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Mathematical Modeling in Genetic Networks:
Relationships Between the Genetic Expression and
Both Chromosomic Breakage and Positive Circuits

J. Aracena, S. Ben Lamine, M. A. Mermet, O. Cohen, and J. Demongeot

Abstract—The genome has evolved since a primitive genome
until the present state of the human genome dispatched along the
23 pairs of chromosomes. This evolution has been ruled by the mu-
tation process and also by the physiological and pathological reor-
ganization of the genomic material inside or between the chromo-
somes, which are conditioning the genomic variability. This reor-
ganization is starting at singular points on the short or long chro-
mosomic arms, called crossing-over, or translocations, insertions,
break points. In this paper, we will show that these points, also
called weak points or hot spots of the genome are correlated, inde-
pendently of their origin. In addition, we will give some properties
of the genetic interaction matrices in terms of attractors of the ge-
netic expression dynamics.

Index Terms—Genetics, interaction matrix, positive and nega-
tive circuit, regulatory network, translocation.

I. INTRODUCTION

T HE GENOME has evolved since a primitive genome [1]
until the present state of the human genome dispatched

along the 23 pairs of chromosomes. This evolution has been
ruled by the mutation process and also by the physiological
(crossing-over mechanism) and pathological (translocations,
inversions, insertions, deletions, fusions, etc.) re-organization
of the genomic material inside or between the chromosomes,
which are conditioning the genomic variability. This reor-
ganization is starting at singular points on the short or long
chromosomic arms, called crossing-over, or deletions, translo-
cations, insertions, inversions, and fusions break points. In
Section I, we will show that these points, also called weak (chro-
mosomic break) point or hot spots of the genome are correlated,
independently of their origin (physiological crossing-over,
pathological constitutional or acquired chromosomic abnormal
breakage). One of the mechanisms involved in the weakness of
certain parts of the chromosomes is the presence of ubiquitory
genes expressed during the whole cell cycle at methylated parts
of the chromosome causing locally decoiling and opening of
the DNA double strand, hence, causing a local fragility of the
genome. In order to give arguments in favor of this hypothesis,
we will partly randomly choose interaction matrices giving the
relations existing between the ubiquitory genes and we will
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calculate the attractor configurations of expression of these
genes. Then, we will be able to calculate the probability of
expression, compare the location of the high expressed parts to
the location of the weak genomic points and find for certain
chromosomes a high correlation between these locations.
Finally, we will give some properties of the interaction matrices
in terms of the number of their possible attractors (generalizing
some results obtained in [2]–[6] to the discrete case). Two main
results are emerging from the present study. 1) The positive
circuits of the interaction matrix are necessary for observing
multiple attractors as conjectured by Delbrück [7] and Thomas
[8], and 2) the number of attractors is of order of magnitude

, if the number of genes is great and if the number of
interactions is equal to , as conjectured by Kauffman [9].

II. GENETIC DATA DESCRIPTION

A. Review Stage

First, we will present the central hypothesis concerning the
presence of correlated weak points in the human genome, based
on a similarity between the distributions of translocation points,
crossing-over locations and ubiquitory (i.e., expressed during
the whole cell cycle) genes expression sites. This co-occurrence
is probably due to the fragility of chromosomes at the tran-
scriptionally active regions of the DNA, which are correlated
to those involved in physiological crossing-over break points
and in pathologic translocation breakpoints. The data used pro-
vided from genetic papers and from unpublished data provided
by human genetic centers: They have been brought together in a
dedicated database named HC FORUM1 which is available on
http://www.HCForum.imag.fr/ [10]. A previous study [11] has
pointed out the potential pit-falls due to recruitment bias as well
as the heterogeneous distribution of the different kinds of chro-
mosomal bands. For example, translocations published in the
literature are mainly those responsible for imbalances at birth
that are more observed in relation to distal break points. Fur-
thermore bands are more often located in the distal regions of
chromosomes.

