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 School redistricting: embedding GIS tools with
 integer programming
 F Caro', T Shirabe2, M Guignard3 and A Weintraub'*

 'Universidad de Chile, Santiago, Chile, 2Technical University of Vienna, Austria; and 3University of Pennsylvania,
 PA, USA

 The paper deals with a school redistricting problem in which blocks of a city must be assigned to schools according to
 diverse criteria. Previous approaches are reviewed and some desired properties of a good school districting plan are
 established. An optimization model together with a geographic information system environment are then proposed for
 finding a solution that satisfies these properties. A prototype of the system is described, some implementation issues are
 discussed, and two real-life examples from the city of Philadelphia are studied, one corresponding to a relatively easy to
 solve problem, and the other to a much harder one. The trade-offs in the solutions are analysed and feasibility questions
 are discussed. The results of the study strongly suggest that ill-defined spatial problems, such as school redistricting, can
 be addressed effectively by an interaction between objective analysis and subjective judgement.
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 Introduction

 School redistricting is the process of adjusting the boundaries

 of schools within a given school system. School redistricting
 may be done annually in response to overcrowded class-
 rooms, projected growth and decline of enrolments, opening
 and closing of schools, modification of school capacities, etc.
 Countless hours are spent by school administrators, boards,
 and parents to create various redistricting alternatives, to
 examine their effects, and to agree (or at least compromise)
 on the final redistricting plan to implement.

 A revision of school districts is often torn between two
 kinds of motivations that can contradict each other: overall

 efficiency and individual convenience. One type of efficient
 districting pattern is to have each student attend his/her
 nearest school. If school capacities do not permit this,
 overall efficiency could be achieved by minimizing the total
 distance travelled by all students. No matter how much
 administrative cost would be saved, however, this alternative

 does not necessarily satisfy every single individual. Those
 allocated to a school 'unfairly' distant may be unlikely to
 accept such an 'efficient' plan.

 Geographic constraints also play an important role in school

 redistricting. First, contiguous districts are strongly preferred, if

 not required. Second, physical obstacles such as roads, rails,
 and bodies of water may prohibit some redistricting options;
 also, parents do not want to send their children across major

 streets with heavy traffic or hazardous sites. Third, various
 scales of geographic units need to be taken into account. In

 many instances, blocks-generally defined by streets-are the

 finest unit of granulation allowed during redistricting. Yet
 larger but more ambiguous units such as communities or
 neighbourhoods should be given some attention. A redistrict-

 ing plan with careless division of neighbourhoods would be
 strongly opposed by the people living there.

 There are other factors that are peculiar to American
 school systems. First, grade levels vary from one school to
 another. For instance, a single school system may have
 K(indergarten)-4(th grade) schools, K-8 schools, 5-8 schools,
 etc. As a consequence, some students are forced to transfer
 to other schools as they advance to higher grades. Second,
 students are racially diverse. Some local governments
 mandate or recommend that schools achieve a certain racial

 balance to eliminate potential educational disadvantages
 particular racial groups might have.

 As many factors are involved, school redistricting is a
 technically as well as politically complex problem. Some of
 the technical complexity is, however, relieved by recent
 digital technological advances, such as geographic informa-
 tion systems (GIS). GIS generally facilitate preparation,
 interpretation, and presentation of spatial data. Each entity
 of spatial data has attribute(s), location, and possibly
 geometric and topological properties. Some school admin-
 istrators may use a GIS simply to produce a paper map, on
 which they visually analyse the locations of schools and the
 distribution of students, and draw possible districting
 patterns. Others make a more intensive use, doing most of
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 their analysis within the framework of a GIS since many
 commercial GIS applications are nowadays furnished with
 various tools for editing and analysing spatial data.

 Certain optimization tools are even included as standard
 functions of commercial GIS packages. For example, the Arc/
 Info (ESRI) Network module adopts Dijkstra's algorithm for
 the shortest path problem with all arc costs non-negative. A
 school redistricting problem requires a much more complex
 mathematical programming formulation than the shortest
 path problem, however, and solution techniques that are well
 beyond the capabilities of standard GIS tools. Nevertheless,
 integrating GIS tools with custom-made mathematical
 programming techniques can facilitate such solutions.

 The application of mathematical programming to school
 redistricting problems certainly helps to understand the
 problem and generate rational solutions, but does not make
 the final decision. One reason for this is that a school

 redistricting problem is almost always ill-defined. While
 some districting criteria are relatively well suited for
 numerical treatment, others are too elusive to be quantified
 and may be overlooked (if not intentionally ignored). Thus,
 no matter how elegantly a school redistricting problem is
 formulated or solved as an optimization model, the
 generated solution usually cannot avoid objection or
 modification. If this modification cannot be done smoothly,
 the overall value of the school redistricting system may
 degrade significantly.

 Accordingly, the purpose of this study is two-fold:

 (1) to model a school districting problem so that it explicitly
 addresses many of the common school redistricting
 objectives and is simple enough to be solved by existing
 optimization algorithms; and

 (2) to implement the model with an intuitive interface that
 allows the user to easily formulate and revise the model,
 and evaluate and modify the solution. We expect that
 such an interactive system will make the school
 redistricting process more efficient.

 The remainder of the paper is organized as follows. The
 next section reviews the relevant literature and summarizes

 typical properties of good school redistricting patterns. Then
 we introduce a school redistricting model that explicitly
 accounts for those criteria. Our results are presented in the
 fourth section, where we describe the implementation of the
 model in a GIS environment and test it with actual data sets

 from the city of Philadelphia. The last section provides our
 concluding remarks.

