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Modulational instability of a circularly polarized wave in a magnetized electron-positron plasma
with relativistic thermal energies
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A circularly polarized electromagnetic wave, propagating in the direction of an external magnetic field in an
electron-positron plasma, is known to be unstable for frequencies less than half the plasma frequency. This has
been shown by taking into account weakly relativistic effects on particle motion in the wave field, and
nonrelativistic temperatures. Here, we include fully relativistic effects on the thermal motion of the particles,
and show that in the ultrarelativistic limit the system is unstable for all frequencies satisfyingv!hvc and
vp!(h)1/2vc , wherevc is the gyrofrequency,vp is the plasma frequency, andh is the ratio between the rest
energy density and the enthalpy of the system. In the limit of nonrelativistic thermal motions, the results
obtained previously are recovered.@S1063-651X~97!03609-X#

PACS number~s!: 82.40.Ra, 51.60.1a
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I. INTRODUCTION

It seems to be well established that electromagnetic ra
tion originating in pulsar magnetospheres experiences am
tude modulation@1–3#. Chian and Kennel@4,5# proposed a
self-modulation mechanism to account for the observatio
They derived a nonlinear Schro¨dinger equation that, unfortu
nately, was shown to be incorrect@6,7# because they ignore
two sources of nonlinearity. On one hand, they did not
clude harmonic generation and, on the other hand, they
not consider the ponderomotive force.

Kates and Kaup@8#, by observing that ponderomotiv
forces, relativistic corrections, and harmonic generation
contribute cubic terms in the amplitude, were able to deriv
cubic nonlinear Schro¨dinger equation. Assuming weakl
relativistic effects, they showed that in an unmagnetized c
electron-positron plasma there is no amplitude modulat
in contrast with Chian and Kennel@4#. The result was then
generalized to include finite thermal effects. In this case,
plasma was shown to be modulationally unstable in a nar
range just above the plasma frequency.

Later on, Kates and Kaup@9# studied the propagation o
an electromagnetic wave in the direction of an external m
netic field. They showed that for frequenciesv,vp/2,
wherevp5(4pn0e2/m)1/2 is the plasma frequency, the sy
tem is modulationally unstable.

More recently, Grattonet al. @10#, by extending the theory
in order to include ultrarelativistic effects~relativistic tem-
peratures! and phonon damping in an unmagnetized electr
positron plasma, showed that relativistic thermal energ
change the stability results found by Kates and Kaup@8#.
Three cases were analyzed in@10#. First, when the damping
is O(e (0)) and O(e (1)) ~e is the perturbation parameter! a
modulational instability is possible for all frequencies a
temperatures. When the phonon damping is very sm
O(e (2)), the modulational instability occurs in a finite ban
near the reduced plasma frequency, for ultrarelativistic te
peratures.

Here we extend the work of@10# to include an externa
561063-651X/97/56~4!/4574~7!/$10.00
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magnetic field. We neglect phonon damping. In the nonre
tivistic temperature limit, we recover the results of@9#—
which also reduces to@8# for zero magnetic field—except fo
an overall factor of two, which is clearly a misprint and do
not alter their conclusions. We show that in the ultrarelat
istic thermal limit, the plasma is modulationally unstable f
all frequencies satisfyingv!hvc , and forvp!(h)1/2vc .

This paper is organized as follows. In Sec. II, the ba
equations are discussed. In Sec. III, by using a multisc
space-time perturbation approach~see, e.g.,@11#!, we derive
all required quantities necessary to obtain the nonlin
Schrödinger equation. In Sec. IV, we obtain the nonline
Schrödinger equation. In Sec. V, the nonlinear Schro¨dinger
equation is analyzed. In Sec. VI, the results are discusse

II. BASIC EQUATIONS

We shall study an electromagnetic wave in an electr
positron plasma propagating along an external magn
field. We will include weakly relativistic effects on the pa
ticle motion in the field of the electromagnetic wave, b
fully relativistic effects in the particle thermal motions.

