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1. INTRODUCTION 

In several industrial applications, we deal with complicated physical phenomena which are at 

the root of some difficult, and sometimes strange, effects. Such is the case of the lubrication 

processes (e.g., see [l-3]), fluid flows in porous media (e.g., see [4]), or MHD generators with 

neutral fluid seedings in the form of rigid microinclusions (e.g., see [5,6]). To model them, we 

consider an incompressible, electrically conducting and micropolar fluid, a so-called magneto- 

micropolar fluid. Many works have been written in the last decades on this subject. Among 

others we mention Ahmadi and Shahinpoor [7], Eringen [8,9], Bessonov [lo], Huilgol [ll], and 

Straughan [12]. 
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The study of the dynamics of the magneto-micropolar fluid model considered on an exterior 

domain plays an important and useful role. We often find physical structures in which a bounded 

body, or obstacle, produces perturbations in the surrounding medium and the spatial volume 

of the external environment, namely the exterior domain, is extensively much larger than the 

obstacle. From the modelling point of view, the obstacle may be regarded as a compact domain 

located in all of R3. Let K denote this compact subset, and let St denote its complement in IR3, 

that is, fl = KC. 

It is known that certain dynamical systems may not have periodic solutions because there 

exist many orbits, or branches of bifurcations, that can be randomly reached by the solution 

(e.g., see [13]). H owever, several of these systems are still of the reproductive type, in the sense 

that there exist at least two different times where the solution takes the same value. 

We are interested in the study of the existence of reproductive weak solutions for the equations 

that describe the motion of a viscous incompressible magneto-micropolar fluid in the exterior 

domain R and in the time interval [0, oo). Such a mathematical model reads: find the three- 

dimensional fields (u, w, h) : R x (0,oo) -+ Rg and the scalar functions (p, q) : R x (0, 00) --f R2 
which satisfy the system of equations 

$+u.Vu-(h+x)Au+V pf ‘h h =xrotw+rh.Vh+f, 
( 2.1 

dW 
jz+ju.Vw-yAw+2xw-(cr+P)Vdivw=xrotu+g, 

ah 
(1.1) 

---Ah+u.Vh-h.Vu+Vq=O, at 
div u = 0, div h = 0. 

Here u(z, t), ~(2, t), h(z, t) E lR3 denote, respectively, the velocity, the microrotational velocity, 

and the magnetic field of the fluid at point x E R and time t E (O,co), and p(z, t),q(z, t) E iR 

denote the hydrostatic and magnetic pressures at the same place. The values p, x, r, Q, p, y, J’ 

and v are constants associated with properties of the material. For physical reasons, we suppose 

that these constants satisfy min{p, x, T, j, y, v, (cy+p), y} > 0. The vector-valued functions f (2, t), 

g(z, t) E B3 are given external fields. 

We assume that the following boundary and initial conditions hold: 

u(z, t) = w(z, t) = h(z, t) = 0, a.e. in an, vt E (O,co), (1.2) 

u(z, 0) = uo(z), w(z, 0) = we(x), h(z, 0) = ho(z), a.e. in R. (1.3) 

To complete the system of equations, we prescribe the behaviour of the solutions at infinity. More 

precisely, we consider the classical homogeneous decay 

lim u(z, t) = ,$zm w(z, t) = ,$_“O h(z, t) = 0, vt > 0. 
lfl+=J 

(1.4) 

It is important to remark that to treat (1.4) in our mathematical modelling, no weighted spaces 

are required. From a physical viewpoint, we note that the classical boundary value condition for 

the magnetic field, which reads 

h.n=O and rothAn=O, on afi, 

has been replaced by a homogeneous Dirichlet condition. Then we are considering a nonper- 

feet conductor body K. The unknown function q(x, t), the corresponding magnetic pressure, is 

concerned with the motion of heavy ions (e.g., see (14]), 

v,+ rotjo, 

where ja is the density of electric current and o > 0 is the constant electric conductivity. 
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Let (u, w, h) be a weak solution of (l.l)-(1.4) (the exact definition will be given later on). 

