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Actualmente el uso de energías renovables está incrementando su popularidad. Como la 

disponibilidad de estos recursos puede ser limitada debido a factores ambientales, el uso de 

almacenadores de energía es algo que se debe considerar. En mercados eléctricos, el uso de 

sistemas de almacenamiento se vuelve interesante debido a que la posibilidad de obtener 

ganancias está latente. Esta investigación se enfoca en la integración de una estrategia de 

optimización de utilidades en conjunto con el modelo del proceso de degradación de una 

batería de ión-litio, para así cuantificar el beneficio económico que un usuario puede obtener 

dependiendo de cómo el almacenador sea operado. Dado que la operación del almacenador 

está sujeta a diferentes condiciones de mercado, es necesario analizar el proceso de 

degradación bajo estas condiciones. Esto significa que una batería no necesariamente 

trabajará completamente cargada o descargada en un ciclo de operación. En este sentido, 

definir apropiadamente un ciclo es importante puesto que el uso del almacenamiento de 

energía es altamente variable. El modelo de degradación fue creado utilizando información 

disponible en la literatura. Este modelo está basado dos sumandos, uno de los cuales tiene 

mayor impacto en el corto plazo de la vida útil, y el otro en el largo plazo. Además, una 

metodología que permite la estimación del proceso de degradación de las baterías cuando 

son utilizadas en condiciones de estado de carga variables también se incluye. En un primer 

enfoque, se utiliza información proporcionada por un fabricante, y con el apoyo de factores 

de escalamiento, es posible determinar el valor para la eficiencia de Coulomb para cada ciclo. 

Caracterizar el proceso de degradación según el estado de carga utilizado muestra hasta un 

3.4% más de ciclos adicionales de uso. Posteriormente, se presenta otra metodología basada 

en algoritmos de similitud que incorpora la corriente de descarga, y los niveles del estado de 

carga como variables del modelo. Además, el efecto de la temperatura es incluido para 

ilustrar el efecto de la capacidad utilizable de la batería. Una vez que se establece el modelo, 

este se combina un algoritmo de programación lineal entera mixta que maximiza la utilidad 

obtenida de la venta de diferentes servicios. Distintas políticas de operación para el sistema 

almacenador fueron analizadas dando como resultados las horas de operación y el beneficio 

económico para cada caso. Es importante mencionar que no necesariamente operar el sistema 

de almacenamiento de forma libre asegurará el máximo beneficio económico para el dueño. 

Restringir el estado de carga puede significar hasta un 18% menos de utilidad bruta por año. 

Otros efectos externos tales como la intervención de un operador humano que modifique la 

estrategia, sensibilidad a cambios en la demanda o en los precios también son incluidos. El 

efecto de la temperatura también se incluye y la reducción en el beneficio económico es 

comparada con el caso donde las condiciones de temperatura están controladas. La 

temperatura puede afectar hasta en un 3% las utilidades esperadas para este caso.  
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Nowadays the use of renewable energies are increasing their popularity. Since the availability 

of these resources might be limited due to environmental factors, the use of an energy storage 

device as part of the system is something to consider. On electricity markets, the use of 

storage systems becomes interesting since the possibility to obtain profit is latent. This 

research focuses on the integration of a revenue optimization strategy in conjunction with a 

degradation process model of a Li-ion battery, in order to quantify the economic benefit that 

the user can receive depending on how the storage device is operated. Since the operation of 

the storage device is subject to different market conditions, it becomes necessary to analyze 

the degradation process under these conditions. This means that the battery will not 

necessarily fully charge or discharge, in each cycle of operation. In this regard, defining a 

cycle becomes important since the usage of the storage device is highly variable. The 

degradation model was created using information available from the literature. This model is 

based on two summands, one of them having a major impact on the short term and the other 

one, on the long term of the lifespan. Furthermore, a methodology to estimate the degradation 

process of the batteries when operated under erratic state of charge conditions is included. In 

a first approach the information provided by a manufacturer is used, and with the support of 

escalating factors, and equivalent value for the Coulombic efficiency for each cycle is 

determined. Characterizing the degradation process according to the used state of charge 

show up to 3.4% additional cycles of operation. Afterwards, another similarity-based 

methodology to estimate the degradation process, by incorporating the discharge current and 

the state of charge levels is presented. Also, the effect of the temperature is included to 

illustrate the effect of usable capacity of a battery. Once the degradation model is established, 

it is combined with a mixed integer linear programming algorithm that maximizes the 

revenue obtained from selling different services. Several operation policies of the energy 

storage system were analyzed, giving as result different amount of operating hours and 

economic benefits for each case. It is important to mention that not necessarily operating the 

storage system freely will assure the maximum economic benefit to the owner. Constraining 

the state of charge and present nearly 18% of lower gross revenues per year. Moreover, within 

the case study, different external effects are also studied such as the intervention of a human 

operator that modifies the optimization strategy, sensitivity to changes in the demand or the 

energy prices. The effect of the temperature is also included and the reduction of the 

economic benefit is compared to the case where controlled temperature conditions are 

present. The effect of the temperature can affect up to 3% the gross revenues for this case 

due to the market conditions.  
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1. Introduction 

 General Context and Motivation 

 

It is a worldwide trend to reduce considerably the carbon footprint in all the applications. 

Since one of the major contamination sources is the coal or fossil fuels used for electric 

generation, the idea to use alternative energy sources in order to follow the Kyoto Protocol 

[1], the use of storage devices becomes more attractive. Even though these efforts are 

strongly supported by the governments all around the world, there are still some unresolved 

technical and economic issues of how to incorporate the storage to the grid.  

 

The universe is full of energy resources and throughout the history, mankind has always been 

looking for ways to use it. Regardless of the energy source of choice, a common situation is 

that the energy is available at moments when it is not required. For these cases a device for 

storing the energy becomes very useful since it allows to use that energy on demand, when 

it is actually needed. In this thesis, a lithium-ion energy storage device (ESD) is going to be 

considered. Some of its characteristics are: high energy density, light weight, no memory 

effect, and high charge/discharge efficiency, and due to these advantages, this type of battery 

it is employed in a wide variety of applications such as consumer electronics, terrestrial and 

aerial vehicles and power electronics [2].  

 

In order to comprehend topics regarding the incorporation of the storage units as part of the 

grid, the Smarter Network Storage project (SNS) was created by the UK Power Networks 

[3]. The project aims to provide a better comprehension of the technical and commercial 

challenges behind the energy storage when incorporated to the grid. The energy storage 

facility is located next to a UK Power Network 11 [kV] primary substation in Leighton 

Buzzard (a town 70 [km] northeast of London). This storage facility has a capacity of 6 

[MW]/10 [MWh] and one of the main objectives is to explore revenue alternatives when 

integrated to a traditional network. 

 

In this regard, an approach to understand market conditions was developed in [4]. The authors 

proposed an optimization strategy for multi-service portfolios in this energy storage facility. 

However, this effort did not consider a state of health (SOH) model for the ESD meaning 

that there is no aging or degradation of the battery considered. Even though this can give an 

idea of the possible gross revenue for an investor when operating the storage facility under a 

certain strategy (£311,353 per year for five different services), the real profit has to consider 

the useful life of the ESD in order to determine, in the long term, the sustainability of the 

strategy. Storage owners can benefit from three different products: network congestion 

management, energy price arbitrage and various reserve and frequency response services in 

order to maximize gross revenue in the short-term. However, in the long term, there are some 

consequent costs associated with battery degradation and replacement. 
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Two major concerns regarding the ESDs are the monitoring process of the state of charge 

(SOC) and the SOH. The SOC is associated to the amount of available energy at each instant 

when the battery is used, while the SOH is associated with the long term energy availability 

of the battery. For example a completely new battery when is fully charged will have a SOH 

and SOC of 100%, meaning that it can deliver its full nominal capacity. As the same battery 

is used, the capability to deliver the same amount of energy is diminished, meaning that even 

though the battery is fully charged (100% SOC), its SOH is less than the original 100%.  

 

Figure 1 shows an example of this behavior. The image was adapted from [5]. The 

accumulation of residue and the wear of the electrodes and the rest of the battery makes it 

impossible to maintain a 100% SOH all the time. 

 

Figure 1. SOC and SOH evolution in time [5]. 

In this respect, being able to estimate the SOH in an accurate way is really important. This 

will allow to make decisions in the short and long term and determine a strategy of how the 

ESD will be used. 

 

To manage this situation, a SOH estimation module is proposed to work in parallel with the 

operational policy optimization module. This way the storage owner can have real-time 

information regarding the remaining useful life (RUL) depending on how the ESD has been 

and how it will be used.  

 

 Problem definition 

 

The incorporation of an ESD on electricity markets is a developing research area. Depending 

on the business model it is possible to obtain a profit with the storage through different 

services. Since the performance of ESD is related to several factors such as weather 

conditions, amount of energy withdrawn from the storage system, and capacity fade, 

combining a model that characterizes the degradation process of ESD with the a revenue 

optimization strategy will aid the decision making process to the user on how to operate the 

ESD.  
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 Hypotheses 
 

 If an optimized economical strategy for energy storage operation is used in 

conjunction with a SOH degradation model that includes information such as 

operating temperature, discharge current, SOC swing and swing range, the user can 

quantify the overall revenue depending on how the energy storage is operated in the 

long-term. 

 

 It is possible to generate SOH degradation models using data provided by 

manufacturers of a specific battery type and extend these models to other types of 

batteries using similarity-based algorithms. 

 

 General Objective 
 

This research aims at determining the effect of state-of-health degradation process on 

decision-making policies that define the criteria for battery usage on multiservice energy 

portfolios. Particularly, it is of interest to evaluate the impact of including temperature and 

C-rate (rate of discharge compared to the nominal capacity of the battery) dependent SOH 

degradation models into the optimization procedure, as well as incorporating the uncertainty 

inherent to the processes and temperature-dependent effects using a linear model of the 

dynamic Coulombic efficiency and an appropriate definition of cycles of operation. 

 

 Specific Objectives  

 

1. Validate through simulations that depending on how the ESD is used there is direct 

effect on the amount of operative hours. 

2. Evaluate the economic benefit of different optimized operational policies considering 

the degradation state of the ESD. 

3. Define a cycle of operation properly, when undergoing partial charge and discharge 

conditions. 

4. Assess the impact on the useful life of the ESD caused by two concepts related to the 

depth of discharge: SOC swing and swing range. 

5. Propose a temperature and C-rate dependent SOH degradation model.  

6. Include the effect of the temperature on the SOH degradation model and evaluate the 

impact of this variable in the battery cycle life. 

7. Establish a similarity-based technique capable of modeling the degradation process 

for any type of Li-ion battery using information provided by the datasheet. 
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 Contributions  

 

 A novel model that incorporates the discharge current rates as a feature that affects 

the degradation process of Li-ion batteries is proposed. This empirical model can be 

easily and accurately adapted to different types of Li-ion batteries.  

 Two extrapolation methods are proposed for the characterization of the degradation 

process when the Li-ion batteries are discharged regardless of range of the state of 

charge at which they are operated. 

 A combined economic-degradation model that quantifies effects of various 

operational policies (which con- strain the State-of-Charge (SOC) to specified limits) 

on gross revenue, multiple services (namely energy arbitrage, balancing services and 

peak shaving or congestion management), degradation and lifespan of energy storage 

plants. The proposed economic model (a) presents a simplified (and convex) 

representation of reactive power that allows us to optimally coordinate active and 

reactive power for peak shaving purposes, and (b) ensures robustness and 

deliverability of the committed balancing services. 

 An application on a real 6 MW/10 MWh Samsung SDI lithium-ion battery system 

installed in a UK Power Networks’ primary substation in London (UK Power 

Networks owns and operates the distribution network and the storage plant), used to 

quantify the benefits of various practical operational policies that aim to reduce 

battery damage. It is demonstrated that although operational policies that focused on 

battery damage reduction will lead to a revenue loss in the short-term (since these 

policies fundamentally constrain storage operation), such loss can be more than 

compensated by long-term revenues due to a lengthier battery lifespan. 

 Demonstration of the effects of ambient temperature fluctuations on storage plant 

revenue due to degraded capacity. 
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2. Theoretical Framework 

 Mixed Integer Linear Programming model for optimizing multi-service 

portfolios of distributed energy storage  
 

Energy storage devices are able to provide different services through the electricity value 

chain: generation, transmission and distribution [6]. In order to integrate energy storage 

systems to the electricity market, factors such as the inclusion of renewable energy sources 

and the reduction of nuclear, coal or fossil fuel sources have to be considered. For instance, 

the intermittent generation of these type of energy sources when facing a peak demand period 

can induce to a degradation of the network assets increasing the costs. Energy storage systems 

have the potential to support this integration of different renewable technologies since they 

can support the load growth. For this reason, the electricity market industry is still trying to 

understand the procedure that assures energy storage investors to benefit for delivering the 

services. Also, since energy storage can be used for different services within an electricity 

market can generate a conflict among the provided services [7].  

 

Several efforts have been made to understand the inclusion of energy storage as on electricity 

markets. In [7], the authors use the mixed integer linear programming (MILP) proposed on 

[4] to determine an efficient energy storage operation by maximizing the revenue to the 

storage owner. An interesting point of view is presented in [6], since the authors establish 

that most of the existing evaluation methods for energy storage usually conclude that energy 

storage does not pay off. For this reason the authors propose a business model demonstrating 

that it is possible to obtain revenue with energy storage, by planning ahead of time.  

 

In this sense, there is no formal framework for understanding how to co-optimize and contract 

the different storage applications, in [4], a MILP model is developed to schedule the 

operation of distributed storage by coordinating provision of a range of system services which 

are rewarded at different market prices. The model maximizes distributed storage’s net profit 

while providing support to three main services: network congestion management, energy 

price arbitrage and various reserve and frequency regulation services. For network 

congestion management, the storage system is intended to be used strategically to reduce 

peak loading conditions. With energy arbitrage the idea is to take advantage of energy prices 

by charging the battery at low price periods, and discharging the battery at higher price 

periods. The reserve service consists of a contract where the storage operator guarantees a 

certain level of energy at all times, and the frequency services is used to give support to the 

network when the defined frequency decreases or increases suddenly [8]. 

 

The main contributions of [4] are: 

1. A MILP model that co-optimizes various storage applications to support distribution 

network operation and provide services in energy and balancing markets, ensuring: 

a. Profit maximization through the coordination of services. 
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b. Efficient control of reactive power in order to alleviate congestion and support 

energy arbitrage and frequency control. 

c. Robustness of scheduled operation to guarantee deliverability of balancing 

services for real-time frequency control purposes. 

2. Commercial strategy framework that establishes optimal multiservice portfolios in 

the long term. 

3. Investment policy to upgrade distribution network capacity in order to efficiently 

balance network investment costs against the corresponding impacts on revenues of 

incumbent storage owners. 

 

The model described is intended to determine the optimal storage operation by selecting those 

services that would maximize the profit to the distributed storage owner, given the prices 

associated to the services. The objective function maximizes net revenue associated with 

energy arbitrage, provision of frequency regulation and reserve services. Hence there will be 

a scheduled output of how the storage should be used ahead of time, allowing to analyze the 

possible degradation that the storage might suffer if used as supposed according to the 

optimization result. The constraints of the model include capacity limits and service 

deliverability. In this regard, capacity constraints must not be violated at any time instant.  

 

Figure 2 shows the scheme of how the modules operate. First, all the operational policy 

constraints are going to be defined. These constraints include: time windows, energy prices, 

initial conditions of the storage system, and the SOC policy that will be used for all the 

simulation.  

