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Mathematical Modeling in Genetic Networks:
Relationships Between the Genetic Expression and
Both Chromosomic Breakage and Positive Circuits

J. Aracena, S. Ben Lamine, M. A. Mermet, O. Cohen, and J. Demongeot

Abstract—The genome has evolved since a primitive genome calculate the attractor configurations of expression of these
until the present state of the human genome dispatched along the genes. Then, we will be able to calculate the probability of
tation process and also by the physiological and pathological reor- the location of the weak genomic points and find for certain

ganization of the genomic material inside or between the chromo- h hiah lati b h | .
somes, which are conditioning the genomic variability. This reor- chromosomes a high correlation between these locations.

ganization is starting at singular points on the short or long chro-  Finally, we will give some properties of the interaction matrices
mosomic arms, called crossing-over, or translocations, insertions, in terms of the number of their possible attractors (generalizing

break points. In this paper, we will show that these points, also some results obtained in [2]-[6] to the discrete case). Two main
called weak points or hot spots of the genome are correlated, inde- results are emerging from the present study. 1) The positive
pendently of their origin. In addition, we will give some properties .0 jits of the interaction matrix are necessary for observing
of the genetic interaction matrices in terms of attractors of the ge- ltible attract ‘ectured by Delbriick [7 dTh
netic expression dynamics. multiple attractors as conjectured by Delbriic [7] an omas
[8], and 2) the number of attractors is of order of magnitude
V1, if the numbern of genes is great and if the number of
interactions is equal tBn, as conjectured by Kauffman [9].

Index Terms—Genetics, interaction matrix, positive and nega-
tive circuit, regulatory network, translocation.

|. INTRODUCTION Il. GENETIC DATA DESCRIPTION

HE GENOME has evolved since a primitive genome [1A. Review Stage
until the present state of the human genome dispatche

along the 23 pairs of chromosomes. This evolution has bee o
9 P [esence of correlated weak points in the human genome, based

ruled by the mutation process and aiso by the physmloglc%\ a similarity between the distributions of translocation points,

(crossing-over mechanism) and pathological (translocatioﬁ)#)Ssin _over locations and ubiquitory (.., expressed durin
inversions, insertions, deletions, fusions, etc.) re—organizatiﬁgn g q y €., exp g

- e e whole cell cycle) genes expression sites. This co-occurrence
of the genomic material inside or between the chromosom ycle) g P

which are conditioning the genomic variability. This reor™> probably due to the fragility of chromosomes at the tran-

ganization is starting at singular points on the short or Iorf‘grt'ﬁggge}%j\fg;inregr'logis;)l%f tizzl Br'\cl)és:g hlgce?r%rgggelitiﬁ?s
chromosomic arms, called crossing-over, or deletions, transio- phy 9 9 P

cations, insertions, inversions, and fusions break points. ‘?ﬂd in pathologic translocation breakpoints. The data used pro-

Section I, we will show that these points, also called weak (chr \ded from genetic papers and from unpublished data provided

: . human genetic centers: They have been brought together in a
mosomic break) point or hot spots of the genome are correlat g L X
independently of their origin (physiological crossing-ove etd{?/md:?gsiemn%edf:ﬁgf Eu?aer\]/'ﬁ) ijsssa;\lj?j"a[blli]ohnas
pathological constitutional or acquired chromosomic abnorm@ﬁ P- : ‘mag. AP y

breakage). One of the mechanisms involved in the weaknes$ 8?;:?12;1;2651(:532?jligtl:i-gzltli)?]u; iﬁéi;;;gg‘;?ﬁ?;;iﬁg{
certain parts of the chromosomes is the presence of ubiquit 9

genes expressed during the whole cell cycle at methylated p somal bands._ For example, tran_slocatlo_ns published m_the
of the chromosome causing locally decoiling and opening rature are mainly thos_e resp_on5|b|e _for |mbalance_s at birth
the DNA double strand, hence, causing a local fragility of th at are more observed in relation to d|§tal bregk points. Fur-
genome. In order to give arguments in favor of this hypothes} ?:)Tn%ri{nﬁ)sgds are more often located in the distal regions of

we will partly randomly choose interaction matrices giving th& '

relations existing between the ubiquitory genes and we will
[ll. COoMPARISON BETWEEN CHROMOSOMAL HOT SPOTS OF

DIFFERENT ORIGIN

ﬂ:irst, we will present the central hypothesis concerning the
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Fig. 1. Translocations and crossing-over distributions along the chromosomes 1, 3, 5, and 13 and the global histogram (bottom) along 22 atibkomes of t
genome.

in constitutional translocation distributions, calculated frorVe have compared this monotony signature of the chromosome
http://www.HCForum.imag.fr/. 1 translocations histogram to the monotony signature of the
We call monotony signs of a distribution the succession afossing-over histogram of the same chromosome on the first
signs= if the consecutive bars of the distribution histogram al@ée of the Table I.
not significantly different;+ if the consecutive bars are signifi- Let us define byX the random variable equal to the number
cantly increasing and if they are significantly decreasing. Forof differences between monotony signs of the translocdtion
example, in Fig. 1 top left below, the monotony signs are suand of the crossing-oveiC) break points distributions: in the
cessively= - ++—-+=+—-++—-+—-==+—-+——++. Table |, we give in the second column the succession of the
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TABLE | can conclude that our central hypothesis about a common eti-
MONOTONY SIGNS OF THETRS:;?RCI’;LTTT"SSS(T) AND CROSSINGOVER (C)  glogy for chromosome hot spots distribution is not falsified.
When there is no significantly similarity for sufficiently long

