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ON THE ANALYSIS OF DECISION PROBLEMS IN ASTROMETRY AND
HYPOTHESIS TESTING

La teoría de la información surgió gracias al trabajo realizado por Claude E. Shannon:
�A Mathematical Theory of Communication�, donde se modela y caracteriza el desempeño
óptimo de los sistemas de comunicación digitales. La idea básica es la transmisión de in-
formación mediante un canal que introduce incertidumbre en la comunicación. La señal
llega a un receptor que debe decodi�car la información de forma con�able en el sentido de
probabilidad de error. Estableciendo una conexión con problemas de inferencia estadística,
vemos que están estrechamente conectados. Ambos problemas se encargan de trabajar con
observaciones y la información contenida en ellos. El objetivo �nal es tomar una decisión
correcta basada en las observaciones. El término decisión correcta implica establecer métri-
cas de desempeño. La teoría de la información cumple un rol muy importante al establecer
límites fundamentales para problemas de decisión estadísticos, es por esto que esta tesis hace
uso de las herramientas en estadística y teoría de la información para resolver dos problemas
de inferencia, en el contexto de la astronomía y detección con restricción de tasa.
La primera parte de la tesis, estudia los límites fundamentales en astrometría. El foco del
trabajo es estudiar la alcanzabilidad de los límites fundamentales con estimadores prácticos.
El trabajo propone cotas de desempeño para estimadores clásicos (máxima verosimilitud y
mínimos cuadrados) con estos resultados se veri�ca numéricamente la optimalidad del esti-
mador de máxima verosimilitud en el sentido que éste alcanza la cota de Cramer-Rao en un
gran espectro de regimenes observacionales.
La segunda parte de la tesis propone una cota alcanzable del error asociado al problema de
detección en un contexto de hipótesis bivariado cuando una de las fuentes es transmitida con
restricciones en la tasa. Este problema radica en establecer velocidades de convergencia para
el error de tipo II sujeto a un error de tipo I prescrito y cuando se tiene información limitada
de una de las fuentes. Para ello este trabajo establece cotas para la discrepancia que existe
entre el límite fundamental asintótico y una expresión no asintótica derivada como parte de
éste trabajo.
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Summary

Information theory was originally iniciated by Claude E. Shannon in 1948 to �nd fundamen-
tal limits on data compression and digital communication, in a landmark paper entitled �A
Mathematical Theory of Communication�. The goal in communication is to send a message
over a noisy channel, and to reconstruct it with low probability of error. Then communi-
cation theory and statistics are intimately connected. In both context the main objective
is to make a minimum cost decision based on observations. In this context, information
theory has played a very important role in establishing fundamental performance limits for
these problems. Inspired by this theory, this thesis uses tools from statistics theory for the
resolution of two punctually relevant decision making problems that deals with uncertainty
and information.
On the �rst part of this thesis, we derive fundamental limits for the astrometry problem,
where we characterize the best attainable precision limit for a family of unbiased estima-
tors. We obtain performance bound for classical estimators (maximum likelihood and least
squares) and then we validate numerically the optimality of the celebrated maximum likeli-
hood estimator in the sense that it achieves the Cramer-Rao lower bound in a wide range of
observational settings and observational regimes.
On the second part of this thesis, we derive an achievable bound of the error associated to
the detection problem in a bivariate hypothesis testing problem, where one of the sources is
transmitted with a rate constraint. The contribution of this work is the derivation of closed
form expression for the type II error given a prescribed type I error and a limited rate. In
particular, we clari�ed the discrepancy between practical �nite length regime scenario and
the fundamental asymptotic limit.
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Chapter 1

Introduction

Information theory was originally iniciated by Claude E. Shannon in 1948, in a landmark
paper titled �A Mathematical Theory of Communication�. The basic goal of communication
is to send a message over a noisy channel, and then to reconstruct it with low probability of
error, in spite of the channel noise. In this context, information theory provides a mathemat-
ical formalization of this problem and, more importantly, o�ers fundamental performance
limits for this decision task. This view inspires the work presented in this thesis where statis-
tical tool are applied in two relevant problems in the area of astroinformation and hypothesis
testing that are summarized in Section 1.1 and 1.2

1.1 Astrometry

Astrometry deals with the accurate and precise measurement of positions and motions of
celestial objects. Is the oldest branch of observational astronomy, dating back at least to
Hipparchus of Nicaea in 190 BC. Since, from its very beginnings, this branch of astronomy
has required measurements over time to ful�ll its goals, it could be considered the precursor of
the nowadays fashionable �time-domain astronomy�1, preceding it by at least 20 centuries. In
recent years, astrometry has experienced a �coming of age� motivated by the rapid increase in
positional precision allowed by the use of all-digital techniques and space observatories (see,
e.g., [1], Fig. 1a in [2] for an overview spanning more than 2000 years of astrometry, [3] for a
summary of the contributions from the HST (�ne guide sensors), and, of course, the exquisite
prospects from the [4], with applications ranging from fundamental astrophysics [5, 6], to
cosmology [7]).

A number of techniques have been proposed to estimate the location and �ux of celestial
sources as recorded on digital detectors (CCD). In this context, estimators based on the
use of a least-squares (LS) error principle have been widely adopted [8�10]. The use of this
type of decision rule has been traditionally justi�ed through heuristic reasons. First, LS
methods are conceptually straightforward to formulate based on the observation model of

1As de�ned, e.g., by Wikipedia: https://en.wikipedia.org/wiki/Time_domain_astronomy
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these problems. Second, they o�er computationally e�cient implementations and have shown
reasonable performance [11�13]. Finally, the LS approach was the classical method used when
the observations were obtained with analog devices [14,15], which are well characterized by a
Gaussian noise model for the observations. In the Gaussian case the LS is equivalent to the
maximum likelihood (ML) solution ( [16�18]), and, consequently, the LS method was taken
from the analogous to the digital observational (Poisson noise model) setting naturally.

Considering astrometry as an inference problem (of, usually, point sources), the astro-
metric community has been interested for a long time in understanding the fundamental
performance limits (or information bounds) of this task ( [19] and references therein). It is
well understood by the community that the characterization of this precision limit o�ers the
possibility of understanding the complexity of the task and how it depends on key attributes
of the problem, like the quality of the observational site, the performance of the instrument
(CCD), and the details of the experimental conditions [20, 21]. On the other hand, it pro-
vides meaningful benchmarks to de�ne the optimality of practical estimators in the process
of comparing their performance with the bounds [22].

Concerning the characterization and analysis of fundamental performance bounds, we can
mention some works on the use of the Cramér-Rao (CR) bound by [23�26]; and [27]. The CR
bound is a minimum variance bound (MVB) for the family of unbiased estimators [28,29]. In
astrometry and joint photometry and astrometry, Mendez et al. [20,21] have recently studied
the structure of this bound, and have analyzed its dependency with respect to important
observational parameters under realistic (ground-based) astronomical observing conditions.
In this context, closed-form expressions for the Cramér-Rao bound were derived in a number
of important settings (high pixel resolution and low and high signal-to-noise (S/N) regimes),
and their trends were explored across di�erent CCD pixel resolutions and the position of
the object in the CCD array. As an interesting outcome of those studies, the analysis of
the CR bound has allowed us to predict the optimal pixel resolution of the array, as well
as providing a formal justi�cation to some heuristic techniques commonly used to improve
performance in astrometry, like dithering for undersampled images [20, Sect. 3.3]. Recently,
an application of the CR bound to moving sources has been done by Bouquillon et al. [30],
indicating excellent agreement between the theoretical predictions, simulations, and actual
ground-based observations of the Gaia satellite, in the context of the GBOT program ( [31]).
The use of the CR bound on other applications is also of interest, e.g., in assessing the
performance of star trackers to guide satellites with demanding pointing constraints [32],
or to meaningfully compare positional di�erences from di�erent catalogues (for an example
involving the SDSS and Gaia see [33]). Finally, a formulation of the Bayesian CR bound in
astrometry, using the so-called �Van-Trees inequality� [34], has been presented by our group
in Echeverría et al [35]: This approach is particularly well suited for objects at the edge of
detectability, and where some prior information is available, and has been proposed for the
analysis of Gaia data for faint sources, or for those with a poor observational history [36,37].

From the perspective of astrometric estimators, Lobos et al. [22] have studied in detail
the performance of the widely adopted LS estimator. In particular extending the result
in [38], Lobos et al. [22] derived lower and upper bounds for the mean square error (MSE)
of the LS estimator. Using these bounds, the optimality of the LS estimator was analyzed,
demonstrating that for high S/N there is a considerable gap between the CR bound and

2



the performance of the LS estimator (indicating a lack of optimality of this estimator). This
work showed that for the very low S/N observational regime (weak astronomical sources),
the LS estimator is near optimal, as its performance closely follows the CR bound. The
limitations of the LS method in the medium to high S/N regime proved in that work opens
up the question of studying alternative estimators that could achieve the CR bound on these
regimes, which is the main focus of Chapter 2.

1.2 Hypothesis testing

Hypothesis testing is a classical problem of statistical decision. An hypothesis is proposed for
the statistical relationship between two variables (the null hypothesis), and this is compared
to an alternative hypothesis that impose no relationship between two variables. Hypothesis
tests is the task of determining what outcomes of a study would lead to a rejection of the null
hypothesis for a pre-speci�ed level of signi�cance. The process of distinguishing between the
null hypothesis and the alternative hypothesis is aided by identifying two conceptual types
of errors (type I and type II), and by specifying parametric limits on e.g. how much type I
error will be tolerated.

Often the statistician task is to �nd a test with a minimal probability of an error of type
II given a prescribed probability of an error of type I. It is commonly understood in statistics
that the data (samples) are known to the statistician. We revisit here another dimension
of this problem by assuming that the statistician does not have direct access to the data;
rather, he/she has a lossy representation, more precisely, a �nite rate version of it. In the
problem formulated earlier, this assumption is not a signi�cant constraint if the data are
collected at a single location. In fact, the transmission of one bit enables the statistician to
make an optimal decision in the sense of minimizing the probability of an error of type II for
a prescribed probability of an error of type I [39]. Then, we consider the simplest problem
of this kind, namely, bivariate hypothesis testing when one of the variables is measured
remotely, and information about the other variable is transmitted over a noiseless channel of
�nite rate constraint [39].

This problem is interesting for a wide range of applications. Consider for example problems
related with sensor networks and itd practical applications (self-driving cars, array of sensors
for measuring, internet of things). It is clear that the ability of automated systems to
make minimum risk decisions in a timely manner is crucial in the 21st century. These
systems will often operate under strict constraints over their resources. In some applications,
e.g. automated systems, relatively short blocklengths are common both due to delay and
complexity constraints imposed in the application. It is, therefore, of critical practical interest
to assess the unavoidable penalty over error exponents required to sustain the desired �delity
at a given �xed blocklength. The main goal in this thesis is to develop non asymptotic rates
of convergences to the fundamental limit developed by Csiszar in [39].

Concerning the characterization and analysis of fundamental performance bounds in this
task, a common approach is to determine the exponential rate of decay of the error probability
of the second type with a prescribed type I error. In binary hypothesis testing, the optimal

3



error exponent of the Type II error is well-known and given by Stein's Lemma [40]. Extending
this result, Ahlswede and Csiszar [39] characterised the asymptotic behaviour of the error
exponent with communication constraint. On the other hand, Han [41] obtained fundamental
bounds in the case of general systems where both sources are limited by rate constraints.
Several other constributions on this topic consider extension of this kind of problem (such as
asymptotic decay of the type I error or universal setting) and they can be found in [42�45].

1.3 Contribution

In the �rst part of this thesis, we study the ML estimator in astrometry, motivated by its
well-known optimality properties in a classical parametric estimation setting with indepen-
dent and identically distributed measurements (i.i.d.) [46]. We know that in the i.i.d. case
this estimator is e�cient with respect to the CR limit [47], but it is important to emphasize
that the observational setting of astrometry deviates from the classical i.i.d. case and, con-
sequently, the analysis of its optimality is still an open problem. In particular, we face the
technical challenge of evaluating its performance, a problem that, to the best of our knowl-
edge, has not been addressed by the astrometric community. Concerning the independent
but not identically distributed case, [48] and [49] gave conditions under which ML estima-
tors are consistent2 and asymptotically normal3. Those conditions, however, are technically
di�cult to proof in the astrometric context.

The main challenge here is the fact that, as in the case of the LS estimator [22], the
ML estimator is the solution of an optimization problem with a nonconvex cost function
of the data. This implies that it is not possible to directly compute the performance of
the method. To address this technical issue, we extend the approach proposed by Fessler et
al. [50] to approximate the variance and the mean of an implicit estimator solution of a generic
optimization problem of the data through the use of a Taylor approximation around the mean
measurement (see Theorem 2.2 below). Our extension considers high order approximations of
the function that allows us not only to estimate the performance of the ML estimator through
an explicit nominal value, but also it provides a con�dence interval around it. With this result
we revisit the more general weighted least square (WLS) and ML methods providing speci�c
upper and lower bounds for both methods (see Theorems 2.3 and 2.4). The main �ndings
from our analysis of the bounds are two fold: �rst we show that the WLS exhibits a sub-
optimality similar to that of the LS method for medium to high S/N regimes discovered by
Lobos et al. [22] and, second, that the ML estimator achieves the CR limit for medium to
high S/N and, consequently, it is optimal on those regimes. This last result is remarkable
because, in conjunction with the result presented in [22], we are able to identify estimators
that achieve the fundamental performance limits of astrometry in all the S/N regimes for
the problem.

In the second part of this thesis, we develop an achievable bound for the error exponent

2this is, as the sample size increases, the sampling distribution of the estimator becomes increasingly
concentrated at the true parameter value

3more precisely, whose distribution around the true parameter approaches a normal distribution as the
sample size grows

4



in the bivariate hypothesis testing with communication constraints. We know that in the
case with no rate restrictions, the non asymptotic performance is well characterized [42], in
fact, its asymptotic limits converges to the divergence as presented in the celebrated Stein's
lemma, however, little is known about the case with rate restrictions.

The main challenge faced in this work is the fact that there are many technical and
mathematical di�culties when dealing with the likelihood of the ratio. Developing bounds
to the induced measure given by the encoder function is not an easy task due to the freedom
of such function. To address this technical issue, we extend the approach of Zhang et al. [70]
to the case of noisy rate distortion theory and obtain fundamental bounds via concentration
inequalitites such as the bounded di�erence inequality [67] and the Berry-Esséen theorem [65],
which are a powerful generalization of the central limit theorem and give non asymptotic
performance expression under general conditions.

1.4 Main Hypothesis

The main hypothesis of the �rst part of this work is that the ML estimator is e�cient in a
large collection of observational regimes from classical result in the i.i.d. case and empirical
evidences. We conjecture that this can be proved theoretically. We also want to show that the
WLS method is, in general, sub-optimal (in comparison with the minimum variance bound
given by the CR result), specially at high and very high S/N .

For the problem of testing under a rate constraint, the hypothesis is that non-asymptotic
expression for the error exponent can be obtained and from this being able to analize the rate
of convergence of this expression to the theoretical asymptotic expression. Similar results
has been established in the classical problem and we conjecture that this type of analysis
can be extended from the rate constrained scenario. The main technical challenge is the
fact that there exists many mathematical di�culties when dealing with the likelihood of the
ratio in the rate constraint problem. Developing bounds to the induced measure given by
the encoder function is not an easy task due to the freedom of such function. We want to
adress this technical issue by extending the approach of Zhang et al. [70] to the case of noisy
rate distortion theory and obtain fundamental bounds via concentration inequalities such as
the bounded di�erence inequality and the Berry-Esséen theorem.

1.5 Structure of the thesis

This thesis is organized in 4 Chapters. In Chapter 2 we present the estimation problem
of astrometry and characterise the fundamental limits described earlier. In Chapter 3, we
present the detection problem in hypothesis testing and the main technical challenge to
develop non asymptotic bounds. Finally, Chapter 4 presents the conclusions and exhibits
some future work.
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Chapter 2

Estimation in astrometry

2.1 Preliminaries and background

We begin by introducing the problem of astrometry. For simplicity, we focus on the 1-D
scenario of a linear array detector, as it captures the key conceptual elements of the problem1.

