Tabla de contenido

1. Introducción	1
1.1 Objetivos	2
1.1.1 Objetivo general	2
1.1.2 Objetivos específicos	2
1.2 Ubicación de las zonas de estudio	2
1.2.1 Ladera de Río Colorado	2
1.2.2 Ladera de Cerro Catedral	3
1.3 Metodología	4
2. Antecedentes generales	6
2.1 Marco Geomorfológico	6
2.2 Marco Geológico	7
2.2.1 Rocas estratificadas	7
2.2.2 Depósitos no consolidados	10
2.2.3 Rocas intrusivas	11
2.3 Marco Tectónico	12
2.4 Marco Sismológico	14
3. Levantamiento y análisis de datos LiDAR	16
3.1 Antecedentes	16
3.1.1 Geología local	16
3.2 Obtención de datos en terreno	19
3.3 Metodología de procesamiento de datos	20
3.4 Análisis estructural	22
3.5 Análisis cinemático	27
4. Análisis en 3DEC de Cerro Catedral	32
4.1 Antecedentes	32
4.1.1 Descripción del área de estudio	32
4.1.2 Litología	32
4.1.3 Propiedades mecánicas	33
4.1.4 Características estructurales	34
4.1.5 Actividad sísmica local	35
4.2 Modelamiento numérico mediante el método de elementos discretos	36
4.2.1 3DEC	37
4.3 Metodología desarrollada	38
4.3.1 Reconstrucción de la geometría original	38
4.3.2 Modelo 3D de superficie	40

4.3.3 Modelamiento en 3DEC	
4.4 Resultados de los análisis en 3DEC	
4.4.1 Modelamiento estático	
4.4.2Modelamiento dinámico	61
5. Discusiones	96
5.1 Levantamiento y análisis de datos LiDAR	96
5.1.1 Levantamiento topográfico	96
5.1.2 Levantamiento estructural	96
5.1.3 Análisis cinemático	
5.2 Análisis en 3DEC de Cerro Catedral	
5.2.1 Metodología	
5.2.2 Propiedades mecánicas y modelos constitutivos	
5.2.3 Condiciones de borde	
5.2.4 Modelos estáticos	
5.2.5 Modelos dinámicos	
6. Conclusiones y recomendaciones	
7. Bibliografía	
Anexos	
1. Código en 3DEC del modelo estático	
2. Código en 3DEC del modelo dinámico	117
3. Modelo dinámico con puente de roca en el Set estructural 3	
4. Espectros de Fourier de las señales de salida	
-	

Índice de Figuras

Figura 1: Ladera de estudio en Río Colorado y su ubicación geográfica3
Figura 2: Imagen de la ladera de estudio en el sector de Río Colorado
Figura 3: Ladera de estudio en Cerro Catedral, su ubicación geográfica y el depósito asociado
a la remoción en masas. Extraído de García (2016)4
Figura 4: Principales unidades geomorfológicas ubicadas en Chile Central entre los 32°S y
35°S. Extraído de Fock (2005)
Figura 5: Mapa Geológico de la zona cordillerana entre los 33°30' y los 34°00' y las áreas de
estudio en los recuadros. Modificado de Fock (2005)
Figura 6: Ciclo tectónico andino y sus subdivisiones en etapas y subetapas, y eventos
tectónicos que marcaron su desarrollo. Extraído de Charrier et al. 200912
Figura 7: Zonas sismogénicas del margen continental Chileno. a. Sismos interplaca; b. Sismos
intraplaca de profundidad intermedia; c. Sismos superficiales de intraplaca; d. Sismos Outer-
rise. Extraído de Centro Sismológico Nacional (2016)14
Figura 8: Mapa geológico de la zona de estudio con la leyenda y simbología asociada.
Modificado de Moreno, Thiele & Varela (1991)17