Ch Monotony signs T/C N Pr(X<x) chromosomes (superior or equal to 12 bands) with large values
X~B(N,1/2) of a superior or equal to 0.15), i.e., for chromosomes 4, 5, 7,
1 =-++-+=t-Ft-t-==+-4+--4++ 423 05 and 15, then that corresponds to a small level of crossing-over
sc=e=4 4 te=4tot-=F--+=-++ . . .
with respect to the number of translocations (see histogram for
9 =hedotodtootototodot=t.=_4 625 007 chromosome 5 and also the global histogram on Fig. 1 above).
B e e L s
3 t-t-t=t-to=-t-do=- +-4 3/21 .001
=-t==++4-c-==4..====+4+
4 -Ht oo em k=t 12/2 NS IV. USE OF THEGENETIC INTERACTION MATRIX
ettt ==tF - - ettt
§ -+t =-tt-t=+-=t=++ 917 NS A major problem a genetician has presently to face since the
Tt et o e introduction of the bio-array imaging is the estimation of the in-
6 -+t-=t-==+-4 -F-+-+-+++  6/21 .05 L. . . A
et e e b mmd = ot tergenic interaction matriXV which rules the observed genes
AT T S 8/17 NS expression [9], [12]-[14]. This interaction matrix is similar to
SteStttto-=4=s 44 the synaptic weight matrix, which rules the relationships be-
=4+ - ct+==t-+==+ - 4/17 .025 . ..
s =4t e ==ttt tween neurons in a neural network (cf. [15]-[17]). Hence, it is
Q Heo-m=dhoto 4o d=+-+ 2/15 004 in general of a great biological interest and relevance to deter-
TooooEESAEA-4=s mine matrices having characteristics like: 1) a minimal number
10 -+ il .03 of nonzero coefficients for a given set of stationary behaviors
11 -+=-+ 4=+ -+-+ 313 05 (fixed points or cycles), 2) a minimal number of positive or neg-
st--=d==4=o4d ative circuits, controlling the number of attractors and their sta-
12 ¥t T 514 NS bility. In this paper we give two general results about the rela-
13 --=-+ -+-+ 19 1002 tionships betw_een the positive and negative circui.ts in thg graph
se=a=44-+ of the interaction matrixyyY and the existence of fixed points.
14 ARSI sm NS This permits us to characterize minimal matrices given dynam-
15 +-+=t-ctt-tet 512 NS ical behaviors and therefore partly solve the first_ problem. F|
cHe=ddoo==44 nally, we constructed a bound for the number of fixed points in
16 +-+t-=t::-+—: 3/14 .03 terms of the number of positive circuits in the graph of the in-
17 et 4t a1 03 teraction matrWV. So we partly solve the secon'd problem too.
Foot==d-=++ In general, it is very difficult to have exhaustively the inter-
18 -+--+-+=+ /9 .002 action matrices: in the genetic literature and also by observing
e me==4++ . . . . . .
19 +ottte ot - 410 NS co-expressions through bl(_)-a_rrays imaging, it is po_55|ble_ to
e eem==t =+t qualitatively, or even quantitatively estimate the inhibitory (in
20 -t -tF- - - 3/9 NS case of repression by a protein obtained by the expression
)1 :T_'+==+++ ” NS of a gene) or activatory (in case of induction or promotion)
b=t coefficients of the interaction matrix. If we have no informa-
22 + -4 - - 45 NS tion, we can randomly choose the matrix by respecting certain
=4 44 basic rules, e.g., by respecting certain proportions of activatory

or inhibitory interactions. We can for example obtain the
location density of expressed ubiquitory genes (calculated from
monotony signs for these distributions (f the distribution http://www.citi2.frflGENATLAS/) and then randomly simulate
function is increasing;- if it is decreasing ane: if it is con- the interaction matrix and the initial conditions of the gene
stant). The third column gives the percentage of observed dif¢pression, by sampling them 100000 times, the interaction
ferences and the last column gives the significantly level (i.enatrices respecting the constraint to have 10% (resp. 10%) of
the risk«) of the test having a$ly hypothesis the difference negative (resp. positive) interactions, like in tAeabidopsis
between the two distributions is due to chance between the tthaliana genome [13]. The Fig. 2 below gives the distribution
distributions, equal to the probability th&tbe less thax (or of the co-expression of the ubiquitory genes calculated from
N — X be more tharN — x), whereN is the number of bands the expected stationary behavior corresponding to a random
of the considered chromosome (column 1) anithe observed choice of the interaction matrix and the initial conditions:
number of differences. This probability can be calculated by rere have systematically calculated attractors (fixed points or
marking thatX (or N — X), underH, hypothesis, is a binomial limit cycles) corresponding to an initial condition and an
random variable following the distributida (N, 1/2). interaction matrix, and then we have calculated the frequency
We remark on Table | that (except for the four last acraf observing the expression of each ubiquitory gene in these
centric chromosomes which are too small) we reject 12 timagtractors. In absence of complementary information about the
over 18 the hypothesis of the difference (due to the chance) beealization of the inhibitory or activatory interactions between
tween translocation and crossing-over distributions. Hence wiiquitory genes, the obtained co-expression distribution is just
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male crossing-over and genes density isting between the ubiquitory genes, confirming the role of in-
slong chromosome 3 teraction coefficients: their presence in the interaction matrix
08 - causes the occurrence of positive and negative circuits very in-
gj volved in the existence of several asymptotic configurations. For
03 example, in [13], it is shown that the nhumber of these asymp-
02 totic configurations foArabidopsighaliana flower morphogen-
g; | esis control is equal to 4: this result can be predicted from [9],

