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Abstract We consider a general minimal time problem with a convex constant dynamics
and a lower semicontinuous extended real-valued target function defined on a Banach space.
If the target function is the indicator function of a closed set, this problem is a minimal time
problem for a target set, studied previously in particular by Colombo, Goncharov and Mor-
dukhovich. We investigate several properties of the Fréchet and proximal subdifferentials
for the infimum time function. Also explicit expressions of the above mentioned subdiffer-
entials as well as various directional derivatives are obtained. We provide some examples to
show the essentiality of assumptions of our theorems.
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1 Introduction

Given a non-empty closed convex set G of a Banach space (X, ‖ · ‖) with 0 ∈ G and
an extended real-valued function f defined on X, we investigate the Moreau-type infimal
convolution

Tf (x) := inf
y∈X

(f (y) + ρG(x − y)) , (1.1)

where ρG denotes the Minkowski functional of G. Our motivation for such a study is the
following. Consider the optimal control problem

Minimize t + f (ζ(t; x)) (1.2)

over all t ≥ 0 and all solutions ζ(·) = ζ(·; x) of the differential inclusion

dζ

dt
(t) ∈ −G, t ≥ 0

with the initial condition

ζ(0) = x.

As we will see in the next section, the function Tf is exactly the infimum value of this
optimal control problem. In the case when f is the indicator function of a closed subset C of
the Banach space X, the problem is reduced to a minimal time control problem for a target
set C, studied previously in particular by Colombo, Goncharov and Mordukhovich [8]. We
also refer to [1, 9, 10, 13, 14, 16, 20, 26, 27, 35]; see, e.g., [12, 22] for studies related to
generalized best approximation problems. Some results concerning subdifferentials of the
infimum convolution Tf , without refering to the (motivation) optimal control problem (1.2)
can also be found in [11, 30, 31, 36]. In addition to subdifferential properties, Nam and
Cuong [31] studied also the weak lower semicontinuity of Tf under some conditions on the
function f .

Considering a closed set C in a Hilbert space H and a sufficiently regular function θ :
C → R, Goncharov and Pereira [15, 32] investigated regularity properties of the function û

defined by

û(x) := inf
y∈C

(θ(y) + ρG(x − y)) (1.3)

i.e., û = Tθ+ψC
, where ψC is the indicator function of C (see Section 2 for the definition).

A main motivation of the authors for such an investigation is [32, Theorem 1] which states
that, under the slope condition θ(x) − θ(y) ≤ ρG(x − y), the function û is the (unique)
viscosity solution of

ρGo (∇u(x)) − 1 = 0, x ∈ H \ C

such that û(x) = θ(x), x ∈ C, where Go denotes the polar of G (see the next section for
the definition); this explains the notation û in [32].

In addition to our above interpretation of the function Tf , the set of minimizers �f (x)

of (1.1) will also be interpreted with respect to the optimal time control problem, and it will
appear as the minimal time projection set. The study in detail of this mapping �f (·) will be
the subject of the second companion paper [19].

The paper is organized as follows. In Section 2 we discuss the problem (1.2) and we
justify that Tf is its infimum value. We also recall various variational concepts, as Fréchet
and proximal subdifferentials, as well as some of their main properties needed in the paper.
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Section 3 is devoted to explicit estimates and exact expressions, in terms of the data f and
G, of the above subdifferentials of the infimum time function Tf when the latter is achieved.
Various directional derivatives are also studied. Further properties of the Fréchet subdiffer-
ential of Tf constitute the subject of Section 4, mainly when �f (x) = ∅. In particular, we
provide explicit expressions of the Fréchet subdifferential of Tf in terms of Fréchet nor-
mal cone to the sublevel of Tf and in terms of the support function of the set G. Similar
results are established in Section 5 with the proximal subdifferential instead of the Fréchet
subdifferential. The limiting subdifferential of the infimum time function is studied in the
companion paper [18].

2 Preliminaries

Throughout (X, ‖·‖) is a real normed vector space, X∗ is its topological dual, and BX is the
closed unit ball of X centered at the origin. The dual norm (of ‖ · ‖) over X∗ will be denoted
by ‖ · ‖∗. As usual B(x, δ) is the open ball in X of center x ∈ X and radius δ and cl S (resp.
int S, bd S) denotes the closure (resp. the interior, the boundary) of a set S in X. It will be

convenient, for x̄ ∈ cl S, to write x
S−→ x̄ to mean that x → x̄ with x ∈ S. For a function

ϕ : X → R ∪ {+∞} we will denote by Argmin
S

ϕ or Argmin
x∈S

ϕ(x) the set of minimizers of

ϕ over S; when S = X we will often just write Argminϕ.
Given a nonempty closed convex subset K of X, we denote by ρK its Minkowski gauge

function (Minkowski functional), that is,

ρK(x) := inf{r ≥ 0 : x ∈ rK} for all x ∈ X,

with the usual convention inf ∅ = +∞. It is known and not difficult to see that the function
ρK is sublinear (that is, positively homogeneous and convex) from X into R+ ∪ {+∞},
where R+ stands for the set of non-negative real numbers. Further, the equality ρK(0) = 0
is obvious.

Consider now throughout the paper a closed bounded convex subset G of X with 0 ∈
intG. For each nonempty closed set C of X and each initial value x ∈ X, consider the
optimal control problem

Minimize t ≥ 0 such that ζ(t) ∈ C and

subject to ζ̇ (τ ) ∈ −G a.e.τ ∈ [0, t] and ζ(0) = x.

The infimum value function TC(·), naturally asssociated with this optimal control problem,
is then defined by TC(x) as the infimum of all t ≥ 0 for which there exists a solution
ζ(·) = ζ(·; x) of the differential inclusion ζ̇ (τ ) ∈ −G starting from x ∈ X at time τ = 0
and such that ζ(t; x) ∈ C. The value function TC(·) is generally called the minimal time
function to reach the target set C. It is easily seen (see the arguments below concerning
Tf (x)) that the minimal time function above can be rewritten as

TC(x) = inf
y∈C

ρG(x − y). (2.1)

We will put

�C(x) := Argmin
C

ρG(x − ·) = {y ∈ C : ρG(x − y) = TC(x)} (2.2)

and we will say that �C is the minimal time projection set-valued mapping.
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It is worth mentioning some additional properties of the gauge function ρG, where G is
as above. First, because of the assumption 0 ∈ intG, the function ρG is finite on X and
Lipschitz continuous on X. Considering the polar set Go of G defined by

Go := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1 ∀x ∈ G},
it is known (and not difficult to see) that

ρG(x) = σGo(x) := sup
u∗∈Go

〈u∗, x〉 for all x ∈ X. (2.3)

Further, using the positive homogeneity of the convex function ρG, it is not difficult to see
that

x∗ ∈ ∂ρG(x) = ∂σGo(x) ⇔ x∗ ∈ ∂ρG(0) and 〈x∗, x〉 = ρG(x), (2.4)

where ∂ρG(x) denotes the usual Fenchel subdifferential of the convex function ρG at the
point x, that is,

∂ρG(x) = {x∗ ∈ X∗ : 〈x∗, x′ − x〉 ≤ ρG(x′) − ρG(x) ∀x′ ∈ X}.
In particular, we then have

∂ρG(0) = ∂σGo(0) = Go. (2.5)

In the case where ρG(x) �= 0 the equivalence in (2.4) yields

ρG(x) �= 0 andx∗ ∈ ∂ρG(x) = ∂σGo(x) =⇒ 〈x∗, 1

ρG(x)
x〉 = 1 hence x∗ ∈ bdGo. (2.6)

Observe also that for the support function σG(·) = sup
u∈G

〈·, u〉 we have with ρG(x) �= 0

x∗ ∈ Go and 〈x∗, 1

ρG(x)
x〉 = 1 =⇒ 1

ρG(x)
x ∈ ∂σG(x∗). (2.7)

We point out that the boundedness of G and the inclusion 0 ∈ intG ensure the existence
of some α > 0 and β > 0 such that 1

β
BX ⊂ G ⊂ 1

α
BX and hence

α‖x‖ ≤ ρG(x) ≤ β‖x‖ for all x ∈ X. (2.8)

If G is, in addition, symmetric, then obviously ρG is a norm ‖ · ‖G on X and TC(x) =
dist‖·‖G

(x, C) is the distance from the point x to the set C associated with the norm ‖ · ‖G;
further, in such a case, (2.8) tells us that the norm ‖ · ‖G is equivalent to the initial norm
‖ · ‖. So, if G = BX (the closed unit ball with respect to the initial norm ‖ · ‖), the function
TC is reduced to the distance function dist(·, C) with respect to the norm ‖ · ‖, and �C(x)

coincides with the projection set ProjC(x), that is,

�C(x) = ProjC(x) := {y ∈ C : ‖x − y‖ = dist(x, C)}.
We will also write sometimes dC in place of dist(·, C). We observe that in (2.8) we may
obviously take

α =
(
sup
u∈G

‖u‖
)−1

and β = sup
u∗∈Go

‖u∗‖∗.