2.1.1 Astrometry as a parameter estimation problem

The main problem at hand is the inference of the relative position (in the array) of a point
source. This source is modeled by two scalar quantities, the position of object xc ∈ R in
the array2, and its intensity (or brightness, or �ux) that we denote by F̃ ∈ R

+. These
two parameters induce a probability distribution µxc,F̃ over an observation space that we

denote by X. Formally, given a point source represented by the pair (xc, F̃ ), it creates a
nominal intensity pro�le in a photon integrating device (PID), typically a CCD, which can
be expressed by

F̃xc,F̃ (x) = F̃ · φ(x− xc, σ), (2.1)

where φ(x− xc, σ) denotes the one dimensional normalized point spread function (PSF) and
where σ is a generic parameter that determines the width (or spread) of the light distribution
on the detector (typically a function of wavelength and the quality of the observing site, see
Sect. 2.4) [20,21].

The pro�le in Eq. (2.1) is not measured directly, but it is observed through three sources
of perturbations. First, an additive background noise which captures the photon emissions
of the open (di�use) sky, and the noise of the instrument itself (the read-out noise and
dark-current [51�54]), modeled by B̃i in Eq. (2.2). Second, an intrinsic uncertainty between
the aggregated intensity (the nominal object brightness plus the background) and actual

1The analysis can be extended to the 2-D case as presented in [20].
2This captures the angular position in the sky and it is measured in seconds of arc (arcsec thereafter),

through the �plate-scale�, which is an optical design feature of the instrument plus telescope con�guration.
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measurements, which is modeled by independent random variables that follow a Poisson
probability law. Finally, we need to account for the spatial quantization process associated
with the pixel-resolution of the PID as speci�ed in Eqs. (2.2) and (2.3). Modeling these
e�ects, we have a countable collection of independent and non-identically distributed random
variables (observations or counts) {Ii : i ∈ Z}, where Ii ∼ Poisson(λi(xc, F̃ )), driven by the
expected intensity at each pixel element i, given by

λi(xc, F̃ ) ≡ E{Ii} = F̃ · gi(xc)︸ ︷︷ ︸
≡F̃i(xc,F̃ )

+B̃i, ∀i ∈ Z (2.2)

and

gi(xc) ≡
∫ xi+∆x/2

xi−∆x/2

φ(x− xc, σ) dx, ∀i ∈ Z, (2.3)

where E {} is the expectation value of the argument and {xi : i ∈ Z} denotes the standard
uniform quantization of the real line-array with resolution ∆x > 0, i.e., xi+1−xi = ∆x for all
i ∈ Z. In practice, the PID has a �nite collection of measurement elements (or pixels) I1, .., In,
then a basic assumption here is that we have a good coverage of the object of interest, in the
sense that for a given position xc

n∑
i=1

gi(xc) ≈
∑
i∈Z

gi(xc) =

∫ ∞
−∞

φ(x− xc, σ) dx = 1. (2.4)

At the end, the likelihood (probability) of the joint observations In = (I1, .., In) (with values
in Nn) given the source parameters (xc, F̃ ) is given by

L(In;xc, F̃ ) = fλ1(xc,F̃ )(I1) · fλ2(xc,F̃ )(I2) · · · fλn(xc,F̃ )(In), ∀In ∈ Nn, (2.5)

where fλ(x) = e−λ·λx
x!

denotes the probability mass function (PMF) of the Poisson law [17].

Finally, if F̃ is assumed to be known3, the astrometric estimation is the task of de�ning
a decision rule τn() : Nn → Θ, with Θ = R being the parameter space, where given an
observation In the estimated position is given by x̂c(In) = τn(In).

2.1.2 The Cramér-Rao bound

In astrometry the Cramér-Rao bound has been used to bound the variance (estimation error)
of any unbiased estimator [20, 21]. In general, let In be a collection of independent observa-
tions that follow a parametric PMF fθ̄ de�ned on N. The parameters to be estimated from In

will be denoted in general by the vector θ̄ = (θ1, θ2, ..., θm) ∈ Θ = R
m. Let τn(In) : Nn → Θ

be an unbiased estimator4 of θ̄, and L(In; θ̄) = fθ̄(I1) · fθ̄(I2) · · · fθ̄(In) be the likelihood of
the observation In ∈ Nn given θ̄ ∈ Θ. Then, the Cramér-Rao bound [28,29] establishes that
if

EIn∼fn
θ̄

{
∂ lnL(In; θ̄)

∂θi

}
= 0, ∀i ∈ {1, . . . ,m} , (2.6)

3The joint estimation of photometry and astrometry is the task of estimating both (xc, F̃ ) from the
observations, see [21].

4In the sense that, for all θ̄ ∈ Θ, EIn∼fn
θ̄
{τn(In)} = θ̄.
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then, the variance (denoted by V ar), satis�es that

V ar(τn(In)i) ≥ [Iθ̄(n)−1]i,i, (2.7)

where Iθ̄(n) is the Fisher information matrix given by

[Iθ̄(n)]i,j = EIn∼fn
θ̄

{
∂ lnL(In; θ̄)

∂θi

· ∂ lnL(In; θ̄)

∂θj

}
∀i, j ∈ {1, . . . ,m} . (2.8)

In particular, for the scalar case (m = 1), we have that for all θ ∈ Θ

min
τn(·)∈T n

V ar(τn(In)) ≥ Iθ(n)−1 = EIn∼fnθ

{[(
d lnL(In; θ)

dθ

)2
]}−1

, (2.9)

where T n is the collection of all unbiased estimators and In ∼ fnθ . For astrometry, [20, 21]
have characterized and analyzed the Cramér-Rao bound, leading to

Proposition 2.1 ( [21, Sect. 2.4]) If F̃ ∈ R+ is �xed and known, and we want to estimate
xc from In ∼ f(xc,F̃ ) = L(In;xc, F̃ ) in Eq. (2.5), then the Fisher information is given by

Ixc(n) =
n∑

i=1

(
F̃ dgi(xc)

dxc

)2

F̃ gi(xc) + B̃i

, (2.10)

which from Eq. (2.9) induces a MVB for the astrometric estimation problem, and where
σ2
CR(n) ≡ Ixc(n)−1 denotes the (astrometric) CR bound.

2.1.3 Achievability and performance of the LS estimator

Concerning the achievability of the CR bound with a practical estimator, [22, Proposition
2] have demonstrated that this bound cannot be attained, meaning that for any unbiased
estimator τn(·) we have that

V ar(τn(In)) > σ2
CR, (2.11)

where In follows the Poisson PMF f(xc,F̃ ) in Eq. (2.5).

This �nding should be interpreted with caution, considering its pure theoretical meaning.
This is because Eq. (2.11) does not exclude the possibility that the CR bound could be
approximated arbitrarily close by a practical estimation scheme. Motivated by this re�ned
conjecture, [22] proposed to study the performance of the widely adopted LS estimator5 with
the goal of deriving operational upper and lower performance bounds of its performance that
could be used to determine how far could this scheme depart from the CR limit. Then,
from this result, it was possible to evaluate the goodness of the LS estimator for concrete
observational regimes. For bounding the performance of the LS estimator, the challenge was

5This is the solution of τLS(In) = arg minα∈R
∑n

i=1 (Ii − λi(α))
2
, with λi(α) = F̃ gi(α) + B̃i, α being a

generic variable representing the astrometric position, gi(·) is given by Eq. (2.3), and where arg min represents
the argument that minimizes the expression. More details are presented in [22].
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that τLS(In) is an implicit function of the data (where no close-form expression is available)
and, consequently, [22] derived a result to bound the estimation error and the variance of
τLS(In). We can brie�y summarize the main result presented in [22, Theorem 1] saying that
under certain mild su�cient conditions (that were shown to be realistic for astrometry), there
is a constant δ > 0 (that depends on the observational regime, in particular the S/N) and
a nominal variance σ2

LS, which is determined in closed-form in the result, from which it is
possible to bound V ar(τLS(In)) by the simple expression

V ar(τLS(In)) ∈
(
σ2
LS(n)

(1 + δ)2
,
σ2
LS(n)

(1− δ)2

)
, (2.12)

where

σ2
LS(n) =

∑n
i=1(F̃ gi(xc) + B̃i) · (g′i(xc))2(

F̃
∑n

i=1(g′i(xc))
2
)2 . (2.13)

Note that when δ is small, σ2
LS(n) tightly determines the performance of the LS estimator,

and its comparison with σ2
CR can be used to evaluate the goodness of the LS estimator for

astrometry. Based on a careful comparison, it was shown in [22, Sect. 4] that in general
σ2
LS(n) is close to σ2

CR(n) for the small S/N regime of the problem. However for moderate
to high S/N regimes, the gap between σ2

LS(n) and σ2
CR(n) becomes quite signi�cant6.

These unfavorable �ndings for the LS method have motivated us to study alternatives
schemes that could potentially approach better the Cramér-Rao bound for the rich obser-
vational context of medium to high S/N regimes. This will be the focus of the following
sections, where in particular we explore the performance of the ML and WLS estimators,
thus extending and generalizing the analysis done for the LS estimator by our group presented
in [22].

2.2 Bounding the performance of an implicit estimator

Before we go to the case of the WLS and the ML estimators, we present a general result
that bounds the performance of any estimator that is the solution of a generic optimization
problem. Let us consider a vector of observations In = (I1, . . . , In) ∈ Rn and a general so-
called cost function J(α, In). Then the estimation of xc from the data is the solution of the
following optimization problem:

τJ(In) ≡ arg min
α∈R

J(α, In), (2.14)

where α represents the position of the object in the context of astrometry. As in our pre-
vious work [22], the challenge here is that this estimator is implicit because no closed-form
expression of the data which solves Eq. (2.14) is assumed. In particular, this implies that
both the variance and the estimation error of τJ(In) can not be determined directly. To

6In particular, for the very high S/N regime and assuming ∆x/σ � 1, [22, Proposition 3] shows that this

gap reaches the condition
σ2
LS(n)

σ2
CR(n)

≈ 8
3
√

3
.
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address this technical issue, we extend the approach proposed by Fessler et al. [50] to ap-
proximate the variance and the mean of an implicit estimator solution of a problem described
by Eq. (2.14) through the use of a Taylor approximation around the mean measurement, i.e.,
Īn = EIn∼f(xc,F̃ )

(In).

More precisely, we assume that J(α, In) has a unique global minimum at τJ(In), and that
it has a regular behavior, so its partial derivatives are zero, i.e.,

0 =
∂

∂α
J(α, In)

∣∣∣∣
α=τJ (In)

≡ ∂

∂α
J(τJ(In), In). (2.15)

Then we can obtain τJ(In) by a �rst order Taylor expansion around the mean Īn by

τJ(In) = τJ(Īn)+
n∑

i=1

∂

∂Ii

τJ(Īn)(Ii−Īi)+
1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τJ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)︸ ︷︷ ︸

≡e(Ī,I−Ī)

.

(2.16)
with t ∈ [0, 1] is �xed but unknown7. For simplicity, Eq. (2.16) can be written in matrix
form as

τJ(In) = τJ(Īn) +∇τJ(Īn) · (In − Īn) + e(Īn, In − Īn), (2.17)

where ∇ = [ ∂
∂I1

. . . ∂
∂In

] denotes the row gradient operator and e(Īn, I − Īn) is the residual
error of the Taylor expansion. From Eq. (2.17) we can readily obtain the following expression
for its variance

V ar{τJ(In)} = ∇τJ(Īn)Cov{In}∇τJ(Īn)T︸ ︷︷ ︸
≡σ2

J (n)

(2.18)

+ V ar{e(Īn, In − Īn)}+ 2Cov{∇τJ(Īn)(In − Īn), e(Īn, In − Īn)}︸ ︷︷ ︸
≡γJ (n)

. (2.19)

In Eq. (2.18) we recognize two terms: σ2
J(n) that captures the linear behaviour of τJ(·)

around Īn and γJ(n) which re�ects the deviation from this linear trend. It should be noted
that the above expression does not depend on τ(In) itself, but on its partial derivatives
evaluated at the mean vector of observations. Then in the adoption of this approach to
estimate V ar{τJ(In)}, a key task is to determine ∇τJ(Īn).

Remark 1 It is meaningful to note that [50] only considered the linear term in his approx-
imate analysis, obviating the residual term γJ(n) in Eq. (2.18). This �rst order reduction
is not realistic for our problem because the solution of a problem like the one posed by
Eq. (2.14) in astrometry has important non-linear components that need to be considered in
the analysis of Eq. (2.18).

In an e�ort to analyze both the linear and non-linear aspects of a general intrinsic estimator
solution to Eq. (2.14), the following result o�ers su�cient conditions to determine σ2

J(n) in
closed-form, and to bound the magnitude of the residual term γJ(n) in Eq. (2.18).

7It follows that lim
I→Ī

e(Ī,I−Ī)
||I−Ī||2

= 0.
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Theorem 2.2 Let us consider a �xed and unknown parameter xc ∈ R, the observations
In = (I1, ..., In)T where Ii ∼ fxc, and τJ(In) the estimator solution of Eq. (2.14). If we
satisfy the following two rather general conditions:

a) the cost function J(α, In) is twice di�erentiable with respect to In and xc, and the
gradient of τJ(·) evaluated in the mean data Īn o�ers the following decomposition

∇τJ(Īn) · (In − Īn) = a

N∑
i=1

bi(Ii − Īi) (2.20)

with a and {bi : i ∈ {1, ..., N}} constants, and,
b) the estimator evaluated in the mean data equals the true parameter xc ∈ R, this is,

τJ(Īn) = xc, (2.21)

then we can de�ne two new quantities εJ(n) and βJ(n) (both > 0) and σ2
J(n) in Eq. (2.18)

with analytical expressions (details presented in Appendix 2.6.1) such that

|EIn∼fxc{τJ(In)} − xc︸ ︷︷ ︸
bias

| ≤ εJ(n) (2.22)

and
V arIn∼fxc{τJ(In)} ∈

(
σ2
J(n)− βJ(n), σ2

J(n) + βJ(n)
)
. (2.23)

The proof of this result and the expression for (εJ(n), σ2
J(n), βJ(n)) in Eqs. (2.22) and

(2.23) are presented in detail in Appendix 2.6.1.

Revisiting the equality in Eq. (2.18), Theorem 2.2 provides general su�cient conditions to
bound the residual term γJ(n) and by doing that, a way of bounding the variance of τJ(In)

which is the solution of Eq. (2.14). In particular, it is worth noting that if the ratio βJ (n)

σ2
J (n)
� 1,

then Eq. (2.23) o�ers a tight bound for V arIn∼fxc{τJ(In)}. In this last context, σ2
J(n) (called

the nominal value of the result) provides a very good approximation for V arIn∼fxc{τJ(In)}.

On the application of this result to the WLS and ML estimators, we will see that the main
assumption in Eq. (2.20) is satis�ed in both cases (see Eqs. (2.64) and (2.81) in Appendix 2.6.2
and 2.6.3, respectively), and from that σ2

J(n) is playing an important role to approximate
the performance of ML and WLS in a wide range of observational regimes. In addition, the
analysis of the bias in Eq. (2.22) shows that these estimators are unbiased for any practical
purpose and, consequently, contrasting their performance (estimation error ∼

√
variance)

with the CR bound is a meaningful way to evaluate optimality.

2.3 Application to astrometry

In this section we apply Theorem 2.2 to bound the variances of the ML and WLS estimators
in the context of astrometry. Following the model presented in Sect. 2.1.1, In = (I1, . . . , In)T
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denotes the measurements acquired by each pixel of the array, and where each of them follows
a Poisson distribution given by

Ii ∼ Poisson(λi(xc)), i = 1, . . . , n, (2.24)

as expressed by Eqs. (2.2) and (2.3).

2.3.1 Bounding the variance of the WLS estimator

The WLS estimator, denoted by τWLS(In) in Eq. (2.26), is implicitly de�ned through a cost
function given by

JWLS(α, In) =
n∑

i=1

wi(Ii − λi(α))2, (2.25)

where (w1, . . . , wn)T ∈ Rn+ is a weight vector, and α is a general source position parameter.
Speci�cally we have that

τWLS(In) = arg min
α∈R

JWLS(α, In). (2.26)

Applying Theorem 2.2 we obtain the following result:

Theorem 2.3 Let us consider the WLS estimator solution of Eq. (2.26), then we have that

|EIn∼fxc{τWLS(In)} − xc︸ ︷︷ ︸
bias

| ≤ εWLS(n) (2.27)

and
V arIn∼fxc{τWLS(In)} ∈

(
σ2
WLS(n)− βWLS(n), σ2

WLS(n) + βWLS(n)
)
, (2.28)

where σ2
WLS(n) is given by

σ2
WLS(n) =

∑n
i=1 w

2
i λi(xc)

(
∂λi(α)
∂α

)2
∣∣∣∣
α=xc(∑n

i=1wi

(
∂λi(α)
∂α

)2
∣∣∣∣
α=xc

)2 (2.29)

and βWLS(n) and εWLS(n) are well de�ned analytical expression of the problem (presented in
Appendix 2.6.2).