where it is shown by simulations that, if the Kauffman connec-

p26 p24 p22 p14 pi2 q11 Q13 q22 q24 q26 q28 L L. . .
tivity coefficient (equal to the number of nonzero interactions,

[ translocations. @ male crossing over o genes | here 22, divided by the number of genes, here 11) is equal to 2,
00 then the number of possible genes expression asymptotic con-
018 figurations is of the magnitude order of the square root of the
0.16 number of genes3(< /11 < 4). Another result suggested in
gg [9] confirms that genetic networks definitively have mathemat-
0.10 ically predictable behaviors: the human genome is made from
0.08 about 45.000 genes and we have ab#i@t = /45.000 dif-
gﬁ B ferent tissues in the human body, each tissue corresponding to a
0.02 specific asymptotic expression of the nuclear material.
0.00 The interaction matrix is similar to the synaptic weight ma-

p26 p24 p22 p14 p12 qi1 qi13 q22 q24 qg26 28

trix, which rules the relationships between neurons in a neural
network. The general coefficiemt; of such an interaction ma-
Fig. 2. Distributions of ubiquitory genes (below), all genes (right aboveyix W is equal to+1 if the geneG; activates the gen@;, equal
g[‘?zir;g-;)r\rllzr&(wddle above) and translocation (left above) along tlf8 _1ifthe gene(.}j inhib_its the g-en@i and equal to 0 iGj
andG; have non interactior(z; being equal to+1 (resp.—1),
TABLE I if it is (resp. not) expressed. In the case of small regulatory ge-
MONOTONY SIGNS OF THE HISTOGRAMS OFFIG. 2. netic systems (called operons), the knowledge of such a matrix
W permits to explicit all possible stationary behaviors of the
organizms having the corresponding genome: for example, in
the operon which regulates tAeabidopsighaliana flower mor-
phogenesis, the interaction matrix is a (11,11)-matrix with only

Ubiquitory genes - - - ++=-+-==++=-+++-++ 3/21
distribution:
All genes+=-++- -+-+=+-+-=++- -+ 9/21
distribution:

Crossing-over — -====-++- - -=++- -===+++ 0,21 22 non zero coefficients. This matrix presents a certain number
distribution: of positive and negative circuits and only four observed attrac-
Translocation =-+-==+-+-==+-+-==+-+ 3/2] tors [13]. Hence it is general of a great biological interest and
distribution: relevance to determine matrices having characteristic properties

like 1) a minimal number of non-zero coefficients for a given set
of stationary behaviors (fixed points or cycles) or 2) a minimal
a reflection of the spatial distribution of these ubiquitory genggmper of positive or negative circuits controlling the number of
along the human chromosome 3. . attractors and their stability (cf. [2], [5], [12] in the continuous
If we now determine the signed vectors corresponding to thgse). In the following, we intend to partly solve the problems

number of differences between these signed vectors, we obigjptain the properties 1) and 2).

as shown in Table II.
By comparing the vectors giving the succession of monotord¢ Definitions and Notations

increasing(+), decreasingd—) and constanf=) parts of the | ., _ (V, E) be a directed graph, wheke= {1, ..., n}

histograms of Fig. 2, itis easy to prove that we reject the nypotit-y, o et of nodes or vertices alid= V x V is the set of arcs.

esis that ubiquitory and translocation distributions are differenf; vy — (wy;) be a(u, n)-real matrix. We call: theincidence
- 1] ) .

of the crossing-over distributior(® < 0.001), but we cannot raphof W if for all nodesi. i the arc aoina froni (initial node
reject the hypothesis of difference between the all genes andégep ! ) going (initi )

; LT terminal nodé (i, j) belongs tak if and only if w;; # 0.
crossing over distribution. It has to be noted, however, that t Je(xten;ionw wei!II(;IJsL be cagllled théncidenceyr:wz::;imfG
predisposition to chromosomal breakage cannot be explai define thé sign of an arg, j), denoted by sigtfi, /)) alc,
solely by gene expression since breakpoints are also obserif%j 1 1))

e

ign ofw;;. Let us denote by (i) (I'&(i)) the set of nod
in heterochromatic regions with a lack of genes (for example sign ofivi. Let us denote by (i) (I';(1)) the set of nodes