Now let f : X → R ∪ {+∞} be an extended real-valued function which is proper
in the sense that it is not identically +∞. For any locally (Bochner) integrable mapping
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ζ̇ : [0, +∞[→ X we will denote by ζ(·; x) its primitive which equals x at 0, that is,
ζ(t; x) = x + ∫ t

0 ζ̇ (s) ds. Consider the optimal control problem

(P)

⎧⎨
⎩

Minimize t + f (ζ(t; x)) over t ≥ 0
and over all solutions ζ(·; x) of the differential inclusion
ζ̇ (τ ) ∈ −G a.e.τ ∈ [0, t] with initial condition ζ(0) = x,

and its infimum value function Tf with Tf (x) defined by the infimum of the latter problem.
Observe that for any real t ≥ 0 and for any solution ζ(·) of the differential inclusion ζ̇ (τ ) ∈
−G with initial condition ζ(0) = x, the closedness and convexity assumption of the set
−G entails that 1

t

∫ t

0 ζ̇ (τ ) dτ ∈ −G. The equality ζ(t; x) = x + t · 1
t

∫ t

0 ζ̇ (τ ) dτ assures us
that ζ(t; x) ∈ x + t (−G). Further, for any z ∈ −G we see that for the constant mapping
ζ̇0(·) = z we have x + tz = ζ0(t; x). Therefore, starting from x ∈ X the reachable set
R(t; x) at time t of the dynamics involved in (P) is the set R(t; x) = x + t (−G). So, the
problem (P) may be reformulated as

(P)

{
Minimize t + f (x − tu)

over t ≥ 0 and u ∈ G.
(2.9)

Thus, we can write

Tf (x) = inf
t≥0

[t + inf
y∈x+t (−G)

f (y)]
= inf

y∈X
inf

t≥0: x−y∈tG
(t + f (y))

= inf
y∈X

[f (y) + ρG(x − y)], (2.10)

that is, the function Tf is the infimum convolution (see Moreau [28, 29]) of the functions f

and ρG. (Remind that the infimum convolution f�g of f with another function g is defined
by f�g (x) = inf

y∈X
[f (y) + g(x − y)].) Further, for all x ∈ X the properness of f ensures

that Tf (x) < +∞ and the equality in (2.10) entails Tf (x) ≤ f (x).
Denote by ψC the indicator function of the closed set C, i.e., ψC(x) = 0 if x ∈ C and

ψC(x) = +∞ otherwise. Obviously, for f = ψC , the function Tf coincides with TC as
defined above. Throughout, we will say that Tf is the (generalized) infimum time function
associated with the function f and the dynamics of (P).

Similarly to (2.2) the Argmin of the function f + ρG(x − ·) or (generalized) minimal
time projection in (2.10) will be denoted by �f (x), that is,

�f (x) := Argmin (f + ρG(x − ·)) := {y ∈ X : f (y) + ρG(x − y) = Tf (x)}. (2.11)

We call �f the (generalized) minimal time projection set-valued mapping associated with
the function f and the dynamics of (P).

Throughout the paper, unless otherwise stated f : X → R ∪ {+∞} is as above an
extended real-valued proper function and we will assume that for some real constant γ

f (y) ≥ −ρG(−y) + γ for all y ∈ X. (2.12)

Then for all y ∈ X according to the sublinearity of ρG

f (y) + ρG(x − y) ≥ ρG(x − y) − ρG(−y) + γ ≥ −ρG(−x) + γ,

and this entails that

Tf (x) ≥ −ρG(−x) + γ, hence in particular, Tf (x) ∈ R for all x ∈ X. (2.13)



586 G. E. Ivanov and L. Thibault

We also observe that

�f (x) ⊂ dom f := {u ∈ X : f (u) < +∞} for all x ∈ X.

The paper will be focused on several properties of subdifferentials of the infimum time
function Tf related to the function f . As pointed out above, for G = BX , the function TC

related to the set C corresponds to dist(·, C) and hence in such a case the Fréchet subdif-
ferential of dist(·, C) at all points of X has been studied in Kruger [21] (see also Borwein
and Giles [3] and Bounkhel and Thibault [4]); we refer to [4, 7] for the proximal subdif-
ferential of dist(·, C) and to [2, 23–25, 34] for its limiting subdifferential. The Fréchet and
proximal subdifferentials of the minimal time function TC in (2.1) have been considered
later in finite dimensional space X in [35] and then in the Hilbert setting in [9, 10]. Sev-
eral results of [9, 10, 35] have been extended in [16]. The limiting subdifferential of TC is
treated in [26]. Colombo, Goncharov and Mordukhovich [8] provided some further strong
results concerning subdifferentials of TC .

Remind that for x ∈ dom f and ε ≥ 0 the Fréchet ε-subdifferential ∂F,εf (x) of f at x

is the set of x∗ ∈ X∗ such that for any η > 0 there exists a neighborhood U of x such that
for all x′ ∈ U

〈x∗, x′ − x〉 ≤ f (x′) − f (x) + (ε + η)‖x′ − x‖.
When ε = 0 we will write, as usual, ∂F f (x) instead of ∂F,εf (x). Sometimes, a more
accurate term is needed in place of ε‖x′ −x‖, and this leads to the proximal subdifferential.
A continuous linear functional x∗ ∈ X∗ is a proximal subgradient of f at x provided there
exists some constant r ≥ 0 and some neighborhood U of x such that

〈x∗, x′ − x〉 ≤ f (x′) − f (x) + r‖x′ − x‖2 for all x′ ∈ U.

The set of all proximal sudgradients of f at x is the proximal subdifferential ∂P f (x) of f

at x.
Besides the Fréchet and proximal subdifferentials we will use the (lower) Dini direc-

tional derivative d−f (x; v) of f at x in the direction v defined by

d−f (x; v) := lim inf
w→v;t↓0 t−1[f (x + tw) − f (x)].

Through the Dini directional derivative one defines the Dini subdifferential of f at x by

∂−f (x) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ d−f (x; v) ∀v ∈ X}.
When x �∈ dom f we adopt the convention that all the above subdifferentials at x are empty.
When f is convex, then all the above subdifferentials coincide with the Fenchel subdiffer-
ential ∂f (x) of f in convex analysis; if, in addition, f is lower semicontinuous (lsc), see,
e.g., [28], then

x∗ ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(x∗), (2.14)

where f ∗ : X∗ → R ∪ {+∞} denotes the Legendre-Fenchel conjugate of f , that is,

f ∗(x∗) = sup
y∈X

[〈x∗, y〉 − f (y)].

For the closed set C, its ε-Fréchet (for ε ≥ 0) normal set and its proximal normal cone
at x are defined through its indicator function ψC by

NF,ε(C; x) = ∂F,εψC(x) and NP (C; x) = ∂P ψC(x).
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The first equality can be translated, for x ∈ C, by writing that x∗ ∈ NF,ε(C; x) if and
only if for each η > 0 there exists some neighborhood U of x such that

〈x∗, x′ − x〉 ≤ (ε + η)‖x′ − x‖ for all x′ ∈ C ∩ U.

Analogously, x∗ ∈ NP (C; x) means that there exist r > 0 and a neighborhood U of x such
that

〈x∗, x′ − x〉 ≤ r‖x′ − x‖2 for all x′ ∈ C ∩ U.

3 Properties when the Infimum Time Function is Achieved

As we said above we are interested in several subdifferential properties of the infimum time
function associated with the function f . We start with the following theorem concerning its
Fréchet subdifferential and Fréchet ε-subdifferential when the infimum at the considered
point is achieved. We also state the similar results for the proximal and Dini subdifferentials,
since the arguments are quite similar.

Theorem 3.1 Assume that ȳ ∈ �f (x̄). The following hold.

(a) For any ε ≥ 0

∂F,εTf (x̄) ⊂ ∂F,εf (ȳ) ∩ ∂F,ερG(x̄ − ȳ) = ∂F,εf (ȳ) ∩ (∂ρG(x̄ − ȳ) + εBX∗)

and

∂P Tf (x̄) ⊂ ∂P f (ȳ) ∩ ∂ρG(x̄ − ȳ).

(b) For all v ∈ X

d−Tf (x̄; v) ≤ (
d−f (ȳ; ·)�d−ρG(x̄ − ȳ; ·)) (v) ≤ (

d−f (ȳ; ·)�ρG

)
(v);

further

∂−Tf (x̄) ⊂ ∂−f (ȳ) ∩ ∂ρG(x̄ − ȳ).

(c) If, in addition, f is convex, then Tf is also convex and the two latter inclusions are
equalities, that is,

∂Tf (x̄) = ∂f (ȳ) ∩ ∂ρG(x̄ − ȳ).

Proof (a) Consider ε ≥ 0 and x∗ ∈ ∂F,εTf (x̄), and fix any η > 0. There exists some
neighborhood U of zero such that for all u ∈ U

〈x∗, u〉 ≤ Tf (x̄+u)−Tf (x̄)+(ε+η)‖u‖ = Tf (x̄+u)−f (ȳ)−ρG(x̄−ȳ)+(ε+η)‖u‖
and hence on one hand for y = ȳ in the definition of Tf (x̄ + u) in (2.10)

〈x∗, u〉 ≤ f (ȳ) + ρG(x̄ + u − ȳ) − f (ȳ) − ρG(x̄ − ȳ) + (ε + η)‖u‖,
that is,

〈x∗, u〉 ≤ ρG(x̄ − ȳ + u) − ρG(x̄ − ȳ) + (ε + η)‖u‖;
and on the other hand,

〈x∗, u〉 ≤ f (ȳ + u) + ρG(x̄ − ȳ) − f (ȳ) − ρG(x̄ − ȳ) + (ε + η)‖u‖,
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that is,

〈x∗, u〉 ≤ f (ȳ + u) − f (ȳ) + (ε + η)‖u‖.
This being true for all η > 0 we obtain x∗ ∈ ∂F,εf (ȳ) ∩ ∂F,ερG(x̄ − ȳ). Moreover,
the function ρG being convex and continuous, it is not difficult to see that

∂F,ερG(x̄ − ȳ) = ∂ρG(x̄ − ȳ) + εBX∗ ,

and hence the Fréchet part of assertion (a) of the theorem is established.
The same arguments also hold for the proximal subdifferential.