 Literature review and desired school districting properties

 The school (re)districting problem can be seen as grouping
 small geographic units into clusters or districts, minimizing
 some distance measure or cost, and eventually complying
 with additional criteria. The problem is an old topic in the

 Operations Research/Management Science (OR/MS) com-
 munity. Starting in the early 1960s, many linear program-

 ming (LP) approaches and solution methods have been
 proposed. Sutcliffe et al' summarizes, in a schematic way,
 most of the work published up to 1982. Papers that consider
 a single attribute objective function are, among others, by
 Clarke and Surkis,2 Koenigsberg,3 Heckman and Taylor,4
 Belford and Ratliff,5 Franklin and Koenigsberg,6 Liggett,7

 Holloway et al,8 McDaniel,9 McKeown and Workman,10
 Jennergren and Obel,"1 Bovet,12 and Bruno and Anderson.13
 After 1982, fewer attempts have been reported in the OR/
 MS literature, among them were Schoepfle and Church,14
 Ferland and Guenette,'5 Taylor et al,16 and Lemberg and
 Church.17 We refer the reader to the latter for further
 references.

 The two features that are common to all school districting

 models are: first, the geographic units where students live
 must be assigned to schools; second, the students assigned to
 a school cannot exceed the available space. Most models
 minimize an objective function that represents an aggregate
 block-school distance measure, and many also consider
 minimum capacity usage, racial balance and/or other
 attribute equilibrium issues.

 Among previous school districting studies, only Liggett7
 and extensions to his model17 consider explicit integer
 (binary) variables, for requiring that each geographic unit
 be assigned as a whole to the same school. Ferland and
 Guenette15 also deal with binary assignment decisions even
 though they do not present a formal optimization model.
 The other approaches work with continuous decision
 variables and geographic units can be 'split' into different
 schools. Splits are generally undesirable because they oppose
 the sense of neighbourhood and because they create the
 additional problem of deciding which students of the split
 unit must go to which school. Most authors are aware of this
 fact, but either they argue that in their case studies splits
 were 'quite few', or they apply post-optimal heuristics or
 hand adjustments to fix it. Taylor et a116 proposes a
 nonlinear penalization function to encourage zero-one
 results, however did not use it because a re-definition of
 the units was preferred.

 Until now, few LP studies have accounted for individual
 grades separately. In most cases, school assignments are
 done ignoring the students' grade. This would be reasonable
 if all schools had the same grade structure and if the 'grade
 blend' were homogeneous among the geographic units.
 When these assumptions are not satisfied, more attention
 should be placed on the grade attribute. In Belford and
 Ratliff5 and Taylor et al,16 schools are classified as
 elementary school (kindergarten through fifth grade), middle

 school (sixth through eighth grades), or high school (ninth
 through 12th grades) and different model runs were done for

 each category. But again, within each category, there is a
 grade homogeneity assumption, and further problems
 could also arise if there was a school with, for example,
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 kindergarten through seventh grade. McKeown and Work-

 manlo are more drastic and develop an individual model for
 each grade. In this way, there is no grade homogeneity
 assumption but a post-optimal heuristic is needed to fix the
 geographic units that are 'split by grade' (ie when students
 living in the same block but of different grades are assigned
 to different schools). The model proposed by Franklin and
 Koenigsberg6 is more comprehensive than any other as its
 decision variables account for both grade and racial types.
 They were, however, unable to solve it given the computa-
 tional resources available at the time.

 Many authors declare contiguity as a desirable property
 but, to our knowledge, none of the previous studies add
 district contiguity as an explicit constraint. At most, in some

 cases, like in Franklin and Koenigsberg6 or Holloway et al,8
 the objective function is made up of squared block-school
 distances in order to emphasize the creation of compact
 districts. However, neither this goal nor contiguity is
 guaranteed. It is true that, due to geographic segregation,
 contiguity may conflict with other desired properties (for
 example racial balance), but models are useful for providing
 insight into the tradeoffs.

 From an optimality point of view, most school districting
 papers that solve a continuous LP or a derived transporta-
 tion problem get optimal or near-optimal solutions (usually
 with 'splits'). But again, due to computational limitations,
 the case studies are rather small (and many are not real).
 Belford and Ratliff5 solve the biggest instance with
 approximately 300 geographic units and 11 schools. Liggett7
 applies an implicit enumeration algorithm to a real problem
 with 140 geographic units and 11 schools, but there is no
 discussion about the optimality of the final solution.

 The school districting problem is closely related to other
 general districting problems treated extensively in the OR/
 MS literature, including sales territory alignment or creation

 of political voting tracts. In these problems, the objective is
 also to group small units into larger districts, but they have
 more degrees of freedom because usually there are no
 geographic points equivalent to the schools with the role of
 natural centres.

 For the sales districting problem, previous work includes

 that of Hess and Samuels,18 Segal and Weinberger,19
 Zoltners and Sinha,20 and Fleischmann and Paraschis.21
 Work of Zoltners and Sinha20 is particularly interesting
 because it provides a good review and defines four reason-
 able properties that identify a good sales territory alignment.

 Based on these properties, they propose a methodology and
 an integer (binary) model that incorporates explicit con-
 tiguity, workload balancing constraints, and compatibility
 with geographic considerations. They apply their procedure
 to three real cases (the biggest with 280 sales units to be
 assigned) and obtain solutions that violate the workload
 balance. They accept violations below 5%. To solve the
 model, they use a Lagrangean relaxation procedure, and
 because their sub-problems have the integrality property22

 the objective value obtained is the same as the LP relaxa-
 tion value.

 For the political districting problem, many mathematical
 programming approaches can be found in the OR/MS
 literature. Here, the use of mathematical tools is even more

 important because it gives an objective procedure for
 generating voting districts (free of partisan influence).
 Hess et a123 are among the first in using a facility location
 model to address this problem. Garfinkel and Nemhauser24
 report a two-stage enumerative procedure that minimizes
 the maximum deviation from the desired district average
 size. In the first stage, they generate a certain amount of
 feasible districts and, in the second stage, they propose a tree
 search algorithm to solve the optimization problem. Con-
 tiguity is considered as one of the district feasibility
 conditions. However, the procedure fails to solve an
 instance with 55 voting units to be allocated in five districts.
 Hojati25 also proposes a two-stage approach, he first uses
 Lagrangean relaxation to determine district centres (again
 the sub-problems have the integrality property), and then
 voting unit assignment is carried out with a transportation
 model. Other network optimization models can be found in

 George et a126 and the references therein. Mehrotra et a127
 present a promising Branch & Price approach. Their model
 is quite similar to that of Garfinkel and Nemhauser, but the
 feasible districts are generated through an optimization sub-
 problem instead of through enumeration. The complete
 procedure has pre- and post-processing, and a real case
 study with 46 voting units and six desired districts is
 described.