Figura 9: Perfil WNW-ESE del Río Colorado. Se muestra un anticlinal presente en la zona.	
Modificado de Fock (2005).	.18
Figura 10: Área de estudio, su depósito asociado y extensión aproximada	.18
Figura 11: Imagen del área de estudio. Se indica la estratificación (negro), intrusiones	
(amarillo) y conos de detritos (azul)	.19
Figura 12: Equipo utilizado en terreno. A Receptor de GPS. B Escáner Láser	.19
Figura 13: Puntos de medición con LiDAR y rangos aproximados de barrido	.20
Figura 14: Imagen resumen de la exportación de datos.	.21
Figura 15: A DEM generado B Hillshsade creado a partir del DEM.	.22
Figura 16: Clasificación de los rangos de pendientes de la zona (Slope). Hillshade usado	
como base.	.23
Figura 17: Imagen satelital de la zona con las estructuras analizadas en amarillo	.23
Figura 18: Plano triangular, vectores directores y su vector normal	.24
Figura 19: Sets estructurales obtenidos para la zona	.25
Figura 20: Perfil transversal al Set 4 v su manteo. En anaranjado se muestra la estructura	
analizada	.26
Figura 21: Perfil transversal realizado en la ladera y posible manteo original	.26
Figura 22: Red estereográfica con las estructuras de la zona de estudio	.27
Figura 23: Red estereográfica v zona crítica para falla plana (variable según el ángulo de	
fricción de la estructura).	.28
Figura 24: Zona de inestabilidad de polos para toppling flexural (Zona varía según el valor	
del ángulo de fricción).	.30
Figura 25: Análisis cinemático para toppling directo y las zonas críticas asociadas	.31
Figura 26: Curvas de atenuación para Cerro Catedral en función del radio de ruptura,	
considerando los modelos de Sadigh, Idriss y Ambraseys. Extraído de García (2016)	.35
Figura 27: Elementos y propiedades de los bloques discretos en UDEC y 3DEC. Modificad	0
de Itasca, 2017	.36
Figura 28: Zona de estudio y región seleccionada para el modelamiento	.39
Figura 29: Trazas de los perfiles transversales creados para la reconstrucción de la geometrí	a
original del talud.	.40
Figura 30: Superficie de triangulación de la zona de estudio y la zona de escarpe	.41
Figura 31: Superficie de poliprismas generada en 3DEC y la zona de escarpe.	.41
Figura 32: Regiones del modelo en 3DEC.	.42
Figura 33: Distribución de las discontinuidades en el macizo rocoso en imagen satelital (A)) y
en modelo en 3DEC (B)	.43
Figura 34: Ubicación de los puntos de control	.45
Figura 35: Ejes de referencia utilizados en los análisis	.46
Figura 36: Espectros de Fourier representativos para las estaciones del terremoto de	
Northridge (1994).	.49
Figura 37: Espectros de Fourier representativos para las estaciones del terremoto de Chi-Ch	i
(1999).	.50
Figura 38: Espectros de Fourier representativos para las estaciones del terremoto de Kobe	
(1995)	.51
Figura 39: Magnitud de desplazamiento en modelo libre de estructuras.	.52
Figura 40: Magnitud de desplazamiento en metros para los modelos sin puentes de roca. CE	3 =
Cohesión de estructuras.	.53
Figura 41: Desplazamiento en función del tiempo para los modelos sin puentes de roca. CE	=
Cohesión de estructuras. Eje X: N26E; Eje Y: N64W; Eje Z: vertical.	.54