(b) Fix v ∈ X and consider any t > 0 and any w, h ∈ X. Write

t−1[Tf (x̄ + tv + th) − Tf (x̄)]
≤ t−1[f (ȳ + tw + th) + ρG(x̄ − ȳ + t (v − w)) − f (ȳ) − ρG(x̄ − ȳ)]

≤ t−1[f (ȳ + tw + th) − f (ȳ)] + t−1[ρG(x̄ − ȳ + t (v − w)) − ρG(x̄ − ȳ)].
Taking the lower limit as t ↓ 0 and h → 0 in X gives

d−Tf (x̄; v) ≤ d−f (ȳ;w) + d−ρG(x̄ − ȳ; v − w),

since

d−ρG(x̄ − ȳ; v − w) = lim
t↓0 t−1[ρG(x̄ − ȳ + t (v − w)) − ρG(x̄ − ȳ)],

according to the convexity of the continuous function ρG. The latter inequality being
true for all w ∈ X it follows that

d−Tf (x̄; v) ≤ inf
w∈X

[d−f (ȳ;w)+d−ρG(x̄−ȳ; v−w)] = (
d−f (ȳ; ·)�d−ρG(x̄ − ȳ; ·)) (v).

(3.1)
Further, we have that d−ρG(x̄ − ȳ; v − w) ≤ ρG(v − w) because of the sublinearity
of ρG, and subsequently(

d−f (ȳ; ·)�d−ρG(x̄ − ȳ; ·)) (v) ≤ (
d−f (ȳ; ·)�ρG(·)) (v).

Fix now x∗ ∈ ∂−Tf (x̄). We take w = v and w = 0 respectively in the inequality
of (3.1) to deduce that

d−Tf (x̄; v) ≤ d−f (ȳ; v) and d−Tf (x̄; v) ≤ d−ρG(x̄ − ȳ; v),

which ensures that x∗ ∈ ∂−f (ȳ) and x∗ ∈ ∂ρG(x̄ − ȳ). This yields the inclusion of
(b).

(c) Under the convexity of f , the function Tf is known to be convex as the infimum
convolution of two convex functions (see [28, 29]), and the opposite inclusion of the
one of (b) follows from a quite standard argument. It is enough for x∗ ∈ ∂f (ȳ) ∩
∂ρG(x̄ − ȳ) to write

〈x∗, x − x̄〉 = 〈x∗, y − ȳ〉 + 〈x∗, x − y − (x̄ − ȳ)〉
≤ f (y) − f (ȳ) + ρG(x − y) − ρG(x̄ − ȳ)

= f (y) + ρG(x − y) − Tf (x̄).

Taking the infimum over y ∈ X we arrive at

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) for allx ∈ X,
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which means that x∗ ∈ ∂Tf (x̄). This gives the desired opposite inclusion and
completes the proof.

The arguments for the inclusion in (a) follow exactly those of Correa, Jofre and Thibault
in [11, Lemma 3.6] where this inclusion was first observed with ε = 0 for any function
g in place of ρG. Clearly, the arguments with any ε ≥ 0 are still valid for any function g,
but the statement with ρG allows us to keep the presentation of the paper in a unified way.
The assertion (a) was also established by Nam and Cuong [31, Proposition 4.4] with ε ≥ 0
and with a general function ϕ in place of ρG. Results similar to Theorem 3.1 have been
established for the Fréchet and proximal subdifferentials of TC by Colombo and Wolenski
[10, Theorem 3.3] in Hilbert space and by He and Ng [16] for the Dini directional derivative
of TC in Banach space. For the proximal subdifferential inclusion in the assertion (a), we
also refer to (88) in [32] with the particular function û given by (1.3) in the introduction.

As a first corollary we have an extension of [10, Theorem 4.2] and [8, Proposition 5.9]
to the case of Tf in place of TC .

Corollary 3.1 Assume in addition to the hypotheses of Theorem 3.1 that the function f is
lsc and convex. Then for any x̄ ∈ X

�f (x̄) ⊂ ∂f ∗(x∗) for all x∗ ∈ ∂Tf (x̄) �= ∅.

Proof We may suppose that �f (x̄) �= ∅. By Proposition 3.1 below, the function Tf is
Lipschitz continuous. Since it is further convex under our assumptions, we have ∂Tf (x̄) �=
∅. Fix x∗ ∈ ∂Tf (x̄) and take any ȳ ∈ �f (x̄). Theorem 3.1 then gives x∗ ∈ ∂f (ȳ) and by
(2.14) this is equivalent to ȳ ∈ ∂f ∗(x∗). Consequently, �f (x̄) ⊂ ∂f ∗(x∗).

The following proposition shows in particular the Lipschitz continuity of Tf used in the
corollary above. The arguments are classical in the sense that they follow the well-known
ones with a norm in place of ρG.

Proposition 3.1 The infimum time function Tf verifies for all x, x′ ∈ X the inequality

Tf (x′) − Tf (x) ≤ ρG(x′ − x)

and hence

|Tf (x) − Tf (x′)| ≤ max{ρG(x′ − x), ρG(x − x′)} ≤ β‖x′ − x‖.

Proof For any y ∈ X we have according to the sublinearity of ρG

f (y) + ρG(x′ − y) ≤ f (y) + ρG(x − y) + ρG(x′ − x)

and hence taking the infimum over y ∈ X we get the first inequality

Tf (x′) ≤ Tf (x) + ρG(x′ − x)

of the proposition. The second part of the statement of the proposition follows directly from
the latter inequality and (2.8).

Due to the Lipschitz continuity of Tf the Dini directional derivative of Tf may be
expressed in simpler form than in the original definition:

d−Tf (x; v) := lim inf
t↓0 t−1[Tf (x + tv) − Tf (x)] for all x, v ∈ X. (3.2)
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The second corollary below of Theorem 3.1 is related to the case when Tf (x̄) = f (x̄).

Corollary 3.2 Assume Tf (x̄) = f (x̄). Then

∂F,εTf (x̄) ⊂ ∂F,εf (x̄) ∩ (Go + εBX∗) for ε ≥ 0,

and

∂F Tf (x̄) ⊂ ∂F f (x̄) ∩ Go = ∂F f (x̄) ∩ {x∗ ∈ X∗ : σG(x∗) ≤ 1}.
Also

∂P Tf (x̄) ⊂ ∂P f (x̄) ∩ Go = ∂P f (x̄) ∩ {x∗ ∈ X∗ : σG(x∗) ≤ 1}.
If, in addition, f is convex, then the latter inclusions for ∂F Tf (x̄) and ∂P Tf (x̄) are

equalities.

Proof The equality assumption Tf (x̄) = f (x̄) obviously assures us that x̄ ∈ �f (x̄).
Observing that

∂ρG(0) = ∂σGo(0) = Go,

In view of (2.5) Theorem 3.1 implies for ε ≥ 0 that

∂F,εTf (x̄) ⊂ ∂F,εf (x̄) ∩ (∂ρG(0) + εBX∗) = ∂F,εf (x̄) ∩ (
Go + εBX∗

)
.

Further, obviously Go = {x∗ ∈ X∗ : σG(x∗) ≤ 1}. So the inclusions for ∂F,εTf (x̄) and
∂F Tf (x̄) are established.

The inclusion concerning ∂P Tf (x̄) holds in a similar way. Finally, the case where f is
convex is a consequence of assertion (c) of Theorem 3.1.

Strengthening the condition Tf (x̄) = f (x̄) into f (x̄) = inf
X

(f + α′‖x̄ − ·‖), the
inequalities in (b) of Theorem 3.1 with ȳ = x̄ become equalities provided that X is finite
dimensional and 0 ≤ α′ < α, where α is given by (2.8).

Corollary 3.3 Assume that f is lsc and that f (x̄) = inf
X

(f +α′‖x̄ −·‖) with some nonneg-
ative α′ < α, where α is as in (2.8), and assume that X is finite dimensional. Then for all
v ∈ X

d−Tf (x̄; v) = min
w∈X

[d−f (x̄;w) + ρG(v − w)] = (
d−f (x̄; ·)�ρG

)
(v).

Proof The assumption f (x̄) = inf
X

(f + α′‖x̄ − ·‖) with α′ < α and (2.8) assures us that

Tf (x̄) = f (x̄) and x̄ ∈ �f (x̄). Therefore, assertion (b) of Theorem 3.1 says that for any
fixed v ∈ X

d−Tf (x̄; v) ≤ inf
w∈X

[d−f (x̄; w) + ρG(v − w)]. (3.3)

Now in view of (2.8) we see for any x ∈ X that

{y ∈ X : f (y) + ρG(x − y) ≤ Tf (x) + 1}
⊂ {y ∈ X : f (x̄) − α‖x − x̄‖ + (α − α′)‖x̄ − y‖ ≤ Tf (x) + 1}.
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So, according to the lsc property of f and to the finite dimensional assumption of X the
set {y ∈ X : f (y) + ρG(x − y) ≤ Tf (x) + 1} is compact, and hence the infimum in the
definition of Tf (x) is achieved. By (3.2) there exists some sequence tk ↓ 0 such that

d−Tf (x̄; v) = lim
k

t−1
k [Tf (x̄ + tkv) − Tf (x̄)].

For each k choose yk ∈ X such that Tf (x̄ + tkv) = f (yk) + ρG(x̄ + tkv − yk). Define
wk := t−1

k (yk − x̄) and write

t−1
k [Tf (x̄ + tkv) − Tf (x̄)] = t−1

k [f (yk) + ρG(x̄ + tkv − yk) − f (x̄)]
= t−1

k [f (x̄ + tkwk) − f (x̄)] + ρG(v − wk) (3.4)

≥ −α′‖wk‖ + α‖v − wk‖
≥ (α − α′)‖wk‖ − α‖v‖.