The basic equations are~see@10#!

h

c2

d

dt
~g lvW i !52

1

g l
¹W p2

vW i

c2 g l

dp

dt
1niqi S EW 1

1

c
vW i3BW D ,

~1!

]g lni

]t
1

]g lnvz,i

]z
50, l 5e,p, ~2!

where

g l5S 12
vW l

2

c2D 21/2

, l 5e,p ~3!

and Eq.~2! is the continuity equation.
Equation~1! is obtained from the space components o
4574 © 1997 The American Physical Society
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]nTmn5
1

c
j nFmn, ~4!

upon using the time component

h
dg

dt
5

1

g

]p

]t
2g

dp

dt
1qnvW •EW . ~5!

In Eq. ~4!,

Tmn5
h

c2 umun2pgmn, ~6!

Fmn5]mAn2]nAm, ~7!

j m5qnum. ~8!

The electromagnetic potentials,Am5(f,Al), are related
to the electric and magnetic fields through

EW 52
1

c

]AW

]t
2¹W f, ~9!

BW 5¹W 3AW . ~10!

The metric tensorgmn is defined byds25gmndxmdxn,
where gmn5(1,21,21,21), (m,n)50,1,2,3, and dxm

5(cdt,dxl) with l 51,2,3, andum5g(c,v l).
In the energy momentum tensor,Tmn, h5nmc21 ē1p is

the enthalpy,m is the proper mass of the particles,ē is the
internal energy, andp is the pressure.

We now assume that we have a finite amplitude circula
polarized wave propagating along thez direction—the direc-
tion of the external magnetic field—so that

AW 5„Ax~z,t !,Ay~z,t !,0…. ~11!

From um]nTmn50 we obtain the equation for adiabat
motion,

d«

dt
5

h

n

dn

dt
, ~12!

which is equivalent to

1

n

dp

dt
5

d

dt S h

nD . ~13!

Using this equation, along with Eqs.~9! and ~10!, the
components of Eq.~1! become

d

dt S h

nc
g

vx

c
1

q

c
AxD5

q

c
vyB0z , ~14!

d

dt S h

nc
g

vy

c
1

q

c
AyD52

q

c
vxB0z , ~15!

d

dt S h

nc
g

vz

c D52q
]f

]z
2

1

gn

]p

]z
1

q

c S vx

]Ax

]z
1vy

]Ay

]z D .

~16!

On the other hand, the potentials satisfy
y

S ]2

]t22c2
]2

]t2D Âx5
4pq2

m S nL,p

vx,p

c
2nL,e

vx,e

c D , ~17!

c
]2f̂

]t]z
5

4pq2

m S nL,p

vz,p

c
2nL,e

vz,e

c D , ~18!

wherenL5gn, andÂm5(q/mc2)Am.
Finally, the equation of motion can be written in the fo

lowing form:

d

dt S h

nmc2 g
vx

c
1sLÂxD5

sL

c
vyB0z , ~19!

d

dt S h

nmc2 g
vy

c
1sLÂyD52

sL

c
vxB0z , ~20!

d

dt S h

nmc2 g
vz

c D5
c

gnmc2

]p

]z
2sLc

]f̂

]z

1sLS vx

]Âx

]z
1vy

]Ây

]z D , ~21!

where

sL5
q

uqu
. ~22!

It is convenient to introduce the constantsd andh as

h5
n0mc2

h0
, ~23!

d5
Gp0

h0
, ~24!

where 4/3<G<,5/3 is a polytropic index such thatp/p0
5(n/n0)G, h5Gp/(G21)1nmc2, and ē5p/(g21), with
the understanding that asG approaches the value 5/3 w
must setp!nmc2 ~see@10#!.

For low thermal energies,

h512 3
2 d, ~25!

d5
vs

2

c21~3/2!vs
2 !1. ~26!