Given T > 0, if there exists (~0, WO, ho) such that 

u&T) = uo(z), w(z,T) = we(x), I+,?“) = ho(z), a.e. in Sz, (1.5) 

then, we call (u, w, h) a reproductive weak solution of (l.l)-(1.4) at time T. We say that sys- 

tem (l.l)-( 1.4) has the reproductive property if it is reproductive at every T > 0 (see Kaniel and 

Shinbrot [15] or Takeshita [IS] for the case of the Navier-Stokes equations). We note that the 

above property is a generalization of the notion of periodicity. In this paper, our goal is to prove 

that system (l.l)-( 1.4) is reproductive. 

Equation (l.l)i has the familiar form of the Navier-Stokes equations but it is coupled with 

equation (l.l)ii and (l.l)iii. Equation (1 .l)ii describes the motion inside the rnacrovolumes 

as they undergo microrotational effects, which are represented by the microrotational velocity 

vector w. For fluids with no microstructure, this velocity vanishes and we deal with a magne- 

tohydrodynamics system. For Newtonian fluids, where x = 0, equation (l.l)i decouples from 

equation (l.l)ii. Equation (l.l)iii, which is the equation for h, is the Maxwell system in which 

the electrical field is determined in a postetiori way. It is also important to note that if h = 0, 

we consider the well-known asymmetric fluid model. 

It, is now appropriate to cite some earlier works on the initial boundary-value problem (l.l)- 

(1.3) on a bounded domain, which are related to ours, and also to locate our contribution therein. 

When the magnetic field is absent (h = 0), the reduced problem was studied by Lukaszewicz [17], 

Galdi and Rionero [18], Padula and Russo [19], and Conca et al. [20]. Lukaszewicz [17] estab- 

lished the global existence of weak solutions for (l.l)-( 1.3) un d er certain assumptions by using 

linearization and an almost fixed-point theorem. In the same case, by using the same technique, 

Lukaszewicz [17] also proved the local and global existence, as well as the uniqueness of strong 

solutions. Again, when h z 0, Galdi and Rionero [18] established results similar to the ones of 

Lukaszewicz [17]. Finally, we can mention Padula and Russo [19], who studied the uniqueness of 

the solution in the unbounded domains case. 

The full system (l.l)-(1.3) was studied by Galdi and Rionero [IS], and they stated, without 

rigorous proof, results of existence and uniqueness of strong solutions. Rojas-Medar [21], also 

studied the system (l.l)-(1.3) and established existence and uniqueness of strong solutions by 

using the spectral Galerkin method, reaching the same level of knowledge as in the case of the 

classic Navier-Stokes equations. Ahmadi and Shahinpoor [7] studied the stability of solutions of 

the mentioned system. Boldrini and Rojas-Medar [22] proved existence of weak solutions as well 

as reproductive weak solutions for system (l.l)-(1.3) in a bounded domain. 

In Section 2, we establish the basic mathematical framework to be used and rewrite (l.l)-(1.4) 

in a more suitable weak form. Also, we state Theorem 2.3, which is our main result. In Section 3, 

we use the “extending domain method” (see [23,24]) to approximate problem (1. I)-( 1.4). Finally, 

Section 4 is devoted to provide the proof of Theorem 2.3. 

2. FUNCTION SPACES AND PRELIMINAIRES 

Throughout, the functions are either R or IW3-valued and we will distinguish between these 

two situations in our notations. More precisely, the vector-valued functions in W3 are denoted 

by {u, w, h}, while the scalar ones are simply written {p, q, ‘LL~, vj}. 

We now give the precise definition of the exterior domain R where our boundary-valued 

problem, i.e., problem (l.l)-(1.4), has been formulated: let K be a nonvoid compact subset 

of W3 whose boundary aK is of class C 2. The exterior domain fl that we consider is s1 = KC 
and ast =dK. 

As we said before, to carry out the mathematical analysis we use the extending domain method. 

It was introduced by Ladyzhenkaya [23] to study the Navier-Stokes equations in unbounded 

domains. Before, this method was applied to study a large class of problem of exterior domain, 
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as for example [25]. The main idea of this procedure is as follows: the exterior domain R may be 

approximated by bounded domains & = Bk n 52, for every k 2 1, with Bk the ball of radius k 

centered at the origin. In each interior domain &, we prove the existence of a reproductive weak 

solution. For this, we will apply the Galerkin method together with Leray-Schauder’s fixed-point 

theorem (as in [26]). Next, using the estimates given in [23], together with a diagonal argument 

and Rellich’s compactness theorem, we obtain the desirable reproductive weak solution to the 

original problem (l.l)-(1.4). 