 

 

Figure 2. Proposed Operating Scheme of the Two Modules. 
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Once the constraints are defined the operation of the modules operate as follow: an economic-

based, commercial strategy module that determines storage plant operation by optimizing 

multi-service portfolios of energy storage (network congestion management, energy price 

arbitrage and various reserve and frequency response services) to maximize gross revenue, 

and a degradation module that performs an analysis of how the storage is degraded by 

reducing its energy capacity.  

 

In this regard, including a SOH degradation model will give the owner of the storage system 

an idea of how degraded the battery is in order to select an optimization strategy based on 

the remaining useful life or based on how much revenue can the ESD can produce. Although, 

for this research the operational policy will be defined at the beginning and it will remain the 

same during the simulation.  

 

A more detailed explanation of this MILP model is included in Section 4.2. 

 

 Basic terminology 
 

This section is intended to introduce the reader to common concepts used through within the 

context of any type of energy storage device. These concepts are related to the operation of 

the storage system mainly on the discharge part of the process.  

 

 State of Health and State of Charge 

 

Before providing more details about the theoretical framework, there are some concepts that 

have been previously mentioned but need to be explained in more detail. The first concept to 

be explained is the State of Health (SOH). As long as the battery is used, its capacity to store 

energy degrades. This means that at certain point in time, the full capacity of the battery is a 

certain percentage less than when it was new. It is measured as a percentage, for instance a 

100% SOH is used for a new, healthy battery, while a 0% is for a fully degraded battery. 

However, in practice, once the SOH reaches a point between 70%-80% of the SOH the 

battery is degraded [9], [10]. In this case, it can be said that the battery reached its End-of-

Life (EoL). Depending on the application, different values for battery life is required. For 

instance, a calendar life of 15 years might be required for hybrid electrical vehicles, or 10 

years for full electric vehicles, and a cycle life of up to 1000 cycles [11]. But these values 

can be completely different for small electronics or power grids. 

 

The State of Charge (SOC) is associated to the available energy that the ESD is capable of 

delivering. It corresponds to a short term measurement, and it is indicated as a percentage. A 

100% SOC indicates a fully charged battery, and a 0% SOC is used when the battery is fully 
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discharged. It is also said, when a battery reaches the 0% of the SOC, that it reached its End-

of-Discharge (EoD). 

 

 Depth of Discharge 

 

Another concept is the Depth of Discharge (DoD). The DoD is related to the SOC, since it 

represents the percentage of how much energy is used by the ESD. For instance it a fully 

charged battery is used to a point where the final SOC is 80%, it is said that the DoD is equal 

to 20%. However, if a battery starts fully charged, then delivers energy until it reaches a SOC 

of 70% and then charges up to a SOC of 80%, the DoD will be the difference between the 

highest and lowest values of SOC. In this case it would be a DoD of 30%, since the starting 

point to quantify the DoD is 100%. It is established that deeper discharges reduce the useful 

life of the ESDs. In this regard, since not always the starting point is a SOC of 100%, and the 

final value is not the lowest value of SOC, two concepts become useful. The first one is called 

the SOC swing, and is similar to the DoD. It measures the total difference between the starting 

SOC value and the lowest value in a cycle. Describing the DoD or the SOC swing is not 

always enough since this percentage can be calculated starting from any value of the SOC. 

For instance a SOC swing of 40% can be established, but it might result confusing to 

understand since not always the starting point would be the 100% SOC. This is why, the 

swing range (SR) becomes helpful. The SR indicates the range in which the SOC swing 

varies. It is important since the effect on the degradation is different depending on the initial 

state of the SOC, but with the same SR. In other words, if the SOC swing is defined as 50%, 

the degradation would be smaller if the SR goes from 50%-0% of the SOC than if it goes 

between [100%-50%] or [75%-25%]. 

 

 C-rate 

 

When talking about charging and discharging knowing how to interpret the C-rate is a must. 

The C-rate is a factor of the charge/discharge current in terms of the rated capacity expressed 

in Ampere-hours C [Ah]. This factor indicates the amount of current used to charge or 

discharge the battery. For example, if a battery has a rated capacity of 2 [Ah], and it is 

discharged with a constant current of 1 [A] then the C-rate can be determined with the 

equation 𝐼 = 𝑚 ∙ 𝐶. For this example the C-rate factor is equal to 𝐶/2. The C-rate is always 

expressed in term of the capacity C. 

 

 Understanding the Degradation Process as a Result of Different Operating 

Conditions 

 

Numerous applications that involve some type of ESD have become very popular in recent 

years. For example, aerial and terrestrial vehicles whether they are unmanned on manned, 

smart grids, all kinds of electronic devices, and even wearables. Developing some kind of 
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on-line model for the SOC or the SOH is vital, in order to provide the user with real-time 

information. Several approaches have been made in order to determine a methodology to 

estimate these conditions.  

 

Regardless of the type of model (whether is a SOC or SOH) that is being developed it is 

important to consider how it is going to be simulated or implemented. For instance, a model 

can be designed with many parameters, translating into an accurate model. However this 

model could be almost impossible to simulate due to its complexity, simulation time or 

computational cost, or furthermore the implementation of the model can become almost 

impossible due to the processing capability of the available hardware. On the literature is 

common to find many approaches for the estimation of the SOC, but the SOH is still at 

incipient point [12]. 

 

Battery models for the SOC can be divided into four major categories [13]: empirical, 

electrochemical, electric-circuit and abstract models. The electrochemistry-based models for 

SOH estimation vary depending on the chemical components of the battery but they all 

pretend to give the same result: a prediction of the battery’s end of life (EoL).  

 

The empirical models include a set of equations that describe the dynamics of the 

experimental data. Usually these models are easily determined but the accuracy is not very 

good. Electrical-circuit models are the ones based on the representation of the battery using 

voltage sources, resistors, capacitors and any other electrical part to build the essence of the 

battery. Usually these types of models are simplified using Thevenin equivalents. Finally, 

the abstract models include mathematical methods to explain the battery behavior. In this 

category the stochastic models based on Markov chains, analytical methods that use 

equations to explain part of the chemical behavior are included [13].  

 

Different factors have a direct impact on the overall performance of the ESD, and some can 

be controlled by the user, while others cannot. The type of discharge-charge cycle, 

temperature, storage conditions, and pressure affect the aging of the ESD, and the 

atmospheric temperature are related to the performance [14]. The degradation caused in the 

ESD affects the capability of storing energy, in others words, as the ESD degrades the amount 

of energy that can be stored is less than when it is new. As mentioned before, one of the 

reasons that causes the aging effect is the type of discharge-charge cycle. For instance, on 

lithium-ion (Li-ion) batteries, the capacity fades due to the loss of active lithium ions due to 

a solvent reduction reaction [15]. For this reason, the authors proposed a model that control 

the required DoD by manipulating discharge time, and that the discharge voltage is estimated 

as a function of the cycle number. In this regard, a generalized charge-discharge model based 

on the loss of the active lithium ions due to electrochemical solvent reduction at 
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anode/electrolyte interface [16]. The way an ESD is charged and discharged has also an 

impact on the aging. For instance when discharging or charging, the higher C-rate, the less 

available cycles [17]. Figure 3 shows the different percentages of the capacity fade for 

different discharge rates. It can be noticed that as the higher value of C-rate, the more the 

degradation. 

 

Figure 3. Capacity fade of Sony US 18650 batteries under different discharge rates [17]. 

Figure 4, Figure 5, and Figure 6 show results that demonstrate how a larger C-rate value have 

a direct impact on the electric values typically measured.  

 

 

Figure 4. Discharge capacity of Sony US 18650 batteries as a cycle number function [17]. 
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Figure 5. Discharge voltage profile of new and used batteries cycled up to 300 times under different discharge 

rates [17]. 

 

 

Figure 6. Rate capability of new and used batteries cycled up to 300 times under different discharge rates 

[17]. 

Semi-empirical approaches for the capacity fade modeling of Li-ion cells are also possible 

[18]. This way the testing can be done in a less expensive way than the electrochemical 

models.  

 

Similar results were obtained in [12]. In this case, a new term must be explained: the internal 

impedance or resistance. The simplest battery model is the one described with a Thevenin 
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equivalent. Usually this resistance is used to explain all the losses due to heat, chemical 

reactions, wear and age. The following figures show how the internal impedance changes 

under different circumstances as the amount of cycles increases. Figure 7 shows how when 

the C-rate is increased the internal impedance also increases. This has an effect on the SOH, 

since the same value of impedance is achieved for a smaller number of cycles. Similar to this, 

Figure 8 shows that when the DoD is larger, the internal impedance increases for a less 

amount of cycles. Figure 9 explains the same effect as the previous two figures, but when the 

temperature is the variable under analysis. 

 

Figure 7. Resistance variation for different values of C-rate [12]. 

 

 

Figure 8. Resistance variation for different DOD cycles [12]. 
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Figure 9. Resistance variation for different temperatures [12].  

The battery life depends on the way it is operated, this also includes the SOC. On [19], the 

number of cycles is shown as a function of the SOC swing and the average SOC, since the 

same value of SOC swing can be reached with different starting and finishing values. Figure 

10 shows their results. The horizontal axis can be interpreted as the battery’s capacity, and 

the 0.2 value is equal to the point when the battery reached the point of 80% the original 

capacity. It becomes clear that for lower values of SOC swing the amount of cycles is higher. 

On [19], the authors propose that the SOH degradations is caused by larger values of SOC 

swing and larger values of the average SOC. 

 

Figure 10. SOH degradation as a function of the SOC swing and Average SOC [19]. 
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A similar result is provided by [20], but extended to different technologies of storage systems. 

Figure 11 shows that the number of cycles increases for lower values of SOC swings.  

 

Figure 11. Battery Life as a Function of the SOC Swing [20]. 

 

 Structure of State of Health Degradation Models 
 

When working with ESDs, considering the information regarding the SOC or the SOH in an 

independent manner is not always enough. For this reason it is relevant to combine different 

techniques to estimate both characteristics and have a clear picture of the real situation. For 

instance, the owner of an electric vehicle would like to know the SOC on an everyday basis, 

but the SOH would become important when it is time to replace the car or just the battery 

pack. In the case of the current research proposal, since the ESD is going to be used for 

different services on a power network, the user would like to know the SOC in order to 

determine the short-term strategy, and the SOH is helpful in order to understand how the 

short-term strategies are degrading the battery and this way making long-term decisions in 

order to maximize the revenues. 

 

Different methods and techniques have been developed and validated for the measurement 

of these characteristics (SOC and SOH) and some of these methods are intended for a specific 

type of ESD. On [21], a general structure for the estimation of the SOC and SOH was 

proposed. The results were demonstrated at a nickel manganese cobalt (NMC) pouch cell, 

but extended to any type of cell chemistry.  

 

Another effort was done by [22] to estimate the SOC and SOH for Li-ion batteries. In this 

case, the SOC is determined through a first order resistor-capacitor (RC) model and the 

degradation of the battery is quantified with an Extended Kalman Filter (EKF). In this case 

the SOC is estimated online, and the SOH is updated offline. 
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Most of the efforts are oriented to determine a model for the SOC since it is a short term 

decision and in many applications determining the RUL is not important since the batteries 

are available everywhere and the prices are reasonable. However, there are several 

applications such as electric vehicles, unmanned vehicles (space or aerial or terrestrial), or 

grid storage where the replacement cost of the batteries or even the cost of the equipment 

itself is high and the need of a SOH degradation model becomes imperative [23]. 

 

The degradation of a battery can be modeled by the Coulombic efficiency, denoted with the 

greek letter 𝜂. This is defined as the fraction of the prior charge capacity that is available 

during the following discharge cycle [9]. Equivalently, it can be defined as the ratio of 

charges that enter the battery during charging compared to the number that can be extracted 

from the battery during discharge [24], and depending on the model there can be one 

efficiency for charging and another one different for discharging. This efficiency is affected 

by the depth of discharge and the temperature at which batteries are stored and operated. 

Figure 12 shows the degradation of battery capacity for different values of Coulombic 

efficiency. 

 

Figure 12. Coulomb efficiency effect during cycling [9]. 

Since the aim of this proposal is to include the effect of the temperature and a dynamic 

Coulombic efficiency, it is our interest to use a model based on the phenomenology of the 

degradation process of a battery or ESD. In this regard, a first model was proposed in [23] 

based on the work performed by [25]. The discrete space-state model is given by Equation 

(1). 

 
{
𝑥1(𝑘 + 1) = 𝜂𝑥1(𝑘) + 𝑥1(𝑘)𝑥2(𝑘) + 𝜔1(𝑘)

𝑥2(𝑘 + 1) = 𝑥2(𝑘) + 𝜔2(𝑘)                              
 

 𝑦(𝑘) = 𝑥1(𝑘) + 𝜐(𝑘) 

 

(1) 
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The state 𝑥1(𝑘) indicates the SOH of the ESD, 𝑥2(𝑘) corresponds to an unknown model 

parameter used to adjust minor differences with respect to the expected behavior (which are 

specific to the monitored ESD). In other words, 𝑥2(𝑘) is a parameter used to explain the 

actual degradation trend with respect to the expected 𝑥1(𝑘), under the concept of artificial 

evolution [2], and 𝑦(𝑘) is the measured SOH. The process noises and the observation noise 

are zero-mean Gaussian noise values.  

 

A similar approach, but based on a particle filter framework was presented on [26]. In this 

work, the EoL of the batteries is estimated using this algorithm. In [26], the Coulombic 

efficiency is also incorporated on this model, and the EoL can be predicted using Equation 

(2) which corresponds to the measurement model equation: 

 

 𝐶(𝑘 + 1) = 𝜂𝐶(𝑘) + 𝛽1𝑒
(
𝛽2
Δ𝑡
)
 (2) 

where 𝐶(𝑘) represents the charge capacity, Δ𝑡 is the rest period between two consecutive 

time instants, 𝛽1 and 𝛽2 are model parameters to be determined. The model described by 

equation (2) is similar to the one proposed in [27]. A simulation result from this methodology 

are shown in Figure 13. The estimated values are obtained through a particle filter framework 

and then it is compared with the actual values and the ones obtained with equation (2). 

 

Figure 13. End of life prediction [26]. 

A completely different approach, was performed by [28]. In this case, the authors propose 

the concept of Sample Entropy (SampEp) used as an input feature to train two systems: one 

based in Support Vector Machines (SVM) and the other one is based on Relevance Vector 

Machines (RVM). The method proposed on [28] intends to predict the SOH of the battery 

using the nominal capacity at different periods of time. Since this method includes a learning 

algorithm, it requires to be validated before is implemented. Figure 14 shows the curves of 

the real and validated data after using the SVM technique.  
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When real data is available some algorithms incorporate the real measurements as a source 

of reliable information in order to estimate with a certain degree of accuracy the EoD or the 

EoL (depending on the application). Figure 15 shows the prognosis results with a 95% 

accuracy bound when the SVM and RVM schemes are used.  

 

Figure 14. Validation process of SVM training for a dataset [28]. 

 

 

Figure 15. Battery health prognosis by SVM and RVM for a dataset [28]. 

In [29], a SOH degradation model is proposed considering data from the charging state. The 

features considered from the charging data were the length of constant current charge time 

(CCCT) and the constant voltage charge time (CVCT). Their model is able to predict that as 

the battery degrades the CVCT will increase and the CCCT will decrease. On their effort, an 



 

18 

 

experimental procedure was performed on 3 different prismatic batteries. The other two 

variables considered for the model are internal resistance and the capacity. 