Figura 42: Modelo con puente de roca en el Set estructural 3. A: modelo en 3DEC. B: Imagen
Satental con las estructuras
Figura 45: Magnitud de desplazamiento en metros para los modelos con puente de roca en el
Set estructural 3. $CE = Conesion de estructuras$
Figura 44: Desplazamiento en funcion del tiempo para los modelos con puentes de roca en el
Set Estructural 3. CE= Cohesion de estructuras. Eje X: N26E; Eje Y: N64W; Eje Z: vertical.
Figura 45: Modelo con puente de roca en el Set estructural 2. A: modelo en 3DEC. B: Imagen
satelital con las estructuras
Figura 46: Magnitud de desplazamiento en metros para los modelos con puente de roca en el
Set estructural 2. CE = Cohesión de estructuras
Figura 47: Desplazamiento en función del tiempo para los modelos con puentes de roca en el
Set Estructural 2. CE= Cohesión de estructuras. Eje X: N26E; Eje Y: N64W; Eje Z: vertical.
Figura 48: Modelo estático final con puente de roca en el Set estructural 2. A: modelo en
3DEC. B: Imagen satelital con las estructuras
Figura 49: Magnitud de desplazamiento en metros para los modelos con puente de roca en el
Set estructural 2. CE = Cohesión de estructuras
Figura 50: Desplazamiento en función del tiempo para los modelos finales, con puentes de
roca en el Set Estructural 2. CE= Cohesión de estructuras. Eje X: N26E; Eje Y: N64W; Eje Z:
vertical
Figura 51: Magnitud de desplazamiento para la estación ANA. Escala de colores de 0 a 5.5
metros
Figura 52: Desplazamiento en función del tiempo de los puntos de control para la estación
ANA. Componente X: N26E: Componente Y: N64W: Componente Z: vertical
Figura 53: Magnitud de desplazamiento para la estación 116. Escala de colores de 0 a 5 5
metros
Figura 54: Desplazamiento en función del tiempo de los puntos de control para la estación
116. Componente X: N26E: Componente Y: N64W: Componente Z: vertical
Figura 55: Magnitud de desplazamiento para la estación PUL. CE corresponde a la cohesión
de estructuras. Escala de colores de 0 a 5.5 metros
Figura 56: Desplazamiento en función del tiempo de los puntos de control para la estación
PLU. Componente X: N26F: Componente Y: N64W: Componente Z: vertical
Figura 57: Magnitud de desplazamiento para la estación TTN 042. Escala de colores de 0 a
10 metros
Figura 58: Desplazamiento en función del tiempo de los puntos de control para la estación
TTN 042 Componente V: N26E: Componente V: N64W: Componente 7: verticel 72
Figure 50: Magnitud de desplazamiento para la estación TCU 102 Escala de colores de 0 a
10 metros
To metros
Figura 60: Despiazamiento en función del tiempo de los puntos de control para la estación
TCU 102. Componente X: N26E; Componente Y: N64W; Componente Z: vertical
Figura o1: Magnitud de desplazamiento para la estación CHY 028. CE corresponde a la
conesion de estructuras. Escala de colores de 0 a 10 metros
Figura 62: Desplazamiento en función del tiempo de los puntos de control para la estación
CHY 028. Componente X: N26E; Componente Y: N64W; Componente Z: vertical78
Figura 63: Magnitud de desplazamiento para la estación MZH. Escala de colores de 0 a 6.5
metros