 We proceed in a way similar to that of Zoltners and
 Sinha20 for the sales territory alignment problem. Based on
 the above literature review and personal conversations with
 representatives of the School District of Philadelphia, we
 identified seven desirable properties that a 'good' school
 districting should satisfy:

 (P1) Each block (for each grade) is assigned to exactly one
 school.

 (P2) School assignments must not exceed each grade's
 capacity and may need to be balanced relative to other
 attributes.

 (P3) Each school district must be contiguous. We define a
 district to be contiguous if any pair of blocks that
 belong to the district can be linked with a 'path' of
 blocks that are also part of the district.

 (P4) No school boundary can cut across such geographic
 obstacles as railroads, rivers, or streets with heavy
 traffic.

 (P5) The total distance travelled by all students is
 minimized, but no student should travel more than a

 specified maximum distance.
 (P6) All students in a block must go to the same school

 unless that school has no classrooms for the corre-

 sponding grades. This property makes the redistricting
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 plan more rational and also decreases each student's
 chance of future school transfer.

 (P7) A new districting pattern must maintain a certain
 degree of similarity to the existing one. This property
 is relevant when the school redistricting is visualized in

 a longer time frame since it is unrealistic and
 impractical to think of creating whole new school
 districts every year.

 From a modelling perspective, properties (P1)-(P7) have
 never been treated simultaneously, at least to our knowledge.
 A multi-objective or a goal-programming model such as
 those proposed by Knutson et a!28 or Sutcliffe et al go a
 long way, but still the problem of setting appropriate weights
 for different attributes remains. Based on the conversations

 with the School District of Philadelphia, our approach is
 therefore to minimize a single attribute objective function

 (total travelled distance) subject to properties (P1)-(P7).
 To partially justify the selection of these seven properties

 and the modelling contribution of our study, we present (in
 Table 1) a summary of all the school districting papers

 mentioned here in the literature review (which is by no
 means exhaustive). They are sorted by year of appearance
 and a mark is placed if that paper somehow considers the
 respective property. We are not interested in implementation
 details, but rather concentrate on whether the authors
 considered the property to be relevant. A few comments
 must be made:

 (i) We stated properties (Pl)-(P7) in terms of city blocks,
 but many papers allocate other units, for example,
 census tracks, grid blocks, bus stops, etc. The choice of
 the appropriate unit depends on the available infor-
 mation and the desired level of aggregation.

 (ii) In the case of (P2), we only checked if the paper
 considered school capacities and/or race balance.
 Few papers go beyond these two attributes due to
 lack of data or model complexity. Taylor et a116
 mention some exceptions where socio-economic and
 busing burden balance is also required. Another
 example is Sutcliffe et all's goal-programming model,
 that also tries to minimize total travel difficulty and

 Table 1 Presence of (P1)-(P7) in previous school districting papers

 (P1), assign (P2), attribute (P3), (P4), (P5), Min. total dist. and (P6), No (P7),
 one-to-one constraint contiguity Geo. restrict worse case grade-split limited

 feasibility reassignment
 School Year Cap. Race Min. Max.
 districting
 papers

 Clarke and 1968 Y Y/S Y Y
 Surkis2

 Koenigsberg3 1968 Y Y/S Y
 Heckman and 1969 Y Y Y

 Taylor4
 Belford and 1972 Y Y/S D Y Y
 Ratliff"

 Franklin and 1973 Y Y/S Y D
 Koenigsberg6
 Liggett7 1973 Y Y Y D Y D Y
 Holloway et a!8 1975 Y Y D Y Y Y Y
 McDaniel9 1975 Y Y/S Y
 McKeown and 1976 Y Y Y Y
 Workman'
 Jennergren and 1980 D Y Y Y D D D
 Obel"

 Knutson et a"28 1980 Y Y/S Y
 Bovet'2 1982 Y Y Y Y Y
 Bruno and 1982 Y Y Y
 Anderson'3
 Sutcliffe et al' 1984 Y Y/S Y Y
 Schopfle and 1989 Y Y/S Y
 Church'4
 Ferland and 1990 Y Y D Y Y
 Guenette15
 Taylor et a1'6 1999 Y Y Y Y D
 Lember and 2000 Y Y Y D Y Y Y
 Church

 Abbreviations: Y-the property is considered explicitly in the model; S-race-splits are allowed; D-the property is mentioned as 'desirable' but is not
 explicitly considered in the model.
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 deviations from the average sex and reading-age
 retarded proportions.

 (iii) In the case of (P5), we checked if some distance metric
 is minimized (Euclidean distance, network distance,
 squared Euclidean distance, etc), and if fairness is
 considered via an imposed worst case bound, that is, a
 maximum allowed distance for a block assigned to a
 specific school

 (iv) We regard these properties as necessary conditions for
 a good school districting plan. They are far from being
 sufficient since there are also subjective criteria
 involved.

 To conclude this section, it is important to state that
 previous interactive decision support systems (DSS) based
 on mathematical programming techniques for the afore-
 mentioned districting problems have been reported in the
 OR/MS literature. Among them, in the school districting
 case, Ferland and Gu6nette15 document a successful attempt.
 They programmed a menu-driven DSS that runs on a PC.
 Capacities per grades and district contiguity are considered.
 The DSS generates a starting solution based on a heuristic
 that assigns street segments to schools. The proposed
 allocation can be graphically displayed and modified by
 the user. In a different way, Taylor et a116 also take
 advantage of up-to-date graphical tools. In their integrated
 planning system, geographic units are created through an
 interactive computer interface and several GIS-based output
 maps are generated to illustrate districting solutions or
 demographic statistics.