III. COMPARISONBETWEEN CHROMOSOMAL HOT SPOTS OF

DIFFERENTORIGIN

We give in Fig. 1 data collected in crossing-over distribu-
tions, calculated from http://www.genetics.soton.ac.uk/ and

1 HC FORUM is a registered trademark of Université Joseph Fourier,
Grenoble, France.
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Fig. 1. Translocations and crossing-over distributions along the chromosomes 1, 3, 5, and 13 and the global histogram (bottom) along 22 autosomes of the human
genome.

in constitutional translocation distributions, calculated from
http://www.HCForum.imag.fr/.

We call monotony signs of a distribution the succession of
signs if the consecutive bars of the distribution histogram are
not significantly different, if the consecutive bars are signifi-
cantly increasing and if they are significantly decreasing. For
example, in Fig. 1 top left below, the monotony signs are suc-
cessively .

We have compared this monotony signature of the chromosome
1 translocations histogram to the monotony signature of the
crossing-over histogram of the same chromosome on the first
line of the Table I.

Let us define by the random variable equal to the number
of differences between monotony signs of the translocation
and of the crossing-over break points distributions: in the
Table I, we give in the second column the succession of the
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TABLE I
MONOTONY SIGNS OF THETRANSLOCATION (T) AND CROSSING-OVER (C)

DISTRIBUTIONS

monotony signs for these distributions (if the distribution
function is increasing, if it is decreasing and if it is con-
stant). The third column gives the percentage of observed dif-
ferences and the last column gives the significantly level (i.e.,
the risk ) of the test having as hypothesis the difference
between the two distributions is due to chance between the two
distributions, equal to the probability that be less than (or

be more than ), where is the number of bands
of the considered chromosome (column 1) andthe observed
number of differences. This probability can be calculated by re-
marking that (or ), under hypothesis, is a binomial
random variable following the distribution ( , 1/2).

We remark on Table I that (except for the four last acro-
centric chromosomes which are too small) we reject 12 times
over 18 the hypothesis of the difference (due to the chance) be-
tween translocation and crossing-over distributions. Hence we

can conclude that our central hypothesis about a common eti-
ology for chromosome hot spots distribution is not falsified.
When there is no significantly similarity for sufficiently long
chromosomes (superior or equal to 12 bands) with large values
of superior or equal to 0.15), i.e., for chromosomes 4, 5, 7,
and 15, then that corresponds to a small level of crossing-over
with respect to the number of translocations (see histogram for
chromosome 5 and also the global histogram on Fig. 1 above).

IV. USE OF THEGENETIC INTERACTION MATRIX

A major problem a genetician has presently to face since the
introduction of the bio-array imaging is the estimation of the in-
tergenic interaction matrix which rules the observed genes
expression [9], [12]–[14]. This interaction matrix is similar to
the synaptic weight matrix, which rules the relationships be-
tween neurons in a neural network (cf. [15]–[17]). Hence, it is
in general of a great biological interest and relevance to deter-
mine matrices having characteristics like: 1) a minimal number
of nonzero coefficients for a given set of stationary behaviors
(fixed points or cycles), 2) a minimal number of positive or neg-
ative circuits, controlling the number of attractors and their sta-
bility. In this paper we give two general results about the rela-
tionships between the positive and negative circuits in the graph
of the interaction matrix and the existence of fixed points.
This permits us to characterize minimal matrices given dynam-
ical behaviors and therefore partly solve the first problem. Fi-
nally, we constructed a bound for the number of fixed points in
terms of the number of positive circuits in the graph of the in-
teraction matrix . So we partly solve the second problem too.

