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[1] Assessment of the stability of perpendicular particle drifts in cold magnetoplasmas
shows that their free energy can stimulate wave activity under various circumstances that
include nonoscillatory (aperiodic, purely growing) instabilities and growth with zero-drift
thresholds. The theoretical model uses gravity as a means of originating the perpendicular
drifts but does not address the stability of the macroscopic plasma-gravity system. It adopts
a homogeneous zero-order equatorial-plane configuration with the gravity force
perpendicular to the background magnetic field; the wave matrix and dispersion equations
are derived for arbitrary directions of propagation and magnetized plasma populations, and
the influence of the ignored inhomogeneity of the equilibrium medium on the discussed
wave activity is shown to be negligible. Even for atomic hydrogen magnetoplasmas and
low frequencies (much smaller than the upper hybrid frequency), instabilities are found for
the three principal directions (magnetic field, gravity and drift), with some of them
maximizing their growth rates away from these axes. The analysis, to be extended to hot
plasmas, incorporates the influence of the background magnetic field on the current-
carrying particles, recovers, where appropriate, classical instability results, and can also
provide insight to the phenomenology encountered in space environments whose
perpendicular currents and particle drifts arise from alternative generating mechanisms.
Evaluation of the influence of the neglected inhomogeneity of the zero-order medium
indicates that the discussed wave activity persists. INDEX TERMS: 2772 Magnetospheric

Physics: Plasma waves and instabilities; 7871 Space Plasma Physics: Waves and instabilities; 2752

Magnetospheric Physics: MHD waves and instabilities; KEYWORDS: perpendicular drifts, stability,

nonoscillatory growth, magnetotail, ring current

1. Introduction

[2] Perpendicular particle drifts and associated currents
are a common occurrence in space plasmas. They can
usually be found in boundary regions, shocks, and magneto-
tails, artificially created with the injection of particle beams,
and arise from perpendicular forces acting on the particles
(of course, particle drifts originated in perpendicular electric
fields do not bring about currents). Because they can
integrate structures that drastically influence the behavior
of the environment (e.g., ring current, geomagnetotail,
reconnection, and related phenomenology), the study of
their stability has attracted many research efforts whose
characteristics are determined by the assumed model for the
associated magnetoplasma configuration. The adopted
approaches range in complexity from the unmagnetized
particle beam model [e.g., Kintner and Kelley, 1983], to
the thoroughly self-consistent current sheet of Harris [Har-
ris, 1962] and its variations [e.g., Lee and Kan, 1979].

Needless to say, the increase in the model sophistication
tends to impose heavier reliance on numerical solutions and,
eventually, contributes to the obfuscation of the underlying
physics.
[3] Here we use the gravity force solely as a means of

generating the particle drifts: we are not concerned with the
configuration stability of a plasma under gravity supported
by a magnetic field, as earlier studied by Kruskal and
Schwartzschild [1954] and others [e.g., Lehnert, 1961], or
the stability of more complex media such as the magneto-
spheres of giant planets where the additional consideration
of the centrifugal force is mandatory [e.g., Ferrière et al.,
1999]. Rather, we look at the free energy source associated
with the perpendicular drifts and identify the wave activity
that they can feed. As commented upon in the concluding
Discussion section, similar configurations have been the
subject of stability investigations [e.g., Mikhailovskii, 1974]
but with different objectives, media structure and therefore
distinct results; in particular, cyclotron instability studies in
magnetoplasmas with perpendicular currents [e.g., Lomi-
nadze, 1981] apply to hot plasmas that are not considered in
this first stage of the research.
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[4] Because we want to start from simple models, and
thus benefit from closed form analytical solutions that
provide guidance to the behavior of more complex environ-
ments, the adopted medium consists of a homogeneous
cold magnetoplasma under the influence of a gravity force
that is perpendicular to the background magnetic field B0.
The approach thus neglects the magnetic field generated by
the zero-order perpendicular currents supported by the
particle drifts albeit the effects of the associated, but
ignored, inhomogeneity are assessed and shown to be
negligible. The assumed geometry occurs in the equatorial
planes of planetary magnetospheres although, at this stage,
we are not concerned with the modeling of any specific
space plasma region. The envisaged next step of the present
analysis shall extend the results to the hot magnetoplasma
case.
[5] The existence of perpendicular currents in the zero-

order state of magnetoplasma implies that the gyrophases of
the current carrying particles display some degree of
organization. The medium could therefore be characterized
as nongyrotropic of the unbalanced type (balanced non-
gyrotropic distributions, as defined in the next citation and
related investigations, yield zero perpendicular currents).
The nongyrotropic viewpoint [e.g., Brinca and Romeiras,
1998, and references therein] can then be helpful in the
stability analysis and was already applied to the study of the
Harris current sheet [Motschmann and Glassmeier, 1998].
Here we shall not pursue this approach; although we
recover general nongyrotropic results (e.g., the implicit
unbalanced nongyrotropy brings about coupling among
the eigenmodes of gyrotropic parallel propagation [e.g.,
Brinca et al., 1992]), the assumed cold medium deviates
from standard unbalanced nongyrotropy, where the perpen-
dicular current arises from the gyrophase organization of
the preexisting perpendicular particle velocities (nonexist-
ing in the cold plasma case), and the nongyrotropic method
is not fruitful.
[6] In this work the characterization of the assumed zero-

order state, cold magnetoplasma permeated by a perpendic-
ular gravity field, is followed by the derivation of the wave
matrix and dispersion equations for arbitrary directions of
propagation. With emphasis on the behavior of low (well
below the upper hybrid) frequency modes the obtained
results are then utilized to study the influence of the
magnitude of the perpendicular particle drifts (here intro-
duced by the gravity force) on the complex wave dispersion,
starting with the principal directions (background magnetic
field, gravity field and drift), proceeding to the principal
planes and then looking at other wave vector orientations. In
spite of the simplicity of the adopted model, the results
show a bewildering variety of instabilities that in some
instances are nonoscillatory (also named aperiodic, or
purely growing, with zero real frequency and positive
growth rate in a nonzero real wave number band) and can
start with arbitrarily small drifts; we shall describe in detail
the physical mechanism of one of them. Because the
adopted approach neglects the zero-order magnetic field
generated by the perpendicular currents, we assess the
influence of the inherent spatial inhomogeneity and con-
clude that the encountered wave growths are not suppressed
by the medium stratification. The final discussion comments
upon the results, mentions potential applications in the

realm of space plasmas and outlines the envisaged future
research in this problem.