 School redistricting model

 A general redistricting model is presented below. Indices i, k,

 and n represent blocks, grades, and schools, respectively.
 The binary variable Xikn equals 1 if grade k students of block
 i are assigned to school n, and 0 otherwise. Sik is the number

 of grade k students in block i, Din, is the distance from block i
 to school n, Akn is the k-th grade capacity of school n, N(i, n)
 is the set of blocks adjacent to block i that are closer to
 school n, and C(i) is the closest school to block i. B,, is the
 maximum walking distance allowed for students assigned to
 school n. For each grade k, R(k) is the set of (i, n) pairs
 representing the current block-school allocations, and
 (l-P)% of these pairs must be kept.

 (MsD) min z = > Z Sik Din Xikn
 i k n (1)

 subject to :

 ZXikn 1 Vi, k (2)
 n

 Z SikXikn Akn Vn, k (3)

 Xikn Xi(k+ 1)n Vi, k, n s.t. A(k?+ 1),Z: 0 (4)

 xikn- E xjkn Vi, k,n s.t. N(i,n) A (5)
 jcN(i,n)

 Xikn = 0 Vi, k, n s.t. N(i,n) = and n#/C(i) (6)

 Din xikn Bn Vi, k, n (7)

 S Xikn-> (1 - P)* R(k)| Vk (8)
 (i,n)ER(k)

 Xikn E {0, 1} Vi, k, n (9)

 The objective function (1) represents to the total walking
 distance (or equivalently the average walking distance).
 Constraint (2), together with the integrality condition (9),
 guarantees that each block-grade pair is assigned to exactly
 one school, eliminating 'splits'. Constraint (3) ensures that
 no school violates its capacity by grade. If necessary, a
 minimum capacity usage can be expressed in the same
 manner. Constraint (4) says that if the k-th graders of block i

 are assigned to school n, then the (k + 1)-th graders of that
 block must be assigned to the same school, unless school n
 does not provide grade (k + 1). Finally, constraints (5) and
 (6) deal with contiguity. In a recursive way, constraint (5)
 says that, for each grade, in order to assign block i to school
 n, there must be a 'path' of blocks also assigned to the same
 school that connects block i with school n. On the other

 hand, if there is no way of building such a connecting path,
 then constraint (6) prohibits the assignment of block i to
 school n, unless n is the closest school to block i (ie C(i)= n).
 Note that the effectiveness of constraints (5) and (6) depends
 on how the sets N(i,n) and the parameters C(i) are
 calculated. This can be done in several ways with different
 consequences, as will be seen later.

 As the objective function reflects the average walked
 distance, in order to encourage individual equity a maximum
 walked distance is added in constraints (7). This constraint
 also helps to build more compact districts, as in this form the
 resulting patterns will be consolidated rather than spread
 out.

 In a redistricting case, as stated in property (P7), only a
 certain proportion of blocks should be reallocated. This can
 be done by imposing constraints (8), which say that, for each

 grade, at least a proportion (l-P) of blocks must remain
 assigned to their current school. If P 1 then the new
 districts are established from scratch. In contrast, if P= 0,
 the actual school division is preserved.

 If some other attribute balance is desired (as those

 mentioned in Taylor et a1'6 and Sutcliffe et al'), then the
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 following additional constraints can be added:

 mi E3E SikXikn -<, TlikXikn
 i k i k (10)

 < M - 3> SikXikn VI, n
 i k

 where Tlik is the number of grade k students of block i that
 have attribute 1 (for example, are females). M, and mi are the
 maximum and minimum desired proportions, respectively,
 of students with attribute 1.

 The optimal solution of model (MsD) plus the interaction
 with the GIS interface to be presented below yield a school
 districting plan that satisfies properties (Pl)-(P7). Solving
 model (MsD) can be difficult, but many cases are easy. The
 next section shows the results for two real instances. Due to

 population, geographic, and school structure considerations,
 one is easy and the other is very complicated.

 System implementation and computational results

 We built a system aimed at supporting school redistricting
 by coupling the optimization models described in the
 preceding section with a commercial GIS package (ArcView
 3.2, from ESRI). In this system, the optimization model and
 GIS software do not share a common data structure, but are
 loosely coupled29,30 through the transfer of input/output
 data as ASCII files. Since this data transfer is conducted

 behind the scene, users do not notice that different
 applications are being used. We have chosen this form of
 linkage based on our conversations with the School District
 of Philadelphia in order to maintain the GIS functionality
 and interface familiar to potential users. To check the
 usefulness of the system, we tested it with actual data
 provided by the School District of Philadelphia.

 Interface of the system

 As stated earlier, the value of the system does not lie only in
 the underlying 'optimization' model but also in the interface
 through which the user interacts with the model. Since
 school redistricting is a trial-and-error process rather than a
 well-defined problem, smooth interaction between the user
 and the model is crucial. It is very likely that during a
 redistricting process, existing criteria are modified and new
 criteria emerge. To streamline the process, the user can
 interact with the model in five different manners as follows.

 Each mode of interaction is associated with one or two items

 of a menu called 'Redistricting' (Figure 1), which is the only
 control added to the original GIS application.

 School and block maps selection. The first task the user
 performs is the selection of an area (cluster) to redistrict. To
 do so, after loading maps of schools and blocks encom-
 passed by the area of interest, the user clicks on the first

 Select School Theme

 Select Block Theme

 Start Editing Constraints

 Promise Allocation

 Prohibit Allocation

 District

 Modify

 Figure 1 Redistricting menu.

 item of the menu called 'Select School Theme' and selects

 the school map. Then the user clicks on the second item
 called 'Select Block Theme' and selects the block map.

 Constraint parameters specification. The user specifies in
 a table the right-hand-side parameters of the model's
 constraints (ie lower and upper limits on the enrolment
 number of each grade for each school, maximal allowable
 travel distance for each school, upper limits on the
 percentage of reallocated blocks, etc). Clicking the third
 item called 'Start Editing Constraints' of the menu calls the
 constraint table and makes it editable. Upon finishing
 editing, the user needs to click again on the same item that
 has been renamed 'Stop Editing Constraints'.