In general, it is very difficult to have exhaustively the inter-
action matrices: in the genetic literature and also by observing
co-expressions through bio-arrays imaging, it is possible to
qualitatively, or even quantitatively estimate the inhibitory (in
case of repression by a protein obtained by the expression
of a gene) or activatory (in case of induction or promotion)
coefficients of the interaction matrix. If we have no informa-
tion, we can randomly choose the matrix by respecting certain
basic rules, e.g., by respecting certain proportions of activatory
or inhibitory interactions. We can for example obtain the
location density of expressed ubiquitory genes (calculated from
http://www.citi2.fr/GENATLAS/) and then randomly simulate
the interaction matrix and the initial conditions of the gene
expression, by sampling them 100 000 times, the interaction
matrices respecting the constraint to have 10% (resp. 10%) of
negative (resp. positive) interactions, like in theArabidopsis
thaliana genome [13]. The Fig. 2 below gives the distribution
of the co-expression of the ubiquitory genes calculated from
the expected stationary behavior corresponding to a random
choice of the interaction matrix and the initial conditions:
we have systematically calculated attractors (fixed points or
limit cycles) corresponding to an initial condition and an
interaction matrix, and then we have calculated the frequency
of observing the expression of each ubiquitory gene in these
attractors. In absence of complementary information about the
localization of the inhibitory or activatory interactions between
ubiquitory genes, the obtained co-expression distribution is just
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Fig. 2. Distributions of ubiquitory genes (below), all genes (right above)
crossing-over (middle above) and translocation (left above) along the
chromosome 3.

TABLE II
MONOTONY SIGNS OFTHE HISTOGRAMS OFFIG. 2.

a reflection of the spatial distribution of these ubiquitory genes
along the human chromosome 3.

If we now determine the signed vectors corresponding to the
monotonic variations of the histograms of Fig. 2 and, after, the
number of differences between these signed vectors, we obtain
as shown in Table II.

By comparing the vectors giving the succession of monotonic
increasing , decreasing and constant parts of the
histograms of Fig. 2, it is easy to prove that we reject the hypoth-
esis that ubiquitory and translocation distributions are different
of the crossing-over distributions , but we cannot
reject the hypothesis of difference between the all genes and the
crossing over distribution. It has to be noted, however, that the
predisposition to chromosomal breakage cannot be explained
solely by gene expression since breakpoints are also observed
in heterochromatic regions with a lack of genes (for example
the short arm of acrocentric chromosomes) (cf. also [19] and
[20]).

V. MATHEMATICAL PROPERTIES OF THEINTERACTION MATRIX

Here we give some properties for minimal interaction ma-
trices representing the inhibitory or activatory relationships ex-

isting between the ubiquitory genes, confirming the role of in-
teraction coefficients: their presence in the interaction matrix
causes the occurrence of positive and negative circuits very in-
volved in the existence of several asymptotic configurations. For
example, in [13], it is shown that the number of these asymp-
totic configurations forArabidopsisthaliana flower morphogen-
esis control is equal to 4: this result can be predicted from [9],
where it is shown by simulations that, if the Kauffman connec-
tivity coefficient (equal to the number of nonzero interactions,
here 22, divided by the number of genes, here 11) is equal to 2,
then the number of possible genes expression asymptotic con-
figurations is of the magnitude order of the square root of the
number of genes ( ). Another result suggested in
[9] confirms that genetic networks definitively have mathemat-
ically predictable behaviors: the human genome is made from
about 45.000 genes and we have about dif-
ferent tissues in the human body, each tissue corresponding to a
specific asymptotic expression of the nuclear material.

The interaction matrix is similar to the synaptic weight ma-
trix, which rules the relationships between neurons in a neural
network. The general coefficient of such an interaction ma-
trix is equal to 1 if the gene activates the gene , equal
to 1 if the gene inhibits the gene and equal to 0 if
and have non interaction, being equal to 1 (resp. 1),
if it is (resp. not) expressed. In the case of small regulatory ge-
netic systems (called operons), the knowledge of such a matrix

permits to explicit all possible stationary behaviors of the
organizms having the corresponding genome: for example, in
the operon which regulates theArabidopsisthaliana flower mor-
phogenesis, the interaction matrix is a (11,11)-matrix with only
22 non zero coefficients. This matrix presents a certain number
of positive and negative circuits and only four observed attrac-
tors [13]. Hence it is general of a great biological interest and
relevance to determine matrices having characteristic properties
like 1) a minimal number of non-zero coefficients for a given set
of stationary behaviors (fixed points or cycles) or 2) a minimal
number of positive or negative circuits controlling the number of
attractors and their stability (cf. [2], [5], [12] in the continuous
case). In the following, we intend to partly solve the problems
described above by giving necessary and sufficient conditions
to obtain the properties 1) and 2).