The proof of this result and the expressions for εWLS(n) and βWLS(n)in Eqs. (2.27) and
(2.28), respectively, are elaborated in Appendix 2.6.2.

This result o�ers concrete expressions to bound the bias as well as the variance of the
WLS estimator. For the bias bound in Eq. (2.27), it will be shown that εWLS(n) is very
small (order of magnitudes smaller than xc) for all the observational regimes explored in this
work and, consequently, the WLS can be considered an unbiased estimator in astrometry, as
it would be expected. Concerning the bounds for the variance in Eq. (2.28), we will show
that for high and moderate S/N regimes the ratio βWLS(n)/σ2

WLS(n)� 1 and consequently
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in this context σ2
WLS(n) is a precise estimator of V arIn∼fxc{τWLS(In)}. For the very small

S/N the results o�ers an admissible interval σ2
WLS(n) ± βWLS(n) around the nominal value

σ2
WLS(n). Therefore in any context σ2

WLS(n) shows to be a meaningful approximation for the
performance of the WLS.

Remark 2 If we focus on the analysis on the closed form expression σ2
WLS(n) as an approxi-

mation of V arIn∼fxc{τWLS(In)} and we compare it with the CR bound σ2
CR(n) in Eqs. (2.10)

and (2.11), we note that they are very similar in their structure. In particular, it follows
that σ2

WLS(n) = σ2
CR(n), if an only if, the weights of the WLS estimator are selected in the

following way

wi = K · 1

λi(xc)
, ∀i ∈ {1, . . . , n}. (2.30)

where K is an arbitrary constant (K > 0). In other words, the only way in which the
performance of the WLS approximates the CR limit is if we select the weights as in Eq. (2.30).
However, this selection needs the information of the true position xc, which is unfeasible as
it contradicts the very essence of the inference task (indeed, xc is unknown, and we are
trying to estimate it from the data). Another interpretation is that no matter how we
choose the weights of the WLS estimator, it is not possible that the WLS is close to the
CR bound for every position xc, telling us that the WLS is intrinsically not optimal from
the perspective of being close to the CR limit in all the possible astrometric scenarios. In
particular, this impossibility result is very strong in the high S/N regimes where σ2

WLS(n) ≈
V arIn∼fxc{τWLS(In)}. This implication is consistent with the analysis presented by [22,
Fig. 4], where it was shown that the variance of the LS estimator is signi�cantly higher than
then CR bound in the high S/N regime. This justi�es the study of the ML estimator.

2.3.2 Bounding the variance of the ML estimator

The ML estimator, denoted by τML(In) in Eq. (2.32), is implicitly de�ned through a cost
function

J(α, In) =
n∑

i=1

Ii ln(λi(α))− λi(α), (2.31)

where α is a general source position parameter. Speci�cally, given an observation In we have
that

τML(In) = arg max
α∈R

J(α, In),

= arg min
α∈R

n∑
i=1

−Ii ln(λi(α)) + λi(α). (2.32)

Applying Theorem 2.2 we obtain the following result:

Theorem 2.4 Let us consider the ML estimator solution of Eq. (2.32), then we have that

|EIn∼fxc{τML(In)} − xc︸ ︷︷ ︸
bias

| ≤ εML(n) (2.33)
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and

V arIn∼fxc{τML(In)} ∈
(
σ2
ML(n)− βML(n), σ2

ML(n) + βML(n)
)
, (2.34)

where

σ2
ML(n) = σ2

CR(n) =

 n∑
i=1

(
F̃ dgi(xc)

dxc

)2

F̃ gi(xc) + B̃i


−1

, (2.35)

and βML(n) and εML(n) are well de�ned analytical expression of the problem (presented in
Appendix 2.6.3).

The proof of this result and the expressions for εML(n) and βML(n) in Eqs. (2.33) and
(2.34), respectively, are elaborated in Appendix 2.6.3.

Remark 3 It is important to mention that the magnitude of εML(n) is orders of magnitude
smaller than xc in all the observational regimes studied in this work (see this analysis in
Sect. 2.4) and, consequently, for any practical purpose the ML is an unbiased estimator. This
implies that the comparison with the CR bound is a meaningful indicator when evaluating
the optimality of the ML estimator.

Remark 4 We observe that if the ratio βML(n)/σ2
ML(n) is signi�cantly smaller than one,

which is shown in Sect. 2.4 from medium to high S/N regimes, then V arIn∼fxc{τML(In)} ≈
σ2
ML(n). This is a very interesting result because we can approximate the performance of

the ML estimator with σ2
ML(n). On this context, it is remarkable to have that the nominal

value σ2
ML(n) is precisely the CR bound (see Eq. (2.35)), because this means that the ML

estimator closely approximate this MVB in the interesting regime from moderate to very
high S/N . Note that this medium-high S/N regime is precisely the context where the LS
estimator shows signi�cant de�ciencies as presented in [22]. Therefore, ML o�ers optimal
performances in the regime where LS type of methods are not able to match the CR bound,
which satisfactorily resolves the question posted by [22] on the study of schemes that could
very closely approach the CR bound in the high S/N regime.

2.4 Numerical analysis

In this section we evaluate numerically the performance bounds obtained in Sect. 2.3 for the
WLS and ML estimators, and compare them with the astrometric CR bound in Proposition
2.1. The idea is to consider some realistic astrometric conditions to evaluate the expressions
developed in Theorems 2.3 and 2.4 and their dependency on important observational condi-
tions and regimes. As we shall see, key variables in this analysis are the tradeo� between the
intensity of the object and the noise represented by the S/N value, and the pixel resolution
of the CCD.
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2.4.1 Experimental setting

We adopt some realistic design and observing variables to model the problem [20,21]. For the
PSF, analytical and semi-empirical forms have been introduced, see for instance the ground-
based model in [55] and the space-based models by [8] or [56]. In this work we will adopt

a Gaussian PSF, i.e., φ(x, σ) = 1√
2πσ

e−
(x)2

2σ2 in Eq. (2.3), and where σ is the width of the
PSF and is assumed to be known. This PSF has been found to be a good representation for
typical astrometric-quality Ground-based data [57]. In terms of nomenclature, FWHM ≡
2
√

2 ln 2 σ measured in arcsec, denotes the Full-Width at Half-Maximum parameter, which
is an overall indicator of the image quality at the observing site [58].

The background pro�le, represented by
{
B̃i, i = 1, .., n

}
in Eq. (2.2), is a function of sev-

eral variables, like the wavelength of the observations, the moon phase (which contributes
signi�cantly to the di�use sky background), the quality of the observing site, and the speci�-
cations of the instrument itself. We will consider a uniform background across pixels under-
neath the PSF, i.e., B̃i = B̃ for all i. To characterize the magnitude of B̃, it is important to
�rst mention that the detector does not measure photon counts [e−] directly, but a discrete
variable in �Analog to Digital Units (ADUs)� of the instrument, which is a linear proportion
of the photon counts ( [54]). This linear proportion is characterized by the gain of the instru-
ment G in units of [e−/ADU ]. G is just a scaling value, where we can de�ne F ≡ F̃ /G and
B ≡ B̃/G as the intensity of the object and noise, respectively, in the speci�c ADUs of the
instrument. Then, the background (in ADUs) depends on the pixel size ∆x arcsec as follows

B = fs∆x+
D +RON2

G
[ADU ], (2.36)

where fs is the (di�use) sky background in ADU arcsec−1, whileD and RON2, both measured
in e− model the dark-current and read-out-noise of the detector on each pixel, respectively.
Note that the �rst component in Eq. (2.36) is attributed to the site, and its e�ect is propor-
tional to the pixel size. On the other hand, the second component is attributed to errors of the
PID (detector), and it is pixel-size independent. This distinction is central when analyzing
the performance as a function of the pixel resolution of the array (see details in [20, Sect. 4]).
More important is the fact that in typical ground-based astronomical observation, long ex-
posure times are considered, which implies that the background is dominated by di�use light
coming from the sky, and not from the detector [20, Sect. 4].

For the experimental conditions, we consider the scenario of a ground-based station located
at a good site with clear atmospheric conditions and the speci�cation of current science-
grade CCDs, where fs = 1502.5 ADU arcsec−1, D = 0, RON = 5 e−, FWHM = 1 arcsec
(equivalent to σ = 1/(2

√
2 ln 2) arcsec) and G = 2 e− ADU−1 (with these values we will have

B = 313 ADU for ∆x = 0.2 arcsec using Eq. (2.36)). In terms of scenarios of analysis, we
explore di�erent pixel resolutions for the CCD array ∆x ∈ [0.1, 0.65] measured in arcsec, and
di�erent signal strengths F̃ ∈ {1080, 3224, 20004, 60160}, measured in e−, which corresponds
to S/N ∈∼ {12, 32, 120, 230}. Note that increasing F̃ implies increasing the S/N of the
problem, which can be approximately measured by the ratio F̃ /B̃. On a given detector plus
telescope setting, these di�erent S/N scenarios can be obtained by appropriately changing
the exposure time (open shutter) that generates the image.
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2.4.2 Bias analysis

Considering the upper bound terms εWLS(n) and εML(n) for the bias error obtained from
Theorems 2.3 and 2.4 for the WLS and ML, respectively, Fig. 2.1 presents the relative bias
error for di�erent S/N regimes and pixel resolutions. In the case of the ML estimator,
the bounds for relative bias error are very small in all the explored S/N regimes and pixel
resolutions meaning that for any practical purposes this estimator is unbiased as expected
from theory [17]. For the case of the WLS, we observe that from medium to high S/N
the relative error bound obtained is very small but, meanwhile at low S/N , unbiasedness
can not be fully guaranteed from the bound in Eq. (2.27). In general, our results show
that both WLS and ML are unbiased estimators for astrometry in a wide range of relevant
observational regimes (in particular from medium to high S/N) and, consequently, it is
meaningful to analyze the optimality of these estimators in comparison with the CR bound
in those regimes.
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Figure 2.1: Relative performance of the bias (as measured by log
(

100× εJ (n)
xc

)
) stipu-

lated by Theorem 2.2 for the WLS estimator (left side, Eq. (2.27)) and the ML estima-
tor (right side, Eq. (2.33)). Results are reported for di�erent values of the source �ux
F̃ ∈ {1080, 3224, 20004, 60160}, all in e− (top to bottom symbols respectively), as a function
of the detector pixel size. The 0% level corresponds to having achieved no bias.

In the following sections, we move to the analysis of the variance of the WLS and ML
with particular focus on the medium to high S/N regimes across all pixel resolutions using
the performance bounds derived in Eqs. (2.28) and (2.34), respectively.

2.4.3 Performance analysis of the WLS estimator

In this section, we evaluate numerically the expression derived in Theorem 2.3 to bound the
variance of the WLS estimator in Eq. (2.28). For that we characterize the admissible regime
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predicted for the variance of the WLS estimator, i.e., the interval(
σ2
WLS(n)− βWLS(n), σ2

WLS(n) + βWLS(n)
)
, (2.37)

for S/N ∈ {12, 32, 120, 230} and ∆x ∈ [0.01, 0.65] arcsec. In these bounds, we recognize
its central value (or nominal value) σ2

WLS(n) in Eq. (2.29) and the length of the interval
2βWLS(n) that is determined in closed form for its numerical evaluation in Eqs. (2.43) and
(2.67). Note that 2βWLS(n) can be considered an indicator of the precision of our result to
approximate the variance of the WLS in astrometry.

Revisiting the uniform weight case

To begin the analysis, we consider the setting of uniform weights across pixels, i.e., the case
of the LS estimator and, without loss of generality, we locate the object in the center of the
�eld of view8, which can be considered a reasonable scenario to represent the complexity
of the astrometry task. At this point, it is important to remind the reader that from the
analysis of σ2

WLS(n) in Remark 2, the nominal value σ2
WLS(n) is equivalent to the CR bound

when the wi are selected as a function of the true position in Eq. (2.30). In view of this
observation, the selection of non-uniform weights can be interpreted as biasing the estimation
to a particular area of the angular space, which goes in contradiction with the essence of the
inference problem that estimates the position with no prior information, and only relies on
the measured counts. From this interpretation, revisiting the LS estimator is an important
�rst step in the analysis of the WLS framework.

On the speci�cs, the boundaries of the interval in Eq. (2.37) and its nominal values are
illustrated in Fig. 2.2 for the di�erent observational regimes. In addition, Fig. 2.2 shows
the CR bound as a reference to evaluate the optimality of the LS scheme across settings.
We observe that for the low S/N ∼ 12 regime, the nominal values precisely match the CR
bound, however our result is not conclusive as the interval around the nominal performance
is signi�cantly large. This is the regime where our result is not conclusive regarding the
performance of the LS estimator. In the regime S/N ∈ (30, 50) (top right panel on Fig. 2.2),
we notice an important reduction on the range of admissible performance, and our result
becomes more informative and meaningful. In this context, the nominal values is very close to
the CR bound, and we could assert that the LS estimator o�ers su�ciently good performance
in the sense that is very competitive with the MVB. Importantly, when we move to the regime
of relatively high S/N and very hight S/N (from 100 to 300), our results is very accurate
to predict the performance of the LS method, and we �nd that the gap between the CR
and the nominal value is very signi�cant (the deviation from the MVB is 16% and 30% for
S/N 120 and 230 at ∆x = 0.2 arcsec, respectively). This last result con�rms one of the
main �ndings presented in [22], who showed that for medium to hight S/N the LS estimator
is suboptimal with respect to the MVB. In Fig. 2.2 we also show the square root of the
empirical variance (V ar( ˆτWLS)) with respect to the empirically-determined mean position x̂c
(using the WLS estimator), all as derived from the simulations, showing good consistency
with our predictions.

8It is important to remind that the CR bound is a function of the value of the parameter to be estimated,
in this case the position xc, see the Fisher information in Eq. (2.10).
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Figure 2.2: Range of the square root of the variance performance (in miliarcsecond=mas)
for the WLS method in astrometry using uniform weights (equivalent to the LS method)
predicted by Theorems 2.2 and 2.3, Eq. (2.28). Results are reported for di�erent rep-
resentative values of F̃ and across di�erent pixel sizes (top-left to bottom-right): F̃ ∈
{1080, 3224, 20004, 60160} e−.
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Non-uniform weight case

The sub-optimality of the WLS scheme from moderate to high S/N seen in Fig. 2.2 can be ex-
tended for any arbitrary selection of a �xed set of weights, as it would be expected. Given that
the space of weights selection is literally unlimited, we use the insight obtained from Remark
2 that states that a selection of weights can be interpreted as an speci�c prior on the position
of the object where the optimum, but unfortunately unknown, selection (achieving the CR
bound) of weights in Eq. (2.30) is an explicit function of the unknown position of the object.
Then, we consider a �nite set of positions {xc,1, .., xc,M} that uniformly partition the �eld of
view, and their corresponding weights sets {wi(xc,1) : 1 = 1, .., n}, {wi(xc,2) : 1 = 1, .., n} . . .
and {wi(xc,M) : 1 = 1, .., n} using Eq. (2.30) to cover a representative collections of weights
for the problem of astrometry.

Then, for a speci�c selection of weights in our admissible collection (attributed to a prior
believe of the position of the object in the �eld of view), we evaluate the worse discrep-
ancy between σ2

WLS(n)− βWLS(n) (which is the most favourable expression for the variance
predicted from Theorem 2.3), and the CR bound in Proposition 2.1, across a collection of
presumed object positions in the following range of positions

Θ = {x∗o − σ, x∗o − 0.8 ∗ σ, x∗o − 0.6 ∗ σ, x∗o − 0.4 ∗ σ, x∗o − 0.2 ∗ σ, x∗o}

where x∗o denotes the center of the array (which, as indicated at the beginning of Sect. 2.4.3,
is equal to the true object position xc) and σ = FWHM/2

√
2 ln 2 is the dispersion parameter

of the PSF. The idea of using this worse case di�erence is justi�ed from the fact that in this
parameter estimation problem we do not know the position of the object, and consequently,
the optimality of any WLS estimator should be evaluated in the worse case situation, as
the scheme should be able to estimate the position of the object in any scenario (position).
More precisely, for a given weight selection {wi, i = 1, .., n}, we use the following worse case
discrepancy

sup
xc∈Θ

(σ2
WLS(n)− βWLS(n))− σ2

CR(n)

σ2
CR(n)

. (2.38)

For this analysis note that both (σ2
WLS(n)−βWLS(n)) and σ2

CR(n) are functions of the position
xc, ∆x, and S/N .