In the sequel, we specify several vector-valued function spaces, which are used in what follows. 

The domains 0 or flk are denoted in a generic way by D. Also, X denotes any function space. 

Moreover, we consider b = D x [0, T], where T is a strictly positive real constant. Then, we have 

W”‘“(D) = {u; Dau E Lp(D), IQ/ 5 r}, 

W,T’p(D) = Closure of Cr(D) in Wr9p(D), 

We(D) = Closure of C,“(D) in norm ]]V$][, 

C,q),(D) = {cp E C?(D); divcp = 0 in D}, 

J(D) = Closure of C&(D) in norm ((V$(], 

H(D) = Closure of C&(D) in norm 11411, 

W, (a) = {$ E Cr (Ij> ; +(z,T) = $(x:,0) in D}, 

WV (fi) = {G E Ci$ (a) ; $@,T) = $(x,0) in D} , 
LP,(O, T; X) = {u E Lp(O, T; X); ~(2, T) = u(z, 0) in D} 

We denote by ]] . \Ip(q and ]] . Ilwv,,>(q the standard norms of the vector-valued Sobolev 

spaces LP(D) and WT,p(D), with T 2 0, 1 I p < 0;) (e.g., see [26]). As usual, W’,2(D) z 
F(D), T > 0, and otherwise, W”12(D) E L2(D). In this last case, the norm and the inner 

product are denoted solely by (( * I[ and (e, .), that is, without subscripts. As was proved by 

Heywood [25], when D is bounded or an exterior domain, we note that J(D) is equivalent to the 

space 

Jo(D) = {‘p E We(D); divcp = 0, a.e. in D}. 

Also, it is clear that in the bounded case we have 

J(&) = {‘p E Ht(&); div cp = 0, a.e. in &} . 

The following inequalities are used henceforth, their proofs can be found in [23]. 

LEMMA 2.1. Let D C lR3 be bounded or unbounded. Then we get the following. 

(a) For u E We(D) (or in J(D)), we have 

bl\L6(D) 5 cLliv"il~ 

where CL 5 (48)l/“. 

(b) (Hijlder’s Inequality.) If each integral makes sense, we have 

[((u * V)v,w)l 5 3r’p+l”(( ]] u L~'(D)~I~VItL'~(D)~~W~IL'.(D)r 

where p,q,r > 0 and l/p + l/q t I/T = 1. I 

LEMMA 2.2. Suppose that D is a bounded domain in l.FP and its boundary 8D is of class C2. Let 

us take an orthonormal basis {~j}joo=~ of L’(D). Then, for any E > 0, there exists a number NE, 

depending only on E, such that 

Ilull I 2 (u?J)2 + +1]~‘,1’, vu E W,l,p(D), 
j=l 

I 
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We now state our problem rigorously establishing regularity assumptions on the boundary 8 52 

and on the external forces. 

(Sr) Let 00 be a neighbourhood of the origin. Let 00 2 int K and K 2 BR, R > 0; 

(Sz) dR = dK E C2; 

(Ss) f E L2(0,T; J(Q)*), g E L2(0,T; IV,a(G)*), where J(R)* (respectively, Wc(s2)“) is the 

topological dual of J(R) (respectively, Ws (Cl)). 

We denote the classical bilinear and trilinear forms by 

a(v, w) = 2 1, 2 2 dx, 
i,j=l 

b(u,v,w) = 2 1 uj 2 widx, 
i,j=l D 

which are defined for all vector-valued functions u, v, w, for which the integrals make sense. 

Now, we can define precisely the notion of a reproductive weak solution for the whole sys- 

tem (l.l)-(1.4). 

DEFINITION. Let T > 0. We say that the triple of functions (u, w, h), defined on R x (0, T), is 

a reproductive weak solution of (l.l)-(1.4) at time T if and only if there exist UO, ho E H(R) 

and wg E L2(s2) such that 

(i) u(x,O) = us(x), w(x,O) = ws(x), h(x,O) = ho(x), a.e. in R, 

(ii) u, h E L2(0, T; J(0)) n LF(O, T; H(R)), 

(iii) w E L2(0, T; Wo(0)) f~ LF(O, T; L2(fl)), 
(iv) u, w, and h satisfy the variational equations 

s oT[~(~.QL)+~a(w,4)+(~+B)(divw,div4)+2~(w,~) 
t-j Vu, 4, w> - (g, 4) - x (u, rot $)I dt = 0, 

s T 

[(h, $4 + va(h, $I+ b(u, 111, h) - b(h, ~4 u)] dt = 0, 
0 

for all cp, $J E Wg,=(6) and 4 E WX(fi). 