 Pre-allocation. If the user knows, before running the
 redistricting model, which blocks are promised or prohib-
 ited to be allocated to particular schools for any reason
 other than defined constraints, (s)he can pre-determine
 where to (or not to) allocate particular blocks. To do so,
 the user selects blocks graphically using existing functions
 of the GIS program, and selects the fourth item called
 'Promise Allocation' or the fifth item called 'Prohibit

 Allocation.' Then, a dialog box appears and requests the
 user to select a school where to (or not to) allocate the
 selected blocks. This pre-allocation function is useful when
 there are criteria that are difficult to explicitly formulate or

 would complicate computation. For example, this function
 may be used to prevent students from crossing rails. This
 tool also helps to reduce the size of the optimization model.

 Allocation. Once the right-hand-side values of the con-
 straints are specified and pre-allocation is done (if
 necessary), the redistricting process can proceed. By
 selecting the sixth item called 'Redistricting', an external
 optimization routine is called to solve the model. Then the
 results are transferred back to the GIS application to be
 summarized in tabular form (ie the number of students of
 each grade, gender, and race for each school; total, average,
 and maximal distance travelled for each school; number
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 and percentage of blocks reallocated) and are visualized in
 cartographic form.

 Post-allocation. After solving the model, if the user finds
 any school district unacceptable, s(he) can modify it at their
 discretion. To do so, the user selects blocks graphically,
 using an existing function of the GIS, and selects the
 seventh item called 'Modify Allocation'. Then, a dialog box
 appears and urges the user to select a school to which the
 selected blocks are reallocated. An updated summary table
 and a redistricting map follow. This post-allocation
 function is useful since the model cannot enumerate all

 criteria in advance. For example, if a school district does
 not have smooth boundaries, this can be fixed by
 reallocating the blocks that caused rough boundaries. Of
 course, such a post-allocation may lead to a sub-optimal or
 even an infeasible solution to the model, but such trade-offs
 between objective criteria and subjective judgement should
 be justified in practice.

 Data

 The City of Philadelphia is divided into 22 regions called
 clusters for school administrative purposes. We applied the
 system to two of these clusters, namely, the Fels cluster
 encompassing six schools (one K-5 school and five K-8
 schools) and 487 blocks (Figure 2(a)), and the Olney cluster
 encompassing 12 schools (six K-4 schools, one K-7 school,
 two K-8 school, three 5-8 schools) and 617 blocks (Figure
 2(b)). We have chosen the Fels cluster as an example because
 it is one of the most homogeneous in terms of grade
 structure, and the Olney cluster for the opposite reason.

 Considering the larger number of blocks encompassed by
 the Olney cluster and its more complicated grade structure,
 we anticipated that this cluster would provide a computa-
 tionally harder problem than the Fels cluster.

 The student data include four attributes: block of

 residence, grade, gender, and race. The block of residence
 is a key value for linking attribute and location data. The
 data of individual students were then aggregated to block
 level to compute the number of students by grade, gender, or
 race in each block. These tasks were done using existing
 functions of the GIS package and concretely give values for
 parameters Sik and Tlik of the model.

 The school data include 10 attributes: street address and

 capacity of each grade, kindergarten through eighth grade
 (see Tables 2 and 3). According to section 206 of the School
 District of Philadelphia Board of Education Policies,
 although a student should, in principle, 'attend the school
 within whose boundary lines the legal residence of the parent

 or local guardian is located', (s)he is allowed to 'attend any
 school in which there is room regardless of boundary lines,
 provided (s)he can meet the entrance requirements, if any,
 and provided established procedures are followed'. As a
 result, a significant number of students (nearly 20 and 12%
 of the students who live in the Fels and Olney clusters,
 respectively) attend schools outside the cluster where they
 live. Following the original spirit of school districting (ie that
 each student attends a school that is in the same cluster as

 where (s)he lives), we did the computational experiments
 based on the assumption that all schools from Cluster X are
 filled only with the students that live in Cluster X. This way
 each cluster can be solved as a separate instance. We defined
 the capacity per grade to be the current enrolment numbers
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 Figure 2 Schools and blocks for both instances: (a) Fels cluster, (b) Olney cluster.
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 Table 2 Capacity per grade of schools in Fels cluster

 School k gO] g02 g03 g04 g05 g06 g07 g08

 722 167 181 122 137 142 149 137 136 136
 724 94 89 98 101 92 110 112 106 112
 727 89 128 158 127 151 117 140 138 142
 728 101 119 92 109 98 77 108 90 89
 735 193 216 249 208 193 198 0 0 0
 746 34 40 38 35 35 32 45 35 45

 Note: 0 indicates the corresponding grade is not available.

 Table 3 Capacity per grade of schools in Olney cluster

 School k gO] g02 g03 g04 g05 g06 g07 g08

 549 126 136 88 100 90 0 0 0 0
 550 93 119 85 84 80 84 95 78 0
 710 0 0 0 0 0 152 214 227 284
 720 150 178 177 175 164 0 0 0 0
 721 165 190 214 183 165 0 0 0 0
 731 101 110 108 107 112 0 0 0 0
 738 183 140 139 155 126 0 0 0 0

 739 98 115 132 142 115 102 92 61 94
 740 116 101 77 99 74 75 73 59 62
 744 141 157 43 129 119 0 0 0 0

 750 0 0 0 0 0 256 252 260 218

 773 0 0 0 0 0 279 318 301 333

 Note: 0 indicates that the corresponding grade is not available.

 of each grade regardless of where students come from.
 Therefore, capacity values are by no means definite or rigid.
 Rather, their determination or modification is left to the
 planners' discretion.
 After recording the locations of schools on a street map,

 the distance from each block to each school was calculated

 in the following way. First, for each block i, a geographic
 centroid was determined. The centroid was then 'projected'
 to the closest street, and finally, the network distance from

 that point to each school n was established as Di, (the
 distance from block i to school n). Once all the Din, values
 were measured, the elements of each set N(j,n) were
 identified as all those blocks i that share a boundary
 segment with block j such that Di,,? Dj,,. Then we have
 C(i)=argminn {Di,,}, and again, the described tasks were
 done using existing functions of the GIS package.