2. Zero-Order Medium: Wave and Dispersion
Equations

[7] The cold magnetoplasma is made up of an arbitrary
number of ion species that are neutralized by the electron
population; their number densities are denoted by Ns so that
in the most commonly investigated case of an H+ magneto-
plasma, s = e, p and Ne = Np. The ambient magnetic field
defines the x axis (parallel direction), B0 = B0 x, and the
gravity field is aligned with the z axis, g = g z. This
configuration, whose geometry is shown in Figure 1, brings
about velocity drifts, Vds = Vds y, with (nonrelativistic
treatment)

Vds ¼
g

�s

; �s ¼
qsBo

ms

;

where �s represents the (signed angular) cyclotron
frequency of species s (qe = �e). The perpendicular current
arises from these drifts, with particles of opposite charges
moving in opposite directions.
[8] Following, as summarized in Appendix A, a linear

perturbation approach in the Maxwell and Lorentz force
equations about this zero-order state for first-order quanti-
ties varying as exp[�i(wt � k � r)], with (initial value
problem) real wave vector k (orientation defined by the
angles q and f shown in Figure 1) and w = wr + ig, yields
the wave equation:

k2c2

w2
� 1

� �
E� c2

w2
k � Eð Þk þ J

iwe0
� M � E ¼ 0;

where E and J ¼ s � E stand for the complex amplitudes of
the perturbed electric field and current density, standard
notation is used, and the matrix elements Mij are also
defined in Appendix A. As usual, the existence of nontrivial
wave field solutions implies satisfaction of the dispersion
equation

D w ¼ wr þ ig; kð Þ � det M
��� ��� ¼ 0;

with unstable solutions associating with g > 0.

Figure 1. Frame of reference and geometry of the
assumed medium.
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[9] Numerical solutions use Ne = 15.5 cm�3 and B0 =
5 nT, which could be taken as typical solar wind values
at 1 AU, although we reiterate that in this first stage of
the investigation, no specific space region is under
consideration. Unless stated otherwise, the results relate
to a hydrogen plasma where the above parameters imply
an Alfvén velocity vA = 27.7 km s�1, electron and pro-
ton cyclotron frequencies |�e |/2p = 140 Hz and
�p/2p = 76.2 mHz, a lower hybrid frequency wLH = 42.84
�p, and other characteristic frequencies (upper hybrid,
right- and left-hand cutoffs) of the order of the plasma
frequency wpp = (e2Np/e0mp)

1/2 = 0.46368 � 106 �p. The
dispersion results shall be normalized with respect to �p

(real frequencies and growth rates) and �p/vA (wave
numbers), with vA being used to normalize the (drift)
velocities.

3. Reference Medium: Zero Drift

[10] Without particle drifts (Vds = g = 0) the model
represents a standard cold magnetoplasma whose wave
dispersion characteristics are well known and, having no
free energy sources or loss mechanisms, yield g = 0. This
zero-drift state is our reference medium. For parallel
propagation (q = 0), there exist purely electromagnetic
modes with right- and left-handed circular polarization,
both with two branches. As the wave number increases,
the lower-frequency ones start at zero frequency and
asymptotically tend to the resonance frequencies |�e|
(right-hand magnetosonic whistler branch) and �p (left-
hand Alfvén/ion cyclotron mode). Their high-frequency
branches start at the cutoff frequencies (wL and wR) and
asymptotically approach the light dispersion (wr = kc). The
oscillations at the plasma frequency are not a wave mode.
At perpendicular propagation (q = p/2) we find the
ordinary mode (starting at the plasma frequency cutoff,
wp, and tending to the light dispersion) and three branches
of the extraordinary mode. The lower-frequency branch
starts at zero frequency and asymptotically tends to the
lower hybrid resonance wLH; the intermediate branch starts
at the wL cutoff and tends to resonance at the upper hybrid
frequency, wUH, and the higher-frequency branch has the
same cutoff as the high-frequency right hand parallel
mode, wR, approaching the light dispersion as the wave
number increases.
[11] We shall be concerned with frequencies at least 2

orders of magnitude below the plasma frequency. In this
range the low-frequency modes of the reference plasma
are the whistler and ion cyclotron modes of parallel
propagation, and the lower-frequency extraordinary mode.
Figure 2 displays their dispersion in a log-log Brillouin
diagram and, for the extraordinary mode, the evolution of
the magnitude of the ratio of the longitudinal (parallel to
k) electrostatic electric field component and the ampli-
tude of the total (electrostatic plus electromagnetic) field,
Ek/E = |E � k| / |E||k|. It is clear that the depicted
extraordinary mode becomes gradually electrostatic as it
approaches resonance; both parallel eigenmodes are
purely electromagnetic and thus have Ek/E = 0. All the
eigenwaves are dispersionless at sufficiently small fre-
quencies (wave numbers), with (phase and group) veloc-
ities equal to vA.

4. Propagation Along the Principal Directions

4.1. Magnetic Field Direction

4.1.1. Magnetized plasma
[12] When the wave vector is aligned with the ambient

magnetic field (q = 0), the matrix M of the wave equation is
denoted by P and its elements become

Pxx ¼ �1þ
X
s

w2
ps

w2

Pxy ¼ Pyx ¼
X
s

kVds

w

w2
ps

w2

Pxz ¼ Pzx ¼ 0

Pyy ¼
k2c2

w2
� 1þ

X
s

w2
ps

w2 � �2
s

þ
k2V 2

dsw
2
ps

w4

 !

Pyz ¼ � Pzy ¼ i
X
s

�sw2
ps

w w2 � �2
s

� �

Pzz ¼
k2c2

w2
� 1þ

X
s

w2
ps

w2 � �2
s

;

yielding the dispersion equation,

PxxPyyPzz � PxxPyzPzy � PzzPxyPyx ¼ 0:

Because the electromagnetic eigenmodes of the modified
(Vds 6¼ 0) medium for parallel propagation are no longer
the left- and right-hand circularly polarized modes, no
simplification arises in the elements of the matrix of the
wave equation with the introduction of ‘‘gyrating coor-
dinates’’ of the symbolic form ( )± = [( )y ± i( )z]/2 [e.g.,
Brinca et al., 1993]; the dispersion equation, of course,
is independent of the choice of coordinates.
[13] For a hydrogen plasma (s = e and p) the two parallel

low-frequency eigenmodes of the zero-drift magnetoplasma,
right- and left-hand circularly polarized, are mildly affected
by the introduction of the gravity field and associated
velocity drifts. As shown in Figure 3, solution of the
dispersion equation for proton drift velocities (normalized
with respect to vA) of 1 and 43, the whistler and ion
cyclotron branches remain stable, but their real frequencies
are moderately modified.
[14] A more interesting effect of the gravity-originated

drifts at parallel propagation is shown in Figure 4. As soon
as the drift starts for arbitrarily small g, beginning with zero
growth at the origin, we find nonoscillatory instabilities
(that is, positive growth rates and zero real frequencies in a
nonzero wave number band) in the whole wave number
domain; the growth rates saturate as k increases at values
that scale with the drift speeds. More precisely, the evolu-
tion of the growth rates for different drift regimes shows that
g/�p ! Vdp/vA as k ! 1.
[15] This asymptotic behavior can be easily confirmed

analytically. Noticing that (1) the frequency remains finite
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as the wave number increases, (2) the magnitude of the
electron drift speed is 3 orders of magnitude smaller than
that of the proton population, and (3) we are looking at the
k!1 regime, the dispersion equation in this limit becomes