Fig. 2.3 illustrates the worse case discrepancy in Eq. (2.38) for the medium and high
S/N regimes where Theorem 2.3 provides an accurate and meaningful prediction of the
performance of the WLS method, i.e., for S/N ∈ {120, 230}, and across ∆x ∈ [0.05, 0.7] arc-
sec. The discrepancy is quite signi�cant, in the order of 37% and 60% in the range for
∆x ∈ [0.1, 0.3] arcsec for S/N 120 and 230, respectively.

To re�ne the worse case analysis presented in Fig. 2.3, and to evaluate in more detail the
sensitivity of the discrepancy indicator given by Eq. (2.38), we evaluate the discrepancy of
WLS using the weights associated to x∗o (the center position of the array) with respect to the
CR bound associated to the positions {x∗o−σ, x∗o−0.8∗σ, x∗o−0.6∗σ, x∗o−0.4∗σ, x∗o−0.2∗σ, x∗o},
to study how the discrepancy (measuring the non-optimality of the method) evolves when
the adopted position moves far from the prior imposed by the WLS in the center of the
array. Fig. 2.4 illustrates this behaviour, where it is possible to see that the discrepancy is
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Figure 2.3: Worse case discrepancies in Eq. (2.38) for the WLS estimator using the weights
set indexed by the positions Θ = {x∗o−σ, x∗o−0.8∗σ, x∗o−0.6∗σ, x∗o−0.4∗σ, x∗o−0.2∗σ, x∗o}.
Results are reported for two S/N scenarios, namely F̃ = 20004 e− (Left) and F̃ = 60160 e−

(Right), and across di�erent pixel sizes.

very sensitive and proportional to the misassumption of the object position, where the worse
case discrepancy in the maximum achievable location precision is on the order of 40% for
pixel sizes in the range [0.1, 0.6] arcsec for S/N ∼ 120, and about 60% for pixel sizes in the
range [0.1, 0.6] arcsec for S/N ∼ 230. These worse case scenario happens in both cases when
the object is located the farthest from the prior assumption, as it would be expected.

The main conclusion derived form this CR bound analysis is that, independent of the
weight selection adopted, as long as the weights are �xed, the WLS estimator is not able to
achieve the CR bound in all observational regimes. More precisely, the discrepancy (measur-
ing the non-optimality) in the less favourable case of an hypothetical and feasible position
of the object is very signi�cant, in the range of 40%− 60% for the important regime of high
and very high S/N .

2.4.4 Performance analysis of the ML estimator

In this section we perform the same analysis done for the WLS in Sect. 2.4.3, but using the
result in Theorem 2.4. In particular, we consider the admissible regime for the variance of
the ML estimator given by(

σ2
ML(n)− βML(n), σ2

ML(n) + βML(n)
)

in Eq. (2.34), where the nominal value in this case, σ2
ML(n) in Eq. (2.35), is precisely the CR

bound, while the length of the interval 2βML(n) is given by Eqs. (2.43) and (2.84) in closed
form.

Considering an object located in the center of the array, i.e., xc = xo, the performance
curves are presented in Fig. 2.5 for S/N ∈ {12, 32, 120, 230} and ∆x ∈ [0.1, 0.65] arcsec.
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Figure 2.4: Performance discrepancies (measuring the non-optimality) of the WLS estimator
using the center position as a prior for the weight selection with respect to the CR bound
obtained for the true object positions {x∗o−σ, x∗o−0.8∗σ, x∗o−0.6∗σ, x∗o−0.4∗σ, x∗o−0.2∗σ, x∗o}.
Results are reported for two S/N scenarios, namely F̃ = 20004 e− (Left) and F̃ = 60160 e−

(Right), and across di�erent pixel sizes.

First, we note that there is a signi�cant di�erence in the predictions of our methodology for
the ML estimator in comparison with what we predict in the WLS case. In fact, the results of
our approach are very precise for the determination of the variance of the ML estimator in all
the regimes, from small to high S/N , which is remarkable. More important it is the fact that,
from these �ndings, we observe that the performance deviation from the MVB in the worse
case (small S/N) is very small (see Table 2.1, �rst raw), while for any practical purposes the
variance of the ML estimator achieves the CR limit for all the other regimes, from medium
to high S/N , which is a numerical corroboration of the optimality of the ML estimator in
astrometry, as predicted theoretically by Theorems 2.2 and 2.4. In Fig. 2.5 we also show the
square root of the empirical variance (V ar( ˆτML)) with respect to the empirically-determined
mean position x̂c (using the ML estimator), all as derived from the simulations, showing good
consistency with our predictions.

Complementing this analysis, we conducted the same comparison considering di�erent
positions for the object within the array obtaining the same trends and conclusions. To

summarize these results, Fig. 2.6 shows the value 100 ×
√
σ2
ML(n)+βML(n)−σML(n)

σML(n)
, which is an

indicator of the quality of the estimator (the smaller the better) for di�erent scenarios of the
position of the object xc ∈ Θ = {x∗o−σ, x∗o− 0.8 ∗σ, x∗o− 0.6 ∗σ, x∗o− 0.4 ∗σ, x∗o− 0.2 ∗σ, x∗o}.
In particular, for all the evaluated positions, the relative discrepancy is bounded (relative
to the CR bound) by values in the range of 0.025% and 0.012% for pixel resolution in the
range ∆x ∈ [0.1, 0.2] arcsec for S/N = 120 and S/N = 230, respectively. Finally, Table 2.1
presents the relative discrepancy for all the range of S/N values considered in this study for
the case ∆x = 0.2 arcsec.

We conclude from this analysis that the ML estimator in nearly optimal for the medium,
high and very high S/N regimes across pixel resolutions, achieving the MVB for astrometry.
This is an interesting result, since it lends further support to the adoption of these type
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Figure 2.5: Range of the square root of the variance performance (in miliarcsecond=mas) for
the ML method in astrometry as predicted by Theorems 2.2 and 2.4, Eq. (2.34). Results are
reported for di�erent values of F̃ and across di�erent pixel sizes (top-left to bottom-right):
F̃ ∈ {1080, 3224, 20004, 60160} e−.
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Position xc S/N=12 S/N=32 S/N=120 S/N=230
xo 3.8% 0.34% 0.032% 0.010%

xo − 0.2 ∗ σ 4.1% 0.27% 0.014% 0.009%
xo − 0.4 ∗ σ 4.3% 0.19% 0.022% 0.007%
xo − 0.6 ∗ σ 3.8% 0.29% 0.019% 0.009%
xo − 0.8 ∗ σ 3.9% 0.30% 0.022% 0.011%
xo − σ 3.6% 0.40% 0.019% 0.008%

Table 2.1: Indicators of the performance quality of the ML estimator relative to the Cramér-

Rao bound expressed in terms of the indicator 100×
√
σ2
ML(n)+βML(n)−σML(n)

σML(n)
from the result in

Theorem 2.4. The results are presented for di�erent positions of the object xc ∈ {x∗o−σ, x∗o−
0.8∗σ, x∗o−0.6∗σ, x∗o−0.4∗σ, x∗o−0.2∗σ, x∗o} (rows) and for di�erent S/N ∈ {12, 32, 120, 230}
(columns).

of estimators for very demanding astrometric applications, as has been done in the case of
Gaia [59]. We note that [13] reach the same conclusion regarding the optimality of the ML
method in comparison with the MVB, through simulations of 2D CCD images using a broad
set of Mo�at PSF stellar pro�les. While their results is purely empirical, it is interesting
that they test the ML using a di�erent PSF from ours, and in a 2D scenario, and yet
they reach the same conclusions. More recently, [60] have tested (also empirically) the ML
method in a 1D scenario (similar to ours), but in the context of a Gaia-like PSF. They �nd
that the ML is unbiased (in agreement with our results, see Fig. 2.1), and, by comparing
two implementations of the ML they conclude that they predict self-consistent and reliable
results over a broad range of �ux, background, and instrument response variations. It would
still be quite interesting to compare the performance of those implementations against the
CR MVB in order to further test our theoretical predictions.

2.4.5 Comments on an adaptive WLS estimator for astrometry

In Sect. 2.3.1 we presented results that o�er a nominal prediction for the variance of the WLS
method through Eq. (2.28) which turns out to be very accurate in the regime from medium
to high S/N as shown in Sect. 2.4.3. Interestingly, Remark 2 tells us that this nominal
values precisely match the CR limit for an optimal selection of weights given in Eq. (2.30),
namely wi ∼ 1/λi(xc) for all i = 1, .., n (compare Eqs. (2.29) and (2.35)). As this selection
is unfeasible, because it requires the knowledge of xc (see the expression in Eq. (2.2)), we
can approximate this value by a noisy version of it, considering the fact that the expected
value of the observations Ii that we measure at pixel i is λi(xc) using our model in Eq. (2.4).
Therefore Ii can be interpreted as a noisy version of λi(xc) and

ŵi(Ii) =
1

Ii

(2.39)

can be seen as a noisy version of the ideal weight 1
λi(xc)

. Adopting this data-driven weighting
approach, we would have an adaptive WLS method as the weights are not �xed but instead
they are a function of the data {I1 : i = 1, .., n}. This selection of weights can be interpreted

23



∆ x [arcsec]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
er

fo
rm

an
ce

 o
pt

im
al

ity
 [%

]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
x
∗

c
− σ

x
∗

c
− 0.8 ∗ σ

x
∗

c
− 0.6 ∗ σ

x
∗

c
− 0.4 ∗ σ

x
∗

c
− 0.2 ∗ σ

x
∗

c

∆ x [arcsec]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
er

fo
rm

an
ce

 o
pt

im
al

ity
 [%

]

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
x
∗

c
− σ

x
∗

c
− 0.8 ∗ σ

x
∗

c
− 0.6 ∗ σ

x
∗

c
− 0.4 ∗ σ

x
∗

c
− 0.2 ∗ σ

x
∗

c

Figure 2.6: Indicator of the performance optimality of the ML indicator (computed as 100×√
σ2
ML(n)+βML(n)−σML(n)

σML(n)
) for di�erent positions of the target object xc ∈ Θ = {x∗o − σ, x∗o −

0.8 ∗σ, x∗o− 0.6 ∗σ, x∗o− 0.4 ∗σ, x∗o− 0.2 ∗σ, x∗o} in the array, as a function of pixel resolution.
The left panel shows the case F̃ = 20004 e−, the right panel the case F̃ = 60160 e−.

as an empirical version of the optimal weights that achieves the CR bound. Then, the
problem reduces to solve

τAWLS(In) = arg min
α∈R

JAWLS(α, In) (2.40)

where

JAWLS(α, In) =
n∑

i=1

ŵi(Ii)(Ii − λi(α))2. (2.41)

Fig. 2.7 presents the performance of this scheme for the same regimes we have been
exploring in this work, supporting the conjecture that this selection of weights resembles the
optimal weight selection and in fact achieves MSE performances that are surprisingly close
to the CR bound in all the observational regimes.

Our results in this sub-section show that some commonly adopted weighting schemes,
using the analogous to Eq. (2.39), are a very good data-driven choice for methods that
employ a WLS scheme, such is the case, e.g., of the well know PSF stellar �tting program
(including astrometry) DAOPHOT, described in [9, Eq. (10)].
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√
MSE of the adaptive WLS estimator
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2.5 Conclusions and Final Remarks

We study the performance of the WLS and ML estimators for relative astrometry on digital
detectors subject to Poisson noise, in comparison with the best possible attainable precision
given by the CR bound. Our study includes analytical results, and numerical simulations
under realistic observational conditions to help us to corroborate our theoretical �ndings.

We extend the work presented in Fessler et al. [50] by giving upper and lower bounds for
the variance and the mean of implicit estimators (as is the particular case of the WLS and
ML schemes). We veri�ed that the bias of the WLS and ML methods are negligible in all
the observational regimes explored in this paper and that the variance of the ML method is
close to the CR lower bound in most of the observational regimes explored in this work. We
show the suboptimality of the WLS estimator by proving that this estimator can not achieve
the CR bound unless you have access to the position (which is impossible in this estimation
problem).

2.6 Appendix

2.6.1 Proof of Theorem 2.2

We begin presenting the expressions for (εJ(n), βJ(n), σ2
J(n)) to complete the statement of

the result.

εJ(n) = max
t∈[0,1]

∣∣∣∣∣EIn∼fxc
{

1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τJ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)

}∣∣∣∣∣ , (2.42)

βJ(n) = ε′J(n) + 2δ′J(n), (2.43)

where

ε′J(n) = max
t∈[0,1]

EIn∼fxc


1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τJ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)

2
 , (2.44)

δ′J(n) = max
t∈[0,1]

∣∣∣∣∣∣EIn∼fxc
(∇τJ(Īn) · (In − Īn)) · 1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τJ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)


∣∣∣∣∣∣ ,

(2.45)
and, �nally,

σ2
J(n) =

[
∂2J(τJ(Īn), Īn)

∂α2

]−1 [
∂2J(τJ(Īn), Īn)

∂α∂Ii

]
Cov{In}

[
∂2J(τJ(Īn), Īn)

∂α∂Ii

]T [
∂2J(τJ(Īn), Īn)

∂α2

]−1

.

(2.46)
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Proof of Theorem 2.2: Using the chain rule in the cost function J(α, In) and taking the
partial derivative ∂

∂Ii
of both sides in (2.15), we have that

0 =
∂2

∂α2
J(τ(In), In)

∂

∂Ii

τ(In) +
∂2

∂α∂Ii

J(τ(In), In), i = 1, . . . , n. (2.47)

Thus, we have n equations with one unknown, and it holds for any In. De�ning the operators

∇20(·) =
∂2

∂α2
,∇11(·) =

∂2

∂α∂Ii

, (2.48)

of dimensions 1× 1 and 1× n, respectively, we can express (2.47) in matrix form as

0 = ∇20J(τ(In), In)∇τ(In) +∇11J(τ(In), In). (2.49)

Assuming that the matrix ∇20J(τ(In), In) is non singular, we can calculate ∇τ(In) from
(2.49)

∇τ(In) = −[∇20J(τ(In), In)]−1∇11J(τ(In), In). (2.50)

Finally, using (2.50), evaluating at Īn, and then replacing in (2.18), we have that

σ2
J(n) = −[∇20J(τ(Īn), Īn)]−1∇11J(τ(Īn), Īn)Cov{In}(−[∇20J(τ(Īn), Īn)]−1∇11J(τ(Īn, Īn))T

= [∇20J(τ(Īn), Īn)]−1∇11J(τ(Īn), Īn)Cov{In}[∇11J(τ(Īn), Īn))]T [∇20J(τ(Īn), Īn)]−1.