REMARK. It is important to note. 

(i) As u(e, t), h(+, t) E J(Q) and w(., t) E W,(Q), a.e. in (0, T), we have 

(2.10) 

(2.11) 

(2.12) 

I 

ulan = hlan = w/an = o, a.e. in (0,T). 

(ii) By Part (a) of Lemma 2.1 

lim 
12lF+~ 

u(x, t) = ,di,m, w(x, t) = ,$_nm h(z, t) = 0, a.e. in (0,T). 

(iii) We also see that the pressures are recovered by a standard application of DeRham’s 

theorem. I 

Finally, we state our main result, which is proved in what follows. 

THEOREM 2.3. EXISTENCE OF SOLUTION. Under Hypotheses @I)-(&) problem (1.1)~(1.4) 
admits at least one reproductive weak solution. I 
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3. THE INTERIOR PROBLEM 

Since (l.l)-(1.4) has been formulated in a variational form, it is natural to use the “extending 
domain method” (see [23,24]). It consists in building a sequence of functions that converges, in a 
suitable topological sense, toward the solution of the original exterior problem (l.l)-(1.4). More 
precisely, we consider the following family of differential problems {(Pk)}ke~, defined on bounded 
domains fik = Bk n fit: Find the three-dimensional fields (v, z, b) : !& x (0, T) + R” and the 
SCahr functions (p,q) : RI, x (O,T) -+ JR2 which satisfy the system of equations 

vt-(p+x)Av+(v.V)v+V(p+ib.b) =xrotz+r(b.V)b+f, 

zt-yAz-(a+@Vdivz+j(v.V)z+2xz=xrotv+g, 

bt-vAb$(v.V)b-(b.V)v+Vq=O, 
(pk) 

divv = 0, divb = 0, 

v = 0, a = 0, b = 0, on a&, 

v(*,T) = v(.,O), z(*,T) = Z(.,O)> b(e,T) = b(.,O), 

where vt denotes the time derivative and df& = dfl U a&. It is straightforward to see that the 
sense of reproductive weak solution for (Pk), also called approximated reproductive solution, is 
completely similar to the one for (l.l)-(1.4). In fact, we have the following. 

DEFINITION. We say that a triplet of functions (v, z, b) defined on a,+ x (0, T) is a reproductive 
weak solution of (Pk) at time T if only if there exist vs, bo E H(&) and zs E L2(f&) such that 

(i) v(z,O) = vs(z), z(z,O) = za(z), b(z,O) = ho(z), a.e. in fik, 

(ii) v, b E L2(0, T; J(flk)) rl Lp(O, T; H(Rk)), 

(iii) z E L2(0,T;H,‘(f&)) fl Lr(O,T; L2(&)), 
(iv) v, z, and b satisfy the variational equations 

s 
oT {(v, cpt) + (II + x)(Vv, VP) + b(v, ‘P, v) - rb(b, cp,b) - xb rotcp) - (f, cp)) dt = 0, 

J oT {(z, cbt) + ~0% V+) + (a + P)(divz, div 4) + jb(v, 4, z) + 2x(z, 4) 

- x(v, rot 4) - k, 4)) dt = 0, 

s ’ {(h $4 + VP, V$) + b(v, $, b) - bh $3 v)} dt = 0, 
0 

for all cp, @ E WC,,(&) and 4 E Wn(&). I 

PROPOSITION 3.1. EXISTENCE OF APPROXIMATED REPRODUCTIVE SOLUTION. Under Hy- 
potheses (Sr)-(Ss) problem (Pk) admits at least one reproductive weak solution, denoted by 
(vk,zk,bk). I 

