n
1−τo

2 anhnε)2 = −∞.

This implies that Pn
µ

(
supx∈Aµ̃n

∣∣∣ dµ̃n
dµ∗n

(x)− 1
∣∣∣ > ε

)
is eventually dominated by a constant time

(e−nτo
)n≥1, which from the Borel-Cantelli Lemma [43] implies that

lim
n→∞

sup
x∈Aµ̃n

∣∣∣∣dµ̃n

dµ∗n
(x)− 1

∣∣∣∣ = 0, Pµ-a.s.. (A6)

Appendix C. Proposition A3

Proposition A3.

D(µεn ||µ̂n,εn) ≤
2 log e

εn

µ(Γεn)
·V(µ/σεn , µ̂n/σεn)

Proof. From definition,

D(µεn ||µ̂n,εn) =
1

µ(Γεn)
∑

x∈Γεn

fµ(x) log
fµ(x)
fµ̂n(x)

+ log
µ̂n(Γεn)

µ(Γεn)
. (A7)

For the right term in the RHS of (A7):

log
µ̂n(Γεn)

µ(Γεn)
≤ log(e)

µ(Γεn)
|µ̂n(Γεn)− µ(Γεn)| . (A8)
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For the left term in the RHS of (A7):

∣∣∣∣∣∣ ∑
x∈Γεn

fµ (x) log
fµ (x)

fµ̂n (x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

∑
x∈Γεn

fµ (x)≤ fµ̂n (x)

fµ (x) log
fµ (x)

fµ̂n (x)
+ ∑

x∈Γεn
fµ (x)> fµ̂n (x)≥εn

fµ (x) log
fµ (x)

fµ̂n (x)

∣∣∣∣∣∣∣∣∣∣∣
≤ ∑

x∈Γεn
fµ (x)≤ fµ̂n (x)

fµ (x) log
fµ̂n (x)

fµ (x)
+ ∑

x∈Γεn
fµ (x)> fµ̂n (x)≥εn

fµ̂n (x) log
fµ (x)

fµ̂n (x)

+ ∑
x∈Γεn

fµ (x)> fµ̂n (x)≥εn

( fµ (x)− fµ̂n (x)) · log
fµ (x)

fµ̂n (x)
(A9)

≤ log e

 ∑
x∈Γεn

fµ (x)≤ fµ̂n (x)

( fµ̂n (x)− fµ (x)) + ∑
x∈Γεn

fµ (x)> fµ̂n (x)

( fµ (x)− fµ̂n (x))


+ log

1
εn
· ∑

x∈Γεn
fµ (x)> fµ̂n (x)

( fµ (x)− fµ̂n (x)) (A10)

≤ (log e + log
1

εn
) · ∑

x∈Γεn

∣∣∣ fµ (x)− fµ̂n (x)
∣∣∣ . (A11)

The first inequality in (A9) is by triangular inequality, the second in (A10) is from the fact that
ln x ≤ x − 1 for x > 0. Finally, from definition of the total variational distance over σεn in (59) we
have that

2 ·V(µ/σεn , µ̂n/σεn) = ∑
x∈Γεn

∣∣ fµ(x)− fµ̂n(x)
∣∣+ |µ̂n(Γεn)− µ(Γεn)| , (A12)

which concludes the argument from (A7)–(A9).

Appendix D. Proposition A4

Proposition A4. Considering that (kn)→ ∞, there exists K > 0 and N > 0 such that ∀n ≥ N,

V(µ̃kn , µ̂∗kn ,n) ≤ K ·V(µ/σkn , µ̂n/σkn). (A13)

Proof.

V(µ̃kn , µ̂∗kn ,n) =
1
2 ∑

x∈Aµ∩Γkn

∣∣∣∣ µ {x}
µ(Γkn)

− µ̂n {x}
µ̂n(Γkn)

∣∣∣∣
≤ 1

2µ(Γkn)

 ∑
x∈Aµ∩Γkn

|µ̂n {x} − µ {x}|+ ∑
x∈Aµ∩Γkn

µ̂n {x}
∣∣∣∣ µ(Γkn)

µ̂n(Γkn)
− 1
∣∣∣∣


=
1

2µ(Γkn)

[
2 ·V(µ/σkn , µ̂n/σkn) +

∣∣µ(Γkn)− µ̂n(Γkn)
∣∣]

≤
3 ·V(µ/σkn , µ̂n/σkn)

2µ(Γkn)
. (A14)

By the hypothesis µ(Γkn)→ 1, which concludes the proof.