 

It has been mentioned that the internal resistance plays a key role in the SOC model and in 

the SOH degradation model, and different models have been developed in order to estimate 

its value. This task is not easy due to the nonlinearities present due to the internal chemical 

processes. In [30] a frequency-based method to determine the internal impedance. In this 

case, the authors prove that there is a direct linear relationship between the internal 

impedance with the SOH, in the frequency domain. 

 

A different point of view is presented on [31]. The authors propose a SOH degradation model 

based on Ampere-hour throughput. This is defined as the current throughput and represents 

the energy delivered or stored in the battery. The Ampere-hour throughput can be described 

as a function of the open circuit voltage (OCV) of the battery (called Ah-V), and the intention 

is to use unique characteristics of the Ah-V in order to estimate the SOH as the battery ages. 

In this approach, the Ah-V function is generated using constant current charge and discharge 

profiles. Figure 16 shows an example of the curves obtained for one data set. The authors 

propose a quadratic fit in order to obtain the SOH value. 

 

Figure 16. Ampere-hour Throughput as a function of the open circuit voltage for a dataset [31]. 

An analytical approach based on recursive least squares was proposed by [32]. The authors 

use this technique to determine certain parameters to estimate in real-time the SOC and SOH 

of a Li-ion battery used for an electric vehicle. The discharge profiles are designed to meet 

with different driving patterns. In this experiment the temperature was a controlled variable 

due to the battery cycler used in the process. The SOH degradation model is based on the 

online identification of the internal resistance. 
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 Effect of the Temperature on Li-ion Batteries 
 

Temperature conditions have two different effects on Li-ion batteries. On the short term, the 

amount of energy that the battery can deliver or store can be constrained if the temperature 

conditions are not adequate even if the battery is not degraded. Moreover, on the long term, 

if a battery is used under extreme temperature conditions the RUL of the battery will be 

reduced.  

 

 Effect of the Temperature on the Discharge Process of Li-ion batteries 

 

When including the temperature to a SOC or SOH degradation model, one of the main 

concerns and drawback for any attempt to scale-up lithium-ion cells to a larger size desirable 

for high power applications is the non-uniformity that can be found [33]. Battery systems 

require a trade-off between overheating the large size cells and the cost of insulating or 

cooling this type of cell array.  

 

Similar to the C-rate, the operating temperature of the ESDs also has an impact on the 

capacity. Experimental effects relate this effect to the loss of active material, degradation of 

the electrodes and decomposition of the electrodes [34]. The authors explain, using a 

chemical point of view, why the capacity fades at different temperatures. For instance, their 

attempt includes the estimation of how much of the lithium is faded at the anode and cathode 

of the battery. 

 

Numerous efforts to include the effects of the temperature on the SOC can be found in the 

literature. In [35] and [36] two different SOC models, that include the effect of the 

temperature on the internal impedance are proposed. The models are different but their focus 

is mainly the same. Even though is not a SOH degradation model, it is important to keep this 

in mind since in the long term, the SOH of the ESD is affected by the SOC and how the 

battery is being used.  

 

In [37] another electrochemical model was developed. In this case a simple model was 

proposed by measuring two variables: output voltage and temperature. The authors explain 

from a chemical point of view how the temperature affects the fading capacity of the batteries 

based on Arrhenius equation, described by: 

 

 Φ = Φ𝑟𝑒𝑓𝑒
[
𝐸𝑎(Φ)
𝑅

(
1

𝑇𝑟𝑒𝑓
−
1
𝑇
)]

 (3) 
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In this case, Φ represents the battery chemical reaction rate, 𝐸𝑎(Φ) is the activation energy 

and its magnitude determines the sensitivity of Φ to temperature, 𝑅 indicates the gas constant 

and the subscript 𝑟𝑒𝑓 is an indicator that the value should be used at the reference 

temperature. A similar effort was presented in [10] to explain the capacity fade on lithium-

ion batteries. 

 

Another model that includes the effect of the temperature is proposed in [38]. In this case, 

the model corresponds for the SOC, but it has been vastly explained that the SOC has an 

effect on the SOH. In this case, the authors propose a methodology to estimate two factors 

that are used to compensate on the model the effect. One of the factors compensate the 

discharge current and the other compensates the temperature. Figure 17 and Figure 18 are an 

example of how the compensating factors can be obtained. 

 

Figure 17. Rate factor for a discharge current with respect to the reference curve [38]. 
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Figure 18. Temperature factor and the temperature-dependent potential-correction term [38]. 

The rate factor 𝛼 can be calculated as 𝑎/𝑏 while the temperature factor 𝛽 is obtained in a 

similar way 𝑐/𝑑. It is important to keep in mind that these values are dependent on different 

conditions and they require to be recalculated if something changes, for example the 

discharge current or the temperature. 

 

Continuing with this approach, Figure 19 shows the rate factor 𝛼 when the discharge current 

is referenced at 0.7 A corresponding to a 0.5 C-rate. Figure 20 shows the temperature factor 

𝛽 when the reference temperature is 23°C.  

 

 

Figure 19. Rate factor α for the Sony US 18650 Li-ion battery at a 0.5 C-rate [38]. 
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Figure 20. Temperature factor β for the Sony US 18650 Li-ion  at reference temerature of 23 °C [38]. 

It is important to mention that if the operating conditions change, the curves have to be 

obtained again. 

 

 Effect of the Temperature on the Degradation Process of Li-ion Batteries 

 

Another attempt to include the temperature effect, but in this case applied to a SOH 

degradation model, was presented on [39]. This effort is based on an electrochemical 

analysis, relates the discharge capacity, output voltage, average drawn current, battery 

temperature and the cycle count. 

 

As mentioned before, temperature is one of the different variables that have a major effect 

on the degradation of ESDs. However, most applications do not consider this effect since 

there is a large portion of the temperature range, where the temperature is considered as an 

ideal range [40]. Figure 21 shows that the ideal range goes from about 10 °C to 60 °C. It can 

be easily determined that at a certain temperature range (the ideal range), the difference in 

cycle life is almost none, but outside this range, the differences change abruptly. In this 

regard, incorporating a temperature dependent factor for the SOH degradation model of the 

Li-ion battery becomes necessary. 
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Figure 21. Effect of the operating temperature on the cycle life of the lithium-ion battery [40]. 

A SOH degradation model that includes the operation temperature was proposed in [2]. This 

model is based on the work performed by [23] where a SOH degradation model that includes 

a self-regeneration phenomena was proposed. This model incorporates the reaction rate of a 

battery described by the Arrhenius equation due to the temperature effect. Equation (18) 

describes the SOH degradation model. 

 

 

{
 
 

 
 𝑥1(𝑘 + 1) = 𝑒

𝛼(
1

𝑇−𝛽
−

1
𝑇𝑟𝑒𝑓−𝛽

)
𝑥1(𝑘)(𝜂 + 𝑥2(𝑘)) + 𝜔1(𝑘)                  

𝑥2(𝑘 + 1) = 𝑥2(𝑘) + 𝜔2(𝑘)                                                                      

𝑥3(𝑘 + 1) = 𝛿(𝑈(𝑘))𝜔31(𝑘) + 𝛿(1 − 𝑈(𝑘))(𝑥3(𝑘)𝜔32(𝑘)) + ⋯

+𝛿(2 − 𝑈(𝑘))(𝑥3(𝑘)𝜔31(𝑘))

 

           𝑦(𝑘) = 𝑥1(𝑘) + (𝛿(1 − 𝑈(𝑘)) + 𝛿(2 − 𝑈(𝑘))) 𝑥3(𝑘) + 𝑣(𝑘) 

(4) 

 

In the previous model, the temperature has to be used in Kelvins in order to obtain coherent 

results. The first two states are same as the ones defined in (1). The third state is linked to the 

increment of the available energy due to the regeneration phenomena. The noises 𝜔31 and 

𝜔32 were characterized in [27], where 𝜔31 is a log-normal noise that characterizes the amount 

of SOH added in the event of successive regeneration  and 𝜔32 corresponds to the typical 

damping ratio of self-recharge phenomena. The noise 𝜔32 distributes as uniform over the 

range of [0.75, 0.85]. The operator 𝛿(∙) is used to represent one of the following cases of 

consecutive regeneration is present: 0, 1, 2 or more. The other parameters have values of 𝛼 =
−5.1593 and 𝛽 = 260.9565 (Pola, 2014).  

 

 Degradation Process Models that Include the Discharge Current 
 

One of the Li-ion battery degradation models that explicitly includes the C-rate was proposed 

in [41]. In this case, the authors study the performance of the vehicle-to-grid (V2G) 

interaction through a mathematical model of the battery, where the model parameters are 

adjusted through genetic algorithms. The model is based on an electric equivalent and a 
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decreasing capacity approach of the processed energy at different C-rates. Then the results 

are compared to the original datasheet, in order to obtain the capacity degradation. This 

degradation is reported to be proportional to the applied C-rate. 

 

In [42], the authors propose an empirical model for the capacity reduction in electric vehicles 

under different operating conditions. The main idea is to optimize the lifespan of the battery 

by maintaining a low SOC, avoiding sudden temperature changes and, finally, by charging 

the battery to a certain SOC level that is just enough for the next trip. However, this constraint 

is difficult to meet since, in a more realistic scenario, it is not always possible to accurately 

plan or know the next trip. Also, this method does not inform about the degradation of the 

battery in terms of the number of cycles during the lifespan. Another model is proposed in 

[43], where the authors present a model that relates the increase in degradation with the 

increase in C-rate, analyzing different temperature conditions. The proposal corresponds to 

a mathematical pseudo-bidimensional model that integrates a solid electrolyte interface 

growth model.  

 

All these efforts represent important steps towards the characterization of the battery SOH as 

a function of the manner in which the ESD is operated. However, their application on SOH 

prognostic approaches, where the main objective is to predict the moment in which the device 

has to be replaced, is still limited. Our proposal intends to provide the means to improve our 

prediction capabilities in terms of the evolution of the battery SOH as a function of future 

discharge current rates. 

 

 Cycle Definition of an Energy Storage Device when Operated 
 

The most common definition for a cycle of a battery can be established as the process of 

discharging a fully charged battery and then charging it again. Clearly, the amount of cycles 

will depend on the manufacturer and the type of battery. When trying to convert the cycles 

into a time unit, the task becomes more complex since there are variables that influence the 

duration of the cycle, for example: temperature, depth of discharge, actual state of health of 

the battery, etc. 

 

However, this definition can be slightly different depending on the manufacturer. On its 

website, Apple Inc. defines a cycle as the process in which a fully charged battery is used 

and 100% of the battery’s capacity is discharged, regardless if there has been a partial charge 

in between [44]. Figure 22 was captured from the website and tries to explain this definition. 

 



 

25 

 

 

Figure 22. Charge cycle definition according to Apple, Inc [44].  

Most datasheets provided by manufacturers include information of the life cycle under full 

discharge cycles and controlled temperature settings. Usually the amount of cycles is given 

to a full discharge or a fixed DoD. These cases are considered to be the worst case scenarios, 

but there are elements that are not accounted for. For instance, in the previous sections, some 

studies regarding the electrochemistry of the batteries were discussed and show to have a 

major impact in the capacity fading when the DoD was larger, or even when the starting point 

is different. In other words, if a datasheet establishes certain amount of cycles under a given 

DoD (different to 100%), the manufacturer is assuming that the initial capacity is 100%, but 

the amount of cycles would be different if the initial capacity is for example a 90% or 80%. 

This means, that the battery has the same SOC swing but different swing range, and therefore 

the degradation is different. This type of behavior is a little bit unrealistic. Most of the 

applications have different DoD and power requirements, making a difficult task to determine 

the real SOH of the batteries.  

 

In [45], an effort was done to account for the behavior of the cycle life of lithium-metal-

polymer batteries. In this case, the temperature was not a key factor since the battery is 

operated in a controlled environment. Their study considered the SOC under different DoD 

values. Figure 23 shows how the battery loses its capacity as the DoD is higher. 
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Figure 23. SOC evolution for different values of DoD. (a) 50% DoD. (b) 80% DoD. (c) 100% DoD [45]. 

Also, in Figure 24, the voltage at the end of a cycle is shown for different values of DoD. 

Similar to what has been previously discussed, as higher the DoD the lower the voltage, 

meaning a shorter SOC and more degradation per cycle.  

 

Figure 24. Evolution of the end voltage versus DoD cycling at a temperature of 60 °C [45]. 

On this effort, also a definition for cycle was proposed. The authors propose a term defined 

as the Equivalent Full Cycles as the relation between the cumulative capacities discharged 

divided by the rated capacity of the battery. This relation is another way to express the 

Coulombic charges involved in the charge-discharge process. 
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When dealing with partial discharges and charges, [46] proposes a SOH degradation model 

based on the studies performed by [47]. This model is based on two observations: the SOH 

degradation rate is a function of the SOC swing and the average SOC (the average SOC 

corresponds to the sum of the highest and lowest value of the SOC in one cycle, and divided 

by two). However, in this case the definition of cycle is also different from the traditional 

case. A cycle is defined as a charging process where the SOC moves from a lower value to a 

higher value and then is followed by a discharging process (moving from SOC value to a 

lower SOC value). Figure 25 is an example of the first observation. In this case, two SOC 

profiles with the same time duration are shown. The profile of the left has three cycles with 

a SOC swing of 20% and an average SOC of 50%. The profile of the right has only one cycle 

with a SOC swing of 60% and an average SOC of 50%. However, the figure on the right has 

a higher SOH degradation due to the SCO levels although it only has one charge/discharge 

cycle when compared to the figure of the left. 

 

 

Figure 25. Illustrative example of Observation I. (a) Case with three cycles. (b) One cycle. [46]. 

The second observation is called the decoupling of the cycles. The main idea behind this 

observations consists on separating the cycles into equivalent cycles that are easier to 

interpret. Figure 26 explains the basic idea of how this observation is performed. 

 

 

Figure 26. Illustrative example of Observation II. (a) Real usage profile. (b) Decoupled profile. [46] 

After performing this decoupling the authors propose that the degradation of the period could 

be obtained by a recursive equation of this form: 

 

 𝑆𝑂𝐻 𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑆𝑂𝐻𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑆𝑂𝐻𝑐𝑦𝑐𝑙𝑒(𝑆𝑂𝐶𝑠𝑤𝑖𝑛𝑔, 𝑆𝑂𝐶𝑎𝑣𝑔) (5) 
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Unfortunately there is no more information regarding this method and how it can be 

implemented. 

 

Since the SOC swing and SR have a direct impact on the SOH of the batteries, in [19] an 

efficient algorithm that aims to extend the overall cycle life. The model used in this approach 

is adapted from the one proposed in [47]. For this model, the SOH degradation depends on 

the average SOC and the SOC swing, and the cycles are computed with the effective 

throughput number. This number is a calculated with the integral of the charging/discharging 

current and the nominal capacity of the battery. 

 

 Energy Storage Devices as Part of Large Scale Distribution Systems 
 

Even though the basic concepts behind the design of the Li-ion battery systems is the same 

independently from the battery capacity, when incorporating this technology to a large-scale 

systems, special attention is required. It is common to have storage systems as part of 

microgrids working in an isolated manner or as part of a larger network, and operating with 

renewable energy sources. This way the excess energy can be stored for future use. The cost 

for these storage systems is considerable so making the more out of the system is what every 

user would like. In this case, depending on the user requirements, different strategies can be 

proposed.  