This entails by Proposition 3.1 that (α−α′)‖wk‖ ≤ (α+β)‖v‖ and hence some subsequence
of (wk)k converges to some w̄ ∈ X. Then we have by (3.4)

d−Tf (x̄; v) ≥ d−f (x̄; w̄) + ρG(v − w̄).

This combined with (3.3) finishes the proof.

It is well-known that a vector v ∈ X belongs to the Bouligand tangent cone T (C; x) of
the set C at x ∈ C when there exists a sequence vk → v and a sequence tk ↓ 0 such that
x + tkvk ∈ C for all integers k. The indicator function of the Bouligand tangent cone of C

is equal to the (lower) Dini directional derivative of the indicator function of C, that is,

ψT (C;x̄)(·) = d−ψC(x̄; ·)
So, taking f = ψC we deduce directly from (b) in Theorem 3.1 and from Corollary 3.3 the
following assertions. They have been established in [5] for dC and then in [16] for TC .

Corollary 3.4 Let C be closed subset of X with x̄ ∈ C. Then for all v ∈ X

d−TC(x̄; v) ≤ inf
w∈T (C;x̄)

ρG(v − w).

If in addition X is finite dimensional, then the inequality is an equality and the infimum
is achieved.

We still suppose that Tf (x̄) = f (x̄) and we proceed to estimate the Clarke subdifferential
of Tf and the associated directional derivative. For a lower semicontinuous function f :
X → R∪ {+∞} and x ∈ dom f the Rockafellar directional derivative (see [33]) is defined
by

d↑f (x; v) := inf
ε>0

lim sup
x′→f x;t↓0

inf‖e‖<ε
t−[f (x′ + tv + te) − f (x′)],

where x′ →f x means x′ → x and f (x′) → f (x). The Clarke subdifferential of f at x is
then defined by

∂↑f (x) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ d↑f (x; v) ∀v ∈ X}.
If f is Lipschitz continuous near x, then (see [6])

d↑f (x; v) = f o(x; v) := lim sup
x′→x;t↓0

t−1[f (x′ + tv) − f (x′)].
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When f is not Lipschitz continuous near x, according to [33] we set

f o(x; v) = lim sup
x′ →f x; t ↓ 0

v′ → v

t−1[f (x′ + tv′) − f (x′)].

For the closed set C and x ∈ C the more convenient way to define the Clarke tangent

cone T ↑(C; x) corresponds to saying that v ∈ T ↑(C; x) provided for any sequences xk
C−→

x and tk ↓ 0 there exists some sequence vk → v such that xk + tkvk ∈ C for all k. Similarly
to the Bouligand tangent cone, the indicator function of the Clarke tangent cone ofC verifies

ψT ↑(C;x)(·) = d↑ψC(x; ·). (3.5)

Proposition 3.2 Assume that f is lsc at x̄ and that f (x̄) = inf
X

(f + α′‖x̄ − ·‖) with some

nonnegative α′ < α, where α is as in (2.8). Then for all v ∈ X

d↑Tf (x̄; v) ≤ inf
w∈X

[d↑f (x̄; w) + ρG(v − w)] =
(
d↑f (x̄; ·)�ρG

)
(v).

Proof Notice that the assumption f (x̄) = inf
X

(f + α′‖x̄ − ·‖) with α′ < α ensures that

f (x̄) = Tf (x̄). Fix ε > 0 and choose two sequences xk → x̄ and tk ↓ 0 such that

lim sup
x→x̄;t↓0

inf‖e‖<ε
t−1[Tf (x + tv + te)− Tf (x)] = lim

k
inf‖e‖<ε

t−1
k [Tf (xk + tkv + tke)− Tf (xk)].

For each k choose some yk ∈ X such that f (yk) + ρG(xk − yk) < Tf (xk) + t2k . Since
f (x̄) ≤ f (yk) + α′‖x̄ − yk‖ and ρG(xk − yk) ≥ α‖xk − yk‖, we have

f (x̄) + (α − α′)‖x̄ − yk‖ − α‖x̄ − xk‖ < Tf (xk) + t2k → Tf (x̄) = f (x̄),

and hence yk → x̄. Thus, the inequalities

Tf (yk) ≤ f (yk) < Tf (xk) + t2k − ρG(xk − yk)

yields yk →f x̄. Fix any w ∈ X and write for each e ∈ B(0, ε)

t−1
k [Tf (xk + tkv + tke) − Tf (xk)]

≤ tk + t−1
k [Tf (xk + tkv + tke) − f (yk) − ρG(xk − yk)]

≤ tk + t−1
k [f (yk + tkw + tke) − f (yk) + ρG(xk − yk + tkv − tkw) − ρG(xk − yk)],

which yields

t−1
k [Tf (xk + tkv + tke) − Tf (xk)] ≤ tk + t−1

k [f (yk + tkw + tke) − f (yk)] + ρG(v − w).

We then obtain

inf‖e‖<ε
t−1
k [Tf (xk + tkv + tke) − Tf (xk)]

≤ tk + inf‖e‖<ε
t−1
k [f (yk + tkw + tke) − f (yk)] + ρG(v − w),

and subsequently

lim sup
x→x̄;t↓0

inf‖e‖<ε
t−1[Tf (x + tv + te) − Tf (x)]

≤ lim sup
y→f x̄;t↓0

inf‖e‖<ε
t−1[f (y + tw + te) − f (y)] + ρG(v − w).
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Taking the infimum over ε > 0 finally gives

d↑Tf (x̄; v) ≤ inf
w∈X

[d↑f (x̄;w) + ρG(v − w)]
and completes the proof.

Taking f = ψC in the statement of the proposition and using the equality (3.5) between
d↑ψC(x̄; ·) and ψT ↑(C;x̄)(·) we directly obtain:

Corollary 3.5 Let C be closed subset of X with x̄ ∈ C. Then

d↑TC(x̄; v) ≤ inf
w∈T ↑(C;x̄)

ρG(v − w) ∀v ∈ X.

The inclusion (or description) of the Fréchet ε-subdifferential of Tf when Tf (x̄) �= f (x̄)

is different from the case when Tf (x̄) = f (x̄) (see Corollary 3.2) in the statement and the
arguments as well. We state it only for ε = 0 letting to the reader the case where ε > 0.

Corollary 3.6 Assume that Tf (x̄) �= f (x̄) and �f (x̄) �= ∅. Then for every ȳ ∈ �f (x̄) one
has

∂F Tf (x̄) ⊂ ∂F f (ȳ) ∩ N
(
G; x̄−ȳ

ρG(x̄−ȳ)

)
∩ {x∗ ∈ X∗ : 〈x∗, x̄ − ȳ〉 = ρG(x̄ − ȳ)}

= ∂F f (ȳ) ∩ N
(
G; x̄−ȳ

ρG(x̄−ȳ)

)
∩ bdGo

and

∂P Tf (x̄) ⊂ ∂P f (ȳ) ∩ N
(
G; x̄−ȳ

ρG(x̄−ȳ)

)
∩ {x∗ ∈ X∗ : 〈x∗, x̄ − ȳ〉 = ρG(x̄ − ȳ)}

= ∂P f (ȳ) ∩ N
(
G; x̄−ȳ

ρG(x̄−ȳ)

)
∩ bdGo

Further, the inclusions are equalities whenever f is convex.

Proof Since Tf (x̄) �= f (x̄), we have x̄ �∈ �f (x̄) and hence x̄ �= ȳ. The corollary then
follows from Theorem 3.1 and Lemma 3.1 below.

The next lemma corresponds to [10, Corollary 2.3] which is obtained as a consequence of
[10, Proposition 2.2], where the (Legendre-Fenchel) conjugate is used as well as the duality
relationship between a convex function and its conjugate. For the convenience of the reader
we provide here a direct proof.

Lemma 3.1 For any u �= 0 one has

∂ρG(u) = N

(
G; u

ρG(u)

)
∩ {u∗ ∈ X∗ : 〈u∗, u〉 = ρG(u)}

= N

(
G; u

ρG(u)

)
∩ bdGo.

Proof Fix any u∗ ∈ ∂ρG(u). Then 〈u∗, u〉 = ρG(u) and u∗ ∈ ∂ρG(0) because of (2.4).
Further for any x ∈ G we have ρG(x) ≤ 1, and hence 〈u∗, x〉 ≤ ρG(x) ≤ 1, the first
inequality being due to the inclusion u∗ ∈ ∂ρG(0). Consequently, 〈u∗, x − u

ρG(u)
〉 ≤ 0 for

all x ∈ G, and this says that u∗ ∈ N(G; u
ρG(u)

).
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Take now any u∗ ∈ N(G; u
ρG(u)

) satisfying 〈u∗, u〉 = ρG(u) and fix any nonzero x ∈ X.
Since x

ρG(x)
∈ G, we have 〈u∗, x

ρG(x)
− u

ρG(u)
〉 ≤ 0, which ensures

〈u∗, x

ρG(x)
〉 ≤ 〈u∗, u

ρG(u)
〉 = 1.

Then, for any x ∈ X we have 〈u∗, x〉 ≤ ρG(x) and hence

〈u∗, x − u〉 ≤ ρG(x) − ρG(u).

So, u∗ ∈ ∂ρG(u) and the equality between the first two members of the statement is
established.

The equality between the second and third members follows from the fact that the
inclusion u∗ ∈ N(G; u

ρG(u)
) is equivalent to the equality 〈u∗, u

ρG(u)
〉 = σG(u∗).

The next theorem continues with estimations of subdifferentials of Tf at x̄ when �f (x̄)

is nonempty.