=

[
∂2J(τ(Īn), Īn)

∂α2

]−1 [
∂2J(τ(Īn), Īn)

∂α∂Ii

]
Cov{In}

[
∂2J(τ(Īn), Īn)

∂α∂Ii

]T [
∂2J(τ(Īn), Īn)

∂α2

]−1

.(2.51)

Moving into the residual term γJ(n) in (2.18) captured by βJ(n), we must consider the
variance of the error function V ar{e(Īn, In − Īn)} and the covariance Cov{∇τJ(Īn)(In −
Īn), e(Īn, In − Īn)}. For the �rst, we have that

V ar{e(Īn, In − Īn)} = V ar

1

2

n∑
i=1

n∑
j=1

∂2τ

∂Ii∂Ij
(Īn + t(In − Īn))(Ii − Īi)(Ij − Īj)


≤ E


1

2

n∑
i=1

n∑
j=1

∂2τ

∂Ii∂Ij
(Īn + t(In − Īn))(Ii − Īi)(Ij − Īj)

2


≤ max
t∈[0,1]

E


1

2

n∑
i=1

n∑
j=1

∂2τ

∂Ii∂Ij
(Īn + t(In − Īn))(Ii − Īi)(Ij − Īj)

2
︸ ︷︷ ︸

=ε′J (n)

(2.52)

On the other hand, for the covariance, using the main assumption in (2.20), it is clear that

EIn∼fxc
{
∇τML(Īn) · (In − Īn)

}
= EIn∼fxc

{
a

n∑
i=1

bi(Ii − Īi)

}
= 0. (2.53)

From this,

|Cov{∇τ(Īn)(In − Īn), e(Īn, In − Īn)}|
= |E

{
∇τ(Īn)(In − Īn)

(
e(Īn, In − Īn)− E

(
e(Īn, In − Īn)

))}
|

=

∣∣∣∣∣∣EIn∼fxc
(∇τ(Īn) · (In − Īn)) · 1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)


∣∣∣∣∣∣

≤ max
t∈[0,1]

∣∣∣∣∣∣EIn∼fxc
(∇τ(Īn) · (In − Īn)) · 1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)


∣∣∣∣∣∣︸ ︷︷ ︸

=δ′J (n)

(2.54)
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Finally, replacing (2.52) and (2.54) in the de�nition of γJ(n), we have that:

|γJ(n)| ≤ V ar{e(Īn, In − Īn)}+ 2|Cov{∇τ(Īn)(In − Īn), e(Īn, In − Īn)}|
≤ ε′J(n) + 2δ′J(n) = βJ(n). (2.55)

For the bias expression of the result in (2.22), using the hypothesis in (2.21), we can take
expectation at both sides of (2.17) to obtain that

|EIn∼fxc{τ(In)} − xc| =

∣∣∣∣∣EIn∼fxc
{
a

N∑
i=1

bi(Ii − Īi) + e(Īn, In − Īn)

}∣∣∣∣∣
=
∣∣EIn∼fxc {e(Īn, In − Īn)

}∣∣
=

∣∣∣∣∣EIn∼fxc
{

1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)

}∣∣∣∣∣
≤ max

t∈[0,1]

∣∣∣∣∣EIn∼fxc
{

1

2

n∑
i=1

n∑
j=1

∂2

∂Ii∂Ij
τ(Īn − t(In − Īn))(Ii − Īi)(Ij − Īj)

}∣∣∣∣∣︸ ︷︷ ︸
=εJ (n)

(2.56)

2.6.2 Proof of Theorem 2.3

Proof: The proof and, in particular, the derivation of σ2
WLS(n), βWLS(n) and εWLS(n) simply

reduces to an straightforward application of Theorem 2.2. For that we need to �rst validate
the assumptions of Theorem 2.2. If we begin with Eq. (2.50)

∇τ(In) = −[∇20J(τJ(In), In)]−1∇11J(τJ(In), In), (2.57)

and then we calculate the gradient terms in the RHS of (2.57) for our WLS context, it follows
that

∇20JWLS(α, In) =
∂2

∂α2
JWLS(α, In)

= 2
n∑

i=1

wi

((
∂λi(α)

∂α

)2

+ (λi(α)− Ii)
∂2λi(α)

∂α2

)
, (2.58)

∇11JWLS(α, In) =

(
∂2

∂α∂I1

JWLS(α, In), . . . ,
∂2

∂α∂In
JWLS(α, In)

)T
(2.59)

= −2

(
w1
∂λ1(α)

∂α
, . . . , wn

∂λn(α)

∂xc

)T
. (2.60)

Following (2.57), we need to evaluate Eqs. (2.58) and (2.60) at α = τWLS(Īn). For that, we
have the following9

τWLS(Īn) = argmin
α∈R

n∑
i=1

wi(λi(xc)− λi(α))2. (2.61)

Then we will use the following result:
9considering that Īi = E{Ii} = λi(xc).
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Proposition 2.5 Under the assumption of a Gaussian PSF, τWLS(Īn) = xc.

Notice that this proposition is the second assumption used in Theorem 2.2. Using this
proposition, we obtain that

∇20JWLS(τWLS(Īn), Īn) = 2
n∑

i=1

wi

((
∂λi(α)

∂α

)2
∣∣∣∣∣
α=xc

+ (λi(xc)− λi(xc))
∂2λi(α)

∂α2

∣∣∣∣
α=xc

)
,

= 2
n∑

i=1

wi

(
∂λi(α)

∂α

)2
∣∣∣∣∣
α=xc

, (2.62)

∇11JWLS(τWLS(Īn), Īn) = −2

(
w1
∂λ1(α)

∂α
, . . . , wn

∂λn(α)

∂α

)T ∣∣∣∣∣
α=τWLS(Īn)

,

= −2

(
w1
∂λ1(α)

∂α
, . . . , wn

∂λn(α)

∂α

)T ∣∣∣∣∣
α=xc

. (2.63)

Finally, applying (2.62) and (2.63) in (2.50) we have that

∇τWLS(Īn) · (In − Īn) = −[∇20J(τWLS(Īn), Īn)]−1[∇11J(τWLS(Īn), Īn)](In − Īn)

=

[
n∑

i=1

wi

(
∂λi(α)

∂α

)2
∣∣∣∣∣
α=xc

]−1

︸ ︷︷ ︸
a

·
n∑
j=1

wj
∂λj(α)

∂α

∣∣∣∣
α=xc︸ ︷︷ ︸

bj

(Ij − E(Ij)),(2.64)

which o�ers the decomposition needed for the application of Theorem 2.2 (Eq. (2.20)). For
the value of σ2

WLS(n) in (2.46), since the observations are independent and follow a Poisson
distribution, we have that

Cov{Ii, Ij} =

{
V ar{Ii} = λi(xc), if i = j,
0 ∼ .

(2.65)

Then if we replace (2.62), (2.63) and (2.65) in (2.46), we have that

σ2
WLS(n) =

∑n
i=1w

2
i λi(xc)

(
∂λi(α)
∂α

)2
∣∣∣∣
α=xc(∑n

i=1 wi

(
∂λi(α)
∂α

)2
∣∣∣∣
α=xc

)2 . (2.66)

On the other hand, the expression for βWLS(n) and εWLS(n) can be determined from the
evaluation of (2.43) and (2.42), respectively. Looking at them, the problem reduces to deter-
mine the key term ∂2τWLS

∂Ii∂Ij
(Īn + t(In − Īn)). For that, if we use [50, Eq. (17)] we can obtain

29



the following identity10

∂2τWLS

∂Ii∂Ij
(Īn + t(In − Īn)) =

−1[
n∑

i=1

∂2λi(α)
∂α2 · (λi(α)− (Īi + t(Ii − Īi)))2wi + 2wi

(
∂λi(α)
∂α

)2
]2 ·

[[[
n∑

i=1

∂3λi(α)

∂α3
· (λi(α)− (Īi + t(Ii − Īi)))2wi + 6wi

∂2λi(α)

∂α2

∂λi(α)

∂α

]
·

(
2wj

∂λj(α)
∂α

)
[
n∑

i=1

∂2λi(α)
∂α2 · (λi(α)− (Īi + t(Ii − Īi)))2wi − 2wi

(
∂λi(α)
∂α

)2
] − (2wj

∂2λj(α)

∂α2

) ·
(

2wi
∂λi(α)

∂α

)
−
(

2wi
∂2λi(α)

∂α2

)
·
(

2wj
∂λj(α)

∂α

)]∣∣∣∣∣
α=τWLS(Īn+t(In−Īn))

,

(2.67)

which concludes the result.

Proof of Proposition 2.5

Proof: Using the function h(α) =
∑n

i=1 wi(λi(xc)−λi(α))2, we need to show that the minimum
is reached only at α = xc. From this, we have that h(α) ≥ 0 and it achieves its minimum at
xc. To prove uniqueness, let us assume that there is another position x∗c 6= xc at which h is
zero. Then

h(x∗c) =
n∑

i=1

wi(λi(xc)− λi(x
∗
c))

2 = 0

⇔ λi(xc) = λi(x
∗
c), ∀i ∈ {1, . . . , n}. (2.68)

The last identity is not possible, because if we use a Gaussian PSF there is at least one
i ∈ {1, . . . , n} such that λi(xc) 6= λi(x

∗
c).

Proof of Eq. (2.67)

Proof: Recall [50, Eq. (17)] and considering JWLS(α, In) as the cost function we have that

∂2τWLS

∂Ii∂Ij
(Ī
n

+ t(I
n − Īn)) =

[
−
∂2JWLS(α, Īn + t(In − Īn))

∂α2

]−1 ([
∂3JWLS(α, Īn + t(In − Īn))

∂α3
·
∂τWLS(Īn + t(In − Īn))

∂Ij
+

∂3JWLS(α, Īn + t(In − Īn))

∂α2∂Ij

]
·
∂τWLS(Īn + t(In − Īn))

∂Ii

+
∂3JWLS(α, Īn + t(In − Īn))

∂α2∂Ii
·
∂τWLS(Īn + t(In − Īn))

∂Ij
+
∂3JWLS(α, Īn + t(In − Īn))

∂α∂Ii∂Ij

)∣∣∣∣∣
α=τWLS(Īn+t(In−Īn))

,

(2.69)

where from the de�nition of JML(α, In) we have that

∂2JWLS(α, Īn + t(In − Īn))

∂α2
=

n∑
i=1

∂2λi(α)

∂α2
· (λi(α)− (Īi + t(Ii − Īi)))2wi + 2wi

(
∂λi(α)

∂α

)2

,

(2.70)

10The derivation of this identity is presented in Appendix 2.6.2.
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∂3JWLS(α, Īn + t(In − Īn))

∂α3
=

n∑
i=1

∂3λi(α)

∂α3
· (λi(α)− (Īi + t(Ii− Īi)))2wi + 6wi

∂2λi(α)

∂α2

∂λi(α)

∂α
,

(2.71)

∂3JWLS(α, Īn + t(In − Īn))

∂α2∂Ii

= −
(

2wi
∂2λi(α)

∂α2

)
, (2.72)

∂3JWLS(α, Īn + t(In − Īn))

∂α∂Ii∂Ij
= 0. (2.73)

Concerning ∂τML(Īn+t(In−Īn))
∂Ii

it is just the i-th component of the gradient in Eq. (2.57), then
we use (2.58) and (2.60)

∂τWLS(Īn + t(In − Īn))

∂Ii

=
−∂2JWLS(α,Īn+t(In−Īn)))

∂α∂Ii
∂2JWLS(α,Īn+t(In−Īn))

∂α2

=

(
2wi

∂λi(α)
∂α

)
n∑

i=1

∂2λi(α)
∂α2 · (λi(α)− (Īi + t(Ii − Īi)))2wi + 2wi

(
∂λi(α)
∂α

)2
.

(2.74)

Finally, replacing (2.70), (2.71), (2.72), (2.73) and (2.74) in (2.69), and evaluating in α =
τWLS(Īn + t(In − Īn)) we obtain the desired result

∂2τWLS

∂Ii∂Ij
(Īn + t(In − Īn)) =

−1[
n∑

i=1

∂2λi(α)
∂α2 · (λi(α)− (Īi + t(Ii − Īi)))2wi + 2wi

(
∂λi(α)
∂α

)2
]2 ·

[[[
n∑

i=1

∂3λi(α)

∂α3
· (λi(α)− (Īi + t(Ii − Īi)))2wi + 6wi

∂2λi(α)

∂α2

∂λi(α)

∂α

]
·

(
2wj

∂λj(α)
∂α

)
[
n∑

i=1

∂2λi(α)
∂α2 · (λi(α)− (Īi + t(Ii − Īi)))2wi − 2wi

(
∂λi(α)
∂α

)2
] − (2wj

∂2λj(α)

∂α2

) ·
(

2wi
∂λi(α)

∂α

)
−
(

2wi
∂2λi(α)

∂α2

)
·
(

2wj
∂λj(α)

∂α

)]∣∣∣∣∣
α=τWLS(Īn+t(In−Īn))

.

(2.75)

2.6.3 Proof of Theorem 2.4

Proof: Again the proof and the derivation of σ2
ML(n), βML(n) and εML(n) reduce to apply

Theorem 2.2. First, we need to validate the assumption of Theorem 2.2. Beginning with the
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equality in Eq. (2.57), it follows that

∇20JML(α, In) =
∂2

∂α2
JML(α, In)

= −
n∑

i=1

Ii
1

λ2
i (α)

(
∂λi(α)

∂α

)2

+
n∑

i=1

(
Ii

1

λi(α)
− 1

)
∂2λi(α)

∂α2
, (2.76)

∇11JML(α, In) =

(
∂2

∂α∂I1

JML(α, In), . . . ,
∂2

∂α∂In
JML(α, In)

)T
=

(
1

λ1(α)

∂λ1(α)

∂α
, . . . ,

1

λn(α)

∂λn(α)

∂α

)T
. (2.77)

For evaluating these two expression at α = τML(Īn) as required in (2.57), we use that11

τML(Īn) = argmin
α∈R

n∑
i=1

−λi(xc) ln(λi(α)) + λi(α). (2.78)

Then we will use the following result

Proposition 2.6 Under the assumption of a Gaussian PSF, τML(Īn) = xc.

Notice again, that this proposition is the second assumption used in Theorem 2.2. From
this proposition, it follows that

∇20J(τML(Īn), Īn) = −
n∑

i=1

λi(xc)
1

λ2
i (xc)

(
∂λi(α)

∂α

)2
∣∣∣∣∣
α=xc

+
n∑

i=1

(
λi(xc)

λi(xc)
− 1

)
∂2λi(α)

∂α2

∣∣∣∣
α=xc

,

= −
n∑

i=1

1

λi(xc)

(
∂λi(α)

∂α

)2
∣∣∣∣∣
α=xc

, (2.79)

∇11J(τML(Īn), Īn) =

(
∂2

∂α∂I1

J(α, In), . . . ,
∂2

∂α∂In
J(α, I)

)T ∣∣∣∣∣
α=τML(Īn)

=

(
1

λ1(α)

∂λ1(α)

∂α
, . . . ,

1

λn(α)

∂λn(α)

∂α

)T ∣∣∣∣∣
α=xc

. (2.80)

Finally, we apply (2.79) and (2.80) in (2.50) to obtain that

∇τML(Īn) · (In − Īn) = −[∇20J(τML(Īn), Īn)]−1[∇11J(τML(Īn), Īn)](In − Īn)

= −

[
n∑

i=1

1

λi(xc)

(
∂λi(α)

∂α

)2
∣∣∣∣∣
α=xc

]−1

︸ ︷︷ ︸
a

·
n∑
j=1

1

λj(xc)

∂λj(α)

∂α

∣∣∣∣
α=xc︸ ︷︷ ︸

bj

(Ij − E(Ij)) ,(2.81)

that shows that the su�cient condition in (2.20) of Theorem 2.2 is satis�ed. For computing
the value σ2

ML(n) in (2.46), we have that

Cov{Ii, Ij} =

{
V ar{Ii} = λi(xc), if i = j,
0 ∼ .

(2.82)

11Considering that Īi = E{Ii} = λi(xc).
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since the observations are independent and follow a Poisson distribution. Then, replacing
(2.79), (2.80) and (2.82) in (2.46) we have that

σ2
ML(n) =

1∑n
i=1

1
λi(xc)

(
∂λi(α)
∂α

)2
∣∣∣∣
α=xc

, (2.83)

which resolves the identity in (2.35). Finally βML(n) and εML(n) comes from evaluating (2.43)
and (2.42) in this ML context. For that we only need to determine ∂2τML

∂Ii∂Ij
(Īn + t(In − Īn)).

Using [50, Eq. (17)], we can obtain the following identity12

∂2τML

∂Ii∂Ij
(Īn + t(In − Īn)) =

−1[
n∑

i=1

∂2λi(α)
∂α2 · Īi+t(Ii−Īi)λi(α) − Īi+t(Ii−Īi)

λ2
i (α)

·
(
∂λi(α)
∂α

)2
]2 ·

[[[
n∑

i=1

∂3λi(α)

∂α3
· Īi + t(Ii − Īi)

λi(α)
− 3

∂2λi(α)

∂α2

∂λi(α)

∂α

Īi + t(Ii − Īi)
λ2

i (α)
+ 2

Īi + t(Ii − Īi)
λ3

i (α)

(
∂λi(α)

∂α

)3
]
·

(
− 1
λj(α)

∂λj(α)
∂α

)
[∑n

i=1
∂2λi(α)
∂α2 · Īi+t(Ii−Īi)λi(α) − Īi+t(Ii−Īi)

λ2
i (α)

·
(
∂λi(α)
∂α

)2
] +

∂2λj(α)

∂α2

1

λj(α)
− 1

λj(α)

(
∂λj(α)

∂α

)2

 ·
(
− 1

λi(α)

∂λi(α)

∂α

)
+

(
∂2λi(α)

∂α2

1

λi(α)
− 1

λi(α)

(
∂λi(α)

∂α

)2
)
·
(
− 1

λj(α)

∂λj(α)

∂α

)]∣∣∣∣∣
α=τML(Īn+t(In−Īn))

,

(2.84)

which concludes the result.