 

One of the major concerns when working with the large scale systems is the sizing of the 

storage. According to [48] a trade-off between the battery size and conditions due to the 

photovoltaic (PV) variation is present. On their effort, an autonomous microgrid working 

with PV and diesel is analyzed. In order to design the battery system, the authors considered 

the amount of carbon dioxide exhausted from the diesel engine and the frequency deviation 

when the capacities of the PV panels and the storage systems were changed. In this model, 

the minimum SOC is established at 30% and the maximum is al 90%. This means that the 

swing range is always 60%. 

 

A similar procedure was proposed by [49]. In this proposal, the authors guarantee a highly 

reliable source of power, based on the optimal number of PV panels, wind turbines and 

storage units that ensure the total cost is minimized. The authors considered two efficiencies, 

one for charging and the other for the discharge process. The charging efficiency is a value 

between 0.65 and 0.85 depending on the available current, but the discharge efficiency is 

fixed at 1.Also, instead of considering the degradation of the battery, the authors included a 

total number of battery replacements for a 20 year period. The proposed model is applied to 

a location in Calabria, Italy. 
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Another effort for the determination of the optimal number of solar panel and batteries to be 

used in a PV-wind microgrid [50]. The weather and consumer data are from a certain area in 

Romania. Similar to the other cases, this approach gives an optimal result for the quantity of 

solar panel and batteries, but does not consider the long term degradation of the battery. 

 

A case study in Great Britain is presented on [51]. In this case, the idea is to evaluate the 

contribution of a storage system when operating on the grid. The investment and storage 

capacity are optimized while the operation cost is minimized. As the other cases, there is no 

degradation model considered for the storage system. 

 

A Self-adaptive Bee Swarm Optimization (SBSO) algorithm is applied to optimize the 

operation strategies and capacities of the storage system in a microgrid is proposed in [52]. 

The authors propose an extensive economical and weather analysis but unfortunately the 

battery model does not include the degradation effect. 

 

In [53] a similar problem is approached. However, in this case, the way of looking at the 

problem is slightly different. In this case, the size of the storage system is given and the 

intention is to balance the cycle life of the batteries. The battery SOH is considered using the 

model proposed in [47]. The authors propose different techniques for balancing the cycle life 

and then, a comparison was performed. The results show that the cycle life can be extended 

up to 76% when applying a cooperative framework named Flexible Distribution of Energy 

and Storage Resources (FDERS). 

 

Nevertheless, balancing the power supply and demand is a complex process [54], and 

according to the authors there needs to be some reengineering applied before the Li-ion are 

fully functional on grid applications. The authors present the advantages and disadvantages 

for several types of energy storage technologies. 

 

An extensive approach that examines literature that involves analysis of life cycles, costs 

(capital, maintenance, operational and replacement) is presented on [55]. The authors study 

the main imperatives for the adoption of electrical energy storage systems: 

 Meeting demand and reliability in grid’s peak hours. 

 Liberalized electricity markets. 

 Intermittent renewable energy. 

 Distributed generation and smart grid initiatives. 

 

In [56], [57] the authors explain the benefits of incorporating energy storage systems when 

operating as part of a solar generator and a wind turbine into the energy grid. Some of the 

services they describe in the operation are: ramp rate control, frequency control, and reactive 
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support. The importance of the storage system in enhanced since the weather conditions can 

change abruptly and the customer can have interruptions on their service. As some of the 

previous references, the authors base their effort on explaining how the grid and battery 

should operate, but the storage system degradation is not considered. 
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3. Methodology 

 Overview 
 

This chapter is intended to explain the different methods that were developed to characterize 

the degradation process of a Li-ion battery and later applied to a case study. The first section 

proposes a model for the degradation process when different discharge currents are used. The 

model is defined using the information available on the literature, and the validated with two 

sources of information: a custom designed experiment, and online public datasets available 

from NASA Ames repository. The next section explains a methodology that incorporates the 

use of K-nearest neighbors to explain the degradation process when the batteries are used at 

any combination of SOC values. The final section of this chapter, approaches the use of 

similarity based modeling (SBM) to characterize the degradation process for any 

combination of discharge current and SOC values. Also, the effect of the temperature is 

explained in terms of the usable capacity.  

 

 Characterization of the Degradation Process of Energy Storage Devices when 

Discharged at Different Current Rates 
 

This research uses data provided in (15), where the authors cycled a Sony US18650 1.4 Ah 

Li-ion battery using different discharge rates (1-C, 2-C and 3-C), at a controlled ambient 

temperature. After 300 cycles, battery capacities were reduced by 9.5%, 13.2% and 16.9% 

when using 1-C, 2-C and 3-C, respectively. Figure 1 shows the capacity fade results measured 

every 50 cycles (please note that actual measurements are connected by straight lines in the 

figure). 

 

The same information in Figure 3 can be used to build the associated capacity degradation 

curve (see Figure 27). Capacity fade curves are used by manufacturers to illustrate the battery 

degradation on datasheets. Typically, capacity fade curves are built by using data from 

batteries that are discharged under controlled conditions (depth of discharge, temperature, 

charging and discharging current rates). Although this information is helpful to compare the 

expected performance of batteries from different brands, it does not suffice to characterize 

the impact of higher currents. 
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Figure 27. Capacity degradation process for different discharge currents. 

As it was previously mentioned, degradation processes can be characterized through the 

concept of Coulombic efficiency. However, in this research, the intention is to include the C-

rate as a variable of the degradation process. It is interesting to note, that all degradation 

curves shown in Figure 27 exhibit exponential decay regardless of the associated C-rate. We 

followed this intuition, and used the Curve Fitting Tool from Matlab to fit a two-summand 

exponential expression, 𝑓(𝑡) = 𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡, to actual degradation data. Figure 28 shows the 

measured data and the corresponding fitted curve. 

 

Figure 28. Capacity degradation process and fitted curve at 1C. 

Figure 29 and Figure 30 show the individual contribution of each summand in 𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡. 
It can be noted that each summand exhibit a different trend. On the one hand, the first 

summand represents a contribution that decreases exponentially in time, and where 

differences between diverse discharge rates are almost negligible after 200 cycles of 
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operation. In addition, the value of the first summand is insignificant in the long term, while 

it represents about 7% of the total battery capacity during the first operating cycles. On the 

other hand, the second summand represents an affine function of time, where the slope 

depends on the battery discharge current. This suggests that this component could be used 

for better characterization of the degradation trend. Also, it can be stated that while the first 

summand has a major impact in the short term the second summand has a major impact in 

the long term.  

 

Figure 29. Capacity degradation process caused by the first summand. 

 

 

Figure 30. Capacity degradation process caused by the second summand. 
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 Proposed SOH Degradation Model 

 

Given that the degradation process can be modeled as the sum of exponential functions in 

time, a two-state space equation model is proposed: 

 

 𝑥̇(𝑡) = (
𝑏 0
0 𝑑

) 𝑥̅(𝑡) (6) 

 𝑦(𝑡) = (𝑎 𝑐)𝑥̅(𝑡) (7) 

 

Equivalently, the continuous space-state model can be re-written in the following discrete-

time form (sampling time equals to 1 cycle): 

 

 {
𝑥1(𝑘 + 1) = 𝑒𝑏𝑘

𝑥2(𝑘 + 1) = 𝑒𝑑𝑘
 (8) 

 𝑦(𝑘) = 𝑎𝑥1(𝑘) + 𝑐𝑥2(𝑘) (9) 

The values for the coefficients (mean value and the 95% confidence bounds) obtained through 

the Curve Fitting Tool of Matlab are shown in Table 1. 

 

Figure 31 summarizes the contributions of each summand in 𝑦(𝑘), for three discharge cases, 

using the mean value of the coefficients. It is known that when a battery is new, its SOH will 

be 100% (or, equivalently, 𝑦(0) = 1). The procedure to determine initial conditions for the 

system states has to consider this fact. In this regard, we propose a step-by-step procedure to 

compute 𝑥1(0) and 𝑥2(0). 

 

Figure 31.Capacity degradation components. 
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As mentioned previously, the second summand represents the major long-term contribution 

in the total value of 𝑦(𝑘). For this reason, the procedure prioritizes a reasonable initial 

condition for the state 𝑥2 : 

1. Determine the values of coefficients 𝑎, 𝑏, 𝑐, and 𝑑 using a fitting tool. 

2. Assign 𝑥2(0) = 1. 

3. Solve for 𝑥1(0), such that 𝑦(0) = 1. 

In the example previously described, we have: 

 𝑦(𝑘) = 𝑎𝑥1(𝑘) + 𝑐𝑥2(𝑘) 
𝑦(0) = 0.06108𝑥1(0) + 0.946𝑥2(0) 

(10) 

 

 

Fixing the value of 𝑥2(0) equal to 1, and knowing that 𝑦(0) is equal to 1, then do as follows: 

 1 = 0.06108𝑥1(0) + 0.946 ∙ 1 

𝑥1(0) = 0.8841 
(11) 

 

Now that the procedure for establishing the initial conditions has been explained, we verify 

the performance of the SOH model. Given that the curve fitting tool generates mean values 

and confidence bounds for each model parameter 𝑎, 𝑏, 𝑐, and 𝑑 (see Table 1), we proceed to 

generate 10 sets of random coefficients, assign different initial conditions to each resulting 

model, and compare the evolution in time of the SOH model with actual measured data 

obtained from [17] (see Figure 32). 

Table 1. Mean value and confidence bounds for the model coefficients. 

  Discharge Current 

Coefficient Parameter 1-C 2-C 3-C 

 

𝑎 

Mean Value 0.06108 0.07653 0.06763 

Confidence 

bounds 
(0.06084, 0.06132) (0.07371, 0.07965) (0.06588, 0.06937) 

 

𝑏 

Mean Value -0.02905 -0.02896 -0.02093 

Confidence 

bounds 
(-0.02931, -0.02879) (-0.03165, -0.02627) (-0.02203, -0.01984) 

 

𝑐 

Mean Value 0.946 0.932 0.9376 

Confidence 

bounds 
(0.9457, 0.9462) (0.9292, 0.9349) (0.9357, 0.9395) 

 

𝑑 

Mean Value -1.406∙ 10−4 -2.115∙ 10−4 -3.943∙ 10−4 

Confidence 

bounds 
(-1.416, -1.395)∙ 10−4 (-2.25, -1.98)∙ 10−4 (-4.026, -3.86)∙ 10−4 
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Figure 32. Proposed model generated with random coefficients. 

Figure 33 compares the contribution of the first summand 𝑎𝑥1(𝑘) for each realization of 

random coefficients (and the corresponding set of initial conditions 𝑥1(0) and 𝑥2(0)). Note 

that after nearly 50 cycles, all 10 realizations exhibit basically the same behavior. 

 

Figure 33. Comparison among first original summand and ten realizations. 

In case of the second summand, 𝑐𝑥2(𝑘), and since the initial condition is always set to 

𝑥2(0) = 1, we observe a greater contribution to the overall characterization of the battery 

SOH in time (see Figure 34). 
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Figure 34. Comparison among second original summand and ten realizations. 

 

 Model Coefficient Analysis 

 

As explained before, the model is composed of two-state space equation and the 

corresponding observation equation. A total of four coefficients are needed, all of them 

estimated via a curve fitting procedure. This section analyzes the model, in terms of the 

relationships between these parameters and operating conditions at each discharge cycle. 

 

Coefficient 𝑎: There is no clear pattern that could relate the values of this parameter and 

battery discharge current. There is no overlap among confidence intervals. An interesting 

issue is that the mean value in the 2-C case is the highest of the three cases. In this regard, 

there is no evidence of a monotonic relationship between parameter values and discharge 

current rates. 

 

Coefficient 𝑏: In this case, it is possible to note that, for both the 1-C and 2-C cases, the 

confidence bounds are reasonably similar. Furthermore, it can be noted that the mean value 

of the 2-C case, is within the confidence bounds of the 1-C case, and vice-versa. This situation 

suggests that these two cases can be merged into just one confidence interval. It is suggested 

to consider 3-C battery discharges as a separate case, given that that mean value of the 

parameter is about 30% less than in the other situations.  

 

Coefficient 𝑐: This coefficient is closely related to the initial value of the second summand 

of the observation equation,  𝑐𝑥2(0). When comparing mean values and confidence intervals 

for 2-C and 3-C discharges, differences are small. However, it is recommended to assume a 
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dependency between the parameter value and the battery discharge current in the 

implementation of estimation approach. 

 

Coefficient 𝑑: This coefficient has a major effect on the characterization of the degradation 

process, since it is associated with the slope of the second summand in the observation 

equation, 𝑐𝑥2(𝑘). In this case, the mean values and confidence bounds are separated for each 

battery operating condition and, moreover, parameter values have a monotonic relationship 

with respect to the discharge current. 

 

An interesting fact associated with the mean value of coefficient d is that the 1-C case is 

practically scaled to the nominal capacity of the battery (1.4 Ah). Table 2 summarizes the 

mean values of the three cases in terms of the nominal capacity. Another fact is that the mean 

values can be fitted through an exponential curve, as shown in Figure 35. 

 

Figure 35. Quadratic exponential fit for the mean value of coefficient d. 

 

Table 2. Mean value and confidence bounds for the d coefficient at various discharge 

currents 

C-rate Mean value Confidence bounds 

1C −1 ∙ 10−4 ∙ 𝐶𝑛𝑜𝑚 (−1.01,− 0.996) ∙ 10−4 ∙ 𝐶𝑛𝑜𝑚 

2C −1.5 ∙ 10−4 ∙ 𝐶𝑛𝑜𝑚 (−1.6, −1.4) ∙ 10−4 ∙ 𝐶𝑛𝑜𝑚 

3C −2.8 ∙ 10−4 ∙ 𝐶𝑛𝑜𝑚 (−2.88,−2.76) ∙ 10−4 ∙ 𝐶𝑛𝑜𝑚 

 

Indeed, from collected evidence, we have found that it is possible to find an exponential 

relationship between values of the coefficient d (in the proposed SOH degradation model) 

and the battery discharge current rate. This relationship can be characterized by the 
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expression  𝑦(𝛾) = 𝛼𝑒𝛽∙𝛾
2
, where 𝛾 is used to represent the C-rate and 𝑦(𝛾) is a multiplier 

used to obtain the coefficient 𝑑 of the model. Thus, we finally obtain a C-rate dependent 

model for SOH degradation over time, defined by state equations (1)-(2), and where: 

 𝑑1(𝐶𝑟𝑎𝑡𝑒) = 𝛼𝑒𝛽∙(𝐶𝑟𝑎𝑡𝑒)
2
 (12) 

 

The mean value and the confidence bounds of α and β are shown in Table 3. In this case, the 

obtained value associated with the R-square parameter when fitting the data was 0.9997. 

 

Table 3. Values for alpha and beta after adjusting the d coefficient through a quadratic 

exponential fit. 

 Variable 

Parameter 𝛼 𝛽 

Mean value 8.93 ∙ 10−5 0.1271 

Confidence bounds (6.947, 10.91) ∙ 10−5 (0.09863, 0.1556) 

 

 Experimental Results 

 

In order to study the degradation process when cycling a Li-ion battery at high currents, a 

real experimental procedure was implemented. This procedure degraded a Panasonic 

CGR18650CH battery cell under controlled conditions for charge-discharge cycles and 

temperature (25 °C). The procedure starts with a brand new battery cell as received from the 

distributor and consists of the following steps: 
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The experiment started in November 2016 and finished in July 2017. Nearly 600 cycles were 

completed. Figure 36 shows the degradation process for the normalized battery capacity. In 

this figure, it can be noted that two different trends co-exist. The uppermost set of points 

corresponds to discharges performed at 1-C, while the data points at the bottom correspond 

to cycles performed at 2-C. 