Theorem 3.2 Assume that x̄ ∈ X, ȳ ∈ �f (x̄) and there exist some neighborhood U of
x̄ and a constant L > 0 such that for each x ∈ U there is a sequence (yk)k satisfying
f (yk) + ρG(x − yk) → Tf (x) and lim sup

k

‖yk − ȳ‖ ≤ L‖x − x̄‖. Then

∂F,εTf (x̄) ⊂ ∂F,εf (ȳ) ∩ ∂F,ερG(x̄ − ȳ) ⊂ ∂F,(2L+1)εTf (x̄) ∀ε ≥ 0,

and in particular
∂F Tf (x̄) = ∂F f (ȳ) ∩ ∂ρG(x̄ − ȳ).

Also, for the proximal subdifferential one has

∂P Tf (x̄) = ∂P f (ȳ) ∩ ∂ρG(x̄ − ȳ).

Proof Fix any ε ≥ 0. The inclusion ∂F,εTf (x̄) ⊂ ∂F,εf (ȳ) ∩ ∂F,ερG(x̄ − ȳ) is due to
Theorem 3.1(a). Now we prove that ∂F,εf (ȳ) ∩ ∂F,ερG(x̄ − ȳ) ⊂ ∂F,(2L+1)εTf (x̄). Let
x∗ ∈ ∂F,εf (ȳ) ∩ ∂F,ερG(x̄ − ȳ). Fix any η > 0. There exists δ0 > 0 such that for all
u, v ∈ B(0, δ0) we have

〈x∗, u〉 ≤ f (ȳ + u) − f (ȳ) + (ε + η)‖u‖,
〈x∗, v〉 ≤ ρG(x̄ − ȳ + v) − ρG(x̄ − ȳ) + (ε + η)‖v‖. (3.6)

Choose a positive δ <
δ0

1+L
such that B(x̄, δ) ⊂ U . Fix x ∈ B(x̄, δ) and consider the

sequence (yk)k given by the assumption of the theorem satisfying f (yk) + ρG(x − yk) →
Tf (x) and lim sup

k

‖yk −ȳ‖ ≤ L‖x−x̄‖. Put uk = yk −ȳ and vk = x−x̄−uk . We then have

lim sup
k

‖uk‖ ≤ L‖x − x̄‖ < δ0 and lim sup
k

‖vk‖ ≤ (L + 1)‖x − x̄‖ < δ0. Consequently,

uk, vk ∈ B(0, δ0) for sufficiently large k. Combining the inequalities (3.6) with u = uk and
v = vk , we get for sufficiently large k

〈x∗, x − x̄〉 ≤ f (yk) + ρG(x − yk) − f (ȳ) − ρG(x̄ − ȳ) + (ε + η)(‖uk‖ + ‖vk‖).
Passing to the limit yields

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + (ε + η)(2L + 1)‖x − x̄‖.
Hence x∗ ∈ ∂F,(2L+1)εTf (x̄) and the Fréchet part of the theorem is established. The same
arguments also hold for the proximal subdifferential.
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A particular case with Tf (x̄) = f (x̄) (but where is involved a general function ϕ with
ϕ(0) = 0 in place of ρG) was previously considered by Nam in [30, Theorem 2.3]. Again
with Tf (x̄) = f (x̄), another similar result previously appeared in [36, Theorems 3.1 and
4.1].

In view of the next theorem we need the following lemma.

Lemma 3.2 Assume that x̄ ∈ dom f and there exists some nonnegative α′ < α such that
f (x̄) = inf

X

(
f + α′‖x̄ − ·‖). (Remind that α is given by (2.8)). Then the assumptions of

Theorem 3.2 hold true with ȳ = x̄, U = X and L = α+β
α−α′ .

Proof Since for any y ∈ X

f (x̄) ≤ f (y) + α′‖x̄ − y‖ ≤ f (y) + α‖x̄ − y‖ ≤ f (y) + ρG(x̄ − y),

it follows by (2.10), (2.11) that Tf (x̄) = f (x̄) and x̄ ∈ �f (x̄). Fix any x ∈ X and any
sequence (yk)k such that f (yk) + ρG(x − yk) → Tf (x). Observing that

Tf (x) ≤ f (x̄) + ρG(x − x̄) ≤ f (x̄) + β‖x − x̄‖,
f (yk) ≥ f (x̄) − α′‖yk − x̄‖,

ρG(x − yk) ≥ α‖yk − x‖ ≥ α(‖yk − x̄‖ − ‖x − x̄‖),
we obtain

(α − α′) lim sup
k

‖yk − x̄‖ ≤ (α + β)‖x − x̄‖.
Dividing by (α − α′) we complete the proof.

Combining Theorem 3.2 with Lemma 3.2 and bearing in mind (2.5) yield the following
result.

Theorem 3.3 Assume that x̄ ∈ dom f and there exists some nonnegative α′ < α such that
f (x̄) = inf

X

(
f + α′‖x̄ − ·‖). (Remind that α is given by (2.8)). Then for any ε ≥ 0 one has

∂F,εTf (x̄) ⊂ ∂F,εf (x̄) ∩ (
Go + εBX∗

) ⊂ ∂F,θ(ε)Tf (x̄)

for θ(ε) = ε
(
1 + 2(α − α′)−1(α + β)

)
. In particular, for the Fréchet subdifferential the

equalities

∂F Tf (x̄) = ∂F f (x̄) ∩ Go = ∂F f (x̄) ∩ {x∗ ∈ X∗ : σG(x∗) ≤ 1}
hold true. Similarly, for the proximal subdifferential one has

∂P Tf (x̄) = ∂P f (x̄) ∩ Go = ∂P f (x̄) ∩ {x∗ ∈ X∗ : σG(x∗) ≤ 1}.

The assumption f (x̄) = inf
X

(
f + α′‖x̄ − ·‖) with 0 ≤ α′ < α is essential in Theorem

3.3. Indeed, consider in the space X = R the set G and the function f defined as:

G = [−1, 1], f (x) =
{
1, |x| < 1,
0, |x| ≥ 1.

(3.7)

Clearly ρG(x) = |x| and it is easily checked that
Tf (x) =

{
1 − |x|, |x| < 1,
0, |x| ≥ 1.
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So, for the point x̄ = 0 we have Tf (x̄) = f (x̄), but

∂F Tf (x̄) = ∂P Tf (x̄) = ∅ �= ∂F f (x̄) ∩ Go = ∂P f (x̄) ∩ Go = {0}.
Notice that the greatest α fulfilling (2.8) is α = 1, so 0 ≤ α′ < 1; then one can see that
there is no such α′ satisfying the condition f (x̄) = inf

X

(
f + α′|x̄ − ·|).

In the above mentioned papers [30, 31] results similar to that of Theorem 3.3 are obtained
for a more general function ϕ(·) in place of ρG(·). However Theorem 3.3 and more generally
Theorem 3.2 don’t follow from the results of [30, 31]. Indeed, in [30, 31] it is assumed that
the function f satisfies a center-Lipschitz condition (or is calm) at x̄ on dom f with some
constant l, that is

|f (x̄) − f (x)| ≤ l‖x̄ − x‖ ∀x ∈ dom f.

This assumption is more restrictive than the assumption of Theorem 3.3 requiring f (x̄) =
inf
X

(
f + α′‖x̄ − ·‖) with α′ = l, which can be rewritten as

f (x̄) − f (x) ≤ l‖x̄ − x‖ ∀x ∈ dom f.

See also Theorem 4 and Proposition 1 in [32] for other results.
Taking for f the indicator function of the closed set C and x̄ ∈ C, the assumptions of

Theorem 3.3 obviously hold with α′ = 0, and hence we obtain:

Corollary 3.7 Let C be a closed set of X and x̄ ∈ C. Then for any ε ≥ 0 one has

∂F,εTC(x̄) ⊂ NF,ε(C; x̄) ∩ (Go + εBX∗) ⊂ ∂F,θ(ε)TC(x̄)

for θ(ε) := ε
(
3 + 2α−1β

)
, and hence

∂F TC(x̄) = NF (C; x̄) ∩ Go = NF (C; x̄) ∩ {x∗ ∈ X∗ : σG(x∗) ≤ 1}.
Also

∂P TC(x̄) = NP (C; x̄) ∩ Go = NP (C; x̄) ∩ {x∗ ∈ X∗ : σG(x∗) ≤ 1}.
For the particular case where G = BX one has

∂F dC(x̄) = NF (C; x̄) ∩ BX∗ , (3.8)

∂P dC(x̄) = NP (C; x̄) ∩ BX∗ . (3.9)

The equality (3.8) has been first observed and established by Ioffe [17] and Kruger [21]
and it has been recently extended to the form above by He and Ng [16, Theorem 4.1] for
∂F TC(x̄). The more general inclusions of the corollary are similar to those of Mordukhovich
and Nam in [26, Theorem 3.4]. The equality (3.9) has been established by Bounkhel and
Thibault [4, Theorem 4.1]. The case of TC has been obtained by He and Ng [16, Theorem
5.1].

In the case of a closed set C, it is well-known that, for any point y ∈ C realizing the
distance dC(x) from x to C, one has dC(xt ) = (1− t)dC(x) where xt := (1− t)x + ty and
t ∈ [0, 1]. This equality has been extended to the function TC in [26, Lemma 3.1]. The next
proposition establishes a similar result for Tf .

Proposition 3.3 Assume that ȳ ∈ �f (x̄). Then for any t ∈ [0, 1] and xt := (1 − t)x̄ + t ȳ

one has

Tf (xt ) = Tf (x̄) − tρG(x̄ − ȳ) = tf (ȳ) + (1 − t)Tf (x̄).
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Proof By definition of Tf we may write

Tf ((1 − t)x̄ + t ȳ) ≤ f (ȳ) + ρG ((1 − t)x̄ + t ȳ − ȳ)

= f (ȳ) + (1 − t)ρG(x̄ − ȳ)

= Tf (x̄) − tρG(x̄ − ȳ).