On the other hand, in the ultrarelativistic limit,

h!1, ~27!

d5 1
3 . ~28!

III. THE MULTISCALE PERTURBATION METHOD

We assume that all quantities can be written in the for

G5G01eG~1!1e2G~2!1e3G~3!1••• . ~29!

Thus, to zeroth order ine, the electromagnetic potentia
the density, and the enthalpy, are given by
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A05~2 1
2 yB0 , 1

2 B0,0!, ~30!

n05const, ~31!

h05n0mc21p01 ē0 , ~32!

whereB0 is the external magnetic field.
The first order electromagnetic potentialA(1) is given by a

typical Fourier component,

A~1!5a~ x̂1 i ŷ !e~ ikz2 ivt !. ~33!

We shall now solve the problem to ordere3 by using the
multiscale perturbation approach, which assumes that
amplitude depends weakly on space and time@11#,

]a

]t
5eT1~a,a* !1e2T2~a,a* !1e3T3~a,a* !1••• ,

~34!

]a

]z
5eZ1~a,a* !1e2Z2~a,a* !1e3Z3~a,a* !1•••

~35!

and the corresponding complex conjugate quantities.
Thus,

] t52v]u1e~Z1]a1Z1* ]a* !1•••, ~36!

]z5k]u1e~T1]a1T1* ]a* !1••• . ~37!

To first order ine, Eqs.~19! and ~20! yield

S 1

h

d

dt
6 isLvcD vx

~1!6 ivy
~1!

c
52sLT1

]

]a
~Âx

~1!6 iÂy
~1!!.

~38!

From the last equation it follows that

vW p,e
~1!

c
52sL

q

mc2

aW ~ x̂1 i ŷ !eiu

h6
1c.c. ~39!

where

Â~1!5â~ x̂1 i ŷ !eiu1c.c., ~40!

â5
q

mc2 a, ~41!

h65
1

h
6

vc

v
, ~42!

andvc5uquB0 /mc is the gyrofrequency.
From Eqs.~17! and~39!, to ordere, we obtain the disper-

sion relation,

v25c2k21vp
2S 1

h1
1

1

h2
D , ~43!

vp
25

4pq2n0

m
, ~44!
he

and all other quantities are zero to order one.
We shall now calculate the second order velocities.
From Eqs.~36! and ~37!, to ordere, we obtain

]2

]t2 5S 2v
]

]u
1eT1

]

]aD 2

522evT1

]2

]a]u
, ~45!

]2

]z2 5S k
]

]u
1eZ1

]

]a2D 2

52keZ1

]2

]a]u
, ~46!

where

T15
]a

]t1
, ~47!

Z15
]a

]z1
, ~48!

and t15et, andz15ez.
To ordere2, Eqs.~19! and ~20! yield

d

dt F h0

n0mc2

vx
~2!6 ivy

~2!

c
1

1

h

vx
~1!6 ivy

~1!

c
1sL~Âx

~1!6 iÂy
~1!!G

57sLvci
vx

~2!6 ivy
~2!

c
. ~49!

From Eq.~49! it follows that

vW p,e
~2!

c
52 i

vc

v2hp,e
2

]âW

]t
eiu1c.c. ~50!

From Eq.~17!, to ordere2, we obtain

S v2
]2

]u22c2k2
]

]u2D Âx
~2!22ivS T11

c2k

v
Z1D ]

]â
Âx

~1!

52
ivp

2vc

v2 S 1

h1
2 2

1

h2
2 D . ~51!

SinceAx
(2) can be taken to be zero~see@8,9#!, it follows

that

T11Z1

c2k

v F11
vp

2vc

2v3 S 1

h2
2 2

1

h1
2 D G21

50. ~52!

On the other hand, from the dispersion relation, Eq.~43!,
we obtain

vg5
c2k

v F11
vp

2vc

2v3 S 1

h2
2 2

1

h1
2 D G21

. ~53!