Proof of Proposition 2.6

Proof: Let us consider the function gn : Rn+ → R given by

gn(y1, ..., yn)λni =
n∑

i=1

−λi ln(yi) + yi. (2.85)

We note that

min
yn1 ∈Rn+

gn(y1, ..., yn)λni =
n∑

i=1

min
yi∈R+

g1(yi)λi
, (2.86)

where applying �rst order condition yi = λi, ∀i ∈ {1, ..., n}. Returning to our problem in
(2.78) where λi = Īi = λi(xc) and yi = λi(α), it is clear, considering the Gaussian pro�le in
PSF, that

λi(α) = λi(xc) ∀i ∈ {1, ..., n} if α = xc, (2.87)

which concludes the result.

12The derivation of this result is presented in Appendix 2.6.3.
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Proof of Eq. (2.84)

Proof: Recall [50, Eq. (17)] and considering JML(α, In) as the cost function we have that:

∂2τML

∂Ii∂Ij
(Ī
n

+ t(I
n − Īn)) =

[
−
∂2JML(α, Īn + t(In − Īn))

∂α2

]−1 ([
∂3JML(α, Īn + t(In − Īn))

∂α3
·
∂τML(Īn + t(In − Īn))

∂Ij
+

∂3JML(α, Īn + t(In − Īn))

∂α2∂Ij

]
·
∂τML(Īn + t(In − Īn))

∂Ii

+
∂3JML(α, Īn + t(In − Īn))

∂α2∂Ii
·
∂τML(Īn + t(In − Īn))

∂Ij
+
∂3JML(α, Īn + t(In − Īn))

∂α∂Ii∂Ij

)∣∣∣∣∣
α=τML(Īn+t(In−Īn))

,

(2.88)

where from the de�nition of JML(α, In) we have that

∂2JML(α, Īn + t(In − Īn))

∂α2
=

n∑
i=1

∂2λi(α)

∂α2
· Īi + t(Ii − Īi)

λi(α)
− Īi + t(Ii − Īi)

λ2
i (α)

·
(
∂λi(α)

∂α

)2

, (2.89)

∂3JML(α, Īn + t(In − Īn))

∂α3
=

n∑
i=1

∂3λi(α)

∂α3
·
Īi + t(Ii − Īi)

λi(α)
− 3

∂2λi(α)

∂α2

∂λi(α)

∂α

Īi + t(Ii − Īi)
λ2

i (α)
+ 2

Īi + t(Ii − Īi)
λ3

i (α)

(
∂λi(α)

∂α

)3

,

(2.90)

∂3JML(α, Īn + t(In − Īn))

∂α2∂Ii

=
∂2λi(α)

∂α2
· 1

λi(α)
− 1

λ2
i (α)

·
(
∂λi(α)

∂α

)2

, (2.91)

∂3JML(α, Īn + t(In − Īn))

∂α∂Ii∂Ij
= 0. (2.92)

Concerning ∂τML(Īn+t(In−Īn))
∂Ii

it is just the i-th component of the gradient in Eq. (2.57), then
we use (2.76) and (2.77)

∂τML(Īn + t(In − Īn))

∂Ii

=
−∂2JML(α,Īn+t(In−Īn)))

∂α∂Ii
∂2JML(α,Īn+t(In−Īn))

∂α2

=

(
− 1
λi(α)

∂λi(α)
∂α

)
n∑

i=1

∂2λi(α)
∂α2 · Īi+t(Ii−Īi)λi(α)

− Īi+t(Ii−Īi)
λ2

i (α)
·
(
∂λi(α)
∂α

)2
.

(2.93)

Finally, replacing (2.89), (2.90), (2.91), (2.92) and (2.93) in (2.88), and evaluating in α =
τML(Īn + t(In − Īn)) we obtain the desired result

∂2τML

∂Ii∂Ij
(Īn + t(In − Īn)) =

−1[
n∑

i=1

∂2λi(α)
∂α2 · Īi+t(Ii−Īi)λi(α) − Īi+t(Ii−Īi)

λ2
i (α)

·
(
∂λi(α)
∂α

)2
]2 ·

[[[
n∑

i=1

∂3λi(α)

∂α3
· Īi + t(Ii − Īi)

λi(α)
− 3

∂2λi(α)

∂α2

∂λi(α)

∂α

Īi + t(Ii − Īi)
λ2

i (α)
+ 2

Īi + t(Ii − Īi)
λ3

i (α)

(
∂λi(α)

∂α

)3
]
·

(
− 1
λj(α)

∂λj(α)
∂α

)
[∑n

i=1
∂2λi(α)
∂α2 · Īi+t(Ii−Īi)λi(α) − Īi+t(Ii−Īi)

λ2
i (α)

·
(
∂λi(α)
∂α

)2
] +

∂2λj(α)

∂α2

1

λj(α)
− 1

λj(α)

(
∂λj(α)

∂α

)2

 ·
(
− 1

λi(α)

∂λi(α)

∂α

)
+

(
∂2λi(α)

∂α2

1

λi(α)
− 1

λi(α)

(
∂λi(α)

∂α

)2
)
·
(
− 1

λj(α)

∂λj(α)

∂α

)]∣∣∣∣∣
α=τML(Īn+t(In−Īn))

.

(2.94)
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Chapter 3

Detection in Hypothesis Testing

In the simplest hypothesis testing problem the statistician has to decide on the basis of a
sample of size n between the null (H0) and alternative (H1) hypothesis of which only one
is true. Often this task reduces to �nd a test with a minimal probability of error of type
II given prescribed probability of error of type I. The asymptotic performance of the type
II error is characterized by the Stein's Lemma [40]. We consider a new dimension to this
problem by assuming that the statistician does not have direct access to the data; rather,
he/she can be informed about them with a rate constraint, meaning lossy version of the data.
Then we are interested in the non-asymptotic rate of convergence of the type II error in this
new setting. First of all we formalize the hypothesis testing problem with rate constraint.
Then we present some classical results from the simple hypothesis testing by giving the non-
asymptotic performance of the type II error given a prescribed type I error. Finally we move
to the challenging problem where we have rate restrictions and we present an achievable rate
of convergence for the second kind of error.

3.1 Preliminaries

For the rest of this work, we restrict our attention to �nite alphabets X and Y. Denoting
P(X) the family of probability measures on X. The measure and the product measure of the
random variables X and Y taking values in X and Y will be denoted µX ∈ P(X), µY ∈ P(Y)
and µX,Y ∈ P(X× Y), respectively. Xn

1 = (X1, ..., Xn) and Y n
1 = (Y1, ..., Yn) denote the �nite

block samples with joint product measure µXn
1 ,Y

n
1
, µnX,Y (n−fold distribution).

Consider a bivariate hypothesis testing de�ned as

θ = 0→ H0 :(X, Y ) ∼ µX,Y (0) , µX,Y ∈ P(X× Y)

θ = 1→ H1 :(X, Y ) ∼ µX,Y (1) , µ̃X,Y ∈ P(X× Y)

with 0 < D(µX,Y (0)||µX,Y (1)) <∞.
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3.2 Inference Problem

The problem to tackle consists on a non-asymptotoc analysis of a particular case named Test
against independence with a �xed rate constraint on one of the modalities. In particular, our
null and alternative hypothesis are described as follows:

θ = 0→ H0 :(X, Y ) ∼ µX,Y (0) , µX,Y = µX · µY |X ∈ P(X× Y)

θ = 1→ H1 :(X̃, Y ) ∼ µX,Y (1) , µ̃X,Y = µX · µY ∈ P(X× Y),

where µY =
∑

x∈X µX(x)µY |X(·|x). Consider that the statistician observes Y n
1 samples di-

rectly and can be informed about Xn
1 samples indirectly, via a �xed rate encoding functions

fn(·) of rate R in bits per sample. More precisely, given the joint vector (X1, ..., Xn, Y1, ..., Yn)
an encoding-decoding rule (fn, φn) of length n and rate R can be represented by two functions:

• fn : Xn → {1, ..., 2nR}, (Encoder)
• φn : {1, ..., 2nR} × Yn → Θ = {0, 1}, (Decoder).

Now we will de�ne the operational problem following the classical de�nitions in hypothesis
testing [61].

De�nition 3.1 Given (X1, Y1), ..., (Xn, Yn) ∼ µX,Y (θ), and given a pair of encoder-decoder
(fn, φn) of rate R and blocklength n, we de�ne the type I error as

P0(fn, φn, µX) , P(φn(fn(Xn
1 ), Y n

1 ) 6= 0|θ = 0)

= µnX,Y (Ac(fn, φn)) (3.1)

where µnX,Y is the n−fold distribution (µnX,Y ,
n∏

i=1

µX,Y ) and

A(fn, φn) , {(x1, ..., xn, y1, ..., yn) ∈ Xn × Yn|φn(fn(x1, ..., xn), y1, ..., yn) = 0}. (3.2)

In particular, we can express A(fn, φn) as

A(fn, φn) =
⋃

(i,y1,...,yn)∈φ−1
n ({0})

f−1
n ({i})× {(y1, ..., yn)}. (3.3)

Similarly the type II error is de�ned as

P1(fn, φn, µX) , P(φn(Y n
1 , fn(Xn

1 )) = 0|θ = 1)

= µ̃nX,Y (A(fn, φn)). (3.4)

and µ̃nX,Y ,
n∏

i=1

µ̃X,Y

De�nition 3.2 We say that a pair of encoder-decoder (fn, φn) of length n and rate R operates
at type I error ε > 0 if for µX ∈ P(X)

P0(fn, φn, µX) ≤ ε. (3.5)
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With this de�nition we introduce the optimal type II error of rate R and type I error ε
(function of µX ∈ P(X)) as the solution of

βn(ε, R, µX) , min
(fn,φn) of blocklength n and size R,

operating at type I error ε

{P1(fn, φn, µX)}. (3.6)

Alternatively, we can recover βn(ε, R, µX) in two-stages as

βn(ε, R, µX) = min
fn

{
βn(ε, R, µX , fn)

∣∣∣ 1

n
log(|fn(Xn)|) ≤ R

}
, (3.7)

where

βn(ε, R, µX , fn) , min{µ̃fn(Xn
1 )Y n1

(A)| A ⊆ fn(Xn)× Yn and µfn(Xn
1 )Y n1

(A) ≥ 1− ε} (3.8)

Note that this de�nition follows closely the one adopted by Ahlswede et al. [39] and it
represents the optimum for the families of encoder-decoder given a distribution µX . In what
follows we are interested in the asymptotic error exponent (assuming for a second that this
limit exists):

ξ(ε, R, µX) , lim
n→∞

− 1

n
log(βn(ε, R, µX)). (3.9)

The following result shows a single letter closed-form characterization for ξ(ε, R, µX).

Theorem 3.3 (Ahlswede & Csiszár. [39]) ∀ε > 0,

ξ(ε, R, µX) = max
U :U→X→Y

I(U ;X)≤R |U|≤|X|+1

I(U ;Y ). (3.10)

Interestingly, this result connects this problem of test of independences with communication
constraint with the noisy lossy source coding problem using the log-loss (or cross entropy) as
the distortion metric [62]. This is precisely (in its asymptotic regime when n lim∞, see Eq.
3.9) the problem of information bottle-neck [63].

De�nition 3.4 Using the same reasoning that in the problem of universal source coding,
given (fn, φn) of length n and size R operating at type I error ε > 0 for µX , we can de�ne
the discrepancy in error exponent as

EO(fn, φn, µX) = ξ(ε, R, µX)−
(
− 1

n
log(P1(fn, φn, µX))

)
. (3.11)

Adopting EO(fn, φn, µX) as a performance indicator, we can introduce weak and strong no-
tions of universal source coding for this type of rate constrained hypothesis testing problem.
Before this, we extend De�nition 3.2 to a family F ⊆ P(X).

De�nition 3.5 We say that (fn, φn) of length n and size R operates at type 1 error ε > 0
for the family F ⊆ P(X), if ∀µX ∈ F

P0(fn, φn, µX) ≤ ε. (3.12)
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3.3 Non asymptotic analysis for the Error Exponent: no-

rate constraint case

Here we present an analysis of the discrepancy in Eq. (3.11) for the case of a known µX ∈ P(X)
with �nite n and no-rate constraint (i.e, R > H(X)). In other words, we present a non-
asymptotic analysis of the error exponent of the classical Stein's Lemma [40]. We begin with
some de�nitions:

De�nition 3.6 Given (X1, Y1), ..., (Xn, Yn) ∼ µX,Y (θ), and given a decoder (test) φn : Xn ×
Y
n → Θ = {0, 1} of blocklength n, the type I error is

P0(φn, µX) , P(φn(Xn
1 , Y

n
1 ) 6= 0|θ = 0) (3.13)

= µnX,Y (Ac(φn)), (3.14)

where

A(φn) , {(x1, ..., xn, y1, ..., yn) ∈ Xn × Yn|φn(x1, ..., xn, y1, ..., yn) = 0}. (3.15)

Similarly the type II error is de�ned as

P1(φn, µX) , P(φn(Xn
1 , Y

n
1 ) = 0|θ = 1) (3.16)

= µ̃nX,Y (A(φn)). (3.17)

De�nition 3.7 We say that φn of length n operates at type I error with no-rate restrictions
ε > 0 if for µX ∈ P(X)

P0(φn, µX) ≤ ε. (3.18)

Consequently, the operational type II error is de�ned as

βn(ε, µX) , min
(φn) of blocklength n

operating at type I error ε

{P1(φn, µX)}, (3.19)

and the asymptotic error exponent is expressed by (considering that the limit exists)

ξ(ε, µX) = lim
n→∞

−1

n
log(βn(ε, µX)). (3.20)

A single letter characterization for ξ(ε, µX) is presented in the following result.

Theorem 3.8 (Stein [40]) ∀ε > 0,

ξ(ε, µX) = D(µX,Y ||µ̃X,Y ). (3.21)

The following two results (theorems 3.9 and 3.10) present an upper (achievability argument)
and lower (converse argument) bound for the discrepancy between the asymptotic closed-form
expression ξ(ε, µX) and its non-asymptotic counterpart −1

n
log(βn(ε, µX)) measured by

D(µX,Y ||µ̃X,Y )−
(
− 1

n
log(βn(ε, µX))

)
. (3.22)
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3.3.1 Achievability (Upper bound) and Converse (lower bound) for
the discrepancy

Theorem 3.9 Achievability: Given a �xed µX ∈ P(X) and ε ∈ (0, 1) then

ξ(ε, µX)−
(
− 1

n
log(βn(ε, µX))

)
≤ −

√
σ2(µX,Y , µ̃X,Y )

n
Φ−1(ε) +O

(
1

n

)
∀n ≥ 1, (3.23)

where σ2(µX,Y , µ̃X,Y ) , VarX,Y∼µX,Y

(
log
(
µX,Y (X,Y )

µ̃X,Y (X,Y )

))
and Φ−1(·) denotes the inverse of the

cumulative distribution function of the standard normal distribution.

Similar, for the converse we have that

Theorem 3.10 Under the same hypothesis than Theorem 3.9, for any 0 < ε < 1/2 we have
that

ξ(ε, µX)−
(
− 1

n
log(βn(ε, µX))

)
≥
− log

(
1

1−ε−δ̃n(ε)

)
n

− δ̃n(ε) (3.24)

where δ̃n(ε) =
√

2 ln(1/ε)
n
· sup(x,y)∈X×Y

∣∣∣∣∣ log
(
µX,Y ({(x,y)})
µ̃X,Y ({(x,y)})

)∣∣∣∣∣.
The proof are presented in Appendix 3.6.1 and 3.6.2, respectively. Theorems 3.9 and

3.10 show a non-asymptotic performance of the type II error for a prescribed type I error.
It is well known that the type II error decreases as an exponential rate, this theorems give
more precise asymptotic description of the behavior of this probability of error and the rate
of which converges to the limit given by ξ(ε, µX). Both bounds are in the same order of
magnitude (O(1/

√
n)) and, consequently, they are consistent and we can say that they o�er

optimal rate of convergences to the limit. A corollary of this theorems is when we make the
blocklength tends to in�nity where we recover the Stein's Lemma.