On the other hand, for any y ∈ X we also have

f (y) + ρG(xt − y) = f (y) + ρG ((x̄ − y) − t (x̄ − ȳ))

≥ f (y) + ρG(x̄ − y) − tρG(x̄ − ȳ)

≥ Tf (x̄) − tρG(x̄ − ȳ),

and hence taking the infimum over y ∈ X gives

Tf (xt ) ≥ Tf (x̄) − tρG(x̄ − ȳ).

Therefore we have the desired equality between the first two members of the statement. The
remaining equality follows directly from the latter one.

4 Further Properties of the Fréchet Subdifferential of the Infimum Time
Function

This section provides some further properties enjoyed by elements in the Fréchet ε-
subdifferential of the infimum time function. At the opposite of Theorem 3.1 the next first
theorem does not require the nonemptiness of the set �f (x̄).

Theorem 4.1 Let ε ≥ 0 and let α, β > 0 be as in (2.8). The following hold.
(a) If x∗ ∈ ∂F,εTf (x̄), then one has x∗ ∈ ∂ρG(0) + εBX∗ = Go + εBX∗ , and hence
σG(x∗) ≤ 1 + α−1ε.

(b) Assume instead of (2.12) that f is bounded from below. Let x̄ �∈ cl (dom f ) and let
x∗ ∈ ∂F,εTf (x̄). Then σG(x∗) ≥ 1 − α−1ε.

Further, if ε = 0 (i.e., x∗ ∈ ∂F Tf (x̄)), then σG(x∗) = 1, and subsequently x∗ ∈ bdGo.

Proof (a) Fix η > 0 and take a neighborhood U of zero such that for all u ∈ U

〈x∗, u〉 ≤ Tf (x̄ + u) − Tf (x̄) + (ε + η)‖u‖,
and hence according to the first inequality of Proposition 3.1

〈x∗, u〉 ≤ ρG(u) + (ε + η)‖u‖ = ρG(u) − ρG(0) + (ε + η)‖u‖.
The function ρG(·) being convex and continuous, this entails

x∗ ∈ ∂(ρG + (ε + η)‖ · ‖)(0) = ∂ρG(0) + εBX∗ + ηBX∗ .

Because of the w(X∗, X)-closedness of ∂ρG(0) + εBX∗ we obtain

x∗ ∈ ∂ρG(0) + εBX∗ = Go + εBX∗ .

Further, this inclusion combined with G ⊂ 1
α
BX (see (2.8)) implies the desired

inequality σG(x∗) ≤ 1 + α−1ε.
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(b) Assume that x̄ �∈ cl (dom f ) and that f is bounded from below. Denote by μ the real
number μ := − inf

X
f and observe that for all y ∈ dom f

f (y) + ρG(x̄ − y) + μ ≥ ρG(x̄ − y) ≥ α‖x̄ − y‖ ≥ α dist(x̄, dom f ),

the second inequality being due to (2.8). This gives

Tf (x̄) + μ ≥ α dist(x̄, dom f ) > 0,

since x̄ �∈ cl (dom f ). Therefore, fixing any positive δ < 1 such that
√

δα(1 − δ)
(
Tf (x̄) + μ

)−1
< 1 (4.1)

we can choose some z ∈ X (depending on δ) such that

(1 − δ)−1 (
Tf (x̄) + μ

)
> f (z) + μ + ρG(x̄ − z). (4.2)

This inequality entails in particular, on one hand that f (z) < +∞, and hence, since
f (x̄) = +∞ by assumption, we have z �= x̄, which assures us that ρG(x̄ − z) > 0
since ρG(x) ≥ α‖x‖ for all x ∈ X. On the other hand, (4.2) combined with the
definition of μ yields

(1 − δ)−1 (
Tf (x̄) + μ

)
> ρG(x̄ − z),

which ensures according to (2.8)

α‖x̄ − z‖ ≤ (1 − δ)−1 (
Tf (x̄) + μ

)
. (4.3)

Observe also that the finiteness of f (z) entails that z ∈ dom f , and hence using (2.8)
again we have

α−1ρG(x̄ − z) ≥ ‖x̄ − z‖ ≥ dist(x̄, dom f ) =: θ > 0. (4.4)

Take now η > 0 and choose a positive real number r < 1 (independent of δ) such
that for all u ∈ rBX

〈x∗, u〉 ≤ Tf (x̄ + u) − Tf (x̄) + (ε + η)‖u‖,
and hence by (4.2)

〈x∗, u〉 ≤ Tf (x̄ + u) + μ − (1 − δ)[f (z) + μ + ρG(x̄ − z)] + (ε + η)‖u‖. (4.5)

Put sδ := rα(1 − δ)
(
Tf (x̄) + μ

)−1 and tδ := sδ
√

δ, and notice that tδ < 1 according
to (4.1). Put also uδ = tδ(z − x̄) and observe that uδ ∈ rBX because (4.3) ensures
sδ‖x̄ − z‖ ≤ r . Writing

Tf (x̄ + uδ) ≤ f (z) + ρG(x̄ + uδ − z)

= f (z) + ρG ((1 − tδ)(x̄ − z)) = f (z) + (1 − tδ)ρG(x̄ − z),

we obtain from (4.5) that

tδ〈x∗, z− x̄〉 ≤ (1− tδ)ρG(x̄ −z)− (1−δ)ρG(x̄ −z)+δf (z)+δμ+ (ε+η)tδ‖x̄ −z‖
and using (4.2) and (2.8) we see that

tδ〈x∗, z − x̄〉 ≤ −tδρG(x̄ − z) + δ

1 − δ

(
Tf (x̄) + μ

) + α−1tδ(ε + η)ρG(x̄ − z).

This yields by (4.4)

tδ〈x∗, z−x̄〉 ≤ −tδρG(x̄−z)+ α−1δ

θ(1 − δ)

(
Tf (x̄) + μ

)
ρG(x̄−z)+α−1tδ(ε+η)ρG(x̄−z).
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Since ρG(x̄ − z) > 0 it follows that

〈x∗, x̄ − z

ρG(x̄ − z)
〉 ≥ 1 − α−1(ε + η) − α−1δ

tδ
· 1

θ(1 − δ)

(
Tf (x̄) + μ

)
.

Consequently

σG(x∗) ≥ 1 − α−1(ε + η) − α−1δ

tδ
· 1

θ(1 − δ)

(
Tf (x̄) + μ

)
.

Since
δ/tδ = √

δ/sδ = √
δr−1α−1(1 − δ)−1 (

Tf (x̄) + μ
) → 0

as δ ↓ 0, we deduce that σG(x∗) ≥ 1 − α−1(ε + η). Making η ↓ 0 assures us that

σG(x∗) ≥ 1 − α−1ε,

that is, the inequality of assertion (b) is established.
Finally, the second part of assertion (b) corresponding to the case ε = 0 is a direct

consequence of assertion (a) and of the last inequality above.

From the above theorem we deduce directly the properties below concerning the case
of the infimum time function associated with a closed set C. It suffices to take for f the
indicator function of C.

Corollary 4.1 Let C be a nonempty closed subset of X and ε ≥ 0.

(a) If x∗ ∈ ∂F,εTC(x̄), then

x∗ ∈ Go + εBX∗ and σG(x∗) ≤ 1 + α−1ε;
if in addition x̄ �∈ C, then σG(x∗) ≥ 1 − α−1ε.

(b) If x∗ ∈ ∂F TC(x̄) and x̄ �∈ C, then x∗ ∈ bdGo.
(c) In the particular case where G = BX, for x∗ ∈ ∂F,εTC(x̄) one has ‖x∗‖∗ ≤ 1 + ε,

and if in addition x̄ �∈ C then 1 − ε ≤ ‖x∗‖∗ ≤ 1 + ε.

Assertion (c) is due to Kruger (see [21]) and assertion (b) to Mordukhovich and Nam
(see [26, Proposition 3.2]).

Now observe that for ȳ ∈ Argmin(f + ρG(x̄ − ·)) =: �f (x̄) we have for any x∗ ∈
∂F Tf (x̄) by Theorem 3.1

x∗ ∈ ∂ρG(x̄ − ȳ) = ∂σGo(x̄ − ȳ),

and hence x∗ ∈ Go. If we suppose that x̄ �= ȳ, then by (2.7)

x̄ − ȳ

ρG(x̄ − ȳ)
∈ ∂σG(x∗), i.e.,ȳ ∈ x̄ − ρG(x̄ − ȳ)∂σG(x∗),

and the latter inclusion still holds for ȳ = x̄.
Since Tf (x̄) = f (ȳ) + ρG(x̄ − ȳ) we obtain

ȳ ∈ x̄ − (
Tf (x̄) − f (ȳ)

)
∂σG(x∗). (4.6)

We can then state the following result.

Theorem 4.2 Assume that x∗ ∈ ∂F Tf (x̄). One has

ȳ ∈ �f (x̄) =⇒ ȳ ∈ x̄ − (
Tf (x̄) − f (ȳ)

)
∂σG(x∗).
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If, in addition, f is bounded from below and x̄ �∈ cl (dom f ), then one has

�f (x̄) = {ȳ ∈ X : Tf (x̄) ≥ f (ȳ) and ȳ ∈ x̄ − (
Tf (x̄) − f (ȳ)

)
∂σG(x∗)}.

Proof Fix any x∗ ∈ ∂F Tf (x̄). The implication =⇒ has been established in (4.6). Suppose
now x̄ �∈ cl (dom f ). Take any ȳ ∈ X satisfying the inequality Tf (x̄) ≥ f (ȳ) and the
inclusion

ȳ ∈ x̄ − (
Tf (x̄) − f (ȳ)

)
∂σG(x∗).