 It is important to note the approximations implicit in the
 previous calculations. The Di, values may somewhat mis-
 represent the true student travel distance when the centroid of

 a block is projected away from where the majority of the
 block's students are actually located. It is not hard to think of

 more adequate measures, for example, the distance from
 block i to school n could be defined as the average of the
 individual distances of each student that lives there, but this

 would require intense computations with limited payoffs.
 What is really crucial is the fact that the sets N(i,n) were
 constructed based on the Di,, values. The computation is
 simple but the desired contiguity of the districts can be
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 Figure 3 Di,, calculation example.

 affected in a minor way. In fact, consider Figure 3, which is a

 small example extracted from the Olney cluster.

 Points s, and S2 represent two different schools. Blocks V,

 U, and Z are 'neighbours' with centroids cy, c., and cz,
 respectively. Points p, pu, and Pz are the projections of the
 controids to their closest street. Hence, the distance from
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 block V to school sl is the network distance from point Pv to

 point s,. Since the network distance pvs1 is shorter than psl, as well as psi, then by definition, block V has no
 neighbouring block closer to school sl (ie N(V, sl) = ).
 However, since school s~ is the closest school to block V (ie
 C(V)=sl) then, according to constraints (5) and (6), it is
 possible to assign block V to school s, and all its
 surrounding neighbours to school S2, which in our model
 (MsD) would correspond to a feasible non-contiguous
 district for school sl. Therefore, given the 'block to school'
 distances described here, constraints (5) and (6) are not
 sufficient to rule out non-contiguous districts. In the
 appendices, we briefly discuss when constraints (5) and (6)
 are sufficient to ensure contiguous districts.

 Test of the system

 The system was tested on the following five scenarios with
 the aforementioned two cluster data sets:

 Scenario (0): base scenario that duplicates the current
 districting pattern.

 Scenario (1): redistrict so that the capacities per grade
 are not violated.

 Scenario (2): for the Olney cluster, add a maximum
 walking distance constraint.

 Scenario (3): redistrict so that the proportion of race
 'type 1' students in each school is within a
 pre-specified range of the cluster's ratio.

 Scenario (4): redistrict assuming that all schools are
 K-8.

 The numerical results for the Fels and Olney clusters are
 summarized in Tables 4 and 5, and each scenario is analysed
 in the following subsections.

 It should be noted that the figures shown below illustrate
 the districting patterns only for grades K-4 since in the
 School District of Philadelphia the school boundaries are
 defined only for these lower grades. For the same reason,
 and in order to have a fair comparison with the current
 situation, we did not impose the contiguity constraints (5)
 and (6) for the higher grades 5-8.

 Regarding the parameter P of constraint (8), it was set to
 1 in all the runs, except for the base scenario (0). Also, if the

 Table 4 Numerical results for the Fels cluster

 Scenario (0) Scenario (1) Scenario (3) Scenario (4)

 Average travelled distance (ft) 2067 2040 2250 2040
 Number of overcrowded schools 0 0 0 0
 Worst travelled distance (ft) 6115 6115 7441 6115

 % Students that travel 0-0.5 miles 70.4% 71.7% 69.1% 71.7%
 % Students that travel 0.5-1 mile 28.9% 28.1% 26.0% 28.1%
 % Students that travel 1-1.5 miles 0.7% 0.2% 4.9% 0.2%
 % Students that travel 1.5 + miles 0.0% 0.0% 0.0% 0.0%

 % Students that go to closest school 93.6% 97.6% 89.1% 97.4%
 % Students that go to closest or second closest school 100.0% 100.0% 96.0% 100.0%

 % Blocks reallocated 6.6% 11.9% 9.0%
 CPU time (s) 100 515 7

 Note: 1 mile = 5280 ft.

 Table 5 Numerical results for the Olney cluster

 Scenario (0) Scenario (1) Scenario (2) Scenario (3) Scenario (4)

 Average travelled distance (ft) 2037 2145 2045 2259 1666
 Number of overcrowded schools 4 0 2 5 0
 Worst travelled distance (ft) 5810 8791 5984 10 845 4630

 % Students that travel 0-0.5 miles 76.2% 75.4% 76.5% 70.9% 83.4%
 % Students that travel 0.5-1 mile 21.3% 18.7% 19.8% 22.9% 16.6%
 % Students that travel 1-1.5 miles 2.5% 5.9% 3.7% 5.9% 0.0%
 % Students that travel 1.5 + miles 0.0% 0.0% 0.0% 0.3% 0.0%

 % Students that go to closest school 59.0% 59.2% 63.5% 54.5% 76.0%
 % Students that go to closest or 2nd closest school 83.7% 82.9% 85.2% 78.6% 93.5%

 % Blocks reallocated 15.2% 17.3% 34.0% 42.6%
 CPU time (s) 2901 604 36 012 402
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 grade capacities made the problem integer-infeasible, given
 that there is some flexibility in defining these capacities (refer

 to the end of the previous section) they were all increased by

 a small amount (for example, room for five more students)
 and the model was resolved. We defined a school to be
 'overcrowded' if the final number of students allocated

 exceeded the initial capacity by more than 5%.
 The test runs were done on a dual 866 MHz Pentium III

 PC with 256 MB of RAM. The model was written in GAMS

 and solved using parallel Cplex 6.6. Basic model reductions
 were applied, for example, given that all schools that have
 grade K also have grades 1-4, constraint (4) implies that
 only one binary variable xikn was needed for all grades k
 from K to 4. In the end, the Olney instance was modelled
 with 18236 equations and 25491 binary variables. In the
 Fels case, there were 10525 equations and 8541 binary
 variables. Owing to the precedence arising from constraint
 (4), in the Branch & Bound process lower-grade variables
 were assigned a higher branching priority. In general, the
 running times are reasonable (in this paper we did not
 concentrate on algorithmic efficiency). The only exception is
 Scenario (3) in the Olney case, which will be further
 discussed.