. chthati;, i) ((i, i;)) belongs tdZ. We say that a set of arcs
the short arm of acrocentric chromosomes) (cf. also [19] a%ﬂj o eEIJ/ i) (S}lji)s)achair?if o) arOekyin ata setofarc
[20]) - ? AR A

belonging toe—; and the other one belongingdg, ;. We say
thatC is asimple(elementarychain if the arcs (nhodes) are dif-
ferent. In the sequel we will understand by chain a simple and el-
Here we give some properties for minimal interaction mamentary chain. In the same way we ¢ath pathif the for each
trices representing the inhibitory or activatory relationships exr = (ix, ik+1), ex+1 = (ik+1, ik+2) for everyk =1, ..., r,

V. MATHEMATICAL PROPERTIES OF THHNTERACTION MATRIX
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that is to say, the final node of each arc is the beginning nodeHence, we have the following necessary condition to have a
of the next arc inC. Thesign of a pathor a chainC [denoted quasiminimal structure:

by sign(C)] is positive if the number of negative arcs 6fis . _ . .

even and negative otherwise.ccleC = {ej, es, ..., e,} is B zk: [wac] < bi < zk: ik Vi=1,....n

defined as a chain, that is, where the initial nodeofnd the
terminal node or the initial node ef coincide. In the particular
case where the initial node ef and the terminal node ef co-
incide, we say that’ is acircuit. For simplicity of notation, we
say that a node i belongs to a cydleif there exists a nodg
such that(i, j) or (j, i) belongs taC. Every other definition of
graph theory will be consistent with that in [21], [22]. A circuit x; = sign(wji)x;. (1)

or cycleC is negative (positive) if the sigf') is negative (pos- Proof: Let C be a positive cycle and(0) a fixed
itive). Define now adiscrete state regulatory netwo(RSRN), ,54e belonging toC. Let us enumerate the nodes be-
acting on the set of statds-1, 1}, here and subsequently de1onging to C by i(0),i(1), ..., i(k), such that, for all
noted byN, as the 4-tupl&N = (G, W, b, sign), whereG is i=0, ...,k (i(j), i - 1) eC " or (i(j — 1), i(j)) € C.
the incidence graph d¥V, b is a threshold real vector and fOf‘FinaIIy, let us define the vector as follows: ’

each node is defined a local transition functiof, depending
on the values; of the nodes, as follows:

The following property will be very useful in the sequel for
characterizing a cycle.

Proposition 1: A cycleC is positive if and only if there exists
avectorx € {—1, 1}" such that for alli, j) € C, sign(wj;) =
x; - X; or equivalently for all(i, j) € C

—Xj0) = 1 and
—xi(j) = sign(wigi-1))xig-n If (i —1),i(j)) € C or

Xi(j) = sign(wig-1)i()) - sign(xig-1)) it (i(5), i(j —
fix) =sign| Y wyxj—bi|,xe{-1,1}" D)eC.vj=1,.... k .

Obviously, x is satisfying (1). Hence-x satisfies (1) too.

Finally, it is direct that there does not exist another vector
y ¢ {x, —x} that satisfies (1).

Let C be now a negative cycle, and let us suppose that (1) is

A DSRN has associated a discrete updating rule of the nodH&e: then
values, normally synchronous iteration or sequential iteration

where sig{u) =1, ifu >0
andsigriu) = —1, otherwise

2

(see [15]). We shall say that a vecteris a fixed point if it IT sionwi;) =T = [[== (1]

is invariant under the application of the complete sequence of (i, j)ec i i i

update_s. Obse_rve that the type of |terat|_on does _not cha_ngemg signc) = H(i,j)eC signw;;) < 0, which is a

set of fixed points, but only change their attraction basins. [ iradiction. -

the following we will use systematically the parallel iteration Theorem 1:Given N. if all cycles of incidence graplt:

consists in updating all the nodes synchronously, i.e., are positive, then there exists a vector= (xi, ..., xa) €
{-1, 1} such thatx and —x = (—xy, ..., —x,) are fixed

X(t + 1) =sign Z Winj(t) —b;i |, points ofN.

Proof: Let T be an arbitrary spanning tree 6f, that is

=1,...,n . .
e _ to say,vi, j € V, 3! chain between andj belonging toT (see
foralli=1,...,n S
example in Fig. 3). Let us now constructs follows:
with x(0) in {-1, 1}™. —Fix the value 1 tx,, and —)
—Takex; = sign(Cy;), whereCy; is the chain between-rgde

B. Relations Between Positive and Negative Cycles and 1 and nodeé in T'.
Fixed Points Observe that the value af does not depend dh. In effect,

- ; let 7" be another spanning tree &f andC’; the chain inT”
In the sequel, we will assume that the directed grépls egveen the node 1 aridIf C, is different of C1i, then by

connected, since otherwise one can apply the results to eaclﬁ W _ ) .

connected components 6 In addition, we will suppose, with ypothesis all subcycles of the chain made of the concatenation
. , , _ , " C N , .