Choose ζ ∈ ∂σG(x∗) such that
ȳ = x̄ − (

Tf (x̄) − f (ȳ)
)
ζ, i.e.,

(
Tf (x̄) − f (ȳ)

)
ζ = x̄ − ȳ. (4.7)

Note that the inclusion ζ ∈ ∂σG(x∗) means that ζ ∈ G and 〈x∗, ζ 〉 = σG(x∗). On the
other hand, the inclusion x∗ ∈ ∂F Tf (x̄) entails by (b) in Theorem 4.1 that x∗ ∈ Go and
σG(x∗) = 1. Therefore, x∗ ∈ Go and 〈x∗, ζ 〉 = 1, and hence

ρG(ζ ) = σGo(ζ ) = 1.

Combining that equality with (4.7) gives

ρG(x̄ − ȳ) = ρG((Tf (x̄) − f (ȳ))ζ ) = (Tf (x̄) − f (ȳ))ρG(ζ ) = Tf (x̄) − f (ȳ),

the second equality being due to the assumption Tf (x̄) − f (ȳ) ≥ 0. So, Tf (x̄) = f (ȳ) +
ρG(x̄ − ȳ), which means ȳ ∈ �f (x̄). The proof is then complete.

The next corollary has been previously established by Colombo, Goncharov and
Mordukhovich in [8, Corollary 3.2].

Corollary 4.2 Let C be a closed nonempty subset of X and x∗ ∈ ∂F TC(x̄) with x̄ �∈ C.
Then

�C(x̄) = (
x̄ − TC(x̄)∂σG(x∗)

) ∩ C.

Proof Taking f := ψC we see that the inequality Tf (x̄) ≥ f (ȳ) means that ψC(ȳ) is finite,
that is, ȳ ∈ C. The corollary then follows directly from Theorem 4.2.

We proceed now to the study of the Fréchet subdifferential ∂F Tf (x̄) in the case where
x̄ �∈ dom f . Remind that for a function ϕ : X → R ∪ {+∞} and r ∈ R one denotes by
{ϕ(·) ≤ r} the r-sublevel set of ϕ, that is,

{ϕ(·) ≤ r} := {x ∈ X : ϕ(x) ≤ r}.
The proof of the following lemma is quite similar to that of Lemma 3.1 in [4].

Lemma 4.1 Assume that x̄ �∈ dom f and dom f ⊂ {Tf (·) ≤ Tf (x̄)} =: S. Then for any
x �∈ S one has

Tf (x) = TS(x) + Tf (x̄),

reminding that TS(x) = inf
y∈S

ρG(x − y).

Proof Fix x �∈ S. Let us first prove the inequality ≤. Let y ∈ S, i.e., Tf (y) ≤ Tf (x̄).
Consider any ε > 0 and choose yε ∈ dom f such that

f (yε) + ρG(y − yε) < Tf (y) + ε ≤ Tf (x̄) + ε.
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Write by the sublinearity of ρG and by the second inequality above

ρG(x − y) ≥ ρG(x − yε) − ρG(y − yε)

≥ ρG(x − yε) + f (yε) − Tf (x̄) − ε,

and hence by definition of Tf

ρG(x − y) ≥ Tf (x) − Tf (x̄) − ε.

Taking the infimum over y ∈ S yields TS(x) ≥ Tf (x) − Tf (x̄) − ε, which ensures the
desired inequality

Tf (x) ≤ TS(x) + Tf (x̄).

To establish the converse inequality, fix any y ∈ S. For the continuous function h on R

given by h(s) = Tf (sx + (1 − s)y) we have

h(0) = Tf (y) ≤ Tf (x̄) andh(1) = Tf (x) > Tf (x̄).

Consequently, there exists some s0 ∈ [0, 1[ such that for z := s0x + (1 − s0)y we have
Tf (z) = Tf (x̄). Since ρG is positively homogeneous we have

ρG(x − y) = ρG(x − z) + ρG(z − y).

We may then write

f (y) + ρG(x − y) = ρG(x − z) + ρG(z − y) + f (y)

≥ ρG(x − z) + Tf (z) = ρG(x − z) + Tf (x̄).

The equality Tf (z) = Tf (x̄) tells us also that z ∈ S, and hence ρG(x−z) ≥ TS(x) according
to the definition of TS . Therefore

f (y) + ρG(x − y) ≥ TS(x) + Tf (x̄),

which yields
inf
y∈S

[f (y) + ρG(x − y)] ≥ TS(x) + Tf (x̄). (4.8)

By the assumption dom f ⊂ S, the left member of (4.8) is equal to

inf
y∈X

[f (y) + ρG(x − y)] = Tf (x),

that is, (4.8) corresponds to the desired reverse inequality. The proof of the lemma is then
finished.

When Tf (x̄) �= f (x̄), but the infimum time function Tf is achieved at some ȳ (hence
necessarily different from x̄), a first inclusion for ∂F Tf (x̄) (even description if f is in
addition convex) has been established in Corollary 3.6 in terms of ∂f (ȳ) and {x∗ ∈ X∗ :
σG(x∗) = 1}. Here, we show that the main ideas in Kruger [21, Proposition 2.16] (see
also Bounkhel and Thibault [4, Theorem 3.6]) are also efficient for a full description of the
Fréchet subdifferential of Tf at any point x̄ outside of cl (dom f ) without requiring that
�f (x̄) be nonempty. The description is given in terms of the Fréchet normal cone to the
sublevel set {Tf (·) ≤ Tf (x̄)} and of the same set {x∗ ∈ X∗ : σG(x∗) = 1}. We keep
α, β > 0 as given by (2.8).

Theorem 4.3 Assume that x̄ �∈ cl (dom f ) and dom f ⊂ {Tf (·) ≤ Tf (x̄)}. Assume also
that f is bounded from below. Then for any ε ≥ 0

∂F,εTf (x̄) ⊂ NF,ε
({Tf (·) ≤ Tf (x̄)}; x̄

) ∩ {
x∗ ∈ Go + εBX∗ : σG(x∗) ≥ 1 − α−1ε

}
⊂ ∂F,θ(ε)Tf (x̄),
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where θ(ε) = ε
(
α−1β + (1 + α−1β)(3 + 2α−1β)

)
. In particular, one has

∂F Tf (x̄) = NF ({Tf (·) ≤ Tf (x̄)}; x̄) ∩ {x∗ ∈ X∗ : σG(x∗) = 1}.

Proof Consider ε ≥ 0. Fix any x∗ ∈ ∂F,εTf (x̄). Theorem 4.1 tells us that x∗ ∈ Go +
εBX∗ and σG(x∗) ≥ 1 − α−1ε. On the other hand, for any fixed ε′ > ε there exists some
neighborhood U of x̄ in X such that for all x ∈ U

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + ε′‖x − x̄‖,
and this obviously yields for all x ∈ U ∩ {Tf (·) ≤ Tf (x̄)} that

〈x∗, x − x̄〉 ≤ ε′‖x − x̄‖.
We then deduce that x∗ ∈ NF,ε({Tf (·) ≤ Tf (x̄)}; x̄). Combining this with what precedes
we obtain the first inclusion of the theorem.

Let us prove the second inclusion. Fix any x∗ ∈ NF,ε({Tf (·) ≤ Tf (x̄)}; x̄) with x∗ ∈
Go + εBX∗ and σG(x∗) ≥ 1 − α−1ε. Put

θ ′(ε) = ε(3 + 2α−1β) andθ(ε) = α−1βε + (1 + α−1β)θ ′(ε)
and put also S := {Tf (·) ≤ Tf (x̄)}. Observe by Corollary 3.7 that x∗ ∈ ∂F,θ ′(ε)TS(x̄). Fix
any θ ′′ > θ(ε) and choose some ε′ > θ ′(ε) such that

α−1βε + ε′(1 + α−1β) < θ ′′. (4.9)

By the inclusions x∗ ∈ NF,ε(S; x̄) and x∗ ∈ ∂F,θ ′(ε)TS(x̄) we may choose some δ > 0 such
that

〈x∗, x − x̄〉 ≤ ε′‖x − x̄‖ for allx ∈ B(x̄, δ) ∩ S (4.10)
and

〈x∗, x − x̄〉 ≤ TS(x) − TS(x̄) + ε′‖x − x̄‖ for allx ∈ B(x̄, δ). (4.11)
Observing that TS(x̄) = 0 because

0 ≤ TS(x̄) = inf
x∈S

ρG(x − x̄) ≤ ρG(x̄ − x̄) = 0,

we deduce from (4.11) and Lemma 4.1 that for all x ∈ B(x̄, δ) \ S

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + ε′‖x − x̄‖. (4.12)

Consider now any η > 0 and by the inequality σG(x∗) ≥ 1 − α−1ε choose some u ∈ G

such that 〈x∗, u〉 > 1 − α−1ε − η. Consider any x ∈ B(x̄, δ) ∩ S and put

tx := Tf (x̄) − Tf (x) ≥ 0.