From Eqs.~52! and ~53! it follows that

T11vgZ150, ~54!

which, in terms of the amplitude, is given by

]a

]t1
1vg

]a

]z1
50. ~55!
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This equation means that the amplitude is constant i
frame moving with group velocity of the wave.

Note that the effective plasma frequency is now given
v̄p

25hvp
2 ~see @10#!, and the resonances occur atv̄c

5hvc . This is illustrated In Fig. 1, for~a! h51 and~b! h
50.5.

To third order ine, Eq. ~21! yields

]

]t

vz
~3!1vz

~2!

c
52dc

]

]z S n~3!1nL
~2!

n~0!
2

2āā*

h6
2 D 2hsLc

3
]

]z
f̂~3!1f̂~2! 1hsLcF S vx

~2!1vx
~1!

c D ]Âx
~1!

]z

1S vy
~2!1vy

~1!

c D ]Ây
~1!

]z
G . ~56!

To third order ine, the continuity equation yields

]

]t

nL
~3!1nL

~2!

n0
52

]

]z
vz

~3!1vz
~2! . ~57!

FIG. 1. Dispersion relation, Eq.~43!. Normalized wave number
y5kc/v̄c , vs normalized frequency,x5v/v̄c , for v̄p /v̄c51/2,
and ~a! h51, ~b! h50.5.
a

y

Upon elimination of secularities, one finds that neithervz
(2)

nor nL
(2) depends on theta. Therefore, adding up the conti

ity equation for electrons and positrons yields

vz,p
~2!1vz,e

~2!5vg

nL,p
~2! 1nL,e

~2!

n0
. ~58!

Using

Ax
~1!5aeiu1c.c., ~59!

Ay
~1!5 iaeiu2 ia* e2 iu, ~60!

vx,p,e
~1! 52sL

a

hp,e
eiu1c.c., ~61!

vy,p,e
~1! 52sLS a

hp,e
eiu2

a*

hp,e
e2 iuD , ~62!

vx,p,e
~2! 52 i

vc

v2h6
2 S ]a

]t1
eiu2

]a*

]t1
e2 iuD , ~63!

vy,p,e
~2! 5

vc

v2h6
2 T1eiu1c.c. ~64!

and adding up Eq.~56! for electrons and positrons, upo
elimination of secularities, we obtain

nL,p
~2! 1nL,e

~2!

n0
5

2n̄~2!

n0
2

dc22ââ*

F S 1

h1
2 1

1

h2
2 D , ~65!

where

n̄~2!

n0
5hs2ââ* , ~66!

s5
c2

vp
2F

~v21c2k222kvgv!, ~67!

F5vg
22dc2. ~68!

On the other hand, to second order ine, from Eq. ~18! it
follows that

vz,p
~2!5vz,e

~2! . ~69!

Subtracting the continuity equation for electrons and p
itrons,

]

]t S nL,p2nL,e

n0
D5

]

]z
~vz,p2vz,e!, ~70!

and using Eq.~69!, yields

nL,p
~2! 5nL,e

~2! . ~71!

Note that

nL
~2!

n0
5

n~2!

n0
1

1

2

vx
~1!2

1vy
~1!2

c2 . ~72!
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Therefore, from Eqs.~65! and ~71!, it follows that

nL,p,e
~2!

n0
5

n̄

n0
~2!2

dc2ââ*

F S 1

h1
2 1

1

h2
2 D . ~73!

Let us now calculatevx
3. From Eqs.~19!, to ordere3, it

follows that

d

dt
F 1

h

vx
~3!1vx

~2!1vx
~1!

c
1

1

h
S 1

2

vx
~1!2

1vy
~1!2

c
1

dn~2!

n0
D vx

~1!

c

1sLG Â5sLvc

vy
~3!

c
. ~74!