notloss of generality, thaf' ¢ (i)| > 0, foralli € V, since other- of Cy; andCy, are positive, hence sighi;) = sign(C,), which

: ! ;o :
wise if there exists a nodec V, such thatl"; (i) is empty, then ensures that the valug is well defined. IfC/; is equal toCy;,

its local transition functior; would be constant, and thereforéhe same result is trivial. Because this result is available for each

uninteresting. It follows directly from this property that theré’ t\?ve valuexl IS weltl dfrfmtetﬂ. | ind dent of th
exists at least one circu in G [it can even be a circuit of the h e cafntr? s? nto € ha ;tva Uuess are independent of the
form (i, i) calledloop]. Finally, we suppose that the directed10!C€ Of the firSt Component .

graphG and the matriXV have aquasiminimal structurethat L?t US now prove that so dgfir_1ed Is a fixed point dﬁ
is, for all arc(i, j) in B, i # j, there exists: € {—1, 1}", such Itis easily to check that satisfies (1) of the proposition 1. It
that / ’ ' T shows thatyj € V,Vj(1), ..., j(n) € T5(), wijyxj) > O if

and only ifx; = 1, and then that

sign (Z wikX(t) — bi) #sign| D wiex(t) = bi | - (Z Wik = Y |wi| > bj> &x =1
k k k

ki
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In this way, given a vectox, we can characterize the set of
minimal N’s havingx as fixed point. ]

Proposition 3: Given a vectorx, the set of DSRNs
N = (G, W, b, sign) with |[V| = |E| = n, havingx as fixed
point is given by the following conditions:

1) wi; = aijxixj, whereay; > 0 and, for alli, there exists a

uniquej(i) such that;) # 0;

2) _|aij(i)| < b < |aij(i)|-

Fig. 3. Example of spanning treeG corresponds to a graph where Proof. The proof is straightforward of Theorems 1 and 2

all cycles are positve and T is a spanning tree @f In this case and the hypothesis of quasiminimal structuresof ]
x=(1,1,1,1,1,1, =1, -1, =1).

D. Fixed Points Bounds in Regulatory Networks

Hence, sigt)_, wjxk —b;j) = 1lifand only if x; = 1,  Theorem 3:If m is the total number of positive circuits Bf,
Vj € V. Thereforex is a fixed point ofN. The same procedurethen the number of fixed points of is less or equal thag™.
we can apply to prove thatx is a fixed point ofN too. B And this upper bound is reached.

Remark: For a DSRN satisfying the hypothesis of Theorem  Proof: Let us denote b+ = {C1, C2, ... Cm} the set
1, there exists two remarkable fixed points; they possess by coffipositive circuits ofG. Let f: {x | x is a fixed point ofN} —
struction a non frustration property, that is on each cycl&of {—1, 1}/°*I be a function defined by
the sign changes of thes are identical to the sign changes of

the arcs of the cycle. For the other eventual fixed points, there () = (xicen)s Xi(e2)s -+ Xicom))

is at least one cycle it for which they are frustrated. wherei(Ck) = min{i|i € Ck} forallk =1, ..., m.
Theorem 2: GivenN, if all circuits of the incidence grapt Let us prove that the functiofis injective.

are negative, theN has no fixed points. Letx!, 22 € {—1, 1}" be two fixed points ofN such that

Proof: Letx € {—1,1}" be a fixed point ofN andC a f(x!) = f(x?).
circuit, by hypothesis negative. By Proposition 1 there existsLet us define the partitioW1, V2 of V as follows:
(i, j) € C such that sigfw;;z;) # z;. Let us denoted by~ . 1 .2 oy 1., .2
the set of such arcs, i.e., Vi={ieVix=x} V2={ieVix #x}

. . Let us observe that all nodégCk), k=1, ..., m, are in
E™ =1 ]) € E|sign(wiixi) # xj}, V1. Let us suppose thaf2 # fF)ix j(0) € V2 and let us
which is not empty. Let us defims’ = (G’, W', b, sign) by assume with not loss of generality tha}l’fo) = 1 and there-
« G =(V,E),V =V, E =E\E,; fore sz(o) = —1. Hence, there existg1) € I';(j(0)), such
« W' = (w}y), wj = wy if (j, ) ¢ E~ andw}; = 0 other- that signjwj(o)j(_l)x}(l)) = 1, but in addition we can choose
wise; j(1) € V2. In this case thakj1<0) = —1and therefore<j2 0 =
b’ =h. 1. We can use analogous arguments to prove that there exists