The last part of this Section 3 is devoted to establish the proof of Proposition 3.1. We do that 
using the Galerkin method together with Leray-Schauder’s Homotopy Theorem as in [24,26]. 
We begin by proving a useful a priori estimate and by establishing a finite-dimensional itera- 
tive scheme to approximate the functions (vk, zk, b"). More precisely, we look for a sequence 

k (%z,> bk) defined on a finite 3m-dimensional space such that for m - foe we have 

v& -vk strong in L2(0, T; H(&)) and weak - * in LF(O, T; H(fik)), (3.1) 

z; - zk strong in L2 (0, T; L2(&)) and weak - *in LF (0, T; L2 (&)) , (3.2) 

bk - b" strong in L2(0,T; H(&)) and weak - * in LF(O,T; H(&)). (3.3) 

As we shall see, the mth-approximating reproductive sequence {(vh, zk, bk)}m21 is nothing but 
the reproductive weak solution of (pk) restricted on finite-dimensional functional spaces. This 
fact depends in a crucial way on the following a priori estimate. 
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LEMMA 3.2. Let (vk, zk, b”) be a weak solution of (Pk). Then it satisfies the estimate 

PROOF. ~U~~iplyiUg (Pf&, (P&i, and (P/&i by vk, zk, and rb”, respectively, and integrating 

by parts on ok, we obtain 

f -$ j~v”/~” + (p + x) a (vk,vk) - rb (b”, bk, v”) = x (rot zk, v”) + (f, v”) , 

~~j~/zk~~2+~u(zk,zk)+(o+~)j~div~k~~2+2x~~zk~~2=x(rotvk,zk)+(g,zk), 

f $ T Ijbkj12 i- rvo (b”, b”) = rb (b”, vk, b”) . 

Adding these equalities and observing that b(bk,bk, v’“) + b(bk,vk, b”) = 0, we obtain 

; $ (llvk112 fj[lzkl12 +rllbk)12) + (~-tx)a(v”,v~) +7a(zk,zk) -trva(bk,bk) 

+(a: + ,o) //divzk}12 + 2x l\zkj(2 = 2~ (zk, rotvk) -t- (f,v”) + (g, z”) . 

f3 5) 

* 

Next, we estimate the right-hand side of (3.5). Using l/rot v(I = I/Vvll and Young’s inequality we 

can deduce 

2x (z”, rotv”) I 2x }lzk/ 11 rotvk(J I 2x JlzkJI I(VvklJ 5 x jIzklj2 + xa fvk,vk) , 

(fJk) I IlfIIJ(nk)* Ilvv”l( 5 $llfll:(,). + ; u (VV) , 

(f&z”) 5 MIH-VW IIvz”ll 5 & lIgllfv~in)* + ; a (z”7z”) . 
Substituting the above estimates into (3.5) and neglecting some positive terms, we get the desired 

estimate (3.4), which conclude the proof. I 

REMARK. The right-hand side of (3.4) does not depend on integer k. 

Let k E H be fixed and let {cp”)~r C ceO(&) and {#}& C cp(f&) be orthonormal bases 

in L2(!&) and total bases in J(&?k) and H,‘(Slk), respectively. As ~th-approximated reproductive 

sohltion of equation (&) we choose 

v$(z,t) = &&)ip”(z), (3.6) 
i=l 

g&b, t> = 2 ~~~(~)~~(~), (3.7) 
i=l 

bk(s,t) = f:emi@)@b), (3.3) 
i=l 

satisfyingtJi = l,..., m, Vt E (0,T) the system of equations 

(vk%,t, POi ) +(II+x)+k&+) +++&,cpi) 

- T b (bk, bk, (pi) = x (rot z&, ipi) + (f, @) , 
(3.9) 

j (4& 6) +ru(z~,&) + (cx-tf) (divzi,div@) +jb(vi,zk,&) 

+2x (vk, 8) = x (rotvh, #) + (g, cp”) , 
(3.10) 

(bEit 4 +Ya(b&,cp”) +b(v&,b&,cp”) -b(bk,vk,#) =O. (3.11) 

Note that if (v” mr z&, b&) satisfy (3.9)-(3.11) then these functions verify the inequality (3.4). 
In fact, it is straightforward to prove the following result. 
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COROLLARY 3.3. Let (vkm, Zkm, b k)  be a solution of (3.9)-(3.11). Then it satisfies the estimate 

(3.12) I 
k k 1 l 

To simplify notation, we keep some abbreviations 

0~ v k k ( ~,  b ~ ) ,  (3.,3) 

IIo~tt)lL ~ = live/tiLl ~ + ~ ILz%it/ll ~ +r  IIb%It)ll ~ (314/ 

Let dk denote the diameter of the domain ilk. (3.15) 
2 

Let Ak denote the positive real constant d--~k min{p, 7, 2rv}. (3.16) 

Then, we have the following estimate. 