A. Definitions and Notations

Let be a directed graph, where
is the set of nodes or vertices and is the set of arcs.
Let be a -real matrix. We call theincidence
graphof if for all nodes , the arc going from(initial node)
to (terminal node) belongs to if and only if .
By extension, will also be called theincidence matrixof .
We define the sign of an arc , denoted by sign , as
the sign of . Let us denote by the set of nodes

such that belongs to . We say that a set of arcs
is achain if each arc in has a node

belonging to and the other one belonging to . We say
that is asimple(elementary) chain if the arcs (nodes) are dif-
ferent. In the sequel we will understand by chain a simple and el-
ementary chain. In the same way we callapathif the for each

, for every ,
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that is to say, the final node of each arc is the beginning node
of the next arc in . Thesign of a pathor a chain [denoted
by sign ] is positive if the number of negative arcs ofis
even and negative otherwise. Acycle is
defined as a chain, that is, where the initial node ofand the
terminal node or the initial node of coincide. In the particular
case where the initial node of and the terminal node of co-
incide, we say that is acircuit. For simplicity of notation, we
say that a node i belongs to a cycleif there exists a node
such that, or belongs to . Every other definition of
graph theory will be consistent with that in [21], [22]. A circuit
or cycle is negative (positive) if the sign is negative (pos-
itive). Define now adiscrete state regulatory network(DSRN),
acting on the set of states , here and subsequently de-
noted by , as the 4-tuple , where is
the incidence graph of , is a threshold real vector and for
each node is defined a local transition function, depending
on the values of the nodes, as follows:

sign

where sign if

and sign otherwise

A DSRN has associated a discrete updating rule of the nodes’
values, normally synchronous iteration or sequential iteration
(see [15]). We shall say that a vectoris a fixed point if it
is invariant under the application of the complete sequence of
updates. Observe that the type of iteration does not change the
set of fixed points, but only change their attraction basins. In
the following we will use systematically the parallel iteration
consists in updating all the nodes synchronously, i.e.,

sign

for

with in .

B. Relations Between Positive and Negative Cycles and
Fixed Points

In the sequel, we will assume that the directed graphis
connected, since otherwise one can apply the results to each of
connected components of. In addition, we will suppose, with
not loss of generality, that , for all , since other-
wise if there exists a node , such that, is empty, then
its local transition function would be constant, and therefore
uninteresting. It follows directly from this property that there
exists at least one circuit in [it can even be a circuit of the
form called loop]. Finally, we suppose that the directed
graph and the matrix have aquasiminimal structure,that
is, for all arc in , , there exists , such
that

sign sign

Hence, we have the following necessary condition to have a
quasiminimal structure:

The following property will be very useful in the sequel for
characterizing a cycle.

Proposition 1: A cycle is positive if and only if there exists
a vector such that for all ,

or equivalently for all

(1)

Proof: Let be a positive cycle and a fixed
node belonging to . Let us enumerate the nodes be-
longing to by , such that, for all

or .
Finally, let us define the vector as follows:

— and
— if or

if
, .

Obviously, is satisfying (1). Hence satisfies (1) too.
Finally, it is direct that there does not exist another vector

that satisfies (1).
Let be now a negative cycle, and let us suppose that (1) is

true, then

sign

but sign sign , which is a
contradiction.

Theorem 1: Given , if all cycles of incidence graph
are positive, then there exists a vector

such that and are fixed
points of .