When this equation is combined with a similar one f
vy , Eq. ~20!, we obtain

vW e,p
~3!

c
5Se,p~ x̂1 i ŷ !eiu1c.c., ~75!

where

Se,p52
vc

hv3

1

h1

]2â

]t1
2 1sL

i

vh7
2 S 1

h
2h7D ]â

]t

2sL

hkvgsâ2â*

vh7
2 S 1

h
2h7D

1sL

2â2â*

hh7
4 S 12

vg
2d

F D 1sL

dsâ2â*

h7
2

2sL

kvgdc22â2â*

vFh7
3 , ~76!

and

t15et, ~77!

t5e2t. ~78!

It is important to point out thatA(2) andA(3) can be taken
equal to zero~see@8,9#!. We can also calculate other seco
and third order quantities, but we already have the neces
information to calculate the nonlinear Schro¨dinger equation.
This is done in the next section.

IV. THE NONLINEAR SCHRO¨ DINGER EQUATION

Equation~17!, to third order ine, yields

S ]2

]t22c2
]2

]z2D Âx
~1!5e3vp

2Fvx,p
~3!2vx,e

~3!

c
1S nL,p

~2!

n0

vx,p
~1!

c

2
nL,e

~2!

n0

vx,e
~1!

c D G . ~79!

Using Eqs.~39!, ~73!, and~75!, we obtain

2iv
]â

]t
1v

]vg

]k

]2â

]j2 1â2â* @Cp12CR#50, ~80!

where
ry

vg5
c2k

v F11
vp

2vc

2v3 S 1

h2
2 2

1

h1
2 D G21

, ~81!

v
c2k

vgv

]vg

]k
5Fc22vg

22
vg

2vcvp
2

hv3 S 1

h1
3 2

1

h2
3 D G , ~82!

Cp52
vvg

c2k

c2h

Fvp
2 ~2kvvg2v22c2k2!2

1vp
2 sdvgv

c2k S 1

h̄1
2 1

1

h̄2
2 D , ~83!

CR5vp
2 vvg

c2kh S 1

h1
4 1

1

h2
4 D ~12d!

2vp
2 vvgd2

2khF S 1

h1
2 1

1

h2
2 D 2

2
vp

2

2 S vg
2d

F
2

dvvg

kF D
3S 1

h1
2 1

1

h2
2 D S 1

h1
1

1

h2
D . ~84!

From Eq.~42!,

h65
1

h S 16h
vc

v D5
1

h S 16
v̄c

v D5
1

h
h̄6 . ~85!

Therefore, the coefficientsCP andCR can be rewritten in
the form

CP52
vvg

c2k

c2h

Fvp
2 ~2kvvg2v22c2k2!2

1vp
2 sdvgvh2

c2k S 1

h̄1
2 1

1

h̄2
2 D , ~86!

and

CR5vp
2 vvgh3

c2k S 1

h̄1
4 1

1

h̄2
4 D ~12d!

2vp
2 vvgd2h3

2kF S 1

h̄1
2 1

1

h̄2
2 D 2

2vp
2h3S dvg

2

F
2

dvvg

kF D S 1

h̄1
2 1

1

h̄2
2 D S 1

h̄1
1

1

h̄2
D .

~87!

V. ANALYSIS OF THE NONLINEAR SCHRO¨ DINGER
EQUATION

The first term inCP is

CP152
4vp

2v7vg
3h3

c4k3F

1

~v22v̄c
2!2

3F11
2v̄c

2

v22v̄c
22

2v̄p
2v̄c

2

~v22v̄c
2!2G2

, ~88!
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and the second term is

CP25
4vP

2dvg
2v6h3

c2k2F~v22v̄c
2!2 F11

2v̄c
2

v22v̄c
2

22
v̄p

2v̄c
2

~v22v̄c
2!2GF11

2v̄c
2

v22v̄c
2G . ~89!

On the other hand,CR5CR11CR21CR3 , where

CR15
2vp

2v5h3vg

c2k~v22v̄c
2!2 F11

8v2v̄c
2

~v22v̄c
2!2G , ~90!