PxxPyyPzz � PzzPxyPyx � 0;

where

PxxPyyPzz �
k4c4w2

pe

w6
1þ

w2
ppV

2
dp

w2c2

 !
;

PzzPxyPyx �
w4
ppk

4c2V 2
dp

w8
:

Recalling that wpp
2 /c2 � �p

2 /vA
2, we obtain

w2

w2
pp

� � �pVdp

wppvA

� �2

;

or, in agreement with the behavior displayed in Figure 4,

g

�p

� Vdp

vA
:

The physical mechanism of this instability whose nonzero
perturbed fields for large k can be described by

Ey  Ey0 cos kx e
gt; Bz 

kEy0

g
sin kx egt ;

is directly derivable from a few basic equations. (For
simplicity, we shall consider an atomic hydrogen plasma.)
1. Let us assume a perturbation along x of the electron

and proton densities that preserves charge neutrality (r = re +
rp = 0, ne = np) of the form

ns  cos kx s ¼ e; pð Þ;

and follow the ensuing chain of events.

Figure 2. Dispersion of the lowest-frequency eigenmodes in the cold hydrogen magnetoplasma without
gravity: right-hand parallel propagating whistler mode [RH], left-hand parallel propagating ion cyclotron
mode [LH], and perpendicular propagating extraordinary mode [EX]. Also shown for the [EX] mode, the
ratio Ek/E of the electrostatic component of the wave electric field and the magnitude of the total wave
electric field.
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2. The expression for the perturbed current density,
Js = qsNsvs + qsnsVdsy, shows that the assumed density
perturbation generates

Jy ¼ Jey þ Jpy � Jpy  cos kx:

(Notice that Jsy = qsNsvsy + qsnsVds is made up of two terms;
the first time we go through this feedback loop, because we
prepared the initial system with perturbations only in the
densities, and hence vsy = 0, the first term is zero. Following
times, with wave fields already stimulated, the perturbed
velocity is no longer zero; however, the force and continuity
equations together with Faraday’s law allow us to estimate
|(nsVds)/(Nsvsy)| � (kVds/g)

2 [1 + (�s/g)
2] so that, as used

above, the second term of Jsy is always dominant in the
range under investigation. Note, also, that with the adopted
conventions we always have qsVds > 0.)
3. From the generalized Ampère’s law this current

density perturbation brings about a perturbed electric field,

Ey  �cos kx:

4. This ‘‘wave’’ electric field, from Faraday’s law,
induces a wave magnetic field,

Bz  �sin kx;

and, from the x component of the force equation, �vsx =
(qs/ms)VdsBz, creates spatial variations in the perturbed
parallel accelerations and velocities of the form,

_vsx; vsx  �sin kx:

5. This perturbed parallel velocity feeds a perturbed
parallel current density Jsx  –sin kx, whose spatial
inhomogeneity satisfies,

@Jsx
@x

 �cos kx:

6. The continuity equation, @Jsx/@x + gnsqs = 0, shows
that the above current density divergence associates with
density perturbations varying as ns  cos kx.
[16] We are thus back at the starting point, having closed

a loop with positive feedback that results in the enhance-
ment of the original perturbation and therefore in instability.
[17] In a nutshell, revisiting the growth mechanism and

retaining the main contributions, we realize that this
instability arises from the ion drift. This flow generates
a current density perturbation Jy  npVdp whose ion
density perturbation np, being driven by the wave Lorentz
force  VdpBz, has spatial variations in antiphase with
those of the wave electric field (np  �@Jpx/@x  �@vpx/
@x  �Vdp@Bz/@x  Vdp@

2Ey/@x
2  �VdpEy). Thus the

Figure 3. Comparison of the real dispersions of the parallel propagating (top) LH and (bottom) RH
modes for normalized proton drift velocities of Vdp/vA = 1 and 43.
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free energy in the ion drift can feed the wave growth via
this negative power ‘‘dissipation’’ in the medium:

J:E ¼ JyEy  �cos 2kx < 0 :

4.1.2. Unmagnetized plasma
[18] Because, as shown in the sequel (Figure 12, in

particular, and related discussion), this instability is also
associated with wave growth encountered for arbitrary
directions of propagation contained in the yz plane, we
further dwell on its phenomenology and demonstrate that
the same basic growth mechanism takes place in isotropic
(B0 = 0) zero-gravity plasmas with arbitrary collinear particle
streams regardless of the (in)existence of a finite zero-order
current (and therefore concurrent zero-order magnetic field).
The unavoidable inference in the present context is that this
parallel nonoscillatory instability is solely due to the free
energy in the perpendicular drifts, having nothing to do with
the (in)existence of gravity, and the neglect of the zero-order
magnetic field generated by the particle drifts. (The
possibility that the discarded spatial variations of the zero-
order medium could quench this instability is eliminated by
the analysis provided in section 6.)
[19] We thus analyze now the stability of cold isotropic

plasmas, without a gravity field but supporting collinear
streaming populations, with respect to wave propagation
perpendicular to the stream direction. Although these
streams might sustain a finite zero-order current, we neglect
the associated zero-order magnetic field, meaning that the
linear study is only exact when the assumed particle drifts
bring about a total zero current. We shall find that regardless

of the (in)existence of a finite zero-order current, the
medium, for the envisaged propagation, is always purely
growing unstable through a physical mechanism that coin-
cides with the one described above for the nonoscillatory
instability depicted in Figure 4. The finding demonstrates
that this aperiodic instability is independent of the neglected
magnetic field (originated by the finite zero-order perpen-
dicular current); its occurrence relies solely on the existence
of particle (perpendicular, in the main body of the paper)
drifts, without regard for the mechanism that generates them.
[20] We assume an isotropic homogeneous cold plasma

made up of three populations that are allowed to drift along
a common direction taken as the y axis: electrons (e),
protons ( p), and single ionized ions (i), Ne = Np + Ni. The
approach is directly applicable to more general conditions
but, for simplicity, only the positive-charge species are
allowed to drift, originating a zero-order current density
J0 = e(NpVdp + NiVdi) y. We shall demonstrate for k = kx,
both when J0 = 0 (exact analysis) and J0 6¼ 0 (approximate
analysis, as in the remaining body of the paper), that the
aperiodic instability under study always takes place.
[21] The space-time dependence of the plane wave per-

turbations is taken as exp [�i(wt � kx)]. The continuity and
force equations, kJsx = wqsns and �iwmsv = qsE + qs(kVds/
w)Eyx, lead to the current densities,