Ifforall j € V/, |G (j)] > 0, then there exists a circuit (it i(1) € T'¢(i(0)) N V2, such that sighw;o);(1)2j (1)) = Xjo)-
can even be a loop) i@’ what is by hypothesis negative. Thisis In this way, we can construct inductively a sequence (even-
impossible by construction @', hence there exists one node tually constant) of nodeg0), j(1), ... belonging toV2 such
such thatl'g, (1) = ¢ which means that sigmzx) # @, for  that sigiw;.—1);7ju)) = sign(@j,_,,) for all k, there-

allk € T';(1) and therefore ik, = 1, then fore there exsts a circuit in C* with nodes inV2, such that
Xy # Xjcy» Which is a contradiction with the fact that the
ZWlka =" Z W] nodei(C) is in V1. Therefore, the functiofi is injective and
k k |{x|x is fixed point of N}| < [{-1, 1}|™ = 2™,

which implies thad ", wixi — by < 0. Henceg; is not a fixed Let us now see one family of DSRN where the bound is
component orx, which is a contradiction. The same argumentached.
we can apply ifc; = —1. Therefore, the vectaor is not a fixed LetN, = (G,, Wy, by, sign) be a DSRN defined by

point of N. u —Gn,=(Vn, En), Vo ={1,2, ..., n} and
—Fa = U2k -1, 20} U {(2k, 2k— 1)} U
C. Minimal Regulatory Networks {(2k, n)};

The previous results allow us to characterize some minimal — W = (wij)i, j=1,..,aWij = 1, if (j, 1) € Ey, andw;; = 0
regulatory networks. The following propositions constitute one  otherwise;
example. —by, =0,

Proposition 2: Let N be a DSRN withu nodes and: con- It is easy to check tha¥,, has2(®—1/2 fixed points and the
nections, a necessary and sufficient condition for the existenoember of positive circuits is equal ta — 1)/2, so the bound
of a fixed pointx is the existence of a positive circuit. In thisis reached. ]
casex and—x are both fixed points. Remark: We have to notice that the condition concerns the

Proof: The proof is an immediate consequence of Theaumber of circuits and not of cycles, these last being in general

rems 1 and 2, and the fact thdthas only one circuit. very more numerous.
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E. Asymptotic Mean Value for the Number of Attractors in rest of the nodes being i?ég(i), i € C’s (and hence their states
Case of Connectivity CoefficieRt Equal to 2 being fixed by the states of the circuit):

Let us consider now a netwobk havingn nodes andn con- ~ — A(0; 9) = B(0, 0)/D(0), where

nections such as its Kauffman’s connectivity coefficiine 2~ — B(0, @) = 2° [number of fixed points of = kZi:l s(i)
(K being just the ratio between the number of connections aflf#ioint positive circuits, from Theorem 3 aboveR™ [number

the number of nodes). We will now search for a mean value 8F dif;ferent signs for each of the = 3 ;" , is (i) connections]
the number of attractors &f, whenn is growing to infinity. x [2% (number of different directions—Ieft or right—for each

Lemma 1: For any graphG having m non oriented arcs theOf the s circuits)2® (reduction factor for having only positive

mean number of oriented arcs we can defineCofirom the Circuits)] x N(Uk)' , o
nonoriented configuration is equal a1 /3. — D(o) = 2* (number of different directions for each of the

Proof: Let us note{o) the mean number of oriented arcst onnectionsx 2% (number of different signs for each of the
we can construct from a configuration of non oriented arcs; & connections)x N(a), whereN(o) is the number of choices

then, if exactlyk from them non oriented arcs are decomposeff' thes disjoint cycles:
into two oriented opposite connections, we h&ug—k2m—k - :

: : ' . _ = [ gs(D1-+s(n)n i — 1)@ s
different ways to dispatch the not double connections into the N(o) = | G, H (i—1)! 2z

(i — k) other nonoriented arcs; hence we can write =1

o . N(o) is just equal to the number of choiceslohodes dis-
(0) = Z (k + m)cﬁ—k2m—k/z cm-kgm—k — 41, /3 patched irs(1) subsets of size 1, ., ands(n) subsets of size
P P multiplied by the number of choices of different loops (without
Theorem 4: If the networkN hasn nodes and<n connec- Multiple points) connecting the vertices inside each of these sub-
tions, withK = 2, then the expectation of the number attractor2E!s: .
of N is O(n!/2), if n is sufficiently large. In the same way, we can Calculqté17 o) [resp.A(j, o)] the
Proof: Following [22], if the connections ofN are expected numpgr of attractors Nfin _the case wh_gre we hgve
random, and if the mean numberof non oriented arcs per @mong thes disjoint cycles 1 (resp) isolated positive noncir--
node is equal to 3/2, then the random variablegqual to the cw_t cycles (bringing 2 attractors) or isolated negative circuits
number of disjoint cycles of lengthof N are independent and (Pringing 1 attractor).
Poissonnian with parametafi) = 2i~1/i, if n is sufficiently ~ We have
large. From Lemma 1, we are just in this case, because we A(1, o) = B(1, o)/D(0)
have2n = 4m/3 connections, hence we have = 3n/2 and ’ ’
¢ =m/n = 3/2. Then we have, for the mean numbéj of where
the attractors oN B(L, 0) =25~ 1(25=1 /25~ 1)N(0)