Charging Procedure 

 The constant current-constant voltage (CC-CV) charge procedure should be done 

at 0.5-C. This current must be applied until the voltage reaches 4.2 V. Then the 

voltage is fixed at this value and the current is reduced until it reaches 0.05-C. 

 

Cycles 1-10: Initial cycles. 

1. Perform discharge cycles at nominal current (1-C), (although the nominal current 

is defined at 2.25 A, for simplicity the experiments were done at 2.2 A). 

2. Perform the CC-CV charging procedure. 

3. Repeat steps 1-2 until completion of the ten cycles. 

 

Cycles 11-12: Regular degradation cycles 

1. Perform discharge cycles at 1-C. 

2. Perform the CC-CV charging procedure. 

 

Cycles 13-20: Accelerated degradation cycles 

1. Perform discharge cycles at 2-C. 

2. Perform the CC-CV charging procedure. 

 

General considerations for all cycles 

 A resting period of 30 minutes is established every time a battery is discharged, and 

every time the battery is charged. 

 Cycles 10N + 11 and 10N + 12 (N = 1, 2, 3, ...) shall be regular discharge cycles. 

 All other cycles shall be accelerated degradation cycles. 

 Repeat this alternating sequence of discharge process (two regular degradation 

cycles, and eight accelerated degradation cycles). 

 The charging procedure must be performed after every discharge cycle, to start the 

new cycle with the battery fully charged. 
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Figure 36. Experimental degradation process of the Panasonic CGR18650CH Li-ion battery. 

An interesting situation happened between cycles 300 and 400. For unknown reasons the 

testing chamber stopped controlling the temperature, a fact that went unnoticed. Because of 

this fact, the amount of delivered energy decreased in those cycles. This effect has to be 

considered as a temperature-related phenomenon, and does not affect the degradation process 

in the long term. Indeed, once the issue with the testing chamber was fixed, degradation 

values came back to the expected trend. Using the proposed model (Equations 1 and 2), fifty 

random realizations were generated and compared with the experimental data at both 

discharge current levels. Results are shown in Figure 37. Note that all model realizations 

properly follow the trend of the experimental data. Without considering the experimental 

values that were affected by the temperature problem, the difference between model 

realizations and the experimental data is less than 2%. 

 

In this regard, it is possible to mention that the proposed model is able to properly 

characterize the degradation process for a given discharge current. The next step is to evaluate 

the performance of the model using the data results at 2-C. In a similar way, Figure 38 shows 

fifty random realizations of the proposed model and the experimental data. 

 

Figure 38 shows a bias between model realizations and measured data. However, an 

important fact to highlight is that the realizations follow the same trend as the experimental 

data, and that differences are between 5% and 7% in most cases. To verify this biased 

behavior, experimental data was fitted through the Curve Fitting Tool of Matlab. To avoid 

the errors induced by low capacities due to the temperature-related phenomenon, these data 

points were excluded from the fitting process. Figure 39 shows the result when data is fitted 

by using the proposed model, and the confidence bounds for all the coefficients. Similarly to 

our previous experiment, the resulting fitted curve follows the trend of the experimental data. 

The average offset is about 5%; and towards the end of the time series, the difference between 
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the fitted values and the experimental data is limited to 3%. It is important to notice that 

various measured data points match the fitted curve. 

 

Figure 37. Comparison between experimental data at 1-C and fifty random realizations of the proposed 

model. 

 

Figure 38. Comparison between experimental data at 2-C and fifty random realizations of the proposed 

model. 
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Figure 39. Fitted curve by using the proposed model and confidence bounds for all the coefficients. 

To evaluate the model performance, we test the goodness of the fit (see Table 4). As expected, 

although the trend of the curve follows the experimental data, the results are not good enough. 

To overcome this situation, we have slightly modified the original parameter estimation 

procedure as follows. 

 

Table 4. Goodness of the fit results for the experimental 2-C data. 

Parameter Value 

SSE 0.7217 

R-square 0.3982 

Adjusted R-square 0.3997 

RMSE 0.04237 

 

As explained previously, the proposed model has two summands in observation Equation 2, 

which are parametrized by coefficients 𝑎 and 𝑐. From those, coefficient 𝑐 is the one that has 

the highest impact on the degradation characterization in the long term. In this regard, the 

coefficient 𝑐 is left unbounded (or free) during the estimation process, while the feasible 

region for other coefficients is bounded within the confidence intervals shown in Table 1. 

Figure 40 shows the result of this special fit. Note how the bias is reduced just by setting the 

coefficient 𝑐 free. For this new fit, the model is able to properly characterize the degradation 

process without the bias previously observed. 
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Figure 40. Fitted curve by using the proposed model setting coefficient c free. 

For the sake of comparison, the fitting procedure is repeated. In this case, though, the four 

coefficients are set free to let the Curve Fitting Tool of Matlab adjust them; Figure 41 shows 

the results for this fit. As expected, the resulting fitted curve has a good performance when 

compared with the experimental data. 

 

Figure 41. Fitted curve by using the proposed model with free coefficients. 

A comparison between the goodness of both fits can be observed in Table 5. Expectedly, the 

results for the fit with free coefficients are better, although the results obtained where 

coefficient 𝑐 is set free only are very similar. 
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Table 5. Comparison between the proposed model with coefficient c free only and all 

coefficients free. 

Parameter Coefficient 𝑐 Free All Coefficients Free 

SSE 0.005995 0.0038 

R-square 0.995 0.9968 

Adjusted R-square 0.995 0.9968 

RMSE 0.003866 0.00309 

 

From these results, it is possible to state that the proposed model is able to properly fit the 

experimental data. Although using the obtained confidence bounds might induce a biased 

result, this does not mean that the model is not capable to properly represent the degradation 

process. In this case, the model and the confidence bounds were obtained for a specific type 

of battery, and later applied on a different type of battery. For instance, the biased result can 

be amended if one of the coefficients is set free. Although batteries are built under strict 

quality control conditions, due to the complex chemical processes involved, the results may 

vary from cell to cell, especially when batteries are not used under nominal conditions. As 

demonstrated, the proposed model is able to adjust the parameters in a simple and fast manner 

in order to characterize the observed process. 

 

One final case study is performed using two datasets obtained from the public repository of 

the Prognostics Center of Excellence of the NASA Ames Research Center. In this case, the 

datasets used are those associated with Batteries #34 and #36. In these experiments the room 

temperature was controlled at 24 degrees Celsius. The batteries have a nominal capacity of 2 

Ah. Battery #34 was discharged at a constant current of 4 A until the discharge voltage 

reached 2.2 V at each cycle, while battery #36 was discharged at nominal current conditions 

until the discharge cycle reached 2.7 V at each cycle. The experiment was performed until 

the nominal capacity was reduced by 20% (i.e. from 100% to 80%). 

 

Similar to the previous case study, the idea is to compare the proposed model under two 

conditions. The first condition is to set the confidence bounds for coefficients 𝑎, 𝑏, and 𝑑 

using the previously defined values. The second condition is to set coefficient 𝑐 free and let 

the Curve Fitting Tool of Matlab to adjust it. The first results shown in Figure 42 correspond 

to Battery #36. Note how the results where coefficient c is set free are able to properly fit the 

real data. 
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Figure 42. Fitted proposed model setting coefficient c free. 

 

Figure 43 shows the results when all coefficients are set free. In this case the behavior of the 

fitted curve follows the trend of the data in a more precise manner, and there are no significant 

differences between the measured data and the fitted results. 

 

Figure 43. Fitted proposed model setting all coefficients free. 

 

Similarly to the previous case study, the goodness of the fit is analyzed. Table 6 shows the 

obtained results. Note that the differences among the four parameters are very small, and 

therefore the proposed model is also able to characterize the degradation process of this 

battery when discharged at nominal current. 
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Table 6. Comparison between the proposed model with coefficient c free only and all 

coefficients free applied on Battery #36. 

 Coefficient 𝑐 Free All Coefficients Free 

SSE 0.0279 0.02377 

R-square 0.9397 0.9486 

Adjusted R-square 0.9397 0.9478 

RMSE 0.0119 0.0111 

 

The next step is to repeat the previous analysis on Battery #34. Figure 44 shows the result of 

the proposed model and confidence bounds except for those associated with coefficient c, 

which is set free, to be found by the software. Although the data looks irregular, the fitted 

result is capable to follow the trend. 

 

 

Figure 44. Fitted curve by using the proposed model setting coefficient c free. 

 

Figure 45 shows the result where all coefficients are set free. In this case, it is more difficult 

to observe the differences between this and the previous result, since the measured data are 

more distributed. 
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Figure 45. Fitted curve by using the proposed model setting all coefficients free. 

 

Finally, both results are compared through the goodness of fit. Table 7 shows that the 

differences between both approaches are very small. 

 

Table 7.Comparison between the proposed model with coefficient c free only and all 

coefficients free applied on Battery #34. 

 Coefficient 𝑐 Free All Coefficients Free 

SSE 0.02829 0.02584 

R-square 0.946 0.9506 

Adjusted R-square 0.946 0.9499 

RMSE 0.01201 0.01157 

 

 Characterization of the Degradation Process of Energy Storage Devices when 

Operating at Erratic SOC Swing Ranges 
 

This section is based on the procedure explained on Section Structure of State of Health 

Degradation Models. As mentioned, the degradation model is based on the concept of the 

Coulombic efficiency. Using the information given by the manufacturers it is possible to 

calculate the value of this efficiency.  

 

Datasheets provide information regarding the trend of the capacity degradation after a certain 

amount of cycles, as shown in Figure 46, which is reconstructed from the datasheet of the 

Panasonic NCR18650B Li-ion battery. This is the degradation effect when batteries are 
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discharged at nominal current, with a SOC swing of 100% and charged by using the defined 

protocol defined by the datasheet. 

 

Figure 46. Panasonic NCR18650B lifespan characteristics. 

Even though the degradation is caused by multiple effects, the Coulombic efficiency can be 

used to simplify and explain the entire degradation phenomenon by only one term. Basically, 

the higher the value of efficiency, the less degradation per cycle a battery will have. Since 

most Li-ion batteries have a lifespan of a several hundreds of cycles, it is imperative to work 

with several decimal points in order to obtain the most appropriate value of the Coulombic 

efficiency. 

 

 Proposed Method 

 

This method was previously used in [23], although much more details are provided next. In 

the proposed method, the cycles are characterized by using its associated Coulombic 

efficiency 𝜂̿. In this sense, the storage capacity is degraded through each cycle k, by using 

equation (13). 

 

 
{𝑥1(𝑘 + 1) = (𝜂̿(𝑆𝑂𝐶 )) 𝑥1(𝑘)  

           𝑦(𝑘) = 𝑥1(𝑘) 
(13) 

 

This proposal includes a methodology that uses information of the battery, regarding the 

amount of operating (regular) cycles and the values of SOC swing and SR. Using data 

provided by the manufacturer, it is possible to calculate the value of 𝜂̿. In this case, 11 SR 

(100-0%, 100-25%, 75-0%, 100-50%, 75-25%, 50-0%, 100-75%, 75-50%, 62.5-37.5%, 50-

25% and 25-0%) and the total number of cycles for each of these SR is known. According to 
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Figure 12 and Figure 46 it is possible to calculate a value for the Coulombic efficiency if a 

constant decay rate is considered. By using the known amount of total cycles, and assuming 

that a cycle is complete after discharging the battery at nominal current between the defined 

values of SR, the following equation (14) simplifies the calculation of the Coulombic 

efficiency.  

 

 
𝜂̿ = ( 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)

1
𝑇𝑜𝑡𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠 (14) 

 

In this case, the degradation percentage should be defined as a value between 0 and 1, and it 

is equal to the percentage of the nominal capacity where the user or manufacturer defines the 

threshold to be considered as fully degraded. For instance, if a battery is rated to work for 

5000 cycles, with a final nominal capacity of 80% (of its original value), the value of the 

Coulombic efficiency would be 0.99995537; but if this percentage is considered as 75% (of 

its original value), the value of 𝜂̿ would be 0.99994246. This procedure is performed for all 

the eleven cases mentioned before, so each one has associated a value of 𝜂̿. Even though we 

have a good amount of operating cases, this does not cover all the possible combinations of 

SR, however it is possible to interpolate and obtain an appropriate value of the Coulombic 

efficiency as follows. Using the known SOC swing and the average SR value, and 

distributing these values on a scatter plot as shown in Figure 47, where the asterisks represent 

the known operating conditions and the black circle represents a particular operational 

condition. The equivalent Coulombic efficiency will be determined as described next. 

 

Since the scatter plot presents a triangular shape, using K-nearest neighbors (3 neighbors in 

this case due to the triangular shape), and by weighting the inverse of the distances to the 

known conditions (3 of them), it is possible to determine the value of an approximate 

Coulombic efficiency for all possible operating conditions. 

 

Having all the SOC swing and SR information is not always possible. For this reason, a 

method for extrapolating the previous results in order to be used with other Li-ion batteries 

is defined, assuming that Li-ion batteries have similar behaviors.  

 

Table 8 shows the corresponding escalating factors that can be used to characterize the 

efficiency when the batteries are operated at different SR. Also, it considers different 

degradation percentages since they can differ among manufacturers. 

 

For example, let consider two types of commercial Li-ion batteries. The first case is the 

Samsung ICR18650-22P. Using the information provided by the manufacturer it is possible 

to calculate the Coulombic efficiency. In this case, the value of the Coulombic efficiency is 

0.9992869 after 500 cycles since after at that point the capacity of the battery has degraded 

to 70% of the nominal capacity, meaning that there is a 30% loss of the original capacity.  
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Figure 47. K-Nearest neighbor scatter plot. The asterisks indicate known operating conditions, and the black 

circle represent a random usage condition. The red circle encloses the three nearest neighbors to the random 

use.  

 

Table 8. Escalating factors for three degradation cases. 
 

Degradation Percentage 

SR 0.7 0.8 0.85 

100-0 1.000000 1.00000000 1.00000000 

100-25 1.000003 1.00000266 1.00000193 

75-0 1.000024 1.00001860 1.00001354 

100-50 0.999989 0.99999203 0.99999420 

75-25 1.000019 1.00001521 1.00001108 

50-0 1.000037 1.00002874 1.00002093 

100-75 1.000027 1.00002146 1.00001563 

75-50 1.000011 1.00000881 1.00000642 

62.5-37.5 1.000008 1.00000620 1.00000451 

50-25 1.000043 1.00003347 1.00002438 

25-0 1.000054 1.00004184 1.00003047 

 

The second case corresponds to the Panasonic CGR18650, as seen in Figure 48. Calculating 

the same parameters as the first case, we obtain a Coulombic efficiency of 0.9995538, 

considering a degradation of 20%, since the available capacity at that point will be 80% of 

the original capacity, after 500 cycles of use.  
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Using the obtained value of ɳ for each case, it is possible to calculate an approximate value 

of Coulombic efficiency when working at different SR. Table 2 shows the escalated values 

for the Coulombic efficiency for each of the SR.  

 

With these results, the replicating the previously explained methodology in order to 

characterize in a better way the degradation effect when another type of Li-ion battery is 

operated under any SR conditions. 