Js ¼ qsNsvs þ qsNs

kVds

w
vsxy

¼ ie0
w2
ps

w
Eþ ie0

w2
ps

w
kVds

w
Eyx

þ ie0
w2
ps

w
kVds

w
Ex þ

kVds

w
Ey

� �
y

Figure 4. Growth rates of the parallel propagating purely growing mode for normalized proton drift
velocities of Vdp/vA = 1, 20, and 43.
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that determine the total perturbed current density

J ¼ Je þ Jp þ Ji

¼ ie0
w2
p

w
Eþ i

e0k
w2

w2
ppVdp þ w2

piVdi

	 

Eyxþ Exy
� �

þ i
e0k2

w3
w2
ppV

2
dp þ w2

piV
2
di

	 

Eyy:

Substitution of this total current density into the wave
equation,

E� k2c2

w2
E� Exxð Þ ¼ 1

iwe0
J;

yields the wave matrix equation. As usual, the dispersion
equation (DR) is obtained by imposing that the determinant
of the square matrix that multiplies the electric field column
matrix be equal to zero.
[22] In the case under analysis we obtain two eigenmodes.
[23] The first one has the electric field linearly polarized

along the z axis and satisfies the well-known (‘‘ordinary’’
mode) DR,

k2c2

w2
¼ 1�

w2
p

w2
; w2

p ¼ w2
pe þ w2

pp þ w2
pi:

The new hybrid (both electrostatic and electromagnetic
components) mode has finite Ex and Ey, and satisfies the DR,

1�
w2
p

w2

 !
1� k2c2

w2
�
w2
p

w2
� k2

w4
w2
ppV

2
dp þ w2

piV
2
di

	 
" #

� k2

w6
w2
ppVdp þ w2

piVdi

	 
2
¼ 0:

Looking at the dispersion for large k (recall the character-
istics of the mode depicted in Figure 4) and recognizing that

c2 � V 2
dp;V

2
di; w2

pe � w2
pp;w

2
pi

leads to the (purely growing unstable) root

�w2 ¼ g2 � 1

c2
w2
ppV

2
dp þ w2

piV
2
di

	 

:

The growth rate depends on parameters associated with the
drifting populations. It is clear that we could have adopted,
for example, i = p, Np = Ni = Ne/2, Vdi = �Vdp, J0 = 0, and
obtain the same instability within a completely self-
consistent and exact linear analysis (no zero-order current,
no zero-order neglected magnetic field).
[24] However, in this case, since wpp

2 Vdp + wpi
2 Vdi = 0, the

Ex and Ey components decouple, so that the unstable mode
(associated with Ey) is purely ‘‘electromagnetic’’ and Ex can
only be different from zero when (uninteresting electrostatic
cold plasma oscillations) w2 = wp

2. Notice that this is the
situation that naturally occurs in the magnetoplasma per-
meated by gravity (take an atomic hydrogen plasma)
because the particle drifts satisfy wpp

2 Vdp + wpe
2 Vde = 0,

decoupling also Ex and Ey.

[25] Hence, recalling the above described physical mech-
anism, noting that the growth rate estimate neglected the
electron drift velocity, and using the magnetoplasma relation
vA � (�p/wpp)c, we conclude that the instabilities discussed
in the isotropic plasma and in the context of Figure 4 are
identical. They have nothing to do, though, with the
classical electrostatic streaming (two-stream included) insta-
bilities where the wave vector is aligned with the drifts.

4.2. Drift Direction

[26] The wave vector is now aligned with the y axis (q =
p/2, f = 0). Denoting by D the corresponding matrix of the
wave equation, we find that its elements become

Dxx ¼
k2c2

w2
� 1þ

X
s

w2
ps

w2

Dxy ¼ Dyx ¼ Dxz ¼ Dzx ¼ 0

Dyy ¼ �1þ
X
s

w2
ps

w2
s � �2

s

Dyz ¼ �Dzy ¼ i
X
s

�sw2
ps

w w2
s � �2

s

� �

Dzz ¼
k2c2

w2
� 1þ

X
s

w2
ps

w2

w2
s

w2
s � �2

s

with ws = w � kVds.
[27] The (high frequency) ordinary mode, linearly polar-

ized with electric field along the ambient magnetic field, is
not affected by the introduction of gravity drifts and main-
tains its dispersion, Dxx = 0. The extraordinary mode, in
general with electrostatic and electromagnetic electric field
components along the y axis and the z axis, respectively, is
influenced by the drifts. The ensuing discussion is based on
the (low frequency) solutions of the dispersion equation
DyyDzz � DyzDzy = 0 and revisits manifestations of phenom-
enology associated with beam-plasma interactions modified
by the (perpendicular) orientation of the ‘‘beam’’ with
respect to the ambient magnetic field [e.g., Wu et al., 1983].
[28] Looking at the real dispersion of the zero-drift

extraordinary mode shown in Figure 2 and the dominant
(electrostatic) orientation of its wave electric field (along the
ion drift direction), we can anticipate that a particle beam
‘‘injected’’ along y with velocity Vdb might strongly interact
with the original extraordinary mode in a region where this
beam velocity matches the wave phase velocity, wr /k � Vdb:
the ensuing wave-particle resonance might then bring about
wave growth.
[29] One simple way of introducing this interaction within

the adopted model is to consider a dilute population of ions
(preferably heavy ions, in order to reduce the concurrent drift
speeds of the main electron and proton populations). For
example, ions with a drifting velocity of the order of vA/2
would approximately match the extraordinary mode phase
velocity around kvA/�p � 80 (see Figure 2). If the resonant
particles were O+ ions, these conditions would imply a
moderate proton drift of Vdp /vA = 0.03125 ( = 0.5/16) and
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a negligible electron drift. Figure 5 depicts the consequen-
ces of introducing in the magnetoplasma a dilute oxygen
population with NO + = 0.01 Ne (overall neutrality is
maintained through a corresponding reduction in the pro-
ton number density). As expected, these heavy resonant
ions do interact with the modified extraordinary mode and
destabilize the medium, with maximum growth rate occur-
ring around kvA/�p � 80.
[30] In the realm of cold plasmas (that are unable to