Proof: Let be an arbitrary spanning tree of, that is
to say, , ! chain between and belonging to (see
example in Fig. 3). Let us now constructas follows:

—)—Fix the value 1 to , and
—)—Take , where is the chain between node

1 and node in .
Observe that the value of does not depend on. In effect,

let be another spanning tree of, and the chain in
between the node 1 and. If is different of , then by
hypothesis all subcycles of the chain made of the concatenation
of and are positive, hence sign sign , which
ensures that the value is well defined. If is equal to ,
the same result is trivial. Because this result is available for each
, the value is well defined.

We can also note that the valuess are independent of the
choice of the first component .

Let us now prove that so defined is a fixed point of .
It is easily to check that satisfies (1) of the proposition 1. It

shows that, , , if
and only if , and then that
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Fig. 3. Example of spanning tree.G corresponds to a graph where
all cycles are positive and T is a spanning tree ofG. In this case
x = (1; 1; 1; 1; 1; 1; �1; �1; �1).

Hence, sign if and only if ,
. Therefore, is a fixed point of . The same procedure

we can apply to prove that is a fixed point of too.
Remark: For a DSRN satisfying the hypothesis of Theorem

1, there exists two remarkable fixed points; they possess by con-
struction a non frustration property, that is on each cycle of
the sign changes of thes are identical to the sign changes of
the arcs of the cycle. For the other eventual fixed points, there
is at least one cycle in for which they are frustrated.

Theorem 2: Given , if all circuits of the incidence graph
are negative, then has no fixed points.

Proof: Let be a fixed point of and a
circuit, by hypothesis negative. By Proposition 1 there exists

such that sign . Let us denoted by
the set of such arcs, i.e.,

which is not empty. Let us define by

• , , ;
• , if and other-

wise;
• .

If for all , , then there exists a circuit (it
can even be a loop) in what is by hypothesis negative. This is
impossible by construction of , hence there exists one node
such that, which means that sign , for
all and therefore if , then

which implies that . Hence, is not a fixed
component on , which is a contradiction. The same argument
we can apply if . Therefore, the vector is not a fixed
point of .

C. Minimal Regulatory Networks

The previous results allow us to characterize some minimal
regulatory networks. The following propositions constitute one
example.

Proposition 2: Let be a DSRN with nodes and con-
nections, a necessary and sufficient condition for the existence
of a fixed point is the existence of a positive circuit. In this
case, and are both fixed points.

Proof: The proof is an immediate consequence of Theo-
rems 1 and 2, and the fact thathas only one circuit.

In this way, given a vector, we can characterize the set of
minimal ’s having as fixed point.

Proposition 3: Given a vector , the set of DSRNs
with , having as fixed

point is given by the following conditions:

1) , where and, for all , there exists a
unique such that ;

2) .
Proof: The proof is straightforward of Theorems 1 and 2

and the hypothesis of quasiminimal structure of.

D. Fixed Points Bounds in Regulatory Networks

Theorem 3: If is the total number of positive circuits of,
then the number of fixed points of is less or equal than .
And this upper bound is reached.

Proof: Let us denote by the set
of positive circuits of . Let : is a fixed point of

be a function defined by

where for all .
Let us prove that the functionis injective.
Let be two fixed points of such that

.
Let us define the partition of as follows:

Let us observe that all nodes , , are in
. Let us suppose that . Fix and let us

assume with not loss of generality that and there-
fore . Hence, there exists , such
that sign , but in addition we can choose

. In this case that and therefore
. We can use analogous arguments to prove that there exists

, such that sign .
In this way, we can construct inductively a sequence (even-

tually constant) of nodes belonging to such
that sign sign for all , there-
fore there exsts a circuit in with nodes in , such that

, which is a contradiction with the fact that the
node is in . Therefore, the function is injective and

is fixed point of .
Let us now see one family of DSRN where the bound is

reached.
Let be a DSRN defined by

— , and
—

;
— , if , and

otherwise;
— .
It is easy to check that has fixed points and the

number of positive circuits is equal to , so the bound
is reached.