LEMMA 3.4. Let (Vkm, Z~m, bkm) be a solution of (3.9)-(3.11). Then it satisfies the estimate 

e ~  Ile~(T)ll ~ _< II0~(O)I(+ [~e~* (llf(~)ll~(~)- + IIg(~)ll~o~).) d~ (3.17) 
Jo 

PROOF. By using Poincar6's inequality, (3.15) and (3.16) in (3.12), we obtain 

_~ (,Iv:ll~ + j ii~:ll ~ +, flu:if ~ ) + ~ (llv:ll~ + ilz:ii~ + ilu:ll ~) dt (3.18) 
1 1 2 

< -[[f[l~(fl)- + [[g[Iwo(fl~)', 

or equivalently, by adopting (3.13) and (3.14), 

eAkt eAkt 
d (e~k t N0km(T)l[: ) < IIf{Ig(a) * + IlgllNo(a).. 

Integrating from 0 to T, we obtain 

T 
e ~  II0~(T)II ~ ~ IIo~(o)ll: + [ e~* (,r(~)ll~(o). + IIg(~)ll~o(.).) e~, 

Jo 

which is (3.17). | 

In the sequel, we show that  (v~,  zm,k bkm) is a fixed point of the operator (I)m defined below. 
Let L m be the mapping defined by 

n m :  [0, T] --~ R 3m, (3.19) 

t --+ Lm(t) = y(t) ,  (3.20) 

where y(t)  is computed by 

y(t)  = (cml(t) , . .  ., cram(t), v ~  drnl(t),.. ., v / j  dm,~(t), vTem~( t ) , . . . ,  v/T emm(t)) , 

and where the time dependent functions {(cmi(t), dmi(t), erni(t))}m=~ are the coefficients of the 
(vm, Zm, bin), as done in (3.6)-(3.8). expansion of a k k 
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Since we have chosen the bases {p”(z)}& and {#(~)}gi orthonormal in L2(Q), we have 

IlYtt)liR3m = (l&t)/1 7 vt E [O,T]. (3.21) 

Next, we define the operator Grn as follows: 

@m : llP -+ &Pm, (3.22) 

x -+ Q”(x) = y(T), (3.23) 

where x = (zi)fzi and y(T) = L”(T) is the vector of coefficients at time T of the solution 
of (3.9)-(3.11) with initial condition given by 

(3.24) 

(3.25) 

(3.26) 

It is not difficult to see that @m is continuous, and we claim that @m has at least one fixed 
point. This will be a consequence of Leray-Schauder’s homotopy theorem. To prove this, it is 
enough to show that for any X E [0, 11, a solution of the equation 

has a bound independent of 
case (3.27) may be rewritten 

Avyx(A)) = x(X), (3.27) 

X. Since x(0) = 0, we restrict the proof to X E (O,l]. In such 

P(x(>)) = ; x(X). (3.28) 

By the definition of am and equality (3.21), we deduce from (3.17) 

Since we impose the condition ok(O) = 8&(T), we obtain 

dtdd, (3.29) 

V’x E (0, If. Obviously, this upper bound does not depend on X E IO, l] and so we have established 
that the operator am has at least one fixed point, denoted by x(l). Also, we remark that x(1) 
must satisfy (3.29). In other words, we have proved the following existence result. 

LEMMA 3.5. EXISTENCE OF THE TTI~~-APPROXIMATING REPRODUCTIVE SOLUTION. Under 
Hypotheses (Sl)-(Ss) problem (3.9)-(3.11) admits at feast one reproductive weak solution, 

i+z> z$, b$J, Vm 2 1. ~rthermore, this sequence of functions satisfy 

(if (v’” f76f zi%, bk) is u~jforrn~y bounded in L’(O, T; I) xL2(0, T; ~~(~~)) xL’(O, T; ~(~~~), 
(ii) (v$, z%, b$J is uniformly bounded in Lr(O, T; H(&) x LF(O, T; L2(&)) x LF(O, T; 

H(ak)). 
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PROOF. First, we note that (3.29) gives 

I(v!GAO)j( +J’ /~z!AO)([~ + \(b!XO)(12 L M. 