support Bernstein waves), this situation is similar to the
problem studied by Kintner and Kelley [1983] of injection
of a Xe+ ion beam in the F region of the ionosphere; they
assumed that the injected ions were unmagnetized, meaning
that the approach can only describe phenomenology with
time scales much shorter than the ion cyclotron period.
Here, with the limitation of the cold plasma model that we
plan to forsake in the next stage of the investigation, the
validity of the analysis is not affected by these timescales
because all particle populations are magnetized.
[31] Returning to the pure hydrogen magnetoplasma

permeated by a gravity field and keeping the wave vector
aligned with the drift direction, we now assess the effects of
the magnitude of the drift velocities on the wave stability.
The configuration resembles a two-stream system or, in the
adopted frame of reference (differing little from the electron
drift frame), a ‘‘beam-plasma’’ system. The results shown in
Figure 6 for proton drift speeds of Vdp/vA = 1, 20, 40, and 43
confirm this perspective: the real dispersion is beam-like,

the instability onset takes place for wave number values that
decrease with the increase of the drift velocity (for the
lowest considered normalized proton drift velocity, 1,
the critical normalized wave number is 1834.6, whereas
the normalized proton drift velocity of 43 originates wave
growth that starts at zero wave number), and the growing
modes, as shown in the evolution of the electrostatic
component of the wave electric field, become electrostatic
as the wave number increases. This behavior, however, is
not asymptotic: as the real frequency increases with k, it
eventually attains values in the domain of other character-
istic magnetoplasma frequencies (wL, wp, wUH, wR), the
beam-like dispersion is lost and the instability is quenched.

4.3. Gravity Field Direction

[32] We take the wave vector aligned with the z axis (q =
p/2, f = p/2) and denote the corresponding matrix of the
wave equation by G. Its elements become

Gxx ¼
k2c2

w2
� 1þ

X
s

w2
ps

w2

Gxy ¼ Gyx ¼ Gxz ¼ Gzx ¼ 0

Gyy ¼
k2c2

w2
� 1þ

X
s

w2
ps

w2 � �2
s

1þ k2V 2
ds

w2

� �

Figure 5. Low-frequency complex dispersion originated in the introduction of an O+ population (NO+ =
0.01 Ne and VdO+ = 0.5vA) in the magnetoplasma permeated by a gravity field. The depicted instability
along the drift direction arises from the interaction between the oxygen ions and the modified, low-
frequency, extraordinary mode.
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Gyz ¼
X
s

w2
ps

w2 � �2
s

kVds þ i�s

w

� �

Gzy ¼
X
s

w2
ps

w2 � �2
s

kVds � i�s

w

� �

Gzz ¼ �1þ
X
s

w2
ps

w2 � �2
s

The ordinary mode electric field (parallel to the ambient
magnetic field) is again perpendicular to the drift direction
and thus is not affected by the introduction of the gravity
field; its well-known dispersion equation, Gxx = 0, is not
modified. In contrast, the dispersion equation of the
modified extraordinary mode, GyyGzz � GyzGzy = 0, is
strongly influenced by the magnitude of the drift.
[33] Figure 7 depicts the evolution of the low-frequency

branch of the extraordinary mode as the proton drift velocity

goes from Vdp = vA to Vdp = 43vA. As the magnitude of the
drift increases, the real frequency curve wr(k) approaches
the k axis (the resonance frequencies decrease); at a certain
threshold value for the drift (near Vdp/vA � 42.8), the
frequency is zero, with further increases of the drift veloc-
ities bringing about a nonoscillatory instability with zero
real frequency and positive growth rate in the whole wave
number domain. This behavior can be justified analytically
and the critical drift values defined.
[34] Bearing in mind the consequences of havingmp�me

and that the frequency remains finite as k ! 1, we find for
the asymptotic regime

GyyGzz �
k2c2

w2
þ
k2V 2

dp

w2
Ap

 !
Ae þ Ap � 1
� �

GyzGzy � A2
p

k2V 2
dp

w2

Figure 6. Complex dispersion for propagation along the drift direction at different drift velocities. As
the wave number increases, the unstable mode intensifies its electrostatic component. Clockwise starting
at the bottom left panel, Vdp/vA = 1, 20, 40, and 43.
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with

Ae ¼
w2
pe

w2 � �2
e

� �
w2
pe

�2
e

; Ap ¼
w2
pp

w2 � �2
p

;

so that the dispersion relation in this limit yields

A�1
p � 1� Aeð Þ�1� Vdp

c

� �2

;

or, recalling that vA/c � �p/wpp,

w
�p

� �2

� 1� Vdp

vA

� �2

þ
w2
pp

�2
p

1þ
w2
pe

�2
e

 !�1

:

When, as is the case here, wpe
2 � �e

2, the last equation
simplifies to

w
�p

� �2

� mp

me

� Vdp

vA

� �2

and explains the behavior encountered in Figure 7. Below
the critical value Vdp/vA � (mp/me)

1/2 = 42.86, the resonance
frequency of the modified extraordinary mode diminishes
with increasing drift velocities; beyond this drift threshold, a
nonoscillatory instability sets in that, as shown below links

with the already discussed parallel propagating purely
growing mode.

5. Propagation Off the Principal Directions

[35] The previous results have demonstrated the existence
of instabilities when the wave vector is aligned with the
principal directions of the adopted frame of reference shown
in Figure 1. We now intend to display typical behaviors of
those instabilities when the wave vector is allowed to deviate
from those orientations, first keeping it in the principal planes
and then allowing for a few evolutions free of this constraint.

5.1. Wave Vector in the Drift-Gravity Plane

[36] Here, keeping q = p/2, we follow the evolution of (1)
the beam instability found for propagation along the drift
direction as the wave vector moves from the y axis to the z
axis (Figure 8: f = 0 ! p/2, kvA/�p = 100, Vdp = 30vA) and
(2) the nonoscillatory instability (with the drift threshold
determined in the previous section) when the wave vector
evolves in the opposite sense, from the z axis to the y axis
(Figure 9: f = p/2 ! 0, kvA/�p = 100, Vdp = 43vA).
[37] The beam instability decreases its real frequency

(proportionally to the proton drift velocity component along
k, that is,/ cos f) and growth rate until quenching sets in (in
the depicted case, beyond f = p/3; as implied in Figure 9,
quenching is avoided when the drift velocity exceeds the
critical value). As soon as the wave vector leaves the z axis in
its evolution toward the drift direction, the aperiodic insta-

Figure 7. Dispersion for propagation along the gravity force at different drift velocities, Vdp/vA = 1, 20,
42, and 43. Above the drift threshold Vdp/vA � (mp/me)

1/2, there occurs the onset of a purely growing
mode.
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bility becomes oscillatory; the real frequency and growth
rates increase and smoothly join the beam instability values
found for propagation along the y axis.