Remark: We have to notice that the condition concerns the
number of circuits and not of cycles, these last being in general
very more numerous.
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E. Asymptotic Mean Value for the Number of Attractors in
Case of Connectivity Coefficient Equal to 2

Let us consider now a networkhaving nodes and con-
nections such as its Kauffman’s connectivity coefficient
( being just the ratio between the number of connections and
the number of nodes). We will now search for a mean value of
the number of attractors of, when is growing to infinity.

Lemma 1: For any graph having m non oriented arcs, the
mean number of oriented arcs we can define onfrom the
nonoriented configuration is equal to .

Proof: Let us note the mean number of oriented arcs
we can construct from a configuration of non oriented arcs;
then, if exactly from the non oriented arcs are decomposed
into two oriented opposite connections, we have
different ways to dispatch the not double connections into the

other nonoriented arcs; hence we can write

Theorem 4: If the network has nodes and connec-
tions, with , then the expectation of the number attractors
of is , if is sufficiently large.

Proof: Following [22], if the connections of are
random, and if the mean numberof non oriented arcs per
node is equal to 3/2, then the random variablesequal to the
number of disjoint cycles of lengthof are independent and
Poissonnian with parameter , if is sufficiently
large. From Lemma 1, we are just in this case, because we
have connections, hence we have and

. Then we have, for the mean number of
the attractors of

where

—

—

is the probability to have the ’s equal each to , and
is the mean number of attractors, when the’s equal each to

.
We will now evaluate the expectation . Each disjoint

positive circuit bringing 2 fixed points (Theorem 3 above), an
isolated positive noncircuit cycle bringing also 2 fixed points
and a isolated negative circuit bringing one cyclic attractor, we
can first calculate , the expected number of attractors in
the case where we have only disjoint positive circuits’s, the

rest of the nodes being in , ’s (and hence their states
being fixed by the states of the circuit):

— , where
— [number of fixed points of

disjoint positive circuits, from Theorem 3 above] [number
of different signs for each of the is connections]

[ (number of different directions—left or right—for each
of the circuits)/ (reduction factor for having only positive
circuits)] ,

— (number of different directions for each of the
connections) (number of different signs for each of the
connections) , where is the number of choices

for the disjoint cycles:

is just equal to the number of choices ofnodes dis-
patched in subsets of size 1, , and subsets of size
multiplied by the number of choices of different loops (without
multiple points) connecting the vertices inside each of these sub-
sets.

In the same way, we can calculate [resp. ] the
expected number of attractors ofin the case where we have
among the disjoint cycles 1 (resp.) isolated positive noncir-
cuit cycles (bringing 2 attractors) or isolated negative circuits
(bringing 1 attractor).

We have

where

where is just the number of fixed points of
1 positive cycle (circuit or not) of length times the number
of such configurations , is the number
(1) of attractors of 1 isolated negative circuit of length
times the number of such configurations and

is the number of fixed points of 1 positive
circuit [already counted in ] times the number of such
configurations ; is
equal to the number of configurations of positive circuits
with of length 1, , of length of
length . Then we have:

where
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where

is just the number of attractors of a couple made of positive not
circuit cycles or negative circuits, the remaining cycles
being positive circuits, by paying attention to the fact the attrac-
tors of the couples of a positive not-circuit cycle combined with
a positive circuit [in number equal to ]
have been already counted both in and in and
hence have to be taken away (by using the sign) from the sum

.
Finally, more generally, we have

where

where
, the number of cycles of size satis-

fies: , and , and
, and is just the number

of fixed points of positive cycles (circuits or not) of lengths
multiplied by the number of such configurations

of positive cycles , and

being just the number of attractors in a configuration where we
have 1 negative circuit of length among the other
positive cycles (circuits or not) diminished by the number of
the configurations having positive non circuit cycles and

positive circuits [already counted in .
The other terms of correspond to the number of attrac-
tors of the configurations having positive circuits and
either positive non circuit cycles or negative circuits, diminished
by the number of already counted attractors in the ’s,

for , and not yet taken away. To finish the calculation
of

By summing the ’s and after the ’s, it is then
possible to show that is of the order of

where

and

Then, we have

Remark: We have to notice that the Theorem 4 corresponds
to the proof of the Kauffman’s conjecture [16], approximately
verified as we have already said for the human genome and for
theArabidopsisgenome.