H=>3 > A, 2% Is(1)(21 212! 4 212! — 2total) /2!
s=0 k=s o€Q(s, k) 4t 2k—is(i)(212i2i + 2i21 _ 212i21)/21
where 4ot 2k7ns(n)(212n2n + 2n21 _ 212n21)/21]
— Qs, k) = {o = (s(1), ..., s(n))/s(i) >0 wheres(i)2'2121/2! is just the numbef2!) of fixed points of
1 positive cycle (circuit or not) of lengthtimes the number
n n of such configurations(i)2i2!/2%, s(i)2'2! /2! is the number
i is(i } (1) of attractors of 1 isolated negative circuit of length
times the number of such configuration§)(22!/2') and
n —s(i)212121 /2% is the numbe(2!) of fixed points of 1 positive
— I, =P ({Xi =s(i), s(i) > 0, s(i) =s circuit [already counted i (0, )] times the number of such
i=1 configurations s(i)(2121 /21); 25-1(2571/25"1)N(0)2k ! is
LI equal to the number of configurationssof- 1 positive circuits
}) with s(1) of length 1,..., s(i) — 1 of lengthi, ..., s(n) of
lengthn. Then we have:

_ 0 T A s A(2, ) = B(2, 0)/D(0)
i=1 where
B(2, 0) =252(2°72/2°72)N(0)[2% 2s(1)?

i=1

is the probability to have th¥;'s equal each te(i), andA(o)
is the mean number of attractors, when ¥és equal each to

s(i). - (222722 — 2(2%2%21 — 212221 4 2221y /22
We will now evaluate the expectatioh(c). Each disjoint 4 oo 2K (1)s () (2222 — (222itigio!
positive circuit bringing 2 fixed points (Theorem 3 above), an — 2lgitigighy _ (222i+igig!

isolated positive noncircuit cycle bringing also 2 fixed points
and a isolated negative circuit bringing one cyclic attractor, we Ko 2 oio o S
can first calculate\ (0, o), the expected number of attractors in + o0+ 25 s(n) (272727 — 2(27277272
the case where we have only disjoint positive circdits, the — 2122n9n92) 4 22n92) /92

— gloitigigly 4 9itig?) /92

?



832 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 5, OCTOBER 2003

where form < j — 1, and not yet taken away. To finish the calculation
of B(j, o)
s(i)s(j) (222121 — (222112192 _ olaitigig?)
—(222141292 — 9loitigin?) 4 9itin2) /92 okx() > 217V or(Q)=r(®)x(O)=x(E)
L. . &=(m(1),...,m(v))€{1,...,n}"
is just the number of attractors of a couple made of positive not () o Lor(©) oy _ or(E)ov
circuit cycles or negative circuits, the— 2 remaining cycles ' (2 2" —v (2 2727 = 2782 )
being positive circuits, by paying attention to the fact the attrac- v(v—1) (222r(£)2v _olox©)gv 4 2r(£)2v) /2
tors of the couples of a positive not-circuit cycle combined with
a positive circuit [in number equal tgi)s(j)2221+ (2! + 27)22] '
have been already counted bothi(i, o) and inB(0, o) and + (=) 2“5)2”) /21
hence have to be taken away (by using the sigfrom the sum
s(i)g(j)(2221+J21+J + 212i+igig1 4 212i+igigl 4 9i+i92) /92, _ Z 2vokor(Q=r@)(1/2 — 1)¥
Finally, more generally, we have £=(m(1),... (o) E{L,m}

A(j, o) = B(j, 0)/D(0) = > 2kgr OO (1),
£=(m(1),...,m(v))€{1,...,n}"
where By summing theA(j, o)’s and after the\ (o).IL, s, itis then
) possible to show thdf is of the order ofa'/?
B(j. o) Z Z > )H 0
72)\ i /\ s /S
= ZQ_J(2Q_J/2Q_J Z2k r( 0=0 k=s o0€Q(s, k) i=1
(el n
j . A(, o
. [2j2r(()2r(<) + Z 9i—1gr(¢)=i(m) 9r(¢)—i(m) ; G, o)
m=1 n n
.(Zi(m)Ql _ 212i(m)21)+ - Z = e~ =MD /g1 < Hs )
_ . 0=0 k=s o0€Q(s, k)
&=(m(1),....m(v))e{l,...,n}
. 9i=vor(Q)=r(€) 9r($)—r(€) where §
. (2r(f)2v —v (2v712r(5)2v _ 2v722r(5)2v) + V(V _ 1) Kg— _ 2s—k H )\(i)s(i)(Zi_l _ 1/2 + 1)5(1)
i=1
. (2\’—221‘(5)2\7 _ 2.2\’—321‘(5)2\’ + 2V—421‘(£)2V)/2 n ‘ () ' ()
N . = [T /ir®a+1/2¢
4+oa (_1)"2"2r(£)2\’) IS (_1)J2J2r(<))/2q 11;[1
and
. . I u(i(t))
— 9571(957) /95— J 21(t) 1 _ n . n .
2/ ;tl;[( ) Z)\(I)Z(ZQ/l)/Q
i=1 i=1
wherel = {C (( ) Tt 1(])) € {1 Tt n}J/Vt = - 2 i—1 n—1
1,...,j, the numberu(i(t)) of cycles of sizei(t) satis- = Z X7 dx/2=0(2"7).
fies: 0 <u(i(t)) <s(i(t)), andj = ZJ L u(i(t))}, and =
r(¢) = S_,i(t), and2i27©)2r(©) /91 is just the numbet2}) Then, we havi N s
of fixed points ofj positive cycles (circuits or not) of lengths £ ~ —SA(E) i) + L 9 !
i(1), ..., i(j) multiplied by the number of such configurations 2 Szz:e 2_: (i) + Logn/ >
of j positive cycleg2'(©)2i(D+i() /2i) and —0 (vi)
i ) ' ' ' ' |
Z 2i=19r(Q)=i(m)gr(¢)=i(m) (21(m)21 - 2121(‘“)21)/2J Remark: We have to notice that the Theorem 4 corresponds
m=1 to the proof of the Kauffman’s conjecture [16], approximately

w rified as we have already said for the human genome and for

being just the number of attractors in a configuration where
9] g the Arabidopsisgenome.