Therefore, by the inequality ρG(u) ≤ 1 (due to the inclusion u ∈ G) and by Proposition 3.1
the non-negativity of tx yields

Tf (x + txu) ≤ Tf (x) + txρG(u) ≤ Tf (x) + tx = Tf (x̄),

which gives x + txu ∈ S. On the other hand, (2.8) and Proposition 3.1 again entail

tx = Tf (x̄) − Tf (x) ≤ ρG(x̄ − x) ≤ β‖x̄ − x‖ (4.13)

and hence according to (2.8) again and to the inequality ρG(u) ≤ 1 we obtain

‖x + txu − x̄‖ ≤ ‖x − x̄‖ + α−1tx ≤ (1 + α−1β)‖x̄ − x‖. (4.14)

Take a positive δ′ such that δ′(1+ α−1β) < δ and fix any x ∈ B(x̄, δ′) ∩ S. Then x + txu ∈
S ∩ B(x̄, δ) and by (4.10) and (4.14) we have

〈x∗, x + txu − x̄〉 ≤ ε′‖x + txu − x̄‖ ≤ ε′(1 + α−1β)‖x − x̄‖,
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which gives

〈x∗, x − x̄〉 ≤ −tx〈x∗, u〉 + ε′(1 + α−1β)‖x − x̄‖,
and hence combining this with the inequality 〈x∗, u〉 ≥ 1 − α−1ε − η we see that

〈x∗, x − x̄〉 ≤ −(1 − η − α−1ε)tx + ε′(1 + α−1β)‖x − x̄‖.
This being true for all η > 0, we derive that

〈x∗, x − x̄〉 ≤ −(1 − α−1ε)tx + ε′(1 + α−1β)‖x − x̄‖
≤ Tf (x) − Tf (x̄) + (

α−1βε + ε′(1 + α−1β)
) ‖x − x̄‖,

the latter inequality being due to (4.13). Taking also (4.9) and (4.12) into account, we may
write

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + θ ′′‖x − x̄‖ for all x ∈ B(x̄, δ′).

Such a positive number δ′ being obtained for any θ ′′ > θ(ε), we get x∗ ∈ ∂F,θ(ε)Tf (x̄),
establishing the inclusion of the second member of the theorem into the third one.

The equalities for ε = 0 follow from the fact that x∗ ∈ Go is equivalent to the inequality
σG(x∗) ≤ 1. The proof of the theorem is then complete.

If f = ψC for a closed set C and x̄ �∈ C, then obviously f is bounded from below and
the assumptions concerning dom f in Theorem 4.3 are fulfilled. Further, in the case where
G = BX we can take α = β = 1 and we have

{TψC
(·) ≤ TψC

(x̄)} = {x ∈ X : dC(x) ≤ dC(x̄)}.
Consequently, we derive directly from the above theorem:

Corollary 4.3 Let C be a closed subset of X and x̄ �∈ C. Then for any ε ≥ 0

∂F,εTC(x̄) ⊂ NF,ε({TC(·) ≤ TC(x̄}; x̄) ∩ {x∗ ∈ Go + εBX∗ : σ(x∗) ≥ 1 − α−1ε}
⊂ ∂F,θ(ε)TC(x̄),

where θ(ε) as in Theorem 4.3. In particular

∂F TC(x̄) = NF ({TC(·) ≤ TC(x̄}; x̄) ∩ {x∗ ∈ X∗ : σG(x∗) = 1}.
If in addition G = BX , then for r := dC(x̄) > 0 and C(r) := {x ∈ X : dC(x) ≤ r} one

has

∂F dC(x̄) = NF (C(r); x̄) ∩ {x∗ ∈ X∗ : ‖x∗‖∗ = 1}.

To the best of our knowledge, the second equality of the previous corollary concerning
∂F dC(x̄) is due to Kruger (see [21, Proposition 2.16] and [4, theorem 3.6]). Through that
equality, criteria for the Fréchet subdifferential regularity of dC have been provided in [4,
Theorem 3.8]. For the equality concerning TC we refer to [10, Theorem 3.1] when the space
X is a Hilbert space and to [16, Theorem 4.2] when X is a Banach space. We also refer to
Colombo, Goncharov and Mordukhovich [8, Proposition 6.3] for the use of such an equality
for criteria ensuring the lower regularity of the minimal time function TC . The inclusions
with the Fréchet approximate subdifferentials of TC at x̄ have been previously established
(even with a more accurate term θ(ε)) in [26, Theorem 4.2].
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5 Further Properties of the Proximal Subdifferential of the Infimum
Time Function

Remind that the case when x̄ ∈ dom f has been studied in Theorem 3.3 and Corollary 3.7.
Let us examine the case when x̄ �∈ cl (dom f ). For x̄ outside the closed set C, the relevance
of Kruger’s ideas (see [21]) in the proof of the equality

∂F dC(x̄) = NF (C(r); x̄) ∩ {x∗ ∈ X∗ : ‖x∗‖∗ = 1}
has been made very apparent in [4, Theorem 4.3] for obtaining a similar formula for
∂P dC(x̄). In the next theorem we follow the same path to establish a formula for ∂P Tf (x̄)

similar to that of Theorem 4.3 when x̄ �∈ cl (dom f ).

Theorem 5.1 Assume that x̄ �∈ cl (dom f ) and dom f ⊂ {Tf (·) ≤ Tf (x̄)}. Assume also
that f is bounded from below. Then

∂P Tf (x̄) = NP ({Tf (·) ≤ Tf (x̄)}; x̄) ∩ {x∗ ∈ X∗ : σG(x∗) = 1}.

Proof Fix any x∗ ∈ ∂P Tf (x̄). Theorem 4.1 tells us that σG(x∗) = 1. On the other hand,
there exist some real r > 0 and some neighborhood U of x̄ in X such that for all x ∈ U

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + r‖x − x̄‖2,
and this obviously yields for all x ∈ U ∩ {Tf (·) ≤ Tf (x̄)} that

〈x∗, x − x̄〉 ≤ r‖x − x̄‖2.
Consequently, x∗ ∈ NP ({Tf (·) ≤ Tf (x̄)}; x̄) and the inclusion of the left-hand side of the
equality of the theorem into the second one is established.

Let us prove the opposite inclusion. Fix any x∗ ∈ NP ({Tf (·) ≤ Tf (x̄)}; x̄) with
σG(x∗) = 1. Put S := {Tf (·) ≤ Tf (x̄)} and observe by Corollary 3.7 that x∗ ∈ ∂P TS(x̄).
The inclusions x∗ ∈ NP (S; x̄) and x∗ ∈ ∂P TS(x̄) allow us to choose some r > 0 and δ > 0
such that

〈x∗, x − x̄〉 ≤ r‖x − x̄‖2 for all x ∈ B(x̄, δ) ∩ S (5.1)

and
〈x∗, x − x̄〉 ≤ TS(x) − TS(x̄) + r‖x − x̄‖2 for all x ∈ B(x̄, δ). (5.2)

Observing that TS(x̄) = 0 we deduce from (5.2) and Lemma 4.1 that for all x ∈ B(x̄, δ) \ S

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + r‖x − x̄‖2. (5.3)

Take now any η > 0 and by the equality σG(x∗) = 1 choose some u ∈ G such that
〈x∗, u〉 > 1 − η. Consider any x ∈ B(x̄, δ) ∩ S and put

tx := Tf (x̄) − Tf (x) ≥ 0.

Then, since ρG(u) ≤ 1, by Proposition 3.1 we have

Tf (x + txu) ≤ Tf (x) + txρG(u) ≤ Tf (x) + tx = Tf (x̄),

which gives x + txu ∈ S. On the other hand, by (2.8) and Proposition 3.1 again

tx = Tf (x̄) − Tf (x) ≤ ρG(x̄ − x) ≤ β‖x̄ − x‖
and hence according to (2.8) again and to the inequality ρG(u) ≤ 1 we obtain

‖x + txu − x̄‖ ≤ ‖x − x̄‖ + α−1tx ≤ (1 + α−1β)‖x̄ − x‖. (5.4)
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Choose δ′ > 0 such that δ′(1 + α−1β) < δ and fix any x ∈ B(x̄, δ′) ∩ S. Then x + txu ∈
S ∩ B(x̄, δ) and by (5.1) and (5.4) we have

〈x∗, x + txu − x̄〉 ≤ r‖x + txu − x̄‖2 ≤ r(1 + α−1β)2‖x − x̄‖2,
which gives

〈x∗, x − x̄〉 ≤ −tx〈x∗, u〉 + r(1 + α−1β)2‖x − x̄‖2,
and hence combining this with the inequality 〈x∗, u〉 ≥ 1 − η we see that

〈x∗, x − x̄〉 ≤ (1 − η)[Tf (x) − Tf (x̄)] + r(1 + α−1β)2‖x − x̄‖2.
This being true for all η > 0, we derive that

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + r(1 + α−1β)2‖x − x̄‖2.
Taking also (5.3) into account, we may write

〈x∗, x − x̄〉 ≤ Tf (x) − Tf (x̄) + r(1 + α−1β)2‖x − x̄‖2 for all x ∈ B(x̄, δ′).

Therefore, x∗ ∈ ∂P Tf (x̄) and the proof of the theorem is complete.

Corollary 5.1 Let C be a closed subset of X and x̄ �∈ C. Then

∂P TC(x̄) = NP ({TC(·) ≤ TC(x̄)}; x̄) ∩ {x∗ ∈ X∗ : σG(x∗) = 1}.
If in addition G = BX , then for r := dC(x̄) > 0 and C(r) := {x ∈ X : dC(x) ≤ r} one

has
∂P dC(x̄) = NP (C(r); x̄) ∩ {x∗ ∈ X∗ : ‖x∗‖∗ = 1}.

Clarke, Stern and Wolenski [7, Theorem 3.4] established the above decription of
∂P dC(x̄) when C is a closed set of a Hilbert space, with a proof based on the Hilbert struc-
ture of the space. This equality for ∂P dC(x̄) has been extended to arbitrary normed vector
spaces by Bounkhel and Thibault [4, Theorem 4.3]. The form above for ∂P TC(x̄) has been
given by Colombo and Wolenski [9, Theorem 3.1] in Hilbert space and by He and Ng in
[16, Theorem 4.1] in Banach space.
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