Appendix E. Proposition A5

Proposition A5. If εn is O(n−τ) with τ ∈ (0, 1/2), then

lim sup
n→∞

bεn(X1, . . . , Xn)− a2εn ≤ 0, Pµ − a.s..
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Proof. Let us define the set

Bn =
{
(x1, . . . , xn) : Γ̃2εn ⊂ Γεn

}
⊂ Xn.

From definition every sequence (x1, . . . , xn) ∈ Bn is such that bεn(x1, . . . , xn) ≤ a2εn and,
consequently, we just need to prove that Pµ(lim infn→∞ Bn) = Pµ(∪n≥1 ∩k≥n Bk) = 1 [42].
Furthermore, if supx∈Γ̃2εn

|µ̂n({x})− µ({x})| ≤ εn, then by definition of Γ̃2εn in (65), we have that
µ̂n({x}) ≥ εn for all x ∈ Γ2εn (i.e., Γ̃2εn ⊂ Γεn ). From this

Pn
µ(Bc

n) ≤ Pn
µ

 sup
x∈Γ̃2εn

|µ̂n({x})− µ({x})| > εn

 ≤ ∣∣Γ̃2εn

∣∣ · e−2nε2
n ≤ 1

2εn
· e−2nε2

n , (A15)

from the Hoeffding’s inequality [28,52], the union bound and the fact that by construction
∣∣Γ̃2εn

∣∣ ≤ 1
2εn

.
If we consider εn = O(n−τ) and l > 0, we have that:

1
nl · lnPn

µ(Bc
n) ≤

1
nl ln(1/2 · nτ)− 2n1−2τ−l . (A16)

From (A16) for any τ ∈ (0, 1/2) there is l ∈ (0, 1− 2τ] such that Pn
µ(Bc

n) is bounded by a term

O(e−nl
). This implies that ∑n≥1 Pn

µ(Bc
n) < ∞, that suffices to show that Pµ(∪n≥1 ∩k≥n Bk) = 1.

Appendix F. Auxiliary Results for Theorem 5

Let us first consider the series

Sxo = ∑
x≥xo

x−p = x−p
o ·

(
1 +

(
xo

xo + 1

)p
+

(
xo

xo + 2

)p
+ . . .

)
= x−p

o ·
(
S̃xo ,0 + S̃xo ,1 + . . . + S̃xo ,xo−1

)
, (A17)

where S̃xo,j ≡ ∑∞
k=0

(
k·xo+j

xo

)−p
for all j ∈ {0, . . . , xo − 1}. It is simple to verify that for all j ∈

{0, . . . , xo − 1}, S̃xo,j ≤ S̃xo,0 = ∑k≥0 k−p < ∞ given that by hypothesis p > 1. Consequently,

Sxo ≤ x1−p
o ·∑k≥0 k−p.

Similarly, for the second series we have that:

Rxo = ∑
x≥xo

x−p log x = x−p
o ·

(
log(xo) +

(
xo

xo + 1

)
log(xo + 1) +

(
xo

xo + 2

)
log(xo + 2) + . . .

)
= x−p

o ·
(
R̃xo ,0 + R̃xo ,2 + . . . + R̃xo ,xo−1

)
, (A18)

where R̃xo ,j ≡ ∑∞
k=1

(
k·xo+j

xo

)−p
· log(kxo + j) for all j ∈ {0, . . . , xo − 1}. Note again that

R̃xo,j ≤ R̃xo,0 < ∞ for all j ∈ {0, . . . , xo − 1}, and, consequently,Rxo ≤ x1−p
o ·∑k≥1 k−p log k from (A18).

Appendix G. Proposition A6

Proposition A6. If εn is O(n−τ) with τ ∈ (0, 1/2), then

lim inf
n→∞

ξn(X1, . . . , Xn)− ρn(X1, . . . , Xn) ≥ 0, Pµ − a.s..