have 1 negative circuit of lengilim) among thej — 1) other
positive cycles (circuits or not) diminished by the number of
the configurations having — 1) positive non circuit cycles and
(k —j + 1) positive circuits [already counted B(j — 1, 0)). By introducing interaction matrices expressing negative (re-
The other terms oB(j, o) correspond to the number of attracpression) and positive (promotion) relationships between genes,
tors of the configurations having — j) positive circuits andg we have shown that ubiquitory genes can play a role in the weak
either positive non circuit cycles or negative circuits, diminisheggart (hot spot) configurations along human chromosomes. This
by the number of already counted attractors inf{en, )’s, role can be crucial, because the environment can cause the ex-

VI. CONCLUSION
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pression of ubiquitory genes responsible for the control of bagibserve the phenomenology of fixed points or limit cycles.
metabolisms (mitochondrial respiration, glycolytic and lipidid@his corresponds in genetics to the phenotypic observation of
control, membrane, and cyto-skeleton formation). Certain pr&tationary expression behaviors without experimental measure
vious arguments (like the richness of chromosomic hot spaifall the inhibitory and activatory coefficients of promoters and
in Alu G-C sequences and methylated parts of the genome) i@pressors. The possibility to obtain (even in an equivalence
ready pushed in the same direction. We have now to confirm tltiass) a sketch of the interaction matrix permits to construct
hypothesis by systematically exploring all possible genes intdby randomizing in a Bayesian way the unknown coefficients
actions and after by calculating all asymptotic behaviors pesf W) more complicated interaction matrices than the observed
mitted by the interaction matrices for expression configurationsne, then to test if they still have the observed states as fixed
allowing the determination of the ubiquitory genes expressi@oints and finally keep or reject definitively the so tested
histograms. By refining also the location of the chromosominatrices and propose further experimental strategies (e.g.,
break points, we will be able to confront more precisely thessing the bio-arrays instrumentation [23] and [24] for refining
histograms with all weak points histograms in order to reinfordbe knowledge about the interaction structure of the genetic
or falsify the central hypothesis of our paper. regulatory network (see [25]).

An other important conclusion we have made explicit in this
paper concerns the relationship between the number F of fixed
points and the number S of interaction circuits of the interaction
matrix W: the problem is in fact to find the best upper bound for g
F for a given interaction matri¥V. This question is the discrete [2]
translation of the famous XVIth Hilbert's problem (the Vllith
problem of the recent Smale classification) of determining an 3,
efficient upper bound for the number of limit cycles of a poly-
nomial differential system. Let us summarize the role of the ar-
chitecture of positive and negative circuits\df on the occur-
rence of multiple stationary behaviors as obtained above: if the[s)
number of nodes and the number of arcs are the same, there s

=

only one isolated interaction circyi$ = 1) in W and either this o
circuit is negative and the lowest bound (0) fois reached, or  [7]
this circuit is positive and the upper boufitt) for I is reached.

If the number of nodes is n and the number of ares4s1, there 18]
is two interaction circuit§S = 2) with the following structure:

if both circuits are negativeé; = 0; if there is a positive circuit ~ [°]
and a negative circuit disjoinE = 0; if there is a positive cir- [10]
cuit intersecting a negative circulf, = 1; if there is a positive
circuit intersecting a positive circuil, = 1; if there is two dis-

joint positive circuitsF = 22. If more generally the numbér [11]
of interaction circuits oW is m, then: if all circuits are nega-

tive, F = 0; if all circuits are positive2 < F < 2™ and if, and 12

only if, all circuits are positive and disjoink, = 2™.
An interesting open problem is now to make exhaustivgi3]
the determination of® and S and in particular to find the
circumstances (related to the circuits structure) in which wey 4
can relate the number of intersecting and isolated circuits to
F. The approach for solving this open problem could consisi
first in finding coherent relationships between analogou ]
properties discovered for continuous versions of the regulatorge]
networks and for general Boolean networks. The second
conclusion concerns the practical use of the presented results; a
genetician can for example exploit the minimality results in the{17]
following sense, i.e., we have shown in the paper that it would
be possible to characterize the minimal interaction matricegg
having certain state vectors as fixed points. The determination
of these matrices is not unique, but permits to focus on certain
important equivalence classes in which the expected matri&lg]
has to belong. This considerably restricts the choice of the
possible interaction matrices compatible with observed fixe
points, when it is impossible to directly get from experiments
all interaction coefficients, but when it is only possible to

20]
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