3.4 Discrepancy analysis: Rate constraint case

Here we consider the more challenging case with a rate constraint. We follow closely the
arguments presented in the non-asymptotic case. The following result o�ers an upper bound
for the discrepancy in Eq. (3.11), in the case when we have a rate restriction.

Theorem 3.11 Given µX ∈ P(X) and ε > 0, we have that ∀γ > 0, there exists a scheme
{(fn, φn)n≥1}, operating at type I error ε > 0, such that

ξ(ε, R, µX)−
(
− 1

n
log(P1(fn, φn, µX))

)
≤ γ + δn ∀n ≥ 1 (3.25)

where δn is O(1/
√
n). Furthermore, from Eq. (3.25) it follows that eventually in n

ξ(ε, R, µX)−
(
−1

n
log(βn(ε, R, µX))

)
≤ O

(
log(n)

n1/3

)
. (3.26)
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Proof. For the proof of this result we use the following Lemma that is an extension of the
achievability and converse argument presented in Section 3.3.

Lemma 3.4.1 Given µX ∈ P(X) and an arbitrary function f̃l : Xl → {1, ..., 2lR} there exist
a scheme {(fn, φn), n ≥ 1} operating at type I error ε > 0 of rate R, such that

ξ(ε, R, µX)−
(
− 1

n
log(P1(fn, φn, µX))

)
≤
[
ξ(ε, R, µX)− 1

l
D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l)

]
+ δ̃n,l(ε)

(3.27)
with

δ̃n,l(ε) =

√
2 ln(1/ε)

nl
· sup

(z,y1,...,yl)∈f̃l(Xl)×Yl

∣∣∣∣∣ log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)∣∣∣∣∣. (3.28)

The proof of Lemma 3.4.1 follows closely the converse argument of Section ?? and is presented
in Appendix 3.6.5.

The result in Eq. (3.25) follows from Lemma 3.4.1 and the fact that ∀γ > 0 we can always
�nd l∗ and f ∗ function of γ such that (see [39], their equation (2.6) and Theorem 3),

ξ(ε, R, µX)− γ < 1

l∗
D(µf̃∗l (Xl∗ ),Y l∗ ||µ̃f̃∗l (Xl∗ ),Y l∗ ) < ξ(ε, R, µX) (3.29)

Note that Eq. (3.25) tells us that we can construct an scheme operating at type I error ε

that has a discrepancy with respect to (ξ(ε, R, µX)− γ) that goes to zero at a rate O
(

1√
n

)
as along as we tolerate an o�set γ > 0.
From this result, we can address the case where we make γ = 0 using the following inequality:
∀l > 0 and f̃l : Xl → {1, ..., 2lR} we have from Lemma 3.4.1 and the de�nition of βn(ε, R, µX)
in Eq. (3.6), that:

ξ(ε, R, µX)−
(
− 1

n
log(βn(ε, R, µX))

)
≤ ξ(ε, R, µX)−

(
− 1

n
log(P1(fn, φn, µX))

)
≤ ξ(ε, R, µX)− 1

l
D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l) + δ̃n,l(ε)

=

 max
U :U→X→Y

I(U ;X)≤R |U|≤|X|+1

I(U ;Y )− 1

l
I(f̃l(X

l), Y l)

+ δ̃n,l(ε) (3.30)

First, we note that the bound in Eq. (3.30) is valid for an arbitrary f̃l, in particular we can
optimize it by the supremum. Second, we know the rate of convergence of δ̃n,l(ε) from Eq.
(3.28). Then the optimal upper bound obtained from Eq. (3.30) reduces to the analysis of:

max
U :U→X→Y

I(U ;X)≤R |U|≤|X|+1

I(U ;Y )− max
f̃l:Xl→{1,...,2lR}

1

l
I(f̃l(X

l), Y l). (3.31)

In other words, this is precisely the non-asymptotic analysis of the information bottleneck
problem [63]. It is well-known that this coding problem can be presented as a classical rate-
distortion (�xed-rate) source coding problem using the log-loss as the distortion function [68].
More precisely, Eq. (3.31) can be described as

min
f̃l:Xl→{1,...,2lR}

1

l
H(Y l|f̃l(X l))− min

U :U→X→Y
I(U ;X)≤R |U|≤|X|+1

H(Y |U) (3.32)
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Now, let us consider a family of probability distributions µλ ∈ P(Y), indexed with a parameter
λ ∈ Λ where Λ is some alphabet. Given a sequence of parameters λn = (λ1, ..., λn) ∈ Λn the
product probability distribution in P(Y) is de�ned as

µλn({(y1, ..., yn)}) ,
n∏

i=1

µλi
({yi}) (3.33)

Let ρ(λn, Y n) : Λn × Yn → R
+ ∪ {0} denote the logarithmic loss distortion given by:

ρ(λn, yn) , − 1

n
log µλn1 ({(y1, ..., yn)}) =

n∑
i=1

− 1

n
log µλi

({yi}). (3.34)

Where by construction ρ(λn, yn) is additive. Then the following lemma holds:

Lemma 3.4.2 [68] Let (X l, Y l) be a random vector with known joint distribution. For any,
�xed rate encoding function f̃l : Xl → {1, ..., 2lR} and decoding function g : {1, ..., 2lR} → Λn

such that g(f̃l(X
l)) = λl it follows that

E[ρ(g(u), Y l)|f̃l(X l) = u] ≥ 1

l
H(Y l|f̃l(X l) = u). (3.35)

Noting that averaging Eq. (3.35) with repect to X l we get that

E[ρ(g(f̃l(X
l)), Y l)] ≥ 1

l
H(Y l|f̃l(X l)). (3.36)

The term in the LHS of Eq. (3.36) is a case of noisy rate distortion under the logarithmic
loss, the encoder f̃l and decoder g1. It is convenient to de�ne a new distortion function
ρ̃(xl, λl) : Xl × Λl → R ∪ {0} as

ρ̃(xl, λl) , E[ρ(λl, Y l)|X l = xl]. (3.37)

Notice that by this de�nition ρ̃(xl, λl) =
∑l

i=1 ρ̃(xi, λi) is additive and λi = gi(f̃l(x
l)) where

gi is the ith component of function g. Then using f̃l as the encoder and gi as the decoder we
recover the classical rate distortion problem [69]. Then we use [ [70], Theorem 3] to obtain
that

1

l
H(Y l|f̃l(X l))

from lemma 3.4.2
≤ EX∼µlX

[ρ̃(X l, λl)]
from [ [70], Theorem 3]

≤ D(R)− ∂

∂R
D(R)

log l

2l
+ o

(
log l

l

)
(3.38)

where D(R) is the noisy rate-distortion function, that precisely correspond in this context to

min
U :U→X→Y

I(U ;X)≤R |U|≤|X|+1

H(Y |U)

. Returning to Eq. (3.31), we have from Eq. (3.38) that

max
U :U→X→Y

I(U ;X)≤R |U|≤|X|+1

I(U ;Y )− max
f̃l:Xl→{1,...,2lR}

1

l
I(f̃l(X

l), Y l) ≤ − ∂

∂R
D(R)

log l

2l
+ o

(
log l

l

)
,

(3.39)

1see Appendix (pending)
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which from Eq. (3.30) implies that

ξ(ε, R, µX)−
(
− 1

n
log(βn(ε, R, µX))

)
≤ − ∂

∂R
D(R)

log l

2l
+ δ̃n,l(ε) + o

(
log l

l

)
. (3.40)

If we look closely to Eq. (3.40) there is a compromise between δ̃n,l(ε) and
log l
l

function of l.
First, we need to give an explicit dependence of l in the term presented in δ̃n,l(ε), for this,
we use the following lemma

Proposition 3.12 Consider two arbitrary probability measures µX , vX ∈ P(X), an arbitrary
encoder fn : X→ {1, ...., n}. and its induced partition of X given by:

πn = {Ai,n , f−1
n ({i}) : i ∈ {1, ..., n}} ⊂ B(X) (3.41)

where B(X) denotes the power set of X, then

sup
A∈πn

µX(A)

vX(A)
≤ sup

x∈X

µX({x})
vX({x})

(3.42)

Proof. Given A ∈ πn we note that

µX(A)

vX(A)
=

|A|∑
j=1

µX({j : j ∈ A})

|A|∑
j=1

vX({j : j ∈ A})
(3.43)

Then, given a collection of positive numbers {ai : i ∈ {1, ..., n}} and {bi : i ∈ {1, ..., n}}, we
use the following calculus inequality

n∑
i=1

ai

n∑
i=1

bi

≤ max
i

{
ai

bi

}
(3.44)

Finally, since A is arbitrary and the positiveness of the probability measure we conclude the
desired result.

Now, de�ne

πl,R = {Ai,l,R , f̃−1
l ({i}) : i ∈ {1, ..., 2lR}} ⊂ B(X l) (3.45)

Notice that by Eq. (3.45), f̃l induces a partition over Xl, then using Proposition 3.12, we get

42



from δ̃n,l(ε) the following upper bound

δ̃n,l(ε) =

√
2 ln(1/ε)

nl
· sup

(z,y1,...,yl)∈f̃l(Xl)×Yl

∣∣∣∣∣ log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)∣∣∣∣∣.
=

√
2 ln(1/ε)

nl
· sup

(Al,R,y1,...,yl)∈πl,R×Yl

∣∣∣∣∣ log

(
µlX,Y (Al,R × {(y1, ..., yl)})
µ̃lX,Y (Al,R × {(y1, ..., yl)})

)∣∣∣∣∣
≤
√

2 ln(1/ε)

nl
· sup

(x1,...xl,y1,...,yl)∈Xl×Yl

∣∣∣∣∣ log

(
µlX,Y ({(x1, ..., xl, y1, ..., yl)})
µ̃lX,Y ({(x1, ..., xl, y1, ..., yl)})

)∣∣∣∣∣
≤
√

2l ln(1/ε)

n
· sup

(x,y)∈X×Y

∣∣∣∣∣ log

(
µX,Y ({(x, y)})
µ̃X,Y ({(x, y)})

)∣∣∣∣∣. (3.46)

Then the problem reduces to minimize the RHS of Eqs. (3.40) and (3.46) function of l.
For that if we propose l = nα with α < 1, the optimum value of α is the consequence of
assuming that the two components has the same asymptotic behaviour as a function of n,

this reduces to the following matching correlations. lognα

nα
=
√

nα

n
, implying that α∗ = 1/3.

Finally replacing in Eq. (3.40) we get the desired result

ξ(ε, R, µX)−
(
− 1

n
log(βn(ε, R, µX))

)
≤ O

(
log(n)

n1/3

)
. (3.47)

3.5 Conclusions and Final Remarks

The results provided in Section 3.3 and 3.4 provided concrete non-asymptotic �nite sampling
description of the performance of an hypothesis test where we have a rate constraint in one of
the sources. For the proof many arguments are used based on the use of so�sticated results
from concentration inequalities. For the classical problem we obtain rate of convergences to
the limit that are optimal of the order O(1/

√
n). For the more challenging rate constraint

problem, we obtain a result that provide a rate of convergence to the asymptotic limit that
goes as O(ln(n)/n1/3). Thus we found a discrepancy with the classical setting presented in
Section 3.3, which rises the problem of �nding a converse result to resolve if this O(ln(n)/n1/3)
rate of convergence to the limit is optimal.

3.6 Appendix

3.6.1 Proof of Theorem 3.9

Proof. The proof is based on an achievability argument [64], meaning that we are going to
prove that there is a scheme {φn}n≥1 operating at type I error ε. For that we consider the
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optimal Neyman-Pearson family parametrized by t ≥ 0, in particular we consider

An,t ,

{
(x1, ..., xn, y1, ..., yn) ∈ Xn × Yn

∣∣∣∣∣µnX,Y ({(x1, ..., xn, y1, ..., yn)})
µ̃nX,Y ({(x1, ..., xn, y1, ..., yn)})

> ent

}
, (3.48)

an its induced test denoted by φn,t(·) : Xn × Y
n 7→ {0, 1}2. Choosing this collection, the

probability of type I is given by

P0(φn,t, µX) = P(φn,t(X
n
1 , Y

n
1 ) 6= 0|θ = 0)

= µnX,Y

({
(x1, ..., xn, y1, ..., yn) ∈ Xn × Yn

∣∣∣∣∣µnX,Y ({(x1, ..., xn, y1, ..., yn)})
µ̃nX,Y ({(x1, ..., xn, y1, ..., yn)})

≤ ent

})
.

(3.49)

Due to the construction of the test it follows directly that

P1(φn,t, µX) ≤ e−nt, (3.50)

and consequently, we are looking for

t∗n(ε) , sup{t : µnX,Y (Acn,t) ≤ ε}. (3.51)

For this, it is useful to consider t̃n(ε) = D(µX,Y ||µ̃X,Y )+
√

σ2(µX,Y ,µ̃X,Y )

n
Φ−1

(
ε− 6κ(µX,Y ,µ̃X,Y )

σ2(µX,Y ,µ̃X,Y )3/2
√
n

)
where κ(µX,Y , µ̃X,Y ) is the absolute third moment associated to the random variable log

(
µX,Y (X,Y )

µ̃X,Y (X,Y )

)
.

Choosing this t̃n(ε), and applying the Berry-Esséen theorem [65] it follows that:

P0(φn,t, µX)

= P

(
1

n

n∑
i=1

log

(
µX,Y (Xi, Yi)

µ̃X,Y (Xi, Yi)

)
≤ t̃n(ε)

∣∣∣∣∣θ = 0

)
(1)

≤ Cκ(µX,Y , µ̃X,Y )√
nσ2(µX,Y , µ̃X,Y )3/2

+ Φ

(
(t̃n(ε)−D(µX,Y ||µ̃X,Y ))

√
n

σ2(µX,Y , µ̃X,Y )

)
(2)
=

Cκ(µX,Y , µ̃X,Y )√
nσ2(µX,Y , µ̃X,Y )3/2

+ ε− 6κ(µX,Y , µ̃X,Y )√
nσ2(µX,Y , µ̃X,Y )3/2

(3)

≤ ε, (3.52)

where for (1) we applied the Berry-Esséen theorem (the statement of the theorem is presented
in Appendix 3.6.3), for (2) we replaced the value of t̃n(ε) and for (3) we use the fact that
constant C provided is less than 6 (see Appendix 3.6.3). Finally, replacing this value of t̃n(ε)
in Eq. (3.50) and using a Taylor approximation for Φ−1(·) of �rst order around ε we have
that

2Meaning that φn,t(x1, ..., xn, y1, ..., yn) = 0 if (x1, ..., xn, y1, ..., yn) ∈ An,t
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log(βn(ε, µX))

n
≤ log(P1(φn,t, µX))

n

≤ −D(µX,Y ||µ̃X,Y )−
√
σ2(µX,Y , µ̃X,Y )

n
Φ−1

(
ε− 6κ(µX,Y , µ̃X,Y )

σ2(µX,Y , µ̃X,Y )3/2
√
n

)

= −D(µX,Y ||µ̃X,Y )−
√
σ2(µX,Y , µ̃X,Y )

n

Φ−1(ε)− dΦ−1(x)

dx

∣∣∣∣∣
x=ξ

6κ(µX,Y , µ̃X,Y )

σ2(µX,Y , µ̃X,Y )3/2
√
n


(1)

≤ −D(µX,Y ||µ̃X,Y )−
√
σ2(µX,Y , µ̃X,Y )

n

[
Φ−1(ε)− dΦ−1(x)

dx

∣∣∣∣∣
x=ε

6κ(µX,Y , µ̃X,Y )

σ2(µX,Y , µ̃X,Y )3/2
√
n

]

= −D(µX,Y ||µ̃X,Y )−
√
σ2(µX,Y , µ̃X,Y )

n
Φ−1(ε) +O

(
1

n

)
, (3.53)

where for (1) we consider ξ ∈
(
ε− 6κ(µX,Y ,µ̃X,Y )

σ2(µX,Y ,µ̃X,Y )3/2
√
n
, ε
)
and the monotonicity of Φ−1(·).