5.2. Wave Vector in the Drift-Magnetic Field Plane

[38] The adopted procedure is similar to the one used in the
previous section. We take f = 0 and follow the evolution of
(1) the beam instability of drift propagation as k goes from
the y axis to the x axis (Figure 10: q = p/2! 0, kvA/�p = 100,
Vdp = 20vA) and (ii) the zero-drift threshold nonoscillatory
instability found for parallel (q = 0) propagation as k
approaches the drift direction (Figure 11: q = 0 ! p/2, kvA/
�p = 100, Vdp = 20vA).
[39] Again, the real frequency and growth rate of the beam

instability decrease as k moves away from the y axis with
quenching of the instability eventually setting in. As to the
aperiodic instability of parallel propagation, it becomes
oscillatory as soon as the wave vector departs from the x
axis; its growth rate starts to increase with q and reaches a
well-defined maximum just before growth is suppressed. In
contrast to the situation described in the drift-gravity field
plane where the growing modes found in the corresponding
principal axes can reciprocally evolve from one to the other
and therefore represent manifestations of the same instabil-
ity, in this plane the principal axes instabilities are distinct.

5.3. Wave Vector in the Magnetic Field-Gravity Plane

[40] The results obtained in the wave vector evolutions
contained in this plane (f = p/2) show that in the realm
k �Vds = 0, that is, for wave vector orientations perpendicular
to the drift direction, the existing instabilities nonoscillatory

with a growth rate that is almost independent of the k
direction, provided that the neighbourhood of the gravity
direction (q � p/2, f � p/2) is avoided; here the growth rate
very rapidly reaches a minimum that may correspond to
stability (g = 0) if the drifts are below the threshold deter-

Figure 9. Evolution of the aperiodic instability encoun-
tered in Figure 4 as the wave vector rotates from the z axis
to the y axis (kvA/�p = 100, Vdp = 43vA, q = p/2).

Figure 8. Evolution of the instability encountered in Figure 6 as the wave vector rotates from the y axis
to the z axis (kvA/�p = 100, Vdp = 30vA, q = p/2).
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Figure 10. Evolution of the instability encountered in Figure 6 as the wave vector rotates from the y
axis to the x axis (kvA/�p = 100, Vdp = 20vA, f = 0).

Figure 11. Evolution of the aperiodic instability encountered in Figure 4 as the wave vector rotates from
the x axis to the y axis (kvA/�p = 100, Vdp = 20vA, f = 0).
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mined for propagation along the z axis. Figure 12 (kvA/�p =
100) depicts the growth rates of this aperiodic instability as q
evolves from p/2 to 0 (Vdp = 43vA: just above the z axis
threshold) and from 0 to p/2 (Vdp = 20vA: well below the z
axis threshold).

5.4. Wave Vector Away From the Principal Planes

[41] Up to now we have only explored the domain (kx� 0,
ky� 0, kz� 0). In a gyrotropic environment the instabilities of
the medium would only depend on k and q. In the envisaged
magnetoplasma, however, the introduction of a perpendicular
gravity field has broken the gyrotropic symmetry. Here we
follow the behavior of two of the previously studied insta-
bilities as the relevant wave vector pursues well-defined
evolutions away from the principal planes and, not surpris-
ingly, recover other type of (nongyrotropic) symmetries.
[42] We found in connection with Figure 11 and the

nonoscillatory instability for k aligned with the ambient
magnetic field, as the wave vector (always in the xy-plane)
moved away from the x axis in the drift direction, that the
growth would become oscillatory, maximize at a certain
orientation (q � 37.8�, for the case considered) and be
suppressed soon afterward. Figure 13 shows, for this
specific value of q, the dependence of the complex dis-
persion of the instability on the azimuth angle f (the
behavior of gyrotropic media would be independent of this
gyrophase-like angle). The growth rate maximizes when the
wave vector is aligned with the y direction (notice that, for
ky < 0, that is cos f < 0, the real frequency wr is negative,

meaning that the wave phase velocity component along the
y direction points in the same direction as the proton drift,
thus allowing for the associated wave-particle resonance
that feeds the wave growth). Although the instability occurs
in the whole azimuthal domain, the growth rate reaches
minima when k goes through the xz plane and, as already
known, turns aperiodic (nonoscillatory).
[43] Figure 14 depicts the characteristics of the same

instability when k is contained in the azimuthal plane f =
p/4 and its colatitude angle q varies from 0 (positive x
axis) to p (negative x axis). The evolution starts with the
zero-drift threshold aperiodic instability that immediately
becomes oscillatory when the xz plane is left; the growth
rate increases initially, maximizes at q � 47.6� and goes
to zero at q � 52�, remaining stable until the symmetric
position of this cutoff (q � 180 � 52 = 128�) is attained
and the growth history is revisited until the negative x
axis is reached and the initial aperiodic instability is
recovered (the whole behavior is symmetric with respect
to the yz plane).

6. On the Influence of the Neglected
Inhomogeneity

[44] We recall that the adopted model neglects the mag-
netic field generated by the perpendicular current supported
by the particle drifts and the associated inhomogeneity of
the zero-order medium. Here we assess the effects of this
approximation on the discussed instabilities.

Figure 12. Evolutions of (left) the aperiodic instability encountered in Figure 7 as the wave vector
rotates from the z axis to the x axis (kvA/�p = 100, Vdp = 43vA, f = p/2) and (right) the aperiodic
instability encountered in Figure 4 as the wave vector rotates from the x axis to the z axis (kvA/�p = 100,
Vdp = 20vA, f = p/2).
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[45] These instabilities are basically of two types: (1) the
nonoscillatory growth encountered for parallel propagation
and its evolution to other directions of propagation, and (2)
the ‘‘beam-like’’ behavior (essentially electrostatic as the
wave number increases) of the wave-particle interactions
depicted in Figures 5 and 6 and their extensions to other
wave vector orientations. The physical mechanism under-
lying aperiodic growth was previously discussed in detail,
whereas the phenomenology of the beam-plasma interaction
is well known, albeit modified here by the zero-order
perpendicular magnetic field.
[46] We shall find that the inhomogeneity does not

influence 1 and allows for the occurrence of 2.