So, by integrating (3.12) from 0 to t 5 T and considering the above estimation, we can deduce 

for all m 2 1 the following uniform boundness: 

sup ess 
te[c,Tl \jv:(t)l/2 + j I(z;(~)\[~ + r j/b!&)j12 5 M(f, g) + M, (3.30) 

Co 
s 

T(u(v~,v~)+a(z~,z~)+a(b~,b~)) dsL M(f,g)+M, 
0 

(3.31) 

where Cc = min{p, y, 2~) and 

M(f, g) = SC 0 
’ ; Ilf(t)ll;cn,* + f lldt)l12w,cn,~) dt. 

which are none other than (i) and (ii). I 

From this lemma, we can directly deduce the following convergence property of the sequence 

{(v%, $,J$))rn>r. 

COROLLARY 3.6. CONVERGENCE OF mth-APPROXIMATING REPRODUCTIVE SEQUENCE. There 
exist v’, b” E L2(0, T; .I(&)) r) Lr(O, T; H(&)) an d z’ E L2(0, T; Ht(&)) n LF(O, T; L2(&)) 

such that 

vk-+vk strong in L2(0, T; H(&)) and weak - *in LF(O, T; H(&)), 

a; - zk strong in L2 (0, T; L2(fik)) and weak - * in LT (0, T; L2(&)) , 

bi - b” strong in L2(0, T; H(Rk)) and weak - * in Lr(O, T; H(f&)). 

PROOF. Since J(&) (respectively, H,‘( Qk)) is compactly embedded in H(&) (respectively, 
L2(&)), we may choose a subsequence, which we again denote by (vi, z&, bk), such that 

v;++ 

b& --$ b” > 
weak in L2(0, T; J(&)) and weak - * in LF(O, T; H(&)), 

zk -+ zk weak in L2 (0, T; Hi (RI,)) and weak - * in LT (0, T; L2(&)) 

Furthermore, combining Lemma 2.2 (with n = 3,~ = 2) and (3.31) we see that 

+V k 

;$Abk 1 
strong in L2(0, T; H(Rk)), 

zk -+ zk strong in L2 (0,T; L2(!&)) . 

Finally, we have the following. 

I 

PROOF OF PROPOSITION 3.1. Taking the limit as m -+ co in (3.9)-(3.11) we can easily prove 

that the approximated reproductive solution (v k , z , li b”) is a reproductive weak solution of prob- 

lem (Pk). I 

4. PROOF OF THEOREM 2.3 

Let (vk, zk, bk) be a weak solution of (Pk) obtained in Proposition 3.1. Define the extended 

functions 

Ll”(z,t) = 
{ 

vk(0), if z E ok, 

0, ifzEfl\\k, 
(4.1) 

Wk(2, t) = 
{ 

Zk(G t), if 5 E ok, 

0, ifXEfl\&, 
(4.2) 

h”(z,t) = 
bk(x, t), if 2 E &, 
o (4.3) 

I ifxEfl\&. 

Then we have the following result. 
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LEMMA 4.1. Let uk, wk, h” be defined as above. These functions satisfy 

(i) uk, h” E L2(0, T; J(n)) II Lr(O, T; H(R)); 

(ii) wk E L2(0, T; Wo(s2)) II Lp(O, T; L2(s2)). 

Furthermore, we have 

where e,, &, .t3 are strictly positive real constants independ of k E W. 

PROOF. By integrating (3.12) in [0, T], we obtain 

CO J( oT llvv~(t)~12 + ~lV&(t)l~’ + IIVb~(t)~12) dt _< hf(f, g), 

(4:4) 

(4.5) 

(4.6) 

since v$, zh, bk are reproductive with period T. Consequently, if m goes to $00 in (4.6), by 

the lower semicontinuity of the norm with respect to weak convergence, we obtain 

CO I’ (IIv~~(t)l(~ + I(v~“(t)l(~ + (IVbk(t)j12) dt 5 M(f,g). 