3.6.2 Proof of Theorem 3.10

Proof. Let us consider the set

Acn,δ ,

{
(x1, ..., xn, y1, ..., yn) ∈ Xn × Yn

∣∣∣∣∣
∣∣∣∣∣ 1n log

(
µnX,Y ({(x1, ..., xn, y1, ..., yn)})
µ̃nX,Y ({(x1, ..., xn, y1, ..., yn)})

)
−D(µX,Y ||µ̃X,Y )

∣∣∣∣∣ ≥ δ
}
,

(3.54)

we have the following:

Lemma 3.6.1 (Chapter 11, Sect 11.8 [66]) For an arbitrary set Bn ⊆ X
n×Yn and its induced

test φn3 such that operates at type I error (i.e. µnX,Y (Bc
n) ≤ ε) then

µ̃nX,Y (Bn) > (1− ε− δ)2−n(D(µX,Y ||µ̃X,Y )+δ). (3.55)

By construction, it is clear that there exists δ > 0 such that Acn,δ operates at type I error ε.
In fact we consider

δ∗n(ε) , sup{δ : µnX,Y (Acn,δ) ≤ ε}. (3.56)

To characterize δ∗n(ε) we use that:

1

n
log

(
µnX,Y (X1, ..., Xn, Y1, ..., Yn)

µ̃nX,Y (X1, ..., Xn, Y1, ..., Yn)

)
=

∑
(x,y)∈X×Y

µ̂n(x, y) log

(
µX,Y ({(x, y)})
µ̃X,Y ({(x, y)})

)
, (3.57)

where µ̂n(x, y) denotes the empirical distribution induced by (X1, ..., Xn, Y1, ..., Yn). Then
we can use the bounded di�erence inequality [67] to bound µnX,Y (Acn,δ). For that we need to

3Meaning that φn(x1, ..., xn, y1, ..., yn) = 0 if (x1, ..., xn, y1, ..., yn) ∈ Bn
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obtain an expression for the bounded di�erence4 given by:

sup
i∈{1,...,n}

sup
(X1,Y1),...,(Xn,Yn),(X̃i,Ỹi)∈X×Y

∣∣∣∣∣ ∑
(x,y)∈X×Y

µ̂n(x, y) log

(
µX,Y ({(x, y)}
µ̃X,Y ({(x, y)})

)
−

∑
(x,y)∈X×Y

µ̃n(x, y) log

(
µX,Y ({(x, y)})
µ̃X,Y ({(x, y)})

)∣∣∣∣∣
≤

2

n
· sup

(x,y)∈X×Y

∣∣∣∣∣ log

(
µX,Y ({(x, y)})
µ̃X,Y ({(x, y)})

)∣∣∣∣∣, (3.58)

where µ̃n(x, y) denotes the empirical distribution induced by (X1, ..., X̃i, ..., Xn, Y1, ..., Ỹi, ..., Yn).
Then the bounded di�erence inequality [67] (Sec 2.3) tell us that:

P

(∣∣∣∣∣ 1n log

(
µnX,Y (X1, ..., Xn, Y1, ..., Yn)

µ̃nX,Y (X1, ..., Xn, Y1, ..., Yn)

)
−D(µX,Y ||µ̃X,Y )

∣∣∣∣∣ ≥ δn

∣∣∣∣∣θ = 0

)
︸ ︷︷ ︸

µnX,Y (Acn,δ)

≤ exp


−nδ2

n

2

(
sup

(x,y)∈X×Y

∣∣∣log
(
µX,Y ({(x,y)})
µ̃X,Y ({(x,y)})

)∣∣∣)2

 . (3.59)

Using this bound, a lower bound for δ∗n(ε) is given by the solution of:

exp


−n(δ̃n(ε))2

2

(
sup

(x,y)∈X×Y

∣∣∣log
(
µX,Y ({(x,y)})
µ̃X,Y ({(x,y)})

)∣∣∣)2

 = ε (3.60)

which give us

δ∗n(ε) ≥ δ̃n(ε) =

√
2 ln(1/ε)

n
· sup

(x,y)∈X×Y

∣∣∣∣∣ log

(
µX,Y ({(x, y)})
µ̃X,Y ({(x, y)})

)∣∣∣∣∣. (3.61)

Finally, using δ̃n(ε) in Eq. (3.61) replacing in Eq. (3.55) and taking logarithm we have that
for all Bn with µnX,Y (Bc

n) ≤ ε,

log(µ̃X,Y (Bn)) > log(1− ε− δ̃n(ε))− n(D(µX,Y ||µ̃X,Y ) + δ̃n(ε)). (3.62)

Since Bn is arbitrary, we conclude that

ξ(ε, R, µX)−
(
− 1

n
log(P1(fn, φn, µX))

)
≥ log(1− ε− δ̃n(ε))

n
− δ̃n(ε). (3.63)

4For completeness the theorem is presented in Appendix 3.6.4
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3.6.3 Berry-Esséen theorem

There exits a positive constant C such that if X1, X2, ..., Xn are i.i.d. random variables with
EX1∼µX1

(X1) = 0, EX1∼µX1
(X2

1 ) = σ2 > 0 and EX1∼µX1
(|X1|3) = ρ <∞ and if we de�ne

Yn =
X1 +X2 + · · ·+Xn

n

the sample mean, and Fn(·) the cumulative distribution function of

Yn
√
n

σ

and Φ(·) the cumulative distribution function of the standard normal distribution, then for
all x and n,

|Fn(x)− Φ(x)| ≤ Cρ

σ3
√
n

That is: given a sequence of independent and identically distributed random variables, each
having mean zero and positive variance, if additionally the third absolute moment is �nite,
then the cumulative distribution functions of the standardized sample mean and the standard
normal distribution di�er by no more than the speci�ed amount. Note that the approximation
error for all n (and hence the limiting rate of convergence for inde�nite n su�ciently large) is
bounded by the order of n−1/2. The best estimate of C up to date is 0.40973 ≤ C ≤ 0.4748
[71].

3.6.4 Bounded di�erence inequality

Let A be some set, and assume a function g : An → R satis�es the bounded di�erence
assumption

sup
x1,...,xn,x̃i∈A

|g(x1, ..., xn)− g(x1, ..., xi−1, x̃i, xi+1, ..., xn)| ≤ ci, ∀i ∈ {1, ..., n}

In other words, we assume that if we change the ith variable of g while keeping all the others
�xed, then the value of the function does not change by more than ci. Consider X1, ..., Xn are
independent random variables taking values in A. Under the bounded di�erence assumption,
for all t > 0,

P(g(X1, ..., Xn)− EX1,...,Xn∼µX1,...,Xn
(g(X1, ..., Xn)) ≥ t) ≤ e

−2t2/
n∑

i=1
c2i

and

P(EX1,...,Xn∼µX1,...,Xn
(g(X1, ..., Xn))− g(X1, ..., Xn) ≥ t) ≤ e

−2t2/
n∑

i=1
c2i
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3.6.5 Proof of Lemma 3.4.1

Proof. For an arbitrary encoder fn let us consider the family of optimal Neyman-Pearson
tests:

Bn,t(fn) ,

{
(x1, ..., xn, y1, ..., yn)

∣∣∣∣∣µfn(Xn),Y n({(z = fn(x1, ..., xn), y1, ..., yn)})
µ̃fn(Xn),Y n({(z = fn(x1, ..., xn), y1, ..., yn)})

> ent

}
,

(3.64)
parametrized by t and its induced test denoted by φn,t(·) : {1, ..., 2nR}×Yn 7→ {0, 1} 5. Using
this set, the probability of type I is given by

P0(fn, φn,t, µX) = P(φn,t(fn(Xn
1 ), Y n1 ) 6= 0|θ = 0)

= µnX,Y

({
(x1, ..., xn, y1, ..., yn)

∣∣∣∣∣µfn(Xn),Y n({(z = fn(x1, ..., xn), y1, ..., yn)})
µ̃fn(Xn),Y n({(z = fn(x1, ..., xn), y1, ..., yn)})

≤ ent

})
.

(3.65)

We also obtain an upper bound for the type II error by:

P1(fn, φn,t, µX) ≤ e−nt, (3.66)

then the problem to tackle consist on

t∗n(ε) = sup
fn encoder of rate R

sup
t
{t : µnX,Y (Bc

n,t(fn)) ≤ ε}. (3.67)

Note that fn in general is an arbitrary function that breaks the i.i.d assumption then deter-
mining t∗n(ε) is not a feasible task. At this point it is convenient to derive a lower bound
for t∗n(ε). For this we use f̃l (of rate R) to construct an i.i.d setting of blocklength l. More
precisely we construct fn applying the function f̃l to every sub-block of length l, k times such
that n = kl

f̃n,l(x1, ..., xl, xl+1, ..., x2l, ..., xl(k−1)+1, ..., xkl) = (f̃l(x1, ..., xl), f̃l(xl+1, ..., x2l), ..., f̃l(xl(k−1)+1, ..., xkl)).
(3.68)

RecallBn,t(f̃n,l), in this case it is convenient to re-parametrize t as t = 1
l
D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l)−

δ for δ > 0. The type I error can be upper bounded as follows

µnX,Y

(
Bcn,t(f̃n,l))

)
= P

(
1

k
log

(
µk
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

µ̃k
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

)
≤ D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l)− lδ

∣∣∣∣∣θ = 0

)

≤ P

(∣∣∣∣∣1k log

(
µk
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

µ̃k
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

)
−D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l)

∣∣∣∣∣ ≥ lδ
∣∣∣∣∣θ = 0

)
(3.69)

with Zk = f̃l(Xl(k−1)+1, ..., Xkl). Notice that

1

k
log

(
µk
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

µ̃k
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

)
=

∑
(z,y1,...,yl)∈f̃l(Xl)×Yl

µ̂k(z, y1, ..., yl) log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)
(3.70)

5Meaning that φn,t(fn(x1, ..., xn), y1, ..., yn) = 0 if (x1, ..., xn, y1, ..., yn) ∈ Bn,t(fn)
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and

sup
(Z1,Y1,...,Yl),...,

(Zk,Yl(k−1)+1,...,Ylk),

(Zi′ ,Yl(i′−1)+1,...,Yli′ )

∈f̃l(Xl)×Yl

∣∣∣∣∣ ∑
(z,y1,...,yl)

∈f̃l(Xl)×Yl

µ̂k(z, y1, ..., yl) log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)
... (3.71)

−
∑

(z,y1,...,yl)

∈f̃l(Xl)×Yl

µ̂k(z, y1, ..., yl) log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)∣∣∣∣∣
≤ 2

k
· sup

(z,y1,...,yl)∈f̃l(Xl)×Yl

∣∣∣∣∣ log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)∣∣∣∣∣ ∀i ∈ {1, ..., k}. (3.72)

Again, using bounded di�erence inequality [67] we get

P

(∣∣∣∣∣1k log

(
µk
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

µ̃k
f̃l(Xl),Y l

(Z1, ..., Zk, Y1, ..., Ykl)

)
−D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l)

∣∣∣∣∣ ≥ lδ

∣∣∣∣∣θ = 0

)
(3.73)

≤ exp

 −k(lδn(l))2

2 sup
(z,y1,...,yl)∈f̃l(Xl)×Yl

∣∣∣∣log

(
µ
f̃l(X

l),Y l
({(z,y1,...,yl)})

µ̃
f̃l(X

l),Y l
({(z,y1,...,yl)})

)∣∣∣∣2
 . (3.74)

Finally a lower bound for t∗n(ε) can be determined as function of δ̃n,l(ε)) that is the solution
of the following equality.

exp

 −k(lδ̃n,l(ε))
2

2 sup
(z,y1,...,yl)∈f̃l(Xl)×Yl

∣∣∣∣log

(
µ
f̃l(X

l),Y l
({(z,y1,...,yl)})

µ̃
f̃l(X

l),Y l
({(z,y1,...,yl)})

)∣∣∣∣2
 = ε. (3.75)

More precisely, we have that

t∗n(ε) ≥ 1

l
D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l)−

√
2 log(1/ε)

nl
· sup

(z,y1,...,yl)∈f̃l(Xl)×Yl

∣∣∣∣∣ log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)∣∣∣∣∣
(3.76)

Finally, replacing the bound of Eq. (3.76) in Eq. (3.66) and taking logarithm we have that:

ξ(ε, R, µX)−
(
− 1

n
log(P1(f̃n,l, φn, µX))

)
≤
[
ξ(ε, R, µX)− 1

l
D(µf̃l(Xl),Y l ||µ̃f̃l(Xl),Y l)

]
+ δ̃n,l(ε),

(3.77)
with

δ̃n,l(ε) =

√
2 ln(1/ε)

nl
· sup

(z,y1,...,yl)∈f̃l(Xl)×Yl

∣∣∣∣∣ log

(
µf̃l(Xl),Y l({(z, y1, ..., yl)})
µ̃f̃l(Xl),Y l({(z, y1, ..., yl)})

)∣∣∣∣∣, (3.78)

which concludes the result.

49



Chapter 4

Conclusion

We summarize our main �ndings for the estimation and detection problems in sections 4.1
and 4.2 respectively.

4.1 Astrometry

We study the performance of the WLS and ML estimators for relative astrometry on digital
detectors subject to Poisson noise, in comparison with the best possible attainable precision
given by the CR bound. Our study includes analytical results, and numerical simulations
under realistic observational conditions to help us to corroborate our theoretical �ndings.

By generalizing the technical result presented in [50] we are able to obtain, for the �rst
time, close-form expressions for the variance and the mean of implicit estimators (as is the
particular case of the WLS and ML schemes), which can be computed directly from the data
(see Theorem 2.2, in particular Eqs. (2.22) and (2.23), and Appendix A). When specifying
this result to astrometry with digital detectors, we are able to bound both the bias and the
variance of the relative position of a celestial source on a CCD array as a function of all the
relevant parameters of the problem (see Eqs. (2.27) and (2.28) or Eqs. (2.33) and (2.34) for
the WLS and ML estimators respectively). We veri�ed that the bias of the WLS and ML
methods are negligible in all the observational regimes explored in this paper (see Fig. 2.1).

A careful analysis of our predictions con�rms earlier results by [22] (for the LS method)
in that the WLS method is, in general, sub-optimal (in comparison with the MVB given by
the CR result), specially at high and very high S/N (see the two bottom panels on Fig. 2.2).
However, a judicious data-driven selection of weights (called �adaptive� WLS method by us,
Sect. (2.4.5)), improves the performance of the WLS substantially (see Fig. 2.7). This is
an interesting result, given the widespread use and simple numerical implementation of the
WLS method.

The ML method is found to have both a smaller bias than the WLS method (compare left
and right panels of Fig. 2.1), although the bias on both methods is already quite small), and
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a tight correspondence to the MVB throughout the entire range of S/N regimes explored in
this paper (Fig. 2.5). Therefore, the ML estimator for astrometry is consistently optimal,
and should be the estimator of choice for high-precision applications.

This paper, along with [22], completes an in-depth study of the performance of commonly
used estimators in astrometry using PIDs, and sets the stage for the development of codes
that could e�ciently implement astrometric ML estimators on 2D detectors, incorporating
also the simultaneous measurement of �uxes, as explored in [60].

4.2 Hypothesis testing

This work characterizes an achievable bound for the optimal error exponent in the bivariate
hypothesis testing setting with communication constraint. The main technical challenge is
the fact that there exists many mathematical di�culties when dealing with the likelihood of
the ratio in the rate constraint problem. Developing bounds to the induced measure given
by the encoder function is not an easy task due to the freedom of such function. To address
this technical issue, this work extends the approach of Zhang et al. [70] to the case of noisy
rate distortion theory and obtain fundamental bounds via concentration inequalities such as
the bounded di�erence inequality and the Berry-Esséen theorem.

The achievable bound seems to o�er a reasonable velocity of convergence to the limit,
however, we do not know if this rate is optimal without a converse result. As a future
work we want to �nd a converse bound for this problem, the main technical challenge of the
converse falls into analysing the function f (enconders), because this function breaks the i.i.d
assumption of one of the sources, and consequently, we can not use classical concentration
arguments (based of sum of independent measurements) as used in the unconstrained case.
One attractive path of the future research in this direction is to �nd a way to connect this
likelihood ratio to an additive distortion measure, in this way, we can use Zhang's theorem [70]
to derive a converse tight bound.
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