 Scenario (0): replicate each cluster's current districting
 pattern. Scenario (0) is obtained by setting P= 0. It does
 not involve any optimization and can be considered as a
 benchmark. Note that in reality, as previously mentioned,
 students do not necessarily attend schools of their
 residence. This explains why in our framework the current
 districts of the Olney cluster cannot be followed, unless
 four overcrowded schools are allowed (with two of them
 exceeding the original capacity by more than 10%). The
 corresponding districting maps are the same as those seen
 in Figure 2.

 Scenario (1).: redistrict so that the capacities per grade
 are not violated. As can be seen from Tables 4 and 5, in
 Scenario (1) there is a small decrease in average travelled
 distance for the Fels cluster and a small increase for the

 Olney cluster. In the last case, this was the price paid for
 eliminating the capacity violations.

 Scenario (2). redistrict the Olney cluster with a
 maximum walking distance constraint. From Table 5 it

 can be seen that, when redistricting the Olney cluster
 subject to no capacity violation (Scenario (1)), the worst
 travelled distance increases by more than 50%. Therefore,
 we added a maximum distance constraint saying that no

 student should walk more that M ft (Bn = M for all n). The
 results shown in Table 5 (for Scenario (2)) correspond to
 M = 6000 and Table 6 reports results for other values of M.

 From Table 5, it can be seen that lower values of the worst

 travelled distance are only possible if some overcrowded
 schools are allowed (recall that the grade capacities are
 increased only if the model is integer-infeasible). The last two
 lines confirm this trade-off, but in both cases only one of the

 schools exceeds the original capacities by more than 10%;
 therefore, it can be argued that they still represent better
 solutions than the base Scenario (0).

 Figure 4(a) shows the districting map for the last run of
 Table 6. We observed that these districts were more compact

 compared to those generated under Scenario (1). Compact-
 ness is a property that is hard to define and measure in an
 explicit manner, but is often in the planners' mind.6,8'17
 Limiting the maximum distance is an alternative to achieve
 this property. Another elusive yet highly desired character-
 istic of school boundary is smoothness. Smooth boundaries
 generally make school districts clearer and seemingly less
 biased. Figure 4(a) does not have this property, but its
 smoothness can be improved by using the post-allocation
 tool mentioned at the beginning of this section. Figure 4(b)
 shows the same solution as Figure 4(a) but after manually
 reallocating 14 blocks. Six of these blocks had no students;
 therefore, the impact of the post-allocation on the feasibility

 and/or objective value was relatively insignificant. In general,

 there are many blocks where no students reside and the
 planner using the post-allocation tool can trivially reallocate
 them at his convenience.

 Notice that this scenario was not considered in the Fels

 case because, from Table 4, Scenario (1) achieves the best
 maximum walking distance (in fact, there is a block whose
 closest school is 6115 ft away).

 Scenario (3): racial balance. The objective of this
 scenario is to redistrict each cluster so that the percentage
 of students of race 'type 1' in each school is within the
 range [RI-pl, R1 +P2] where pi, p2e[0, 1] are parameters
 and R1 is the cluster's ratio (ie number of students of race
 'type 1' divided by the total number of students in the

 Table 6 Scenario (2) tested with different values of M

 Max. distance (M) in ft Worst travelled distance (ft) Average travelled distance (ft) Overcrowded schools

 None 8791 2145 0
 7500 7350 2172 0
 6000 5984 2045 2
 5000* 6691 1999 3

 *The maximum distance constraint was imposed only to a sub-set of schools.
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 a b

 SSchoolschools
 2000 0 2000 Feet 2000 0 2000 Feet

 Districts JT = Districts
 Figure 4 Redistricting Olney cluster with a maximum walking distance constraint: (a) before post-allocation, (b) after post-
 allocation.

 cluster). The results for this scenario shown in Tables 4 and

 5 (for Fels and Olney, respectively) consider pl = p2 - 15 %.
 For the Fels cluster, an additional maximum walking

 distance constraint (of 7500 ft) was imposed in order to
 avoid overly spread out districts. The average travelled
 distance increased by 10% (see Table 4) and the resulting
 districts have some irregular borders, but again this could be
 fixed using the post-allocation tool as explained in the
 previous section. Note that the running time still has the
 same order of magnitude.

 Finding an optimal solution for this scenario in the Olney
 case turned out to be relatively hard. The running time
 reported in Table 5 is above 10 h. To deal with this difficulty,
 we used the pre-allocation tool. Basically, all the blocks that
 were clearly closer to one particular school (relative to other
 schools) were a priori assigned (fixed) to that school. For
 example, all the blocks in the extreme northeast or southwest
 corners of Olney cluster were treated in this manner. We
 then fixed approximately 28% of the blocks, and the total
 running time decreased by almost 80% (to nearly 2 h). In
 further research, it would be interesting to analyse the
 structure of the model in order to improve the solution time,
 but at the moment we are mostly interested in the
 application rather than developing efficient algorithms for
 the more difficult cases.

 The difficulty in solving Scenario (3) for the Olney cluster
 can be explained by the racial distribution of the students.
 Even though the percentage of race 'type 1' students is high
 (R1 =47%), they are not uniformly distributed. Hence, a
 feasible pattern is hard to find; moreover, the existing

 solutions have districts with extremely irregular shapes.
 Figure 5(a) shows the districting map where the proportion
 of race 'type 1' students must be in the range [0.25, 0.75]. In
 addition, a maximum traveled distance constraint of 5000 ft

 was imposed (only for some schools), and the solution has
 three overcrowded schools (with two exceeding the original
 capacity by more than 10%). It can be seen that the districts
 of Figure 5(a) and 4(a) have similar shapes. This similarity is
 clearly lost in Figure 5(b), where the range of race 'type 1'
 students was narrowed to [0.32, 0.62]. This last figure has no
 maximum distance constraint; otherwise, the problem was
 integer-infeasible (regardless of the school capacities).