VI. CONCLUSION

By introducing interaction matrices expressing negative (re-
pression) and positive (promotion) relationships between genes,
we have shown that ubiquitory genes can play a role in the weak
part (hot spot) configurations along human chromosomes. This
role can be crucial, because the environment can cause the ex-
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pression of ubiquitory genes responsible for the control of basic
metabolisms (mitochondrial respiration, glycolytic and lipidic
control, membrane, and cyto-skeleton formation). Certain pre-
vious arguments (like the richness of chromosomic hot spots
in Alu G-C sequences and methylated parts of the genome) al-
ready pushed in the same direction. We have now to confirm this
hypothesis by systematically exploring all possible genes inter-
actions and after by calculating all asymptotic behaviors per-
mitted by the interaction matrices for expression configurations,
allowing the determination of the ubiquitory genes expression
histograms. By refining also the location of the chromosomic
break points, we will be able to confront more precisely these
histograms with all weak points histograms in order to reinforce
or falsify the central hypothesis of our paper.

An other important conclusion we have made explicit in this
paper concerns the relationship between the number F of fixed
points and the number S of interaction circuits of the interaction
matrix : the problem is in fact to find the best upper bound for

for a given interaction matrix . This question is the discrete
translation of the famous XVIth Hilbert’s problem (the VIIIth
problem of the recent Smale classification) of determining an
efficient upper bound for the number of limit cycles of a poly-
nomial differential system. Let us summarize the role of the ar-
chitecture of positive and negative circuits of on the occur-
rence of multiple stationary behaviors as obtained above: if the
number of nodes and the number of arcs are the same, there is
only one isolated interaction circuit in and either this
circuit is negative and the lowest bound (0) foris reached, or
this circuit is positive and the upper bound for is reached.
If the number of nodes is n and the number of arcs is , there
is two interaction circuits with the following structure:
if both circuits are negative, ; if there is a positive circuit
and a negative circuit disjoint, ; if there is a positive cir-
cuit intersecting a negative circuit, ; if there is a positive
circuit intersecting a positive circuit, ; if there is two dis-
joint positive circuits, . If more generally the number
of interaction circuits of is , then: if all circuits are nega-
tive, ; if all circuits are positive, and if, and
only if, all circuits are positive and disjoint, .

An interesting open problem is now to make exhaustive
the determination of and and in particular to find the
circumstances (related to the circuits structure) in which we
can relate the number of intersecting and isolated circuits to

. The approach for solving this open problem could consist
first in finding coherent relationships between analogous
properties discovered for continuous versions of the regulatory
networks and for general Boolean networks. The second
conclusion concerns the practical use of the presented results; a
genetician can for example exploit the minimality results in the
following sense, i.e., we have shown in the paper that it would
be possible to characterize the minimal interaction matrices
having certain state vectors as fixed points. The determination
of these matrices is not unique, but permits to focus on certain
important equivalence classes in which the expected matrix
has to belong. This considerably restricts the choice of the
possible interaction matrices compatible with observed fixed
points, when it is impossible to directly get from experiments
all interaction coefficients, but when it is only possible to

observe the phenomenology of fixed points or limit cycles.
This corresponds in genetics to the phenotypic observation of
stationary expression behaviors without experimental measure
of all the inhibitory and activatory coefficients of promoters and
repressors. The possibility to obtain (even in an equivalence
class) a sketch of the interaction matrix permits to construct
(by randomizing in a Bayesian way the unknown coefficients
of ) more complicated interaction matrices than the observed
one, then to test if they still have the observed states as fixed
points and finally keep or reject definitively the so tested
matrices and propose further experimental strategies (e.g.,
using the bio-arrays instrumentation [23] and [24] for refining
the knowledge about the interaction structure of the genetic
regulatory network (see [25]).
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