6.1. Stratified Zero-Order Medium

[47] In the frame of reference of Figure 1 we allow for the
possibility of the characteristic parameters of the zero-order
equilibrium (@/@t = 0) cold magnetoplasma to depend on the
‘‘vertical’’ coordinate z. In the domain of interest the
gravity, g, and the population densities, Ns0, are uniform,
and the particle drifts are aligned with the y axis.
[48] The continuity, momentum, and Maxwell equations

are satisfied by the following zero-order equilibrium values
of the stratified medium:

E0 ¼ 0;
X
s

qsNs0 ¼ 0; B0 ¼ B0 zð Þx;

Vds0 ¼ Vds0 zð Þy; Vds0 zð Þ ¼ gms

qsB0 zð Þ ¼
g

�s zð Þ ;

J0 ¼ J0 zð Þy ¼
X
s

qsNs0Vds0 zð Þy ¼ g

B0

X
s

msNs0y;

with

J0 zð Þ ¼
X
s

qsNs0Vds0 zð Þ ¼ g

B0 zð Þ
X
s

msNs0 ¼
gB0 zð Þ
m0v2A zð Þ

;

@B0

@z
¼ m0J0 zð Þ; or

1

B0

@B0

@z
¼ g

v2A
¼ 1

Lz
;

where Lz is the length scale of the vertical inhomogeneity.

6.2. On the New Perturbation Introduced
by the Inhomogeneity

[49] With the notation used above and in Appendix A the
linearization of the momentum equation yields

@vs
@t

þ Vds0

vs

@y
þ vs � rð ÞVds0y ¼ qs

ms

Eþ Vds0y� Bþ vs � B0Þð

where the new term introduced by the inhomogeneity
(aligned with y) can be estimated by

vs � rð ÞVds0 ¼ vsz
@Vds0

@z
¼ vszg

ms

qs

@

@z

1

B0

� �

¼ �vszVds0

m0J0
B0

¼ �gvsz
Vds0

v
A
2
;

and, apart from other possible terms also aligned with the
drift direction, shall combine with vsz�s that arises from the
y component of

qs

ms

vs � B0:

Figure 13. Dependence on the azimuth angle of the instability encountered in Figure 11 at maximum
growth rate (q = 37.8�, kvA/�p = 100, Vdp = 20vA).
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6.3. On the Relevance of the New Perturbation

[50] We can thus identify two sufficient (but not neces-
sary) conditions to neglect the influence of the zero-order
inhomogeneity in the linear analysis: (1) having vsz = 0, or
(2) satisfying Vds0

2 � vA
2.

[51] Recalling that the detailed analysis of the parallel
‘‘propagating’’ nonoscillatory instability showed that the
structure has vsz = 0, we conclude that the approximation
made in the study of this mode (neglect of the magnetic
field generated by the particle drifts and concurrent inho-
mogeneity) has no influence on the derived results.
[52] As to the beam-like instabilities found for propaga-

tion along the drift direction, we can also conclude that the
interaction depicted in Figure 5 necessarily satisfies con-
dition 2 above (the resonant heavy ion beam must have a
drift speed smaller than the Alfvén speed, so that a fortiori
the proton and electron drift speeds will be much smaller
than vA). It remains to be shown that the wave growth
depicted in Figure 6 is not a spurious effect of the adopted
approximation.
[53] In the spirit of a WKBJ approximation it is possible

to proceed with the traditional linear analysis for small-
amplitude plane wave perturbations if we restrict the study
to wave vectors whose vertical wave numbers satisfy
kzLz � 1 and thus assume the first-order quantities u(r, t)
varying as (the real part of) u(dz)exp[�i(wt � k � r)] where
u(dz) denotes a complex amplitude weakly dependent on z.
The issue under analysis, however, does not warrant this full
treatment.
[54] Indeed, we note that the modes of Figure 6 propagate

along the y direction and become electrostatic as the wave

number increases. We can thus focus the attention on large
wave numbers and electrostatic perturbations satisfying
Jy � iwe0Ey = 0 and show that the instability persists.
Calculation of the perturbed Jy under these circumstances,
with incorporation of the above identified inhomogeneity
term, yields the dispersion equation

1 ¼
X
s

w2
ps

w� kVds0ð Þ2��2
s 1þ V 2

ds0


v2A

� �

that we recognize as a (modified) two-stream interaction
dispersion relation where the ratio of the squares of the drift
and Alfvén speeds arises from the inhomogeneity, and also
has unstable roots.
[55] Just for the sake of illustration, we concentrate on

Figure 6, for the case Vdp = 40vA (top right panel). The full
analysis for the homogeneous model yields (from the plot) a
normalized complex frequency w = 4000. + 84.35 at the
normalized wave number k = 100. whereas the above
electrostatic dispersion relation that includes the effects of
the inhomogeneity numerically yields, for the same wave
number, a similar w = 3998. + 94.63.
[56] It is thus clear that the instabilities studied in this

paper in the framework of the zero-order homogeneous
medium with the neglect of the magnetic field caused by the
perpendicular particle drifts are not artifacts of the adopted
approximation: consideration of a zero-order stratified
medium generated by this (previously ignored) magnetic
field does not quench the wave growths encountered in the
uniform model.

Figure 14. Dependence on the colatitude, at an azimuth f = p/4, of the instability depicted in Figure 13
(kvA/�p = 100, Vdp = 20vA).
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7. Discussion

[57] The investigation of the stability of the assumed cold
magnetoplasma has shown that the free energy available in
the perpendicular particle drifts can feed a variety of
growing wave modes with frequencies well below the upper
hybrid resonance. The adopted approach created the particle
drifts permeating the magnetoplasma with a perpendicular
gravity field but the results are applicable to perpendicular
drifts generated by other mechanisms; it permits consider-
ation of arbitrary orientations of the wave vector, cold
plasma populations, and drift speeds (within the limits of
validity of a non relativistic treatment). The study of the
dependence of the instabilities on the drift magnitude and
the wave vector orientation has shown that some of them are
strongly resilient, with zero-drift thresholds both for aperi-
odic and oscillatory growing modes.
[58] To assess the effects of the only inconsistency of the

adopted cold plasma model (neglect of the magnetic field
generated by the zero-order perpendicular current and the
associated nonuniformity of the medium) we have treated in
an approximate manner a (zero-order) self-consistent strati-
fied cold magnetoplasma. We found that the inhomogeneity
has no influence on the encountered nonoscillatory insta-
bility for propagation along the background magnetic field
(this growth extends to other wave vector orientations in the
xz plane), and does not quench the other instabilities (along
the drift direction and corresponding extensions) that are
manifestations of well-known wave-particle interactions
(e.g., Figure 5) and/or beam-like behavior (e.g., Figure 6)
originated in the drifting populations. Therefore the insta-
bilities encountered for the homogeneous medium in the
main part of this investigation are not artifacts of the
approximation introduced in the zero-order model.
[59] Similar configurations have been studied for restricted