 

 Simulation Example of the Degradation Process using K-NN 

 

In this example the degradation process of the Samsung ICR18650-22P Li-ion battery using 

the results of Table 9 is modeled. A Monte Carlo simulation of 50000 realizations and 

operating the battery under any SR combination was performed. Also the degradation process 

in a deterministic way by using a fixed value of eta is used for comparison purposes. For the 

deterministic part, three values for eta were considered: a constant value of eta (obtained 

from the datasheet -and equal to the 100-0% SR-, and the maximum and minimum value of 

eta obtained from the Table 9. In this sense, the results are: constant value of eta is equal to 

0.9992869, the maximum value is 0.9993409 and the minimum is 0.9992759. For the Monte 

Carlo simulations, the corresponding value of eta is calculated by the K-NN method 

explained in the previous section and using as a reference the values obtained in Table 9. 

This way, it is possible to simulate any random combination of SOC swing and SR and not 

only the 11 cases discussed earlier. However, the following considerations were taken into 

account for the simulation: 

 The initial SOC level value at instant time k+1 must be higher than or equal to the 

final SOC level value at instant time k.  

 There is always a discharge in every cycle.  

 Each realization is finished after 800 cycles. 

 

For the Monte Carlo simulations, the amount of total cycles after the normalized capacity 

reaches the threshold value of 70% were calculated, since at this point the battery is 

considered fully degraded. The bar diagram presented in Figure 49 shows the estimated total 

number of cycles until it reaches its EoL. In this case, it can be observed that the majority of 

the cases reach its EoL after 517 cycles (when used at different/irregular SOC swing values). 

 

Figure 50 shows the obtained degradation curve for the following cases: the constant value 

of eta, the maximum and minimum value of eta, and one realization of the Monte Carlo. It is 

possible to see that the case of constant eta reaches the 70% threshold at 500 cycles, which 

is the value expected observed in the datasheet. In the case of the Monte Carlo simulation, 

the battery lifespan is 3.2 - 3.6% higher in terms of extra cycles (with respect to calculation 

with a constant eta). Furthermore, Figure 51 shows a zoom-in of the threshold area. 
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By looking at Figure 50, it can observed that the Monte Carlo results place the battery lifespan 

within the minimum and maximum degradation. Also, the EoL obtained through the Monte 

Carlo simulations can be considered the closest to the real one (or closer than that obtained 

through a constant eta). 

 

 

Figure 48. Panasonic CGR18650 lifespan characteristics. 

 

 

Figure 49. Bar diagram of the estimated total number of cycles. 
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Table 9. Escalating values for two commercial batteries. 

SR  ICR18650-22P CGR18650 

100-0 0.9992869 0.9995538 

100-25 0.9992899 0.9995565 

75-0 0.9993109 0.9995724 

100-50 0.9992759 0.9995458 

75-25 0.9993059 0.9995690 

50-0 0.9993239 0.9995825 

100-75 0.9993139 0.9995753 

75-50 0.9992979 0.9995626 

62.5-37.5 0.9992949 0.9995600 

50-25 0.9993299 0.9995873 

25-0 0.9993409 0.9995956 

 

 

Figure 50. Simulated degradation process of the Samsung ICR18650-22 when operated under different 

conditions. 
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Figure 51. Zoom in over the 70% threshold area. 

 

 Characterization of the Degradation Process of Energy Storage Devices when 

Discharged at Different Current Rates using Similarity Based Modelling 
 

This section is intended to explain the use of Similarity Based Modeling (SBM) to estimate 

the degradation process of a Li-ion battery. As explained previously, the degradation process 

shown in Figure 3 can be characterized through the sum of two exponential summands, 

regardless of the discharge current. Using the obtained characterization results, (as the ones 

shown in Figure 32) it is possible to calculate the equivalent efficiency per cycle. Figure 52 

shows the evolution of the efficiency for the three discharge currents, and it can be noted that 

they have an exponential behavior. The value of the efficiency starts with a lower value than 

at the end, supporting what is stated by the literature that at early stages of the life cycle the 

degradation process is higher. In all three cases, after a certain number of cycles an inflexion 

point is reached and afterwards it appears to have reached a steady state value.  
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Figure 52. Evolution of the cycle to cycle efficiency for different discharge currents. 

 

Due to the exponential behavior of the efficiency curves, an exponential curve with the 

structure Η(𝑘) = Α ∙ 𝑒Β∙𝑘 + Γ ∙ 𝑒Θ∙𝑘 was fitted. This equation will allow to estimate the value 

of the efficiency at any cycle for the three discharge currents. Table 10 shows the values for 

each of the coefficients. 

 

Table 10. Mean Value and Confidence Bounds for the Efficiency Structure. 

 

An important thing to mention is that the sum squared error for the fitted curve of the three 

cases, is less than 1 ∙ 10−11, while the R-square value is equal to 1. 

 

Nevertheless, the previously degradation curves are the result of charging and discharging 

the battery from a 100% SOC to a 0% SOC. In order to include different values of SOC, the 

same methodology as the proposed on [58] is used. Since it is possible to estimate the 

equivalent efficiency at each cycle, this value will be used as the corresponding efficiency 

Coefficient  1-C 2-C 3-C 

Α 0.9999 
(0.9999, 0.9999) 

0.9998 
(0.9998, 0.9998) 

0.9996 
(0.9996, 0.9996) 

Β −1.711 ∙ 10−8  

(−1.79,−1.631) ∙ 10−8 

−2.415 ∙ 10−8  

(−2.541,−2.289) ∙ 10−8 

−3.75 ∙ 10−8  

(−3.852,−3.647) ∙ 10−8 

Γ −1.533 ∙ 10−3  

(−1.533, −1.533) ∙ 10−3 

−1.996 ∙ 10−3  

(−1.996,−1.996) ∙ 10−3 

−1.288 ∙ 10−3  

(−1.288,−1.287) ∙ 10−3 

Θ −0.02684 
(−0.02685,−0.02683) 

−0.02801 
(−0.02802,−0.028) 

−0.01922 
(−0.01923,−0.01921) 
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reference prior to escalating the remaining cases. In other words, this efficiency reference is 

used when the SOC Swing is equal to 1 at each cycle, keeping in mind that depending on the 

discharge current the value is different. Table 14 on Appendix 1, Table 14shows the obtained 

efficiency values for the first three cycles of operation escalated when considering a 

degradation threshold of 15%, this means that the nominal capacity is reduced to an 85% of 

its original value. 

 

As an example, this process is repeated for a total of 1000 cycles. Using this information, the 

input and output matrixes of the SBM are created. Each cycle, with the corresponding three 

discharge currents and eleven SOC swing combinations with the average SOC are used as 

input matrix, while the efficiency values are used as the output matrix of this SMB structure. 

This way, it is possible to estimate an equivalent efficiency regardless of the discharge current 

and SOC swing.  

 

Figure 53 shows the obtained efficiency values when simulating 1000 cycles. As expected, 

the trend of the figures is similar to the observed in Figure 52, meaning that the results 

obtained with the SBM proposal are reasonable and within the reference values. 

 

Figure 53. Evolution of the efficiency for random discharge currents through the simulation. 

The distribution of the discharge currents for the 1000 cycles is verified with Figure 54, 

where the discharge current is constrained between 1 A and 3 A.  

 

Since the distribution of the currents is done accordingly and the efficiency values follow the 

trend of the measured data, and the operational SOC policies are set to be free following the 

same restrictions as the previous case, it is possible to plot the resulting degradation curve 

for the simulation. Equation (15) represents the degradation model used for this simulation. 
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{𝑥1(𝑘 + 1) = (𝜂(𝐶𝑦𝑐𝑙𝑒, 𝐶𝑟𝑎𝑡𝑒 , 𝑆𝑂𝐶)) 𝑒

𝛼(
1

𝑇−𝛽
−

1
𝑇𝑟𝑒𝑓−𝛽

)
𝑥1(𝑘)  

           𝑦(𝑘) = 𝑥1(𝑘) 

(15) 

Figure 55 shows the first 300 cycles of the degradation process when compared to the 

measured data. As seen, the structure of the degradation process curve follows the trend of 

the measured data, very similar to the 2-C case, since it is the average value between 1A and 

3A. 

 

 

Figure 54. Distribution of the discharge currents for the performed simulation. 
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Figure 55. Degradation process for different discharge currents. 

To illustrate what happens if a different range of discharge currents are fixed, Figure 56 

shows the degradation process when it is set between 2 A and 3A. In this case, the degradation 

process of the simulation shifts to a trend between the 2C and 3C case.  

 

Figure 56. Example of the degradation process for different discharge currents. The random current is 

constrained between 2 and 3 Amperes. 

These results show that the SBM method is capable of characterizing properly the 

degradation process, when operating at different discharge currents and erratic SOC ranges. 

As mentioned, the temperature can have an effect on the degradation process and also on the 

amount of energy that can be delivered. For this reason, the temperature effect is included on 

the previous result to demonstrate its effect.  
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The inclusion of the temperature was done as follows. Using historical data of the ambient 

temperature in London. The average temperature of each day is used, and also each day 

represents a cycle. In other words, the first 31 cycles represent the month of January (winter 

in the northern hemisphere), the next 28 cycles are used to represent February, and so on.  

 

Figure 57 shows the plot for the degradation process when operating at both temperature 

conditions: controlled temperature and the average day temperature. It can be noted how the 

effect of the temperature on cold days, causes the battery to deliver less energy (usable 

capacity) although in terms of degradation the battery is able to deliver more energy. Also, 

since the controlled temperature is set to 25 °C on those days where the ambient temperature 

is close to this number, the usable capacity has almost the same value as the degraded 

capacity.  

 

Figure 57. Degradation process of the nominal capacity and the usable capacity due to the temperature effect. 
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4. Case Study: Effect of the Degradation Process on Multi-Service Portfolios 

of Energy Storage 

 Context of the Provided Information Used on the Case Study 
 

The first step is to define the information used for the simulations in the framework of this 

case study. Part of the information was provided by the UK Power Networks, and consists of 

historic information of the prices of the energy and energy demand for the years 2011 and 

2012. Using this information, future scenarios are going to be built using the repetition of 

this historic datasets to complete a total of 20 years. In order to consider the frequency 

response and reserve services, the time windows and prices were also provided. This scenario 

is going to be considered as the base case.  

 

Using the historic temperature data of the years 2011, 2012 and 2013 in London, time series 

were fabricated in order create different temperature scenarios. These time series were 

obtained using a combination of Fourier series and an ARMA model. Figure 58 shows two 

of the time series that were created.  

 

 

Figure 58. Time series for the temperature. 

So as to analyze sensitivities for the Price and Demand variables, time series were also used. 

A 20 year dataset, of 10 different scenarios of prices was also provided for this simulation. 

For the Demand study, time series were created using the historic data provided.  

 

In this case study, classifying the data into each of the four seasons and workdays or 

weekends, each of the 24 hours of the day that meet the same criteria was averaged. For 
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instance, all the 1:00 am demand data for summer weekdays were averaged separately from 

the winter, autumn and spring. With this procedure, an artificial dataset consisting of the 

averaged values of the two years was created. This was intended to be subtracted from the 

original values and with the residues an ARMA model was used. Finally the time series were 

created using the average values per hour, type of day and season and added with the results 

of the ARMA model. Figure 59 shows an example of the original dataset and two of the time 

series. 

 

 

Figure 59. Original demand data and two time series.  

 

 Overview of the Methods and Models 
 

Energy storage has the potential to provide multiple services to several sectors in electricity 

industry and hence support activities related to generation, network and system operation. In 

an electricity market environment, a service from storage presents both (i) a short-term 

revenue or remuneration associated with its provision to a market participant (who pays for 

it) and (ii) a consequent long-term cost associated with its effects on capacity degradation. 

Capacity degradation is related to the progressive reduction in the amount of energy that can 

be delivered by the energy storage plant or the growth of its internal impedance, which is a 

function of the time elapsed since the manufacture date, as well as the usage over consecutive 

charge and discharge actions. Therefore, storage owners need to take a decision between 

constraining operation of energy storage plant to prescribed charge/discharge volumes in 

order to maintain battery lifespan at higher levels, or maximize short-term revenues 

regardless of effects of degradation in the long-term (which may drive higher cost of 

investment since replacement of battery equipment may become more frequent). Clearly, this 

decision will have important effects on the portfolio of services provided by energy storage 

plant.  
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Figure 60 shows a general overview of our proposed approach with (i) an economic-based, 

commercial strategy module that determines storage plant operation (scheduled and real-

time) by optimizing multi-service portfolios of energy storage (network congestion 

management, energy price arbitrage and various reserve and frequency response services) to 

maximize gross revenue, and (ii) a degradation module that progressively reduces energy 

capacity of storage plant as a function of its utilization profile determined in (i). While 

solution provided by module (i) is sensitive to utilization levels of network infrastructure (i.e. 

congestion), as well as various prices of energy and balancing services, module (ii)’s solution 

mainly depends on battery usage and type, besides ambient temperature. As shown in Figure 

60, modules (i) and (ii) are applied on limited and sequential time periods (e.g. weeks) that 

covers a longer time horizon (e.g., several years) as follows: 

1. Given storage plant capacity for period p (e.g., a week), module (i) determines 

optimal economic use of storage capacity within that period (when capacity is 

considered constant) 

2. Given usage profile of storage capacity, module (ii) calculates capacity degradation 

by the end of period p (present week), which is then used as the storage capacity for 

next period p +1 (next week) 

 

Hence, after applications of modules (i) and (ii) over various and consecutive time periods 

(that are part of a longer studied time horizon), storage plant operation and its capacity 

degradation was determined. This modeling framework is used to quantify effects of several 

operational policies (focused on constraining SOC) on gross revenue, portfolio of services, 

degradation and life of storage units. Sensitivity to market prices, network congestion levels 

and temperature were included. 

 

 

Figure 60. Overview of proposed economic-degradation model. 
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 Economic Optimization Models 

 

Storage operation is first scheduled ahead of real-time, albeit its utilization may change in 

actual, real-time operation. The term storage scheduled output refers to the planned output 

which is determined ahead of real-time and is sufficiently robust to cope with the delivery of 

contracted services, if exercised or called for in real-time. Scheduled output presents a plan 

of how storage should be operated under the most expected condition (i.e. no utilization of 

frequency or reserve services) to be able to deliver the contracted levels of services in case 

exercise is needed. This scheduled or planned output will be different from the real-time 

output since the latter will depend on the actual realizations of the delivery of services that 

storage is committed to provide. Submodules that determine scheduled and real-time storage 

operation are presented next. 

 

Scheduled operation: this section presents a price-taker profit maximization model to 

determine uses of distributed storage capacity to provide multiple services to energy and 

balancing markets and Distribution Network Operators (DNO) as follows (see Figure 61): 

a) Energy price arbitrage, associated with charging/buying at lower energy prices 

and discharging/selling at higher energy prices  

b) System balancing services: 

i. The frequency response services, associated with the fast, automatic 

response when a system frequency deviation occurs. The upwards and 

downwards terms refer to the increment (upwards) or decrement 

(downwards) action to maintain the system’s nominal frequency at the 

required value. 

ii. The reserve operating services, associated with the slower, centrally 

controlled demand–supply balance over a longer timescale. The upwards 

and downwards terms refer to the increment (upwards) or decrement 

(downwards) action to maintain the supply-demand balance of the whole 

system. 

c) DNO peak demand shaving, associated with the congestion management at the 

primary substation level through active and reactive power control 
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Figure 61. Diagram of modeled energy storage, demand, and primary substation along with service buyers. 