CR25
4v̄p

2v5vgd2h2

2kF~v22v̄c
2!2 S 11

2v2

v22v̄c
2D 2

, ~91!

CR35
4v̄p

2dh2vgv4

F~v22v̄c
2!2 S vg2

v

k D S 11
2v2

v22v̄c
2D . ~92!

Assumingv̄p /v̄c!1, andv!v̄c , the coefficients can be
written in the following form:

CP1.2
4v̄p

2h2v5vg
2

kc2Fv̄c
4 S 11

6v2

v̄c
2 1

2v̄p
2

v̄c
2 D , ~93!

CP2.2
4v̄p

2dvg
2v6h2

c2k2Fv̄c
4 S 11

4v

v̄c
2 D , ~94!

and

CR1.
2v̄p

2v5h2vg

c2kv̄c
4 ~12d!S 11

10v2

v̄c
2 D , ~95!

CR2.
2v̄p

2v5vgd2h2

kFv̄c
4 S 11

6v2

v̄c
2 D , ~96!

CR3.2
4v̄p

4dh2v8vg
2

k2c2Fv̄c
8 S 11

8v2

v̄c
2 D . ~97!

Using Eqs.~93!–~97!, we obtain

CP12CR.
4v̄p

2h2v3vg

kc2v̄c
4 F 2

1

12
dc2

vg
2

S 11
6v2

v̄c
2 1

2v̄p
2

v̄c
2 D

2
vd

vgk~12dc2/vg
2! S 11

4v

v̄c
2 D
1S 11
10v2

v̄c
2 D ~12d!2

c2d2

vg
2S 12

d2c2

vg
2 D

3S 11
6v2

v̄c
2 D 1

2v̄p
2v3d

kvg~12dc2/vg
2!v̄c

4

3S 11
8v2

v̄c
2 D G . ~98!

From Eq.~81!, it follows that

c2k

vgv
511

2v̄p
2v̄c

2

~v22v̄c
2!2 .11

2v̄p
2

v̄c
2 , ~99!

and, from Eq.~43!, we obtain

v2

c2k2 5
1

122v̄p
2/~v22v̄c

2!
.12

2v̄p
2

v̄c
2 . ~100!

Using Eqs.~99! and ~100! in Eq. ~98!, yields

CP12CR.
4v̄p

2h2v5vg

kc2v̄c
4

1

12
dc2

vg
2

F2S 11
6v2

v̄c
2 1

2v̄p
2

v̄c
2 D

2dS 11
v2

v̄c
2 1

4v̄p
2

v̄c
2 D 1S 12d2

2dv̄p
2

v̄c
2 D

3S 11
10v2

v̄c
2 D ~12d!2d2S 11

6v2

v̄c
2 1

2v̄p
2

v̄c
2 D

1
v̄p

2v2

v̄c
4 S 11

8v2

v̄c
2 D G . ~101!

VI. DISCUSSION

The last term in Eq.~101! is negligible with respect to the
others.

In the ultrarelativistic limit,d51/3 andh!1, so that

CP12CR,0. ~102!

The general condition for instability of the nonlinea
Schrödinger equation, Eq.~80!, is

v
]vg

]k
~Cp12CR!.0. ~103!

From the dispersion relation, Eq.~43!, it follows that, for
v,v̄c , the second derivative ofv with respect tok is al-
ways negative~see Fig. 1!. Therefore, the system is modula
tionally unstable for all frequencies satisfyingv!v̄c .
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For nonrelativistic thermal energies,d!1 andh51 @see
Eqs.~27! and ~28!#, so that Eq.~101! reduces to

CP12CR.
4vpv5vg

kc2vc
4~12cs

2/vg
2!

3F2S 11
6v2

vc
2 1

2vp
2

vc
2 D 111

10v2

vc
2 G .

~104!
o-

.

on
,

This is the result of Kates and Kaup@9#, except for an
overall factor of 2. Note also that the plasma frequency of
system is 2vp .
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