orientations of the wave vector and layered (usually, albeit
not always, discontinuous at the boundaries) media. Some of
the conclusions might seem identical, but, in general, closer
scrutiny is warranted. For example, the Kruskal-Schwarzs-
child [Kruskal and Schwartzschild, 1954] aperiodic flute
instability in a magnetoplasma permeated by a gravity field
(a close relative of the classical Rayleigh-Taylor instability of
a heavy fluid supported by a light fluid) might look as the
nonoscillatory growth found in several instances of our study.
Interestingly, its occurrence relies on the orientation of k
along the drift direction (or at least having ky 6¼ 0), the very
same condition that in our environment quenches the aperi-
odic growth. Solution of the apparent contradiction arises
from the recognition that the above flute instability takes
place in a surface wave located at the boundary (perpendic-
ular to the gravity field) separating two distinct media,
whereas our model is thoroughly homogeneous and thus
supports no such boundary and therefore wave. In this
respect, we reiterate that we did not address here the problem
of the stability of a magnetoplasma-gravity system. The
gravity field was only a simple means of generating perpen-
dicular particle drifts (that could have been created by other
mechanisms) whose stability was then studied.
[60] In the context of space plasmas, the investigated

configuration could provide a zero-order model of equatorial
planetary magnetospheres. As already stressed, however,
this first stage of the study of the stability of perpendicular

currents is not concerned with specific applications. Rather,
the obtained results provide a reference structure that shall
guide the next step of the investigation, when a kinetic
approach is envisioned and the ensuing complexity (namely,
ion and electron Bernstein modes, thermal cyclotron and
Landau damping, higher order cyclotron resonances, tran-
scendental dispersion equations) recommends proper orien-
tation. We shall then have available a model that can be
adapted to the study of other situations and environments.
[61] Indeed, we do not anticipate relevant results arising

from direct applications of the model to planetary magneto-
spheres. In the case of the Earth, for L � 4, we obtain proton
gravity drift speeds around 1 cm s�1 and Alfvén speeds
(even within the plasmasphere) several orders of magnitude
larger. Going to Jupiter, the surface gravity is only 2.5
times larger that at Earth’s surface but the associated Jovian
magnetic field is more than an order of magnitude larger; of
course, the situation improves at larger altitudes because the
gravity force only decays with LJ

�2, whereas the (assumed
dipolar) Jovian field (and the Alfvén speed, for invariant
density) falls with LJ

�3, but, even at LJ � 50, the proton
gravity drift is only of the order of 3 cm s�1.
[62] The potential spatial applications of this study, after

its extension to more realistic hot plasmas, lie in environ-
ments whose perpendicular currents arise from mechanisms
other than the gravitational drift. For example, without
neglecting the effects of the ambient magnetic field on the
beam particles, the approach can study the effects of ion
injection in space, as in the experiment described by Kintner
and Kelley [1983], or use the well-known analogy between
gravity drifts and other differently originated drifts [e.g.,
Mikhailovskii, 1974] to investigate the effects of curvature
of the magnetic lines of force, density and field gradients,
and high-frequency forces. Elsewhere in the solar system, as
already mentioned in the introduction, another mechanism
contributing to particle drifts in the giant planets arises from
the centrifugal force; at Jupiter, the ratio between the
centrifugal and gravitational forces is given by (2p/TJ)

2(rJ/
gJ)LJ

3 � 0.1 LJ
3, where TJ denotes the Jovian rotational

period (0.41 Earth days): it is clear that at large LJ the
centrifugal drift becomes (very strongly) dominant.

Appendix A: The Wave Matrix Equation

[63] The cold magnetoplasma under consideration is
made up of an arbitrary number of particle populations
identified with the subscript s and permeated by a gravity
field with the geometry depicted in Figure 1. The zero-
order state has species with number densities Ns drifting
with velocities Vds defined below and is charge neutral.
The magnetic field generated by the particle drifts is
neglected. The linearized Maxwell, Lorentz, and continuity
equations describe the behavior of the plane wave pertur-
bations (E, B, J, ns, vs) varying as exp[�i(wt � k � r)],

k � B ¼ �im0J�
w
c2

E;

k � E ¼ wB;

�i w� k � Vdsð Þvs ¼
qs

ms

Eþ qs

ms

Vds � Bþ �svs � x;

k � Js ¼ wqsns;
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where

J ¼ s � E ¼
X
s

Js ¼
X
s

qs Nsvs þ nsVdsð Þ;

Vds = (g/�s)y denote the drift velocities, �s = qsB0/ms

represents the signed angular cyclotron frequency of species
s, s stands for the conductivity tensor, and other notation is
standard.
[64] These relations allow for the derivation of the wave

matrix equation

k2c2

w2
� 1

� �
E� c2

w2
k � Eð Þk � i

1

we0
s � E � M � E ¼ 0:

Using k = k? + kxx where (Figure 1) k? = ksin q, kx = kcos q,
ky = k? cos f, kz = k? sin f, the wave matrix elements Mij

become

Mxx ¼
k2 � k2x
� �

c2

w2
� 1þ

X
s

w2
ps

w2

Mxy ¼ Myx ¼ � kxkyc
2

w2
þ
X
s

kxVds

ws

w2
ps

w2

Mxz ¼ Mzx ¼ � kxkzc
2

w2

Myy ¼
k2 � k2y

	 

c2

w2
� 1

þ
X
s

w2
ps

w2
s � �2

s

1þ k2z V
2
ds

w2

� �
þ
k2x V

2
dsw

2
ps

w2w2
s

" #

Myz ¼ � kykzc
2

w2
þ
X
s

w2
ps

w2
s � �2

s

i
�s

w
þ wskzVds

w2

� �

Mzy ¼ � kykzc
2

w2
þ
X
s

w2
ps

w2
s � �2

s

�i
�s

w
þ wskzVds

w2

� �

Mzz ¼
k2 � k2z
� �

c2

w2
� 1þ

X
s

w2
sw

2
ps

w2 w2
s � �2

s

� �
with ws = w � kyVds.

[65] These matrix elements can be used to obtain the
wave electric field ratios Ei/Ej and thus calculate the
quotient

Ek

E
¼ k � Ej j

kE
ð70Þ

that assesses the relative electrostatic component of the total
wave electric field and is plotted in some figures.
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