 

The developed non-linear model maximizes, through Equation (16). The objective function 

maximizes the summation of several revenue streams as follows: energy arbitrage 

∑ 𝑃𝑡
𝑆πt

E
𝑡∈𝑇 , upwards reserve ∑ 𝑅𝑒𝑠𝑒𝑡

𝑈𝑝πt
Up.Rese

𝑡∈𝑇 , downwards reserve 

∑ 𝑅𝑒𝑠𝑒𝑡
𝐷𝑤πt

Dw.Rese
𝑡∈𝑇 , upwards response ∑ 𝑅𝑒𝑠𝑝𝑡

𝑈𝑝πt
Up.Resp

𝑡∈𝑇 , and downwards response 

∑ 𝑅𝑒𝑠𝑝𝑡
𝐷𝑤πt

Dw.Resp
𝑡∈𝑇 .  

 

 
𝑀𝑎𝑥 {∑𝑃𝑡

𝑆 ∙ πt
E + 𝑅𝑒𝑠𝑒𝑡

𝑈𝑝 ∙ πt
Up.Rese

+ 𝑅𝑒𝑠𝑒𝑡
𝐷𝑤 ∙ πt

Dw.Rese

𝑡∈𝑇

+ 𝑅𝑒𝑠𝑝𝑡
𝑈𝑝 ∙ πt

Up.Resp
+ 𝑅𝑒𝑠𝑝𝑡

𝐷𝑤 ∙ πt
Dw.Resp

} 

(16) 

 

Table 11 explains the meaning of the previous variables. 

 

The overall revenue streams that energy storage could earn, given the set of prices associated 

with different services, by coordinating delivery of multiple applications while considering 

a number of constraints that represent inter-dependences among different services, the energy 

storage constraints and constraints of the local network infrastructure.  

 

Hence, voltage support and network losses are not included in our model and this is 

considered a reasonable assumption to operate this installation since the focus is on 
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coordination of peak shaving services with grid-scale applications of storage such as energy 

arbitrage and frequency control and the associated degradation levels. 

 

Table 11. Objective Function Parameters 

𝑃𝑡
𝑆 Storage scheduled active power output at period t 

𝑅𝑒𝑠𝑒𝑡
𝐷𝑤 Downwards reserve commitment at period t 

𝑅𝑒𝑠𝑒𝑡
𝑈𝑝

 Upwards reserve commitment at period t 

𝑅𝑒𝑠𝑝𝑡
𝐷𝑤 Downwards frequency response commitment at 

period t 

𝑅𝑒𝑠𝑝𝑡
𝑈𝑝

 Upwards frequency response commitment at 

period t 

πt
E Energy price at period t 

πt
Dw.Rese Availability price for downwards reserve at period 

t 

πt
Dw.Resp

 Availability price for downwards reserve at period 

t 

πt
Up.Rese

 Availability price for upwards reserve at period t 

πt
Up.Resp

 Availability price for upwards frequency response 

at period t 

 

Real-time operation of storage plant: Once scheduled output is obtained, real-time storage 

plant operation will be determined by a simulation process that exercises the balancing 

services committed by the above scheduling submodule. The exercise of a balancing service 

occurs at given rate per period, e.g. 7 occurrences per week, and this is defined as a parameter 

for each balancing service. This exercise aims to analyze the impact of changing the real-

time output on a daily basis due to a system operator’s instruction, and how the lifespan of 

the storage system is affected. After a balancing service is exercised in real-time, storage 

plant will rapidly return to the scheduled energy stored levels by implementing a set of charge 

or discharge actions in real-time that will minimize the time exposure to imbalance fees (paid 

when a plant presents an imbalance between scheduled and real-time power output). 

 

 Capacity Degradation Algorithm  
 

The concept of battery aging is typically related to the progressive reduction in the amount 

of energy that can be delivered by the energy storage plant or the growth of its internal 

impedance. Battery aging is a function of the time elapsed since the fabrication date, as well 

as the usage over consecutive charge and discharge actions. This work focuses on the latter 

aspect (which is closely entangled with the problem of economic multi-service operation of 

storage plants), characterizing usage cycles according to their swing ranges (defined by the 

minimum and maximum values reached, during a usage cycle, by the battery SOC). The 

proposed algorithm for computing overall capacity degradation over a given period (e.g. 1 
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week) is divided into 3 sections (or submodules) that are run sequentially as follows: (1) 

cycle length calculation, (2) cycle characterization and energy capacity degradation, and (3) 

temperature modulation (see Figure 62). 

 

Figure 62. Submodules of the proposed algorithm. 

 Cycle Length Calculation 

 

The purpose of this submodule is to determine the duration of each of the usage cycles that 

are present in a given operation profile. In this paper, a usage cycle is defined either by a 

charge action (or several successive charge actions) followed by a discharge action, or a 

discharge action (or several successive discharge actions) followed by a charge action. To 

find these patterns, the sign of the power to recognize when a cycle starts and finishes was 

used. Figure 63 illustrates the cycle recognition method. 

 

 

Figure 63. Cycle recognition. 
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 Cycle Characterization and Degradation 

 

Every cycle identified in the aforementioned submodule is characterized now in terms of the 

associated Coulombic efficiency (𝜂̿𝑘). The value of this parameter corresponds to a measure 

of the expected capacity loss per cycle (as a percentage of the capacity offered by the battery 

during the previous discharge cycle). The Coulombic efficiency is used to degrade storage 

capacity after a cycle k through equation (17).  

 

 𝐸̿𝑘+1 = 𝜂̿𝑘𝐸̿𝑘 (17) 

 

To calculate 𝜂̿𝑘, data provided by manufacturer that characterizes the battery lifespan (i.e. 

number of cycles) when storage plant is sequentially charged and discharged at rated current, 

and following strict protocols that ensure specific swing ranges (11 swing ranges were 

provided: 0-25%, 0-50%, 0-75%, 0-100%, 25-100%, 50-100%, 75-100%, 25-50%, 25-75%, 

50-75%, and 37.5-62.5%) was used. Also, it was assumed that battery may be used up to 

when degraded capacity reaches 75% of the initial, nominal capacity. This assumption is 

actually a standard practice, which is justified by the growth of the internal impedance of the 

battery (as battery cells degrade) and the subsequent increment in heat losses. The Coulombic 

efficiency was determined using the methodology explained in Section 3.3. 

 

It is critical to emphasize here a few important facts related with battery degradation and the 

operating conditions informed by the manufacturer. On the one hand, capacity fade is 

typically accelerated by operating profiles that offer a combination of high average SOC 

levels, deep discharges, extremely high or low temperatures, and overcharging. On the other 

hand, operating a battery with low average SOC (e.g., SOC swing ranges between 0-25%) 

can be beneficial in terms of incrementing the lifespan. Nevertheless, the latter statement is 

only valid when avoiding cell over-discharge, or when the user does not store the battery 

discharged for an extended period of time (a procedure that leads towards permanent cell 

damage, because self-discharge phenomena can cause cell over-discharge). In this regard, 

when forcing operation at low SOC values it is important to differentiate between deep 

discharges (accelerated degradation) and small SOC swing ranges. 

 

As to include the effect of the temperature, equation (18) shows the proposed structure for 

the SOH degradation model.  

 

 
{𝑥1(𝑘 + 1) = (𝜂) 𝑒

𝛼(
1

𝑇−𝛽
−

1
𝑇𝑟𝑒𝑓−𝛽

)
𝑥1(𝑘) + 𝜔1(𝑘)  

           𝑦(𝑘) = 𝑥1(𝑘) + 𝜐(𝑘) 

(18) 
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In this case, the state 𝑥1(𝑘) is used to represent the SOH of the ESD. The temperature 

parameters have values of 𝛼 = −5.1593 and 𝛽 = 260.9565 according to the structure 

proposed in (Pola, 2014). Since the effect of the SOC swing and swing range is going to be 

incorporated through the parameter 𝜂, and using the information provided by the 

manufacturer and this information is confidential only part of it will be shown. This 

information included the expected cycles when operating under certain SOC swing 

percentages and different swing ranges. The following table shows the provided information. 

 

Table 12. Battery Usage and Efficiency Parameters 

SOC swing % Swing range Cycles Eta 

Case A A1 Confidential 0.9999AX 

Case B B1 Confidential 0.9999BX 

B2 Confidential 0.9999BY 

Case C C1 Confidential 0.9999CX 

C2 Confidential 0.9999CY 

C3 Confidential 0.9999CZ 

Case D D1 Confidential 0.9999DX 

D2 Confidential 0.9999DY 

D3 Confidential 0.9999DZ 

D4 Confidential 0.9999DW 

D5 Confidential 0.9999DV 

 

The column labeled as Eta was not provided by the manufacturer and the results were 

obtained through the methodology explained in Section 3.3.  

 

For the cases shown in Table 12, the values of 𝜂 are almost the same and the difference is on 

the fifth and sixth decimal. However these small differences can have an impact of a 4:1 ratio 

on the total cycles. For confidentially reasons the last two decimals of 𝜂 are not shown. The 

last two digits of the value of 𝜂 are represented by capital letters but none of them is the same. 

For instance the digits CX and CY, do not imply that the C digit is the same for both cases, 
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it is just a representation method that is related to one of the SOC swing cases. Figure 64 

shows the eleven previous cases of how the battery degrades (the legend is not included due 

to confidentially reasons). For the first 1000 cycles, the difference among all the cases is 

almost negligible, but after this point the differences of the end of life are considerable.  

 

Figure 64. Degraded battery capacity depending on the Coulombic efficiency. 

Until this point, it has been very common to use the word cycle to define the duration of the 

battery. The most common definition for a cycle corresponds to the amount of time that goes 

by, when a charged battery is used until is completely discharged. However in this case some 

considerations have to be taken into account. For instance, a strategy can be such that the 

battery starts fully charged, and then discharged until it reaches an 80% SOC, and from there 

it should be charged at a 90% SOC, and will maintain this swing range for ever. Since the 

battery will never be fully charged, does this mean that there is only one cycle? The reality 

is that this would be inaccurate, and to deal with this type of behavior, in this approach a 

usage cycle is defined either by a charge action (or several successive charge actions) 

followed by a discharge action, or a discharge action (or several successive discharge actions) 

followed by a charge action. To find these patterns, we use the sign of the 𝑃𝑡 (power at time 

𝑡) to recognize when a cycle starts and finishes by using the following algorithm:  
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The above algorithm will determine complete and partial charge/discharge usage cycles, 

which will degrade storage capacity differently, in terms of their characterization. 

 

The following step is to simulate the mentioned techniques. For the following results, the 

following assumptions were made: 

 Temperature: constant at 25 °C. 

 C-rate factor equal to 1. 

 

The first simulation considers all the previous mentioned techniques and algorithms. The 

SOH degradation module is used to cooperate with the optimization module. Figure 65 shows 

the results for several different SOC policies. These results show that the working cycles 

obtained during the time of simulation are in the same order as the expected results using the 

provided information. The simulation was performed through a total of 20 years since this is 

the maximum lifespan guaranteed by the manufacturer.  

 For all 𝑡 
o If a usage cycle has not been defined in t:  

 If 𝑃𝑡 = 0, goto End-if(1)  

 Elif 𝑃𝑡 > 0: define usage cycle as discharge/charge. 

 Elif 𝑃𝑡 < 0: define usage cycle as charge/discharge. 

 End-if  

o Else  

 If usage cycle is discharge/charge type and 𝑃𝑡−1 < 0 and 𝑃𝑡 > 0 

 Then a usage cycle is set as finished in 𝑡 − 1 and a new usage 

cycle is started in t and set as undefined.  

 Elif usage cycle is charge/discharge type and 𝑃𝑡−1 > 0 and 𝑃𝑡 ≤ 0: 

 Then a usage cycle is set as finished in t-1 and a new usage 

cycle is started in t and set as undefined.  

 End-if  

o End-if(1)  

 End-for  
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Figure 65. SOH degradation for different SOC policies. 

 

  Results 

 Effect of Operational Policies 

 

Data provided by manufacturer suggest that battery lifespan can be significantly increased if 

plant is operated within a smaller swing range (e.g. 0-25%) rather than within its full energy 

capacity (e.g. 0-100%). Hence, we calculate revenues and degradation associated with 11 

operational policies that aim at constraining the SOC. To do so, lower and upper limits were 

added in the scheduling submodule in order to constrain the SOC values to a given range.  

 

In this context, Figure 66 shows that constraining the SOC when deciding optimal operation 

of storage plant presents clear benefits, since battery lifespan can be more than doubled. For 

example, battery lifespan lasts about 76,000 hours if the SOC is unconstrained, which can be 

increased up to more than 175,000 hours if the SOC is constrained between 0 and 25%. 

Another interesting feature, shown in Figure 66, is that it is more attractive to limit upper 

rather than lower bounds of the swing range. In fact, increasing lower bounds may decrease 

battery lifespan with respect to the unconstrained case (i.e. 0-100%) and this is consistent 

with manufacturer data. 
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Figure 66. Energy capacity degradation for different operational policies. Horizontal red line indicates 75% of 

the nominal energy capacity. 

The benefits shown on Figure 67 are in opposition to short-term opportunity costs of 

constraining SOC. In fact, constraining SOC between 0 and 25%, for instance, can present 

about 18% lower gross revenue levels per year as shown in Figure 67 (where results are 

sorted in decreasing order).  

 

Despite this, lower average gross revenues (in £/annum) can be compensated by revenue 

streams in the longer term that are associated with a lengthier lifespan of storage plant and 

this is shown in Figure 68 (where results are sorted in decreasing order). Effectively in this 

case study, it is clearly more beneficial to constrain the SOC scheduled output since its 

benefits in terms of battery lifespan increase, more than compensate the revenue loss in the 

short-term incurred in energy and balancing markets. In fact, for the 0-25% policy, lifespan 

increase (i.e. >+100%) is clearly disproportionally higher than reduction in gross revenue 

(i.e. ~ –18 %).  
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Figure 67. Average annual gross revenue during battery lifespan. “No deg.” Refers to no degradation (where 

operation is optimized during 20 years without degradation and this case is used as a benchmark).  

 

  

Figure 68. Total Gross Revenue during battery lifespan (5% discount rate). 
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 Effect on Multi-Service Portfolios  

 

Figure 69 (where results are sorted in decreasing order) suggests that all operational policies 

affect revenues in the short-term and that this is mainly driven by revenue changes in services 

that are more energy intensive such as energy and reserve, while revenue streams associated 

with frequency response services are more stable.  

 

Figure 69. Average annual gross revenue change with respect to 0-100% policy. 

Furthermore, Figure 69 also demonstrates that revenues associated with balancing services 

do not necessarily decrease when SOC is constrained to improve battery lifespan. In fact, as 

energy arbitrage is limited when SOC is constrained, there are capacity margins of storage 

plant that can be used for further services. Therefore, short-term revenue losses associated 

with operational policies that aim at increasing battery lifespan, will ultimately depend on 

energy and balancing markets conditions and can be limited if storage capacity is used for 

application in balancing rather than energy market.  
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 Economics and Degradation in a Week 

 

This section aims at illustrating and validating the used methods to optimize operation, and 

calculate gross revenue and degradation of a storage plant within a week. In this context, 

Figure 70 shows power outputs and energy stored levels for both scheduled and real-time 

operation of the storage plant.  