Figura 64: Desplazamiento en función del tiempo de los puntos de control para la estación MZH. Componente X: N26E: Componente Y: N64W: Componente Z: vertical
Figura 65: Magnitud de desplazamiento para la estación KAK. Escala de colores de 0 a 6.5
metros
Figura 66: Desplazamiento en función del tiempo de los puntos de control para la estación
KAK. Componente X: N26E; Componente Y: N64W; Componente Z: vertical
Figura 67: Magnitud de desplazamiento para la estación NIS. CE corresponde a la cohesión
de estructuras. Escala de colores de 0 a 6.5 metros
Figura 68: Desplazamiento en función del tiempo de los puntos de control para la estación
NIS. Componente X: N26E; Componente Y: N64W; Componente Z: vertical
Figura 69: Modelo y Puntos de Control de García et al. (2018). CG corresponde al centro de
gravedad del talud
Figura 70: Gráficos de Intensidad de Arias vs PGA. a) Input sísmico. b) Punto de control 3.
Figura 71: Desplazamiento en función del PGA para el punto de control 392
Figura 72: Desplazamiento en función del PGV para el punto de control 392
Figura 73: Desplazamiento en función de la Intensidad de Arias93
Figura 74: Desplazamiento en función de la frecuencia Peak del input sísmico. a) Resultados
del presente trabajo. b) Resultados de García et al. (2018)94
Figura 75: Desplazamiento en función de la Frecuencia Peak. a) Resultados de García et al.
(2018) para el centro de masas b) Resultados del presente trabajo para el punto de control 3.94
Figura 76: Desplazamiento en función de la duración significativa del registro. A) Resultados
del presente trabajo. B) Resultados de García et al. (2018)95
Figura 77: Análisis cinemático para falla en cuña y zona crítica para intersección de sets
estructurales
Figura 78: Imagen satelital de la zona y estructuras que generan cuñas99
Figura 79: Gráfico comparativo del desplazamiento en la dirección de deslizamiento con el
modelo de García et al. (2018). Fuente: comunicación escrita
Figura 80: Relación entre el PGA en el punto de control 3 y el PGA del input sísmico 102
Figura 81: Gráfico comparativo de la amplificación de PGA con el modelo de García et al.
(2018). Fuente: Comunicación escrita
Figura 82: Comparación entre el área deslizada aproximada de acuerdo a los modelo
dinámicos. Imagen izquierda: área de deslizamiento mínima. Imagen central área de
deslizamiento máxima. Imagen derecha: área de deslizamiento real104

Índice de Tablas

Tabla 1: Sets estructurales definidos	25
Tabla 2: Estructuras analizadas	27
Tabla 3: Propiedades mecánica de las muestras (García, 2016)	33
Tabla 4: Parámetros de resistencia de la roca intacta (García, 2016)	33
Tabla 5: Propiedades mecánicas de las discontinuidades principales (García, 2016)	33
Tabla 6: Propiedades mecánicas de las discontinuidades (Vejar, 2016)	34
Tabla 7: Orientación de las discontinuidades menores y mayores del talud (Vejar, 2016)	34
Tabla 8: Parámetros del amortiguamiento de Rayleigh utilizados	44
Tabla 9: Terremotos estudiados en el análisis dinámico.	45

Tabla 10: Características de las señales de Northridge (1994) utilizadas para los análisis.....46 Tabla 11: Características de las señales de Chi-Chi (1999) utilizadas para los análisis47 Tabla 12: Características de las señales de Kobe (1995) utilizadas para los análisis......47 Tabla 13: Parámetros calculados a partir del modelamiento dinámico para la estación ANA. Componente X: N26E; Componente Y: N64W; Componente Z: vertical......64 Tabla 14: Parámetros calculados a partir del modelamiento dinámico para la estación 116. Componente X: N26E; Componente Y: N64W; Componente Z: vertical......67 Tabla 15: Parámetros calculados a partir del modelamiento dinámico para la estación PUL. Componente X: N26E; Componente Y: N64W; Componente Z: vertical......70 Tabla 16: Parámetros calculados a partir del modelamiento dinámico para la estación TTN 042. Componente X: N26E; Componente Y: N64W; Componente Z: vertical......73 Tabla 17: Parámetros calculados a partir del modelamiento dinámico para la estación TCU 102. Componente X: N26E; Componente Y: N64W; Componente Z: vertical......76 Tabla 18: Parámetros calculados a partir del modelamiento dinámico para la estación CHY Tabla 19: Parámetros calculados a partir del modelamiento dinámico para la estación MZH. Tabla 20: Parámetros calculados a partir del modelamiento dinámico para la estación KAK. Componente X: N26E; Componente Y: N64W; Componente Z: vertical......85 Tabla 21: Parámetros calculados a partir del modelamiento dinámico para la estación NIS. Tabla 22: Resumen de los resultados para las señales del terremoto de Northridge (1994)...89 Tabla 24: Resumen de los resultados para las señales del terremoto de Kobe (1995)......90