Proof. By definition if σ(Γεn) ⊂ σ(Γ̃εn/2) then ξn(X1, . . . , Xn) ≥ ρn(X1, . . . , Xn). Consequently, if we
define the set:

Bn =
{
(x1, . . . , xn) : σ(Γεn) ⊂ σ(Γ̃εn/2)

}
, (A19)
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then the proof reduced to verify that Pµ(lim infn→∞ Bn) = Pµ(∪n≥1 ∩k≥n Bk) = 1.
On the other hand, if supx∈Γεn

|µ̂n({x})− µ({x})| ≤ εn/2 then by definition of Γε, for all x ∈ Γεn

µ({x}) ≥ εn/2, i.e., Γεn ⊂ Γ̃εn/2. In other words,

Cn =

{
(x1, . . . , xn) : sup

x∈Γεn

|µ̂n({x})− µ({x})| ≤ εn/2

}
⊂ Bn. (A20)

Finally,

Pn
µ(Cc

n) = Pn
µ

(
sup

x∈Γεn

|µ̂n({x})− µ({x})| > εn/2

)
≤ |Γεn | · e−nε2/2 ≤ 1

εn
· e−nε2/2. (A21)

In this context, if we consider εn = O(n−τ) and l > 0, then we have that:

1
nl · lnPn

µ(Cc
n) ≤ τ · ln n

nl −
n1−2τ−l

2
. (A22)

Therefore, we have that for any τ ∈ (0, 1/2) we can take l ∈ (0, 1− 2τ] such that Pn
µ(Cc

n) is

bounded by a term O(e−nl
). Then, the Borel Cantelli Lemma tells us that Pµ(∪n≥1 ∩k≥n Ck) = 1, which

concludes the proof from (A20).

Appendix H. Proposition A7

Proposition A7. For the p-power tail dominating distribution stated in Theorem 5, if (εn) is O(n−τ) with
τ ∈ (0, p) then ξn(X1, . . . , Xn) is o(n−q) for all q ∈ (0, (1− τ/p)/2), Pµ-a.s.

Proof. From the Hoeffding’s inequality we have that

Pn
µ ({x1, . . . , xn : ξn(x1, . . . , xn) > δ}) ≤

∣∣σ(Γ̃εn/2)
∣∣ · e−2n δ2

log(1/εn)2

≤ 2(
2ko
εn )1/p+1 · e

−2n δ2

log(1/εn)2 , (A23)

the second inequality using that Γ̃ε ≤ ( k0
ε )

1/p + 1 from the definition of Γ̃ε in (65) and the tail bounded
assumption on µ. If we consider εn = O(n−τ) and l > 0, then we have that:

1
nl · lnPn

µ ({x1, . . . , xn : ξn(x1, . . . , xn) > δ}) ≤ ln 2 · (Cnτ/p−l + n−l)− 2δ2

τ2 ·
n1−l

log n2 (A24)

for some constant C > 0. Then in order to obtain that ξn(X1, . . . , Xn) converges almost surely to
zero from (A24), it is sufficient that l > 0, l < 1, and l > τ/p. This implies that if τ < p, there is
l ∈ (τ/p, 1) such that such that Pn

µ(ξn(x1, . . . , xn) > δ) is bounded by a term O(e−nl
) and, consequently,

limn→∞ ξn(X1, . . . , Xn) = 0, Pµ-a.s. (this by using the same steps used in Appendix G).
Moving to the rate of convergence of ξn(X1, . . . , Xn) (assuming that τ < p), let us consider

δn = n−q for some q ≥ 0. From (A24):

1
nl · lnPn

µ ({x1, . . . , xn : ξn(x1, . . . , xn) > δn}) ≤ ln 2 · (Cnτ/p−l + n−l)− 2δ2

τ2 ·
n1−2q−l

log n2 . (A25)

To make ξn(X1, . . . , Xn) being o(n−q) P-a.s., a sufficient condition is that l > 0, l > τ/p, and l < 1− 2q.
Therefore (considering that τ < p), the admissibility condition on the existence of a exponential
rate of convergence O(e−nl

) for l > 0 for the deviation event {x1, . . . , xn : ξn(x1, . . . , xn) > δn} is that
τ/p < 1− 2q, which is equivalent to 0 < q < 1−τ/p

2 .
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