 In addition to the extremely elongated shape of some
 districts in Figure 5(b), there is one particular district that is
 not contiguous (it is split in two). This is a direct
 consequence of how the Din parameters and the N(i,n) sets
 were calculated, as discussed before.

 Scenario (4): redistricting assuming all schools are
 K-8. This scenario represents an interesting 'what if...'
 question and shows the potentiality of the system. The total
 capacity of every school was divided proportionally for
 each grade according to the cluster's student-per-grade
 ratios (ie the total number of students per grade divided by
 the total number of students in the cluster), and then a 5%
 surplus was added. We included an additional constraint
 expressing that the total number of students allocated to a
 school should be no more than the original total capacity
 (before the surpluses per grade were added).

This content downloaded from 200.89.68.76 on Fri, 22 Feb 2019 14:27:21 UTC
All use subject to https://about.jstor.org/terms



 F Caro et a/-School redistricting 847

 a b

 Contiguous Districts
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 DSplit Districts

 Contiguous Districts

 SSchools + (N) Schools + 2000 0 2000 Feet 2000 0 2000 Feet Districts , ["" I Districts
 Figure 5 Redistricting Olney cluster with racial balance: (a) racial range = [0.25, 0.75], (b) racial range = [0.32, 0.62].

 Since seven of the eight schools in the Fels cluster were
 K-8, the solution barely changed (see Table 4). This grade
 restructuring, however, improved the Olney cluster substan-
 tially, as the average travelled distance was decreased by
 20% and there were no overcrowded schools (see Table 5).

 Conclusions

 This paper has presented an interactive school redistricting
 system coupling a commercial GIS with an exact optimiza-
 tion model to solve the school redistricting problem. The
 model explicitly considers common quantitative properties
 of a good school redistricting plan as found in the literature,
 and other qualitative desirable properties are covered
 through the GIS interactive interface. The solutions found
 with this system improve on existing solutions, and even
 more importantly, provide insight into the trade-offs
 involved. The results are intuitively clear: for example, as
 the capacities per grade become more stringent, the walking
 distance increases; if the students are not uniformly
 distributed by race (which is usually the case), there is a
 clear trade-off between achieving certain racial balance and
 keeping contiguous (and compact) districts. The model, in
 an iterative procedure, can help find an adequate equili-
 brium. The capability for analysing multiple scenarios is
 evident; this was done for answering the question 'what if all
 the schools had the same grade structure?' Clearly, this is a
 theoretical answer. Such a modification would involve many
 other issues not considered in the model. To mention a few,
 there is no cost analysis, teachers' availability and opinion

 are not considered, nor is the parents' point of view taken
 into account. Nevertheless, the solution provided by the
 model would help set any further discussion on a solid
 ground. Similarly, the system could be extremely helpful for
 locating new schools and/or analysing the impact of a school
 shutdown.

 In general, school redistricting criteria, whether quantita-
 tive or qualitative, cannot be enumerated in advance, but
 rather are established and modified during a trial-and-error
 redistricting process. Therefore, the major implication of this

 study is that GIS can be an effective tool connecting a
 mathematical model's ability to handle complexity and
 human's intuition and experience to solve highly subjective
 ill-defined spatial problems. The results obtained seem to
 indicate that the presented approach could be a valuable tool
 for school planners.

 Future research could concentrate in studying multiple
 periods with enrolment forecasts and the combinatorial
 structure of the model in order to reduce its computational
 time.

 Acknowledgements-We thank Larry Sperling and The School District
 of Philadelphia for useful discussions and for providing the data used
 in the paper.

 Appendix: Ensuring contiguous districts

 Considering again the example in Figure 3, the problem is
 that, given the 'block to school' distance measure described
 in the implementation section, constraints (5) and (6) are not
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 sufficient to rule out non-contiguous districts. Note that this
 problem remains if instead we define the 'block to school'
 distance to be the Euclidean distance from the centroid of

 the block to the point that represents the school. Note also

 that if we define C(i)= NULL for every block i except those
 that are directly next to a school (where NULL represents a
 value different from any of the existing schools), then this
 problem would be fixed. However, this condition is
 excessively strict and would rule out not only non-
 contiguous districts but also many contiguous ones. For
 instance, in the example of Figure 3, if we set C(V) = NULL
 then constraints (6) would dictate that block V could never

 be assigned to school sl.
 One approach to overcome this problem is to measure the

 distance between a school and the nearest part of a block
 rather than the block's centroid. More formally, regarding
 block V as a set of points, the canonical distance L between a
 school s and block V can be defined as follows:

 L(s, V) = min{Eucl(s, q)/q E V}

 where s is a point representing a school, V is a set of points
 representing a block, and Eucl(i,j) is the Euclidean distance
 between points i and j.

 Given this distance measure, if every block can be
 connected to its closest school by a straight line contained
 in the area (cluster) being studied, then constraints (5) and
 (6) ensure contiguous districts. A sketch of the proof for this

 claim would be as follows. Let p= argminqEv {Eucl(s,q)}. If
 p 0 s, then N(V, s) =0, that is, V has an adjacent block that is

 closer to s (because the line that connects p and s is part of
 the cluster). Therefore, constraints (5) ensure that there is a
 path from any point of block V to school s. If p = s, then
 C(V)= s, that is, block V and school s are next to each other.
 Therefore, neither constraint (5) nor (6) applies so that block
 V can be assigned to school s without any further
 requirement.

 Calculating the canonical distance from a set to a point is
 often computationally intensive. However, since the GIS
 works with the block information in vector format, that is,

 each block is typically represented by a polygon consisting of
 a finite set of point (rarely more than 20), a surrogate
 distance measure would be

 L(s, V) = min{Eucl(s, q)/q e GIS(V)}

 where GIS(V) is the set of points that represent block V in a
 GIS vector format.
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