Analogously, from (3.30) we deduce the uniform estimate 

sup ess 
tE [WI (kk(t)jj2 + j [lzk(t)l[2 + T j)bk(t)j/2 < M(f, g) + M, 

(4.7) 

(4.8) 

which implies (i) and (ii) and conclude the proof. I 

Next, we pass to the limits as k goes to infinity. By the uniform estimates (4.4) and (4.5), we 

have a subsequence {(u”, wk, hk)}, denoted without any subscript, as well as functions u, h E 

L2(0, T; J(0)) fl Lp(O, T; H(R)) and w E L2(0, T; Wo(s2)) IY Lr(O, T; L2(C2)) such that 

$ z ; weak in L2(0,T; J(0)) and weak - * in Lr(O, T; H(R)), 

wk + w weak in L2(0, T; W,(0)) and weak - * in Lp (0, T; L2(R)) . 

To conclude the proof of Theorem 2.3, it is enough to show that there exists a subsequence 

{u’“‘, w ICI, h”‘} such that 
, 

$ z h” 
1 

strong in L2 (0, T; L&(Q)) , 
(4.9) 

wk’ -+ w strong in L2 (0, T; L&(52)) . 

In fact, once these strong convergences and limits are established, we can easily prove that 

(u, w, h) is the desired reproductive weak solution for (l.l)-(1.4). Indeed, let (cp,J,+) be any 

arbitrary test function, 0 a bounded subset of Q and ko E N such that: supp cp, supp 5, and 

supp li, are included in 0 C flko c ok, Vk 2 ko. Then, by Lemmas 2.1 and 4.1, we have 

s 0 
T ((u” + VP, u”) - (u . Vv, u)) dt I /’ (j/u” - 

+ Iluk - Ulliye) liu,,~6~~),,V~ilL.(~i) dt 

5 CL 
(J 

T J/Ilk - u)12 
0 

L2(@) dt) 1’2 (i,‘lIW dt) 2;:; IIwlLw) 

+ CL (J T IJuk - u)12 
0 

Lzcej dt)'12 (i' IW12d~)1'2 "t"E;;;; IIVPIIL~~O~. 
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Combining this inequality with (4.9), we deduce 

T s (( uk’ . vp, ilk’ ) - (u. VP, u,) dt - 0, as Ic’ -+ co. 
0 

All the other convergences are proved similarly, and we have established that (u, w, h) is one 

reproductive weak solution of our problem (l.l)-(1.4). m 
We claim that the convergence properties stated in (4.9) are true. 

LEMMA 4.2. There exists a subsequence {u”‘, wk’, bk’} such that 

Ilk’ 4 u 
hk’ --$ h strong in L2 (0, T; LB,(o)) , 

wk’ -+ w strong in L2 (0, T; Lf&(Q)) . 

PROOF. We restrict our proof to the subsequence {u”‘}~=i. The other subsequences, {w”‘}~=i 

and {h"' }p=, , are treated similarly. 

We put Kj = Clj, then {Kj}gl is an increasing sequence of compact sets, that is: K1 C K2 C 
. . . --) R as j --) co. For each Kj , we choose CQ (z) E Cr(0) with the property 0 5 aj 5 1, 

aj(~, s 1 and supp cyj c slj+l. It is important to note that Kj c supp oj. Here, and in the 

remaining, (1. ((0, E I(. ((~cz(n,) and dj denotes the diameter of Rj. Then we can construct the 

desired {u’“‘} as follows. First, we construct a sequence {CX~ (z)u” (z)};E”=i, uniformly bounded 

in L2(0, T; Hi). Indeed, since uk = 0 on 392, Poincare’s inequality on R2 yields that 

(Ioiuk((n2 5 Ilukll~2 I &211Vuklln2. Hence, we have 

I oT I(wk@)(l;2 dt 5 f JT 
0 

IIVu”(t)(I’ dt 5 g M(f,g). 
0 

(4.10) 

Moreover, 

from which, we conclude that 

The estimates (4.10) and (4.11) imply that {oiuk} is uniformly bounded in L2(0, T; @(!&)). 

Consequently, there exists a subsequence {c~iu~p}~i which converges weak in L2(0, T; Hi (02)) 
and strong in L2(0,T;L2(&)). Furthermore, as (~11~~ 3 1, {u~~}~=~ converges strong in 

L2(0,T; L2(K1)). If we repeat the argument, we deal with the sequence {ujP},“_i, j 2 1. To 

end the proof, it is enough to choose the diagonal terms, which we denote by {u”‘}~=i, and to 

remark that the sequence converges for all K3 in L2(0, T; L2(Kj)). 

1. 

2. 

3. 
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