 

Scheduled output shown in Figure 70 is optimized for the provision of multiple storage 

applications or services: energy arbitrage (162£/day by buying in the morning between 2:00h 

and 3:00h a total volume of 8MWh at an average price of 35£/MWh and selling in the evening 

between 22:00h and 23h a total volume of 6.8MWh at an average price of 65£/MWh with a 

85% efficiency), frequency response (420£/day by holding 6MW of each upwards and 

downwards service in the morning between 4:00h and 8:00h at a price of 7£/MW), and 

reserve (180£/day by holding 3.4MW of upwards service and 1.6MW of downwards service 

in the afternoon between 16:00h and 21:00h at a price of 6£/MW –note that services are 

constrained by SOC at that time, which is equal to 6.8MWh–). This degrades capacity from 

10MWh to 9.996781MWh due to occurrence of 7 partial cycles within a swing range between 

0% and 68%, each with a Coulombic efficiency of 0.999954. If a balancing service is 

exercised every day during that week (which can potentially occur in real-time operation as 

shown in Figure 70), this would degrade capacity further from 10MWh to 9.993562MWh 

due to occurrence of 14 partial cycles within a swing range between 0% and 68%. Note that 

utilization of balancing services may not necessarily increase the number of cycles (as in the 

case above), but rather expand the swing range of charge/discharge actions. 

 

This demonstrates that reserving capacity for balancing services may be detrimental in terms 

of degradation, depending on how frequent these services will be exercised by the system 

operator.  
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Figure 70. Scheduled and one potential real-time power output (top) and SOC (bottom). 

 

 Effect on Balancing Services Utilization in Real-Time on Battery Lifespan 

 

Two cases are modeled: without and with utilization of balancing services for all operational 

policies when considering an exercise rate of one service per day. This demonstrates that 

battery lifespan can be reduced by 28% in the worst case. These results are shown in Table 

13. 

 

Table 13 also demonstrates that reserving capacity for balancing services may be detrimental, 

depending on how frequent these services will be exercised by the system operator and this 
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affects large majority of operational policies. Interestingly, 0-25% policy (which is the most 

profitable policy and that with the lengthiest lifespan) is not affected.  

Table 13. Battery lifespan with and without balancing services utilization/exercise 

SOC 

Policy 

Balancing service 

utilization [h] 

No balancing service 

utilization [h] 

Reduction 

[h] 

Reduction 

[%] 

25-100% 52759 73738 -20979 -28% 

37-62% 55517 77388 -21871 -28% 

0-50% 96050 133479 -37429 -28% 

0-100% 54987 76164 -21177 -28% 

0-75% 71776 98531 -26755 -27% 

25-75% 65067 87014 -21947 -25% 

50-100% 52395 68200 -15805 -23% 

25-50% 110717 141685 -30968 -22% 

50-75% 64186 79887 -15701 -20% 

75-100% 93638 109981 -16343 -15% 

0-25%* 175200 175200 0 0% 

*Modeled lifespan in both cases exceed figure provided by manufacturer 

 

 Effect of Temperature Control 

 

Modeling the effect of energy capacity changes due to ambient temperature in the absence 

of controls that can maintain it constant at its nominal value (i.e. 25°C) was performed. Daily 

temperatures are based on historical data that is publicly available at the site of the storage 

plant to fit a time series model that can produce stochastic scenarios of temperatures up to 20 

years. Figure 71, also shows energy capacity excursion of 3 operational policies compared 

with those obtained at nominal temperature, demonstrates that capacity can be significantly 

reduced during winter (below 75%), even during the firsts years of operation. 
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Figure 71. Energy capacity degradation for three operational policies with (dotted lines) and without (solid 

lines) temperature control.  

 

Despite this and in line with results in previous sections, we found that effect of temperature 

on gross revenues is limited to about -3% due to market conditions in GB. In effect, capacity 

reduction due to temperature mainly affect revenues associated with the energy market (about 

-9%), which is less attractive than further balancing markets whose revenues are less 

dependent on fluctuations in capacity due to temperature and this is demonstrated in Figure 

72. 

 

Figure 72. Comparison of average annual gross revenue during battery lifespan with and without temperature 

control.  

Figure 73 shows the total gross revenue in present value (considering a 5% discount rate), 

with and without considering the effect of the temperature. Even though the differences on 
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the figure look small, depending on the operational SOC policy, they can go among the 

60,000 £ up to 100,000 £. It important to recall that, these results were obtained through just 

one temperature time series, and it becomes important to analyze more of them in order to 

characterize the uncertainty in operation hours and gross revenue due to the temperature. 

 

Figure 73. Total Gross Revenue for different SOC policies.  

 

 Sensitivities to Demand and Prices 

 

In this research, a sensitivity analysis was used to study the robustness of the previous results 

with respect to future changes in demand and prices. To do so, 10 scenarios of demand and 

10 scenarios of energy prices explained on Section 4.1. This analysis was performed only for 

the 0-100% SOC policy and at a temperature of 25°C. In this context, results proved robust 

and changes in battery lifespan were below 5% as shown on Figure 74. 

 

Figure 74. Sensitivity analysis for 10 scenarios of future demand and energy price time series (0-100% 

operational policy). 
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 Limitations of the Presented Models and the Case Studies  
 

The results showed on this work suggest that there even though there are still many areas to 

explore. It is important to keep in mind that the obtained results were generated with various 

restrictions and limitations. 

 

One of them, is that the proposed capacity degradation model is able to fit a convex shape 

trend described by the studied batteries. Not all batteries degrade in the same manner, for this 

reason if the degradation process follows a concave shape, another approach must be 

implemented. 

 

The extrapolation methods are based on information provided by a manufacturer. The 

provided technique is useful to characterize the degradation process when the batteries are 

discharged at different SOC swing ranges, although the results can differ when the discharge 

currents are different. 

 

For the case study, the battery was considered to be degraded when the capacity of the battery 

was reduced to 75% of its nominal value. Although this threshold is supported by the 

literature, it is possible to have different results if the threshold changes, for example to 80%. 

During these simulations, the discharge current was assumed equal to 1-C. Furthermore, the 

complete battery pack was considered as just one battery for simplification purposes, since it 

is possible that one module, or just one cell degrades in a different way than the others. 

 

Also, the obtained results belong to the particular market conditions used in the simulations. 

If the market conditions change, it would be expected that the results will be different. Also, 

in the simulations, two-year repetitions of different variables were considered. For example, 

there were no price changes or growth of the demand considered.  
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5. Conclusions 
 

An empirical model that characterizes the degradation process of Li-ion batteries when 

discharged at various C-rates was proposed. The proposed model is based on a discrete space-

state representation and uses two states and four coefficients, where one of the equations has 

a major impact on the short term degradation process, while the other affects the long term 

degradation. The proposed model can be adjusted to the discharge current used, 

demonstrating that one (out of four) coefficient presents a great impact on the degradation 

process in the long term.  

 

The proposed model and coefficient values can be easily and accurately adapted to different 

types of Li-ion batteries. This was validated under different discharge currents and two sets 

of experimental data: our own experimental dataset and those from the Prognostics Center of 

Excellence of NASA Ames Research Center. 

 

One of the main advantages of the proposed model is that the current SOH can be calculated 

by evaluating an algebraic expression. Although using all the confidence bounds for the all 

the coefficients might induce to a biased result, this can be amended by implementing a 

sequential learning method or other similar techniques to estimate coefficient c and we leave 

this for future research. 

 

It is possible to used K-NN to model the degradation process of lithium-ion batteries when 

these are charged and discharged erratically. The proposed methodology uses information 

provided by the manufacturer and through the use of escalating factors, the values for the 

efficiency of each type of erratic cycle can be calculated. Using the concepts of (i) SOC 

swing, (ii) average swing range and (iii) Coulombic efficiency, it is possible to model 

degradation in a simple manner through interpolation techniques. By using both deterministic 

and Monte Carlo simulations, the capacity degradation as a function of the number of cycles 

was obtained. 

 

Another alternative to the use of K-NN, is SBM. In this case a technique to model the 

degradation process of Li-ion batteries was presented. This method uses the cycle by cycle 

efficiency, and interpolates an equivalent value for the efficiency depending on the SOC 

limits and discharge current. Also, the effect of the temperature was used to compare the 

differences between e degraded capacity and the usable capacity. 

 

A combined economic-degradation model to quantify effects of various operational policies 

(mainly focused on constraining SOC to prescribed levels) on gross revenue, multi-service 

portfolios, degradation and lifespan of energy storage plants was developed. Also, the model 

was used to demonstrate conflicts and synergies of different storage applications with battery 
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degradation. In particular, it was demonstrated that although operational policies focused on 

battery damage reduction will lead to a revenue loss in the short-term (since these policies 

fundamentally constrain storage operation), such loss can be more than compensated by long-

term revenues due to a lengthier battery lifespan. In the presented study case, for instance, 

constraining SOC to a swing range between 0 and 25% has the potential to increase total 

gross revenues up to circa 44% (across the entire lifespan and considering a discount rate of 

5%). Additionally, it was demonstrated that short-term revenue losses associated with the 

application of operational policies are mainly driven by revenue reduction in the energy 

rather than balancing market. Furthermore, this reduction in energy services can lead to both 

increase in balancing services (since there are more capacity margins available) and decrease 

in battery capacity degradation. Despite this, increased utilization rates of balancing services 

by system operators can be detrimental for storage plants and reduce battery lifespan (which 

can apply to any operational policy). Finally, it was demonstrated that variations of ambient 

temperature have the potential to decrease storage plants owners’ profits (especially in 

winter), albeit it is not significant in the case of Great Britain (although this is dependent on 

market conditions and on how attractive the energy market is against balancing services 

markets). 

 

This work can promote efficient integration of new distributed storage projects and provide 

insights associated with the development of efficient operational policies to ensure that 

storage plants are adequately operated by balancing both short and long-term costs and 

benefits, and thus that investors in storage plants are efficiently rewarded for the delivery of 

value to multiple electricity sectors. 
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Bayesian Algorithms and Outer Feedback Correction Loops: A Comparative 

Analysis”, Annual Conference of the Prognostic and Health Management Society 

2015, October 19th-24th, 2015, San Diego, CA, USA. 
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 Future Work 
 

The proposed degradation process model might induce to a biased result in case all the 

confidence bounds for all the coefficients are used. This can be amended by implementing a 

sequential learning method another similar technique to estimate the value of coefficient c. 

 

More experimental analysis is required. In this regard, many other combinations must be 

taken into consideration. For instance, discharging the batteries at different C-rates that were 

not considered in this research will allow a better understanding of the process. Furthermore, 

combining different C-rates and SOC swing ranges will allow a more accurate 

characterization since this is a more realistic approach of how the batteries are used in 

different applications. 

 

Characterizing the effect of the temperature is imperative. Its effect can be seen in two ways. 

The first one has to with the accelerated degradation if a battery is always used under extreme 

temperatures. The other effect has to do with the concept of the usable capacity which is 

associated with the modulation effect of using a battery at one temperature condition and 

then a different condition. The parameters that modulate this effect change in time, and thus 

need to be studied. 

 

The results obtained in this research demonstrate the benefits of using a combined economic-

degradation model to quantify the effects for different operational policies. However, if the 

economic strategy or the market conditions change, the results might be different. In this 

regard, modifying the market conditions to evaluate different scenarios can be helpful to 

understand the expected revenues for those conditions.  
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7. Appendix 
 

Table 14. Example of the efficiency values for the first three cycles of operation. 

Cycle Current SOC Swing Average Swing Range Efficiency: 0.85 

1 1 1 0.5 0.998407581 

1 1 0.75 0.625 0.998409508 

1 1 0.75 0.375 0.9984211 

1 1 0.5 0.75 0.998401791 

1 1 0.5 0.5 0.998418644 

1 1 0.5 0.25 0.998428478 

1 1 0.25 0.875 0.998423187 

1 1 0.25 0.625 0.998413991 

1 1 0.25 0.5 0.998412084 

1 1 0.25 0.375 0.998431923 

1 1 0.25 0.125 0.998438003 

1 2 1 0.5 0.997859108 

1 2 0.75 0.625 0.997861034 

1 2 0.75 0.375 0.997872619 

1 2 0.5 0.75 0.997853321 

1 2 0.5 0.5 0.997870165 

1 2 0.5 0.25 0.997879993 

1 2 0.25 0.875 0.997874705 

1 2 0.25 0.625 0.997865514 

1 2 0.25 0.5 0.997863609 

1 2 0.25 0.375 0.997883436 

1 2 0.25 0.125 0.997889513 

1 3 1 0.5 0.998336481 

1 3 0.75 0.625 0.998338408 

1 3 0.75 0.375 0.998349999 

1 3 0.5 0.75 0.998330691 

1 3 0.5 0.5 0.998347543 

1 3 0.5 0.25 0.998357377 

1 3 0.25 0.875 0.998352085 

1 3 0.25 0.625 0.998342891 

1 3 0.25 0.5 0.998340984 

1 3 0.25 0.375 0.998360821 

1 3 0.25 0.125 0.998366901 

2 1 1 0.5 0.998447088 

2 1 0.75 0.625 0.998449015 

2 1 0.75 0.375 0.998460607 

2 1 0.5 0.75 0.998441297 

2 1 0.5 0.5 0.998458151 
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2 1 0.5 0.25 0.998467985 

2 1 0.25 0.875 0.998462693 

2 1 0.25 0.625 0.998453498 

2 1 0.25 0.5 0.998451591 

2 1 0.25 0.375 0.99847143 

2 1 0.25 0.125 0.99847751 

2 2 1 0.5 0.997912694 

2 2 0.75 0.625 0.99791462 

2 2 0.75 0.375 0.997926205 

2 2 0.5 0.75 0.997906906 

2 2 0.5 0.5 0.997923751 

2 2 0.5 0.25 0.99793358 

2 2 0.25 0.875 0.997928291 

2 2 0.25 0.625 0.9979191 

2 2 0.25 0.5 0.997917194 

2 2 0.25 0.375 0.997937023 

2 2 0.25 0.125 0.9979431 

2 3 1 0.5 0.998360496 

2 3 0.75 0.625 0.998362423 

2 3 0.75 0.375 0.998374014 

2 3 0.5 0.75 0.998354706 

2 3 0.5 0.5 0.998371558 

2 3 0.5 0.25 0.998381392 

2 3 0.25 0.875 0.9983761 

2 3 0.25 0.625 0.998366906 

2 3 0.25 0.5 0.998364999 

2 3 0.25 0.375 0.998384836 

2 3 0.25 0.125 0.998390916 

3 1 1 0.5 0.998485547 

3 1 0.75 0.625 0.998487474 

3 1 0.75 0.375 0.998499067 

3 1 0.5 0.75 0.998479756 

3 1 0.5 0.5 0.998496611 

3 1 0.5 0.25 0.998506446 

3 1 0.25 0.875 0.998501154 

3 1 0.25 0.625 0.998491958 

3 1 0.25 0.5 0.99849005 

3 1 0.25 0.375 0.99850989 

3 1 0.25 0.125 0.998515971 

3 2 1 0.5 0.997964798 

3 2 0.75 0.625 0.997966724 

3 2 0.75 0.375 0.997978311 
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3 2 0.5 0.75 0.99795901 

3 2 0.5 0.5 0.997975856 

3 2 0.5 0.25 0.997985686 

3 2 0.25 0.875 0.997980396 

3 2 0.25 0.625 0.997971205 

3 2 0.25 0.5 0.997969299 

3 2 0.25 0.375 0.997989129 

3 2 0.25 0.125 0.997995206 

3 3 1 0.5 0.998384053 

3 3 0.75 0.625 0.99838598 

3 3 0.75 0.375 0.998397571 

3 3 0.5 0.75 0.998378262 

3 3 0.5 0.5 0.998395115 

3 3 0.5 0.25 0.998404949 

3 3 0.25 0.875 0.998399658 

3 3 0.25 0.625 0.998390463 

3 3 0.25 0.5 0.998388556 

3 3 0.25 0.375 0.998408394 

3 3 0.25 0.125